WorldWideScience

Sample records for grounding systems continuity

  1. 30 CFR 77.801-1 - Grounding resistors; continuous current rating.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistors; continuous current rating... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.801-1 Grounding resistors; continuous current rating. The ground fault current rating of grounding resistors shall meet the “extended...

  2. 30 CFR 77.901-1 - Grounding resistor; continuous current rating.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistor; continuous current rating. 77.901-1 Section 77.901-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... resistor; continuous current rating. The ground fault current rating of grounding resistors shall meet the...

  3. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  4. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded).

    Science.gov (United States)

    2010-10-01

    ....376 Section 120.376 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each...

  5. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    Science.gov (United States)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  6. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Science.gov (United States)

    2010-10-01

    ....376 Section 183.376 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral... generator to ground before the generator is connected to the bus, except the neutral of an emergency power...

  7. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  8. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    Present day knowledge of the magnitude of the strain levels in the ground associated with geotechnical structures, together with an increasing number of projects requiring the best estimates of ground movements around excavations, has led to, inter alia, increased interest in measuring the very......-small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  9. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  10. The automated ground network system

    Science.gov (United States)

    Smith, Miles T.; Militch, Peter N.

    1993-01-01

    The primary goal of the Automated Ground Network System (AGNS) project is to reduce Ground Network (GN) station life-cycle costs. To accomplish this goal, the AGNS project will employ an object-oriented approach to develop a new infrastructure that will permit continuous application of new technologies and methodologies to the Ground Network's class of problems. The AGNS project is a Total Quality (TQ) project. Through use of an open collaborative development environment, developers and users will have equal input into the end-to-end design and development process. This will permit direct user input and feedback and will enable rapid prototyping for requirements clarification. This paper describes the AGNS objectives, operations concept, and proposed design.

  11. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  12. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Science.gov (United States)

    2010-10-01

    ... board aircraft. Air-ground systems operating in these frequency bands are referred to in this part as... systems. 22.857 Section 22.857 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  13. The ground-fault detection system for DIII-D

    International Nuclear Information System (INIS)

    Scoville, J.T.; Petersen, P.I.

    1987-10-01

    This paper presents a discussion of the ground-fault detection systems on the DIII-D tokamak. The subsystems that must be monitored for an inadvertent ground include the toroidal and poloidal coil systems, the vacuum vessel, and the coil support structures. In general, one point of each coil is tied to coil/power supply ground through a current limiting resistor. For ground protection the current through this resistor is monitored using a dynamically feedback balanced Hall probe transducer from LEM Industries. When large inductive currents flow in closed loops near the tokamak, the result is undesirable magnetic error fields in the plasma region and noise generation on signal cables. Therefore, attention must be paid to avoid closed loops in the design of the coil and vessel support structure. For DIII-D a concept of dual insulating breaks and a single-point ground for all structure elements was used to satisfy this requirement. The integrity of the support structure is monitored by a system which continuously attempts to couple a variable frequency waveform onto these single-point grounds. The presence of an additional ground completes the circuit resulting in current flow. A Rogowski coil is then used to track the unwanted ground path in order to eliminate it. Details of the ground fault detection circuitry, and a description of its operation will be presented. 2 refs., 7 figs

  14. Distributed operating system for NASA ground stations

    Science.gov (United States)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  15. Detection system for continuous 222Rn monitoring in waters

    International Nuclear Information System (INIS)

    Holy, K.; Patschova, E.; Bosa, I.; Polaskova, A.; Hola, O.

    2001-01-01

    This contribution presents one of the high-sensitive systems of continuous radon monitoring in waters. The device can be used for the continual control of 222 Rn activity concentration in water sources, for a study of the daily and seasonal variations of radon activity concentration in water systems, for the determination of the infiltration time of surface water into the ground water and for the next untraditional applications. (authors)

  16. Ground Control System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  17. The ground fault detection system for the Tore Supra toroidal pump limiter

    International Nuclear Information System (INIS)

    Zunino, K.; Cara, P.; Fejoz, P.; Hourtoule, J.; Loarer, T.; Pomaro, N.; Santagiustina, A.; Spuig, P.; Villecroze, F.

    2003-01-01

    The toroidal pump limiter (TPL) of Tore Supra is electrically insulated from the vacuum-vessel, to allow its polarization at a voltage of up to 1 kV. In order to monitor continuously the integrity of the TPL electrical insulation, an electronic diagnostic system called TPL ground fault detection system (GFDS) has been developed. The paper will report on the design and the operation experience of the GFD system and on the evolution of the TPL grounding

  18. Suomi NPP Ground System Performance

    Science.gov (United States)

    Grant, K. D.; Bergeron, C.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, was launched on 28 October 2011, and is currently undergoing product calibration and validation activities. As products reach a beta level of maturity, they are made available to the community through NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CGS's data processing capability processes the satellite data from the Joint Polar Satellite System satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to NOAA and Department of Defense (DoD) processing centers operated by the United States government. CGS is currently processing and delivering SDRs and EDRs for Suomi NPP and will continue through the lifetime of the Joint Polar Satellite System programs. Following the launch and sensor activation phase of the Suomi NPP mission, full volume data traffic is now flowing from the satellite through CGS's C3, data processing, and data delivery systems. Ground system performance is critical for this operational system. As part of early system checkout, Raytheon measured all aspects of data acquisition, routing, processing, and delivery to ensure operational performance requirements are met, and will continue to be met throughout the mission. Raytheon developed a tool to measure, categorize, and

  19. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  20. Proven Innovations and New Initiatives in Ground System Development: Reducing Costs in the Ground System

    Science.gov (United States)

    Gunn, Jody M.

    2006-01-01

    The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.

  1. 46 CFR 111.05-13 - Grounding connection.

    Science.gov (United States)

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-13 Grounding... power sources operating in parallel in the system. ...

  2. Modernization of the Cassini Ground System

    Science.gov (United States)

    Razo, Gus; Fujii, Tammy

    2014-01-01

    The Cassini Spacecraft and its ground system have been operational for over 16 years. Modernization presents several challenges due to the personnel, processes, and tools already invested and embedded into the current ground system structure. Every mission's ground system has its own unique complexities and challenges, involving various organizational units. As any mission from its inception to its execution, schedules are always tight. This forces GDS engineers to implement a working ground system that is not necessarily fully optimized. Ground system challenges increase as technology evolves and cyber threats become more sophisticated. Cassini's main challenges were due to its ground system existing before many security requirements were levied on the multi-mission tools and networks. This caused a domino effect on Cassini GDS tools that relied on outdated technological features. In the aerospace industry reliable and established technology is preferred over innovative yet less proven technology. Loss of data for a spacecraft mission can be catastrophic; therefore, there is a reluctance to make changes and updates to the ground system. Nevertheless, all missions and associated teams face the need to modernize their processes and tools. Systems development methods from well-known system analysis and design principles can be applied to many missions' ground systems. Modernization should always be considered, but should be done in such a way that it does not affect flexibility nor interfere with established practices. Cassini has accomplished a secure and efficient ground data system through periodic updates. The obstacles faced while performing the modernization of the Cassini ground system will be outlined, as well as the advantages and challenges that were encountered.

  3. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  4. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  5. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  6. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  7. Ground loops detection system in the RFX machine

    International Nuclear Information System (INIS)

    Bellina, F.; Pomaro, N.; Trevisan, F.

    1996-01-01

    RFX is a toroidal machine for the fusion research based on the RFP configuration. During the pulse, in any conductive loop close to the machine very strong currents can be induced, which may damage the diagnostics and the other instrumentation. To avoid loops, the earthing system of the machine is tree-shaped. However, an accidental contact between metallic earthed masses of the machine may give rise to an unwanted loop as well. An automatic system for the detection of ground loops in the earthing system has therefore been developed, which works continuously during shutdown intervals and between pulses. In the paper the design of the detection system is presented, together with the experimental results on prototypes. 4 refs., 3 figs., 1 tab

  8. Recent results from a continuous wave stepped frequency GPR system using a new ground-coupled multi-element antenna array

    Science.gov (United States)

    Linford, Neil; Linford, Paul; Payne, Andy

    2016-04-01

    The recent availability of multi-channel GPR instrumentation has allowed high-speed acquisition of densely sampled data sets over unprecedented areas of coverage. Such instrumentation has been of particular interest for the mapping of near-surface archaeological remains where the ability to collect GPR data at very close sample spacings (<0.1m) can provide a unique insight to both image and assess the survival of historic assets at a landscape scale. This paper reviews initial results obtained with a 3d-Radar GeoScope MkIV continuous wave stepped frequency (CWSF) GPR system utilising both initial prototypes and production versions of a newly introduced ground coupled antenna array. Whilst this system originally utilised an air-coupled antenna array there remained some debate over the suitability of an air-coupled antenna for all site conditions, particularly where a conductive surface layer, typical of many archaeological sites in the UK, may impede the transfer of energy into the ground. Encouraging results obtained from an initial prototype ground-coupled antenna array led to the introduction of a full width 22 channel G1922 version in March 2014 for use with the MkIV GeoScope console, offering faster acquisition across a wider frequency bandwidth (60MHz to 3GHz) with a cross-line 0.075m spacing between the individual elements in the array. Field tests over the Roman remains at Silchester corroborated the results from the earlier prototype, demonstrating an increased depth of penetration at the site compared to the previous air-coupled array. Further field tests were conducted with the G1922 over a range of sites, including Roman villa sites, formal post-medieval garden remains and a medieval farmstead to assess the response of the ground-coupled antenna to more challenging site conditions, particularly through water saturated soils. A full production DXG1820 version of the antenna became available for field work in 2015 offering optimisation of the individual

  9. SLG(Single-Line-to-Ground Fault Location in NUGS(Neutral Un-effectively Grounded System

    Directory of Open Access Journals (Sweden)

    Zhang Wenhai

    2018-01-01

    Full Text Available This paper reviews the SLG(Single-Line-to-Ground fault location methods in NUGS(Neutral Un-effectively Grounded System, including ungrounded system, resonant grounded system and high-resistance grounded system which are widely used in Northern Europe and China. This type of fault is hard to detect and location because fault current is the sum of capacitance current of the system which is always small(about tens of amperes. The characteristics of SLG fault in NUGS and the fault location methods are introduced in the paper.

  10. Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Md. Hasan Ali

    2017-10-01

    Full Text Available This paper highlights the thermal performance of reclined (parallel to ground surface and standing (perpendicular to ground surface slinky horizontal ground heat exchangers (HGHEs with different water mass flow rates in the heating mode of continuous and intermittent operations. A copper tube with an outer surface protected with low-density polyethylene was selected as the tube material of the ground heat exchanger. Effects on ground temperature around the reclined slinky HGHE due to heat extraction and the effect of variation of ground temperatures on reclined HGHE performance are discussed. A higher heat exchange rate was experienced in standing HGHE than in reclined HGHE. The standing HGHE was affected by deeper ground temperature and also a greater amount of backfilled sand in standing HGHE (4.20 m3 than reclined HGHE (1.58 m3, which has higher thermal conductivity than site soil. For mass flow rate of 1 L/min with inlet water temperature 7 °C, the 4-day average heat extraction rates increased 45.3% and 127.3%, respectively, when the initial average ground temperatures at 1.5 m depth around reclined HGHE increased from 10.4 °C to 11.7 °C and 10.4 °C to 13.7 °C. In the case of intermittent operation, which boosted the thermal performance, a short time interval of intermittent operation is better than a long time interval of intermittent operation. Furthermore, from the viewpoint of power consumption by the circulating pump, the intermittent operation is more efficient than continuous operation.

  11. Design of launch systems using continuous improvement process

    Science.gov (United States)

    Brown, Richard W.

    1995-01-01

    The purpose of this paper is to identify a systematic process for improving ground operations for future launch systems. This approach is based on the Total Quality Management (TQM) continuous improvement process. While the continuous improvement process is normally identified with making incremental changes to an existing system, it can be used on new systems if they use past experience as a knowledge base. In the case of the Reusable Launch Vehicle (RLV), the Space Shuttle operations provide many lessons. The TQM methodology used for this paper will be borrowed from the United States Air Force 'Quality Air Force' Program. There is a general overview of the continuous improvement process, with concentration on the formulation phase. During this phase critical analyses are conducted to determine the strategy and goals for the remaining development process. These analyses include analyzing the mission from the customers point of view, developing an operations concept for the future, assessing current capabilities and determining the gap to be closed between current capabilities and future needs and requirements. A brief analyses of the RLV, relative to the Space Shuttle, will be used to illustrate the concept. Using the continuous improvement design concept has many advantages. These include a customer oriented process which will develop a more marketable product and a better integration of operations and systems during the design phase. But, the use of TQM techniques will require changes, including more discipline in the design process and more emphasis on data gathering for operational systems. The benefits will far outweigh the additional effort.

  12. Ground System Extensibility Considerations

    Science.gov (United States)

    Miller, S. W.; Greene, E.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners, such as NASA's Earth Observation System (EOS), NOAA's current POES, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), and DoD's Defense Meteorological Satellite Program (DMSP). The CGS provides a wide range of support to a number of national and international missions, including command and control, mission management, data acquisition and routing, and environmental data processing and distribution. The current suite of CGS-supported missions has demonstrated the value of interagency and international partnerships to address global observation needs. With its established infrastructure and existing suite of missions, the CGS is extensible to a wider array of potential new missions. This paper will describe how the inherent scalability and extensibility of the CGS enables the addition of these new missions, with an eye on global enterprise needs in the 2020's and beyond.

  13. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  14. Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...

  15. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. [Statutory Provisions] On and after September 30, 1970, high-voltage, resistance grounded systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage...

  16. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  17. Ground water impact assessment report for the 216-B-3 Pond system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

    1995-01-01

    Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts

  18. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  19. TOPEX ground data system

    Science.gov (United States)

    Rosell, S. N.; Yamarone, C. A., Jr.

    The TOPEX Project is a proposed oceanographic mission to measure the topography of the sea surface for a period of three years. This mission is sponsored by the National Aeronautics and Space Administration and managed by the Jet Propulsion Laboratory. Measurements of topography are used to study ocean currents, tides, bathymetry and the oceanic geoid. Several of the primary goals of this mission are to process and verify the altimetric data, and distribute them within days to the science investigators. This paper describes the TOPEX end-to-end ground data system. In addition to controlling the TOPEX satellite, the ground data system has been designed to minimize the time from data acquisition to science processing and data distribution. A centralized design supports the favorable response time of the system and also allows for operational efficiencies. Networking of real time and non-real time elements of the data system provides for more effective data processing.

  20. Ground states of quantum spin systems

    International Nuclear Information System (INIS)

    Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.

    1978-07-01

    The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume

  1. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  2. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all high-voltage... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 77.803 Section 77.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION...

  3. Method for analysis the complex grounding cables system

    International Nuclear Information System (INIS)

    Ackovski, R.; Acevski, N.

    2002-01-01

    A new iterative method for the analysis of the performances of the complex grounding systems (GS) in underground cable power networks with coated and/or uncoated metal sheathed cables is proposed in this paper. The analyzed grounding system consists of the grounding grid of a high voltage (HV) supplying transformer station (TS), middle voltage/low voltage (MV/LV) consumer TSs and arbitrary number of power cables, connecting them. The derived method takes into consideration the drops of voltage in the cable sheets and the mutual influence among all earthing electrodes, due to the resistive coupling through the soil. By means of the presented method it is possible to calculate the main grounding system performances, such as earth electrode potentials under short circuit fault to ground conditions, earth fault current distribution in the whole complex grounding system, step and touch voltages in the nearness of the earthing electrodes dissipating the fault current in the earth, impedances (resistances) to ground of all possible fault locations, apparent shield impedances to ground of all power cables, e.t.c. The proposed method is based on the admittance summation method [1] and is appropriately extended, so that it takes into account resistive coupling between the elements that the GS. (Author)

  4. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  5. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  6. A Ground Systems Template for Remote Sensing Systems

    Science.gov (United States)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  7. A ground systems template for remote sensing systems

    International Nuclear Information System (INIS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-01-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS

  8. Proven Innovations and New Initiatives in Ground System Development

    Science.gov (United States)

    Gunn, Jody M.

    2006-01-01

    The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.

  9. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Science.gov (United States)

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  10. Renaissance architecture for Ground Data Systems

    Science.gov (United States)

    Perkins, Dorothy C.; Zeigenfuss, Lawrence B.

    1994-01-01

    The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new approach for developing and operating Ground Data Systems (GDS) for flight mission support. This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. Achievement of these goals is realized through the use of a standard set of capabilities which can be modified to meet specific user needs. This approach, which is called the Renaissance architecture, stresses the engineering of integrated systems, based upon workstation/local area network (LAN)/fileserver technology and reusable hardware and software components called 'building blocks.' These building blocks are integrated with mission specific capabilities to build the GDS for each individual mission. The building block approach is key to the reduction of development costs and schedules. Also, the Renaissance approach allows the integration of GDS functions that were previously provided via separate multi-mission facilities. With the Renaissance architecture, the GDS can be developed by the MO&DSD or all, or part, of the GDS can be operated by the user at their facility. Flexibility in operation configuration allows both selection of a cost-effective operations approach and the capability for customizing operations to user needs. Thus the focus of the MO&DSD is shifted from operating systems that we have built to building systems and, optionally, operations as separate services. Renaissance is actually a continuous process. Both the building blocks and the system architecture will evolve as user needs and technology change. Providing GDS on a per user basis enables this continuous refinement of the development process and product and allows the MO&DSD to remain a customer-focused organization. This paper will present the activities and results of the MO&DSD initial efforts toward the establishment of the Renaissance approach for the development of GDS, with a particular focus on both the technical

  11. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  12. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  13. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-01-01

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  14. Study on hybrid ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Man; Hongxing, Yang [Renewable Energy Research Group, The Hong Kong Polytechnic University, Hong Kong (China); Zhaohong, Fang [School of Thermal Energy Engineering, Shandong Architecture University, Jinan (China)

    2008-07-01

    Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings. (author)

  15. Unmanned Ground Systems Roadmap

    Science.gov (United States)

    2011-07-01

    quality metric tracking history . 1.4.3.4 Technical Management Division The mission of the RS JPO Technical Management (Tech Mgt) Division is to...missions dictate radio capabilities. IP version 4 ( IPv4 ) is the common IP standard used on IP addressable devices of UGVs, however, Unmanned Ground...Systems Roadmap UNCLASSIFIED 26 UNCLASSIFIED July 2011 IPv4 addresses are projected to run out and UGV systems will need to migrate to IP version 6

  16. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  17. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  18. Ground penetrating radar system and method for detecting an object on or below a ground surface

    NARCIS (Netherlands)

    De Jongth, R.; Yarovoy, A.; Schukin, A.

    2001-01-01

    Ground penetrating radar system for detecting objects (17) on or below a ground surface (18), comprising at least one transmit antenna (13) having a first foot print (14) at the ground surface, at least one receive antenna (15) having a second foot print (16) at the ground surface, and processing

  19. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  20. Study of grounding system of large tokamak device JT-60

    International Nuclear Information System (INIS)

    Arakawa, Kiyotsugu; Shimada, Ryuichi; Kishimoto, Hiroshi; Yabuno, Kohei; Ishigaki, Yukio.

    1982-01-01

    In the critical plasma testing facility JT-60 constructed by the Japan Atomic Energy Research Institute, high voltage, large current is required in an instant. Accordingly, for the protection of human bodies and the equipment, and for realizing the stable operation of the complex, precise control and measurement system, a large scale facility of grounding system is required. In case of the JT-60 experimental facility, the equipments with different functions in separate buildings are connected, therefore, it is an important point to avoid high potential difference between buildings. In the grounding system for the JT-60, a reticulate grounding electrode is laid for each building, and these electrodes are connected with a low impedance metallic duct called grounding trunk line. The power supply cables for various magnetic field coils, control lines and measurement lines are laid in the duct. It is a large problem to grasp quantitatively the effect of a grounding trunk line by analysis. The authors analyzed the phenomenon that large current flows into a grounding system by lightning strike or grounding. The fundamental construction of the grounding system for the JT-60, the condition for the analysis and the result of simulation are reported. (Kako, I.)

  1. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  2. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral......The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    Science.gov (United States)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  4. Development Ground Fault Detecting System for D.C Voltage Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim Taek Soo; Song Ung Il; Gwon, Young Dong; Lee Hyoung Kee [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    It is necessary to keep the security of reliability and to maximize the efficiency of maintenance by prompt detection of a D.C feeder ground fault point at the built ed or a building power plants. At present, the most of the power plants are set up the ground fault indicator lamp in the monitor room. If a ground fault occurs on DC voltage feeder, a current through the ground fault relay is adjusted and the lamps have brightened while the current flows the relay coil. In order to develop such a system, it is analyzed a D.C feeder ground circuit theoretically and studied a principles which can determine ground fault point or a polarity discrimination and a phase discrimination of the line. So, the developed system through this principles can compute a resistance ground fault current and a capacitive ground fault current. It shows that the system can defect a ground fault point or a bad insulated line by measuring a power plant D.C feeder insulation resistance at the un interruptible power status, and therefore the power plant could protect an unexpected service interruption . (author). 18 refs., figs.

  5. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  6. Web-based ground loop supervision system for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Pena, A. de la; Lapayese, F.; Pacios, L.; Carrasco, R.

    2005-01-01

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation

  7. Web-based ground loop supervision system for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A. de la [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)]. E-mail: a.delapena@ciemat.es; Lapayese, F. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Carrasco, R. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-11-15

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation.

  8. Ground System Survivability Overview

    Science.gov (United States)

    2012-03-27

    Avoidance Blast Mitigation Optimization Customer ILIR RDT&E Funding 5.0 % 0.5% GSS has a proven, technically proficient workforce that meets...Evaluation of Defensive-Aid Suites (ARMED) Common Automatic Fire Extinguishing System ( CAFES ) Transparent Armor Development Ground Combat Vehicle...Survey TRADOC (WFO, CNA, etc) Voice of the Customer Sy st em s En gi ne er in g Publish overarching MIL-STD, design guidelines, technical

  9. A new digital ground-fault protection system for generator-transformer unit

    Energy Technology Data Exchange (ETDEWEB)

    Zielichowski, Mieczyslaw; Szlezak, Tomasz [Institute of Electrical Power Engineering, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50370 Wroclaw (Poland)

    2007-08-15

    Ground faults are one of most often reasons of damages in stator windings of large generators. Under certain conditions, as a result of ground-fault protection systems maloperation, ground faults convert into high-current faults, causing severe failures in power system. Numerous publications in renowned journals and magazines testify about ground-fault matter importance and problems reported by exploitators confirm opinions, that some issues concerning ground-fault protection of large generators have not been solved yet or have been solved insufficiently. In this paper a new conception of a digital ground-fault protection system for stator winding of large generator was proposed. The process of intermittent arc ground fault in stator winding has been briefly discussed and actual ground-fault voltage waveforms were presented. A new relaying algorithm, based on third harmonic voltage measurement was also drawn and the methods of its implementation and testing were described. (author)

  10. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  11. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  12. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  13. Development of an optochemical sensor for continuous reversible determination of nitrate in drinking water and ground water

    International Nuclear Information System (INIS)

    Lumpp, R.

    1993-09-01

    An optochemical sensor has been developed for continuous reversible determination of nitrate in drinking water and ground water. The sensor is based on the combination of the anion selective liquid ion exchanger Ni(II[bathophenanthroline] 3 2+ with phenolsulfonephtalein dyes in a polyvinylchloride membrane. (orig.) [de

  14. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation

    Science.gov (United States)

    Fakhar, A. M. M.; Asmaniza, A.

    2016-07-01

    There are many types of ground rehabilation and improvement that can be consider and implement in engineering construction works for soil improvement in order to prevent road profile deformation in later stage. However, when comes to road maintenance especially on operated expressways, not all method can be apply directly as it must comply to opreation's working window and lane closure basis. Key factors that considering ideal proposal for ground rehabilitation are time, cost, quality and most importantly practicality. It should provide long lifespan structure in order to reduce continuous cycle of maintenance. Thus, this paper will present two approaches for ground rehabilitation, namely Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization. The first approach is an injection system which consists two-parts chemical grout of Isocynate and Polyol when mixed together within soil structure through injection will polymerized with volume expansion. The strong expansion of grouting causes significant compression and compacting of the surrounding soil and subsequently improve ground properties and uplift sunken structure. The later is a cold in-place recyclying whereby mixture process that combines in-situ soil materials, cement, white powder (alkaline) additive and water to produce hard yet flexible and durable ground layer that act as solid foundation with improved bearing capacity. The improvement of the mechanical behaviour of soil through these two systems is investigated by an extensive testing programme which includes in-situ and laboratory test in determining properties such as strength, stiffness, compressibility, bearing capacity, differential settlement and etc.

  15. Principle and Design of a Single-phase Inverter-Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...

  16. Ground Enterprise Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft ground systems are on the cusp of achieving "plug-and-play" capability, i.e., they are approaching the state in which the various components can be...

  17. Intelligent systems for KSC ground processing

    Science.gov (United States)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  18. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  19. Entanglement-continuous unitary transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.

  20. Web-Altairis: An Internet-Enabled Ground System

    Science.gov (United States)

    Miller, Phil; Coleman, Jason; Gemoets, Darren; Hughes, Kevin

    2000-01-01

    This paper describes Web-Altairis, an Internet-enabled ground system software package funded by the Advanced Automation and Architectures Branch (Code 588) of NASA's Goddard Space Flight Center. Web-Altairis supports the trend towards "lights out" ground systems, where the control center is unattended and problems are resolved by remote operators. This client/server software runs on most popular platforms and provides for remote data visualization using the rich functionality of the VisAGE toolkit. Web-Altairis also supports satellite commanding over the Internet. This paper describes the structure of Web-Altairis and VisAGE, the underlying technologies, the provisions for security, and our experiences in developing and testing the software.

  1. NRC Information No. 88-86: Operating with multiple grounds in direct current distribution systems

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During recent NRC maintenance inspections at Quad Cities, Oconee, and D.C. Cook power reactor facilities, it was found that plants had been operating with multiple grounds in the dc distribution systems for extended periods. Specific examples are described. Most nuclear power plant dc systems are two-wire ungrounded, combination battery/charger systems equipped with ground detection. Typical ground detection system features include a remote annunciator and a local indicator and/or recorder. Ground detectors are incorporated in the dc system so that if a single ground point does occur, immediate steps can be taken to clear the ground fault from the system. Failure to respond to a single ground will mask subsequent grounds. Multiple grounds can cause the indiscriminate operation of equipment, which may have safety consequences. Grounds can cause control circuit fuses to fail and can render important safety equipment inoperable as previously described. Furthermore, batteries have a designed capacity to supply power during a station blackout condition, and this capacity can be affected by the presence of unanalyzed loads in the form of multiple grounds. It is recognized that troubleshooting and finding grounds on a dc system are difficult tasks that may affect plant operation. The licensees previously mentioned have reviewed their designs and conditions for potential impact on safety system operability and have taken corrective actions to minimize the effect of grounds

  2. Solar House Obdach: experiences with a solar ground-coupled storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, M; Blum, P; Held, E; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    Within the framework of the Solar House Obdach-project, a system consisting of a ground heat exchanger, a low-temperature collector, a water-glycol/water heat pump and a low-temperature heating system was examined with regard to its suitability as only heat source of a house. With the design chosen (1 m/sup 2/ ground collector area and 0.3 m/sup 2/ low-temperature collector area per 80 W load), a seasonal performance factor of 2.83 could be obtained. About 40% of the low-temperature heat supplied to the heat pump were delivered directly or indirectly (by means of short-term storage in the ground) by the low-temperature collector, whereas about 60% came from the natural sources of energy of the ground (air heat, radiation, precipitation, ground water and slope water). The results obtained are used to verify and improve a computer model design program for ground collectors and ground-coupled storage systems which should help to optimize the design of solar plants, particularly under difficult conditions.

  3. Applying Modeling Tools to Ground System Procedures

    Science.gov (United States)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  4. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.

    Science.gov (United States)

    Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe

    2017-12-17

    In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  5. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  6. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  7. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  8. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  9. Design of power cable grounding wire anti-theft monitoring system

    Science.gov (United States)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  10. Approximating the ground state of gapped quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  11. Effects of 1992 farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota

    Science.gov (United States)

    Delin, G.N.; Landon, M.K.; Lamb, J.A.; Dowdy, R.H.

    1995-01-01

    The Management Systems Evaluation Area (MSEA) program was a multiscale, interagency initiative to evaluate the effects of agricultural systems on water quality in the midwest corn belt. The primary objective of the Minnesota MSEA was to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The 65-hectare Minnesota MSEA was located in the Anoka Sand Plain near the town of Princeton, Minnesota. Three fanning systems were evaluated: corn-soybean rotation with ridge-tillage (areas B and D), sweet corn-potato rotation (areas A and C), and field corn in consecutive years (continuous corn; area E). Water samples were collected four different times per year from a network of 22 multiport wells and 29 observation wells installed in the saturated zone beneath and adjacent to the cropped areas.

  12. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  13. The power of ground user in recommender systems.

    Directory of Open Access Journals (Sweden)

    Yanbo Zhou

    Full Text Available Accuracy and diversity are two important aspects to evaluate the performance of recommender systems. Two diffusion-based methods were proposed respectively inspired by the mass diffusion (MD and heat conduction (HC processes on networks. It has been pointed out that MD has high recommendation accuracy yet low diversity, while HC succeeds in seeking out novel or niche items but with relatively low accuracy. The accuracy-diversity dilemma is a long-term challenge in recommender systems. To solve this problem, we introduced a background temperature by adding a ground user who connects to all the items in the user-item bipartite network. Performing the HC algorithm on the network with ground user (GHC, it showed that the accuracy can be largely improved while keeping the diversity. Furthermore, we proposed a weighted form of the ground user (WGHC by assigning some weights to the newly added links between the ground user and the items. By turning the weight as a free parameter, an optimal value subject to the highest accuracy is obtained. Experimental results on three benchmark data sets showed that the WGHC outperforms the state-of-the-art method MD for both accuracy and diversity.

  14. The power of ground user in recommender systems.

    Science.gov (United States)

    Zhou, Yanbo; Lü, Linyuan; Liu, Weiping; Zhang, Jianlin

    2013-01-01

    Accuracy and diversity are two important aspects to evaluate the performance of recommender systems. Two diffusion-based methods were proposed respectively inspired by the mass diffusion (MD) and heat conduction (HC) processes on networks. It has been pointed out that MD has high recommendation accuracy yet low diversity, while HC succeeds in seeking out novel or niche items but with relatively low accuracy. The accuracy-diversity dilemma is a long-term challenge in recommender systems. To solve this problem, we introduced a background temperature by adding a ground user who connects to all the items in the user-item bipartite network. Performing the HC algorithm on the network with ground user (GHC), it showed that the accuracy can be largely improved while keeping the diversity. Furthermore, we proposed a weighted form of the ground user (WGHC) by assigning some weights to the newly added links between the ground user and the items. By turning the weight as a free parameter, an optimal value subject to the highest accuracy is obtained. Experimental results on three benchmark data sets showed that the WGHC outperforms the state-of-the-art method MD for both accuracy and diversity.

  15. Securing Ground Data System Applications for Space Operations

    Science.gov (United States)

    Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan

    2014-01-01

    The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.

  16. The COROT ground-based archive and access system

    Science.gov (United States)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  17. A Continuous Family of Equilibria in Ferromagnetic Media are Ground States

    Science.gov (United States)

    Su, Xifeng; de la Llave, Rafael

    2017-09-01

    We show that a foliation of equilibria (a continuous family of equilibria whose graph covers all the configuration space) in ferromagnetic transitive models are ground states. The result we prove is very general, and it applies to models with long range and many-body interactions. As an application, we consider several models of networks of interacting particles including models of Frenkel-Kontorova type on Z^d and one-dimensional quasi-periodic media. The result above is an analogue of several results in the calculus of variations (fields of extremals) and in PDE's. Since the models we consider are discrete and long range, new proofs need to be given. We also note that the main hypothesis of our result (the existence of foliations of equilibria) is the conclusion (using KAM theory) of several recent papers. Hence, we obtain that the KAM solutions recently established are minimizers when the interaction is ferromagnetic and transitive (these concepts are defined later).

  18. Calibrating a ground-based backscatter lidar for continuous measurements of PM2.5

    Science.gov (United States)

    Pesch, Markus; Oderbolz, Daniel

    2007-10-01

    One of the main issues of atmospheric research and air quality control is the reduction of harmful particulate matter (PM) in the atmosphere. Small particles can enter the human airways and cause serious health problems such as COPD (Chronic Obstructive Pulmonary Disease), asthma or even lung cancer. Recently, interest has shifted from PM10 to finer fractions of particulate matter, e.g. PM2.5, because the health impact of finer particles is considered to be more severe. Up to now measurements of particulate matter were carried out mainly at ground level. However important atmospheric processes, i.e. particle formation, transport and vertical mixing processes, take place predominantly at higher altitudes in the planetary boundary layer. Lidar in principle provides the ability to observe these processes where they occur. The new method outlined in this paper demonstrates the use of a small sized and quite inexpensive lidar in stand-alone operation to investigate transport processes of particulate matter, and PM2.5 in particular. Continuous measurements of PM2.5 as a reference are gained with a conventional in-situ monitor, installed on a tower at an altitude of 325 m in the North of Berlin (Frohnauer Turm). These PM2.5 measurements will be compared with backscatter Lidar data (1064 nm) taken from approx. 60 m over ground up to an altitude of 15 km with a spatial resolution of 15 m. The vertical backscatter profiles at 325 m will be correlated to the concentrations obtained by the PM2,5 monitor on the tower. Both measurements have a time resolution of 180 s to observe also processes that take place at short time scales. The objective is to gain correlation functions for estimating PM2.5 concentrations from backscatter Lidar data. Such a calibrated Lidar system is a valuable instrument for environmental agencies and atmospheric research groups to observe and investigate causes of high level PM concentrations. First results show a reasonably good linear correlation

  19. Experimental analysis of direct-expansion ground-coupled heat pump systems

    Science.gov (United States)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  20. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  1. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  2. QA CLASSIFICATION ANALYSIS OF GROUND SUPPORT SYSTEMS

    International Nuclear Information System (INIS)

    D. W. Gwyn

    1996-01-01

    The purpose and objective of this analysis is to determine if the permanent function Ground Support Systems (CI: BABEEOOOO) are quality-affecting items and if so, to establish the appropriate Quality Assurance (QA) classification

  3. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  4. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    Science.gov (United States)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  5. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  6. Smashing the Stovepipe: Leveraging the GMSEC Open Architecture and Advanced IT Automation to Rapidly Prototype, Develop and Deploy Next-Generation Multi-Mission Ground Systems

    Science.gov (United States)

    Swenson, Paul

    2017-01-01

    Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and

  7. Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa; Pihtili, Kazim [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23119 Elazig (Turkey)

    2007-10-15

    In this paper we investigate of energetic and exergetic efficiencies of ground-coupled heat pump (GCHP) system as a function of depth trenches for heating season. The horizontal ground heat exchangers (HGHEs) were used and it were buried with in 1 m (HGHE1) and 2 m (HGHE2) depth trenches. The energy efficiency of GCHP systems are obtained to 2.5 and 2.8, respectively, while the exergetic efficiencies of the overall system are found to be 53.1% and 56.3%, respectively, for HGHE1 and HGHE2. The irreversibility of HGHE2 is less than of the HGHE1 as about 2.0%. The results show that the energetic and exergetic efficiencies of the system increase when increasing the heat source (ground) temperature for heating season. And the end of this study, we deal with the effects of varying reference environment temperature on the exergy efficiencies of HGHE1 and HGHE2. The results show that increasing reference environment temperature decreases the exergy efficiency in both HGHE1 and HGHE2. (author)

  8. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Annual simulations of heat pump systems with vertical ground heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M.A.; Randriamiarinjatovo, D. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2001-06-01

    The recent increased popularity in ground-coupled heat pump (GCHP) systems is due to their energy saving potential. However, in order for a GCHP to operate efficiently, they must be sized correctly. This paper presents a method to perform annual simulations of GCHP systems to optimize the length of the ground heat exchanger and provide annual energy consumption data. A computer program has been developed to simulate the building load, heat pump and the ground heat exchanger, the three most distinct parts of the system. The coupled governing equations of these three models are solved simultaneously until a converged solution is obtained at each time step. The simulations are performed using the Engineering Equation Solver (EES). This program has proven to be useful in balancing ground heat exchanger length against heat pump energy consumption.15 refs., 9 figs.

  11. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  12. A Proven Methodology for Developing Secure Software and Applying It to Ground Systems

    Science.gov (United States)

    Bailey, Brandon

    2016-01-01

    Part Two expands upon Part One in an attempt to translate the methodology for ground system personnel. The goal is to build upon the methodology presented in Part One by showing examples and details on how to implement the methodology. Section 1: Ground Systems Overview; Section 2: Secure Software Development; Section 3: Defense in Depth for Ground Systems; Section 4: What Now?

  13. Kilowatt Isotope Power System: component report for the Ground Demonstration System Accumulator

    International Nuclear Information System (INIS)

    Brainard, E.L.

    1978-01-01

    The Model Number ORC1A3A01 System Accumulator for the Kilowatt Isotope Power System was expulsion tested and demonstrated to be in compliance with the requirements of Sundstrand Explusion Test Procedure, TP 400. Test requirements of TP 400 were extracted from the Kilowatt Isotope Power System, Ground Demonstration System Test Plan

  14. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    International Nuclear Information System (INIS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-01-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  15. Distributed expert systems for ground and space applications

    Science.gov (United States)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  16. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    Science.gov (United States)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation

  17. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  18. Artillery localization using networked wireless ground sensors

    Science.gov (United States)

    Swanson, David C.

    2002-08-01

    This paper presents the results of an installation of four acoustic/seismic ground sensors built using COTS computers and networking gear and operating on a continuous basis at Yuma Proving Grounds, Arizona. A description of the design can be found as well, which is essentially a Windows 2000 PC with 24-bit data acquisition, GPS timing, and environmental sensors for wind and temperature. A 4-element square acoustic array 1.8m on a side can be used to detect the time and angle of arrival of the muzzle blast and the impact explosion. A 3-component geophone allows the seismic wave direction to be estimated. The 8th channel of the 24-bit data acquisition system has a 1-pulse-per-second time signal from the GPS. This allows acoustic/seismic 'snapshots' to be coherently related from multiple disconnected ground sensor nodes. COTS 2.4 GHz frequency hopping radios (802.11 standard) are used with either omni or yagi antennas depending on the location on the range. Localization of the artillery or impact can be done by using the time and angle of arrival of the waves at 2 or more ground sensor locations. However, this straightforward analysis can be significantly complicated by weather and wind noise and is also the subject of another research contract. This work will present a general description of the COTS ground sensor installation, show example data autonomously collected including agent-based atmospheric data, and share some of the lessons learned from operating a Windows 2000 based system continuously outdoors.

  19. TESS Ground System Operations and Data Products

    Science.gov (United States)

    Glidden, Ana; Guerrero, Natalia; Fausnaugh, Michael; TESS Team

    2018-01-01

    We describe the ground system operations for processing data from the Transiting Exoplanet Survey Satellite (TESS), highlighting the role of the Science Operations Center (SOC). TESS is a spaced-based (nearly) all-sky mission, designed to find small planets around nearby bright stars using the transit method. We detail the flow of data from pixel measurements on the instrument to final products available at the Mikulski Archive for Space Telescopes (MAST). The ground system relies on a host of players to process the data, including the Payload Operations Center at MIT, the Science Processing Operation Center at NASA Ames, and the TESS Science Office, led by the Harvard-Smithsonian Center for Astrophysics and MIT. Together, these groups will deliver TESS Input Catalog, instrument calibration models, calibrated target pixels and full frame images, threshold crossing event reports, two-minute light curves, and the TESS Objects of Interest List.

  20. Communications construction on mining grounds influenced by mining damage. Budownictwo komunikacyjne na terenach objetych szkodami gorniczymi

    Energy Technology Data Exchange (ETDEWEB)

    Rosikon, A

    1979-01-01

    This book considers problems associated with construction of communication lines on grounds influenced by underground coal mining. It is stated that about 50% of coal mined in Poland comes from protective coal pillars. Improving methods of strata control and ground control after underground mining will influence perspectives of mining in protective pillars. The following problems associated with minimizing mining damage are analyzed: types of ground deformation caused by underground mining, continuous and discontinuous deformation, factors which influence formation of subsidence troughs, forecasting ground subsidence according to the Knothe and Budryk theory, horizontal and vertical ground dislocation, coefficients used for description of ground deformation, Kochmanski's theory of continuous deformation, effects of ground subsidence of foundations of buildings and industrial structures, construction of roads, railway tracks and other communication lines on ground influenced by discontinuous deformations caused by coal mining, problems associated with construction of bridges and tunnels, construction of sewage systems, effects of underground mining on maintenance and repair of communication lines and sewage systems. Ways of minimizing discontinuous ground deformation are analyzed.

  1. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  2. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  3. Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Eloisa Di Sipio

    2017-11-01

    Full Text Available The performance of very shallow geothermal systems (VSGs, interesting the first 2 m of depth from ground level, is strongly correlated to the kind of sediment locally available. These systems are attractive due to their low installation costs, less legal constraints, easy maintenance and possibility for technical improvements. The Improving Thermal Efficiency of horizontal ground heat exchangers Project (ITER aims to understand how to enhance the heat transfer of the sediments surrounding the pipes and to depict the VSGs behavior in extreme thermal situations. In this regard, five helices were installed horizontally surrounded by five different backfilling materials under the same climatic conditions and tested under different operation modes. The field test monitoring concerned: (a monthly measurement of thermal conductivity and moisture content on surface; (b continuous recording of air and ground temperature (inside and outside each helix; (c continuous climatological and ground volumetric water content (VWC data acquisition. The interactions between soils, VSGs, environment and climate are presented here, focusing on the differences and similarities between the behavior of the helix and surrounding material, especially when the heat pump is running in heating mode for a very long time, forcing the ground temperature to drop below 0 °C.

  4. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  5. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  6. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  7. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  8. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  9. Open System of Agile Ground Stations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an opportunity to build the HETE-2/TESS network of ground stations into an innovative and powerful Open System of Agile Stations, by developing a low-cost...

  10. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  11. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.

    2014-01-01

    targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution...... we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving...

  12. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  13. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  14. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    Science.gov (United States)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  15. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  16. Numerical and experimental analysis of a horizontal ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-03-15

    The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COP{sub sys}) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. (author) (author)

  17. Mixed-μ magnetic levitation for advanced ground transport system

    International Nuclear Information System (INIS)

    Russell, F.M.

    1977-12-01

    The possibility of applying the mixed-μ principle for magnetic levitation to ground transport systems is examined. The system is developed specifically for suspension and useful lift to passive weight ratios exceeding 8:1 have been calculated. Application to a hybrid system where conventional wheel drive is used in conjunction with magnetic levitation is explained for urban transport. (author)

  18. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  19. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  20. Effect of Neutral Grounding Protection Methods for Compensated Wind/PV Grid-Connected Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Nurettin Çetinkaya

    2017-01-01

    Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.

  1. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  2. Continuous adsorption of methylene blue dye on the maize stem ground tissue

    Directory of Open Access Journals (Sweden)

    Kojić Predrag S.

    2017-01-01

    Full Text Available Continuous adsorption of methylene blue from aqueous solutions onto maize stem ground tissue in column mode was investigated. The study encompassed the effects of important parameters such as flow rate, initial concentration of methylene blue, and bed depth on methylene blue removal from model solutions. The maximum adsorption capacity of the maize stem was 45.9 mg/g at the initial methylene blue concentration of 20 mg/L, bed height of 6.5 cm and flow rate of 8 mL/min. It was found that the breakthrough time for reaching saturation increased with a decrease in the flow rate, and also occurred earlier for a higher influent concentration. The breakthrough times increased with the bed depth, thus allowing a larger volume to be treated. The Adams-Bohart, Yoon-Nelson, Clark and artificial neural network models were used to predict the breakthrough curves. These models gave excellent approximations of the experimental behavior.[Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172025

  3. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Science.gov (United States)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  4. Design and construction of a vertical hydroponic system with semi-continuous and continuous nutrient cycling

    Science.gov (United States)

    Siswanto, Dian; Widoretno, Wahyu

    2017-11-01

    Problems due to the increase in agricultural land use change can be solved by hydroponic system applications. Many hydroponic studies have been conducted in several countries while their applications in Indonesia requires modification and adjustment. This research was conducted to design and construct a hydroponic system with semi-continuous and continuous nutrition systems. The hydroponic system which was used adapts the ebb and flow system, and the nutrient film technique (NFT). This hydroponic system was made from polyvinyl chloride (PVC) pipes with a length of 197 cm, a diameter of 16 cm, and a slope of 4°. It was constructed from four PVC pipes. In semi-continuous irrigation treatment, nutrients flow four to six times for each of ten minutes depending on plant development and the estimated evapotranspiration occurring, while in a continuous nutrient system the nutrients are streamed for twenty-four hours without stopping at a maximum flow rate of 13.7 L per second.

  5. Evolution of the JPSS Ground Project Calibration and Validation System

    Science.gov (United States)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  6. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    Science.gov (United States)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  7. A method to estimate characteristics of grounding systems considering experimental studies and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Andre Nunes de; Silva, Ivan Nunes da; Ulson, Jose Alfredo C.; Zago, Maria Goretti [UNESP, Bauru, SP (Brazil). Dept. de Engenharia Eletrica]. E-mail: andrejau@bauru.unesp.br

    2001-07-01

    This paper describes a novel approach for mapping characteristics of grounding systems using artificial neural networks. The network acts as identifier of structural features of the grounding processes. So that output parameters can be estimated and generalized from an input parameter set. The results obtained by the network are compared with other approaches also used to model grounding systems concerning lightning. (author)

  8. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  9. Operation performance investigation of ground-coupled heat-pump system for temperate region

    OpenAIRE

    Yi Man; Hongxing Yang; Jinggang Wang; Zhaohong Fang

    2010-01-01

    In order to investigate the operation performance of ground-coupled heat-pump (GCHP) system, an analytical simulation model of GCHP system on short time-step basis and a computer program based on this model to predict system operating parameters are developed in this study. Besides, detailed on-site experiments on GCHP test rig installed in a temperate region of China are carried out. The temperature distributions of borehole as well as ground around borehole at different depths are evaluated...

  10. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  11. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  12. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  13. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  14. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  15. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  16. Entropy Constraints in the Ground State Formation of Magnetically Frustrated Systems

    Science.gov (United States)

    Sereni, Julian G.

    2018-01-01

    A systematic modification of the entropy trajectory (S_m(T)) is observed at very low temperature in magnetically frustrated systems as a consequence of the constraint (S_mg 0) imposed by the Nernst postulate. The lack of magnetic order allows to explore and compare new thermodynamic properties by tracing the specific heat (C_m) behavior down to the sub-Kelvin range. Some of the most relevant findings are: (i) a common C_m/T|_{T→ 0} ≈ 7 J/mol K^2 `plateau' in at least five Yb-based very-heavy-fermions (VHF) compounds; (ii) quantitative and qualitative differences between VHF and standard non-Fermi-liquids; (iii) entropy bottlenecks governing the change of S_m(T) trajectories in a continuous transition into alternative ground states. A comparative analysis of S_m(T→ 0) dependencies is performed in compounds suitable for adiabatic demagnetization processes according to their partial ^2 S_m/partial T^2 derivatives.

  17. A Bayesian and Physics-Based Ground Motion Parameters Map Generation System

    Science.gov (United States)

    Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.

    2014-12-01

    We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the

  18. Technology for meat-grinding systems to improve removal of hard particles from ground meat.

    Science.gov (United States)

    Zhao, Y; Sebranek, J G

    1997-03-01

    With increased consumption of ground meat, especially ground beef, quality issues for these products have become more important to industry and consumers alike. Ground meats are usually obtained from relatively low-value cuts and trimmings, and may on occasion contain undesirable hard particles. Hard particles in coarse-ground meat products may include bone chips or fragments, cartilage and dense connective tissue; all of which are considered undesirable defects and which can be reduced by utilizing hard-particle removal systems during grinding operations. This review discusses the principles of hard-particle separation from ground meat, the factors which influence performance of particle separation and some commercially available particle removal systems. Product and processing parameters such as initial bone and connective tissue content, fat content, temperature, pre-grinding size and grinder knife design are considered important for removing hard particles effectively. Pressure gradient on the grinder knife/plate interface was found to play a significant role in particle separation from soft (fat and lean) tissue. Various commercial systems, which are classified as central removal and periphery removal systems, are also discussed. Finally, the authors suggest some processing considerations for meat grinding to help achieve the best quality ground meat for consumers' satisfaction.

  19. A scientific operations plan for the large space telescope. [ground support system design

    Science.gov (United States)

    West, D. K.

    1977-01-01

    The paper describes an LST ground system which is compatible with the operational requirements of the LST. The goal of the approach is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of LST science. Attention is given to cost constraints and guidelines, the telemetry operations processing systems (TELOPS), the image processing facility, ground system planning and data flow, and scientific interfaces.

  20. Vertical-borehole ground-coupled heat pumps: A review of models and systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Cui, P. [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Fang, Z. [Ground Source Heat Pump Research Center, Shandong Jianzhu University, Jinan (China)

    2010-01-15

    A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant. (author)

  1. Tailoring NIST Security Controls for the Ground System: Selection and Implementation -- Recommendations for Information System Owners

    Science.gov (United States)

    Takamura, Eduardo; Mangum, Kevin

    2016-01-01

    The National Aeronautics and Space Administration (NASA) invests millions of dollars in spacecraft and ground system development, and in mission operations in the pursuit of scientific knowledge of the universe. In recent years, NASA sent a probe to Mars to study the Red Planet's upper atmosphere, obtained high resolution images of Pluto, and it is currently preparing to find new exoplanets, rendezvous with an asteroid, and bring a sample of the asteroid back to Earth for analysis. The success of these missions is enabled by mission assurance. In turn, mission assurance is backed by information assurance. The information systems supporting NASA missions must be reliable as well as secure. NASA - like every other U.S. Federal Government agency - is required to manage the security of its information systems according to federal mandates, the most prominent being the Federal Information Security Management Act (FISMA) of 2002 and the legislative updates that followed it. Like the management of enterprise information technology (IT), federal information security management takes a "one-size fits all" approach for protecting IT systems. While this approach works for most organizations, it does not effectively translate into security of highly specialized systems such as those supporting NASA missions. These systems include command and control (C&C) systems, spacecraft and instrument simulators, and other elements comprising the ground segment. They must be carefully configured, monitored and maintained, sometimes for several years past the missions' initially planned life expectancy, to ensure the ground system is protected and remains operational without any compromise of its confidentiality, integrity and availability. Enterprise policies, processes, procedures and products, if not effectively tailored to meet mission requirements, may not offer the needed security for protecting the information system, and they may even become disruptive to mission operations

  2. Radiation reaction in a continuous focusing channel

    International Nuclear Information System (INIS)

    Huang, Z.; Chen, P.; Ruth, R.D.

    1995-01-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state to which the particle inevitably decays and yields the minimum beam emittance that one can ever attain, γε min =ℎ/2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss

  3. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  4. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  5. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  6. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  7. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  8. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  9. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  10. Integrated Unmanned Air-Ground Robotics System, Volume 4

    Science.gov (United States)

    2001-08-20

    3) IPT Integrated Product Team IRP Intermediate Power Rating JAUGS TBD JCDL TBD Joint Vision 2020 TBD Km Kilometer lbs. pounds MAE Mechanical and...compatible with emerging JCDL and/or JAUGS . 2.3.2.2. Payload must be “plug and play.” 2.3.3. Communications 2.3.3.1. System communications shall be robust...Power JCDL JAUGS Joint Architecture for Unmanned Ground Systems JP-8 Jet Propulsion Fuel 8 km Kilometer lbs. Pounds LOS Line Of Sight MAE Mechanical

  11. Evaluation of three composting systems for the management of spent coffee grounds.

    Science.gov (United States)

    Liu, K; Price, G W

    2011-09-01

    This study was conducted to evaluate the optimum composting approach for the management of spent coffee grounds from the restaurant and ready-to-serve coffee industry. Three composting systems were assessed, including in-vessel composting, vermicomposting bins, and aerated static pile bin composting, over study periods ranging from 47 to 98 days. Total carbon content was reduced by 5-7% in the spent coffee ground treatments across the three composting systems. Nitrogen and other mineral nutrient contents were conserved or enhanced from the initial to the final composts in all the composting systems assessed. Earthworm growth and survival (15-80%) was reduced in all the treatments but mortality rates were lower in coffee treatments with cardboard additions. A decline in earthworm mortality with cardboard additions was the result of reduced exposure to organic compounds and chemicals released through the decomposition of spent coffee grounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. 49 CFR 229.97 - Grounding fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  13. Satellite and Ground Communication Systems: Space and Electronic Warfare Threats to the United States Army

    Science.gov (United States)

    2017-02-01

    as if SATCOM is guaranteed. This complacency is accompanied by the procurement of high-data communication and mission command systems that deny...threat. To overcome these significant vulnerabilities, the US Army must procure communications systems that maintain the information high ground, but...precious gift of our freedom.”1 A key element of remaining strong on the ground is maintaining the capability to effectively communicate on the ground. If

  14. QoS-Aware Resource Allocation for Network Virtualization in an Integrated Train Ground Communication System

    OpenAIRE

    Zhu, Li; Wang, Fei; Zhao, Hongli

    2018-01-01

    Urban rail transit plays an increasingly important role in urbanization processes. Communications-Based Train Control (CBTC) Systems, Passenger Information Systems (PIS), and Closed Circuit Television (CCTV) are key applications of urban rail transit to ensure its normal operation. In existing urban rail transit systems, different applications are deployed with independent train ground communication systems. When the train ground communication systems are built repeatedly, limited wireless sp...

  15. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.

    1996-01-01

    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included...

  16. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  17. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  18. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  19. High Order A-stable Continuous General Linear Methods for Solution of Systems of Initial Value Problems in ODEs

    Directory of Open Access Journals (Sweden)

    Dauda GuliburYAKUBU

    2012-12-01

    Full Text Available Accurate solutions to initial value systems of ordinary differential equations may be approximated efficiently by Runge-Kutta methods or linear multistep methods. Each of these has limitations of one sort or another. In this paper we consider, as a middle ground, the derivation of continuous general linear methods for solution of stiff systems of initial value problems in ordinary differential equations. These methods are designed to combine the advantages of both Runge-Kutta and linear multistep methods. Particularly, methods possessing the property of A-stability are identified as promising methods within this large class of general linear methods. We show that the continuous general linear methods are self-starting and have more ability to solve the stiff systems of ordinary differential equations, than the discrete ones. The initial value systems of ordinary differential equations are solved, for instance, without looking for any other method to start the integration process. This desirable feature of the proposed approach leads to obtaining very high accuracy of the solution of the given problem. Illustrative examples are given to demonstrate the novelty and reliability of the methods.

  20. A strategy for modeling ground water rebound in abandoned deep mine systems.

    Science.gov (United States)

    Adams, R; Younger, P L

    2001-01-01

    Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.

  1. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  2. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  3. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  4. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  5. Conceptual design for relocation of the underground monitoring systems to ground surface

    International Nuclear Information System (INIS)

    Toya, Naruhisa; Ogawa, Ken; Iwatsuki, Teruki; Ohnuki, Kenji

    2015-09-01

    One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on a recovery of the geological environment during and after the facility closure. Then it is necessary to plan the observation system which can be use of after the backfill of research tunnels. The main purpose of this report is contribution to the detailed design for relocation of the underground monitoring systems to ground surface. We discussed the restriction and requirement for the underground monitoring systems which can be use of after the backfill. Furthermore, we made the conceptual design for relocation of the current underground monitoring systems to ground surface. (author)

  6. Report on the Audit of Unattended Ground Sensor Systems

    Science.gov (United States)

    1991-02-26

    This final report on the Audit of Unattended Ground Sensor Systems is for your information and use. Comments on the draft were considered in...preparing the final report and changes have been made where appropriate. We performed the audit from February through August 1990. The objective was to

  7. Culturally grounded indicators of resilience in social-ecological systems

    Science.gov (United States)

    Eleanor Sterling; Tamara Ticktin; Tē Kipa Kepa Morgan; Georgina Cullman; Diana Alvira; Pelika Andrade; Nadia Bergamini; Erin Betley; Kate Burrows; Sophie Caillon; Joachim Claudet; Rachel Dacks; Pablo Eyzaguirre; Chris Filardi; Nadav Gazit; Christian Giardina; Stacy Jupiter; Kealohanuiopuna Kinney; Joe McCarter; Manuel Mejia; Kanoe Morishige; Jennifer Newell; Lihla Noori; John Parks; Pua‘ala Pascua; Ashwin Ravikumar; Jamie Tanguay; Amanda Sigouin; Tina Stege; Mark Stege; Alaka Wali

    2017-01-01

    Measuring progress toward sustainability goals is a multifaceted task. International, regional, and national organizations and agencies seek to promote resilience and capacity for adaptation at local levels. However, their measurement systems may be poorly aligned with local contexts, cultures, and needs. Understanding how to build effective, culturally grounded...

  8. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  9. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  10. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  11. How to improve change of shift handovers and collaborative grounding and what role does the electronic patient record system play? Results of a systematic literature review.

    Science.gov (United States)

    Flemming, Daniel; Hübner, Ursula

    2013-07-01

    Establishing continuity of care in handovers at changes of shift is a challenging endeavor that is jeopardized by time pressure and errors typically occurring during synchronous communication. Only if the outgoing and incoming persons manage to collaboratively build a common ground for the next steps of care is it possible to ensure a proper continuation. Electronic systems, in particular electronic patient record systems, are powerful providers of information but their actual use might threaten achieving a common understanding of the patient if they force clinicians to work asynchronously. In order to gain a deeper understanding of communication failures and how to overcome them, we performed a systematic review of the literature, aiming to answer the following four research questions: (1a) What are typical errors and (1b) their consequences in handovers? (2) How can they be overcome by conventional strategies and instruments? (3) electronic systems? (4) Are there any instruments to support collaborative grounding? We searched the databases MEDLINE, CINAHL, and COCHRANE for articles on handovers in general and in combination with the terms electronic record systems and grounding that covered the time period of January 2000 to May 2012. The search led to 519 articles of which 60 were then finally included into the review. We found a sharp increase in the number of relevant studies starting with 2008. As could be documented by 20 studies that addressed communication errors, omission of detailed patient information including anticipatory guidance during handovers was the greatest problem. This deficiency could be partly overcome by structuring and systematizing the information, e.g. according to Situation, Background, Assessment and Recommendation schema (SBAR), and by employing electronic tools integrated in electronic records systems as 23 studies on conventional and 22 articles on electronic systems showed. Despite the increase in quantity and quality of the

  12. Exergy Analysis of a Ground-Coupled Heat Pump Heating System with Different Terminals

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2015-04-01

    Full Text Available In order to evaluate and improve the performance of a ground-coupled heat pump (GCHP heating system with radiant floors as terminals, an exergy analysis based on test results is performed in this study. The system is divided into four subsystems, and the exergy loss and exergy efficiency of each subsystem are calculated using the expressions derived based on exergy balance equations. The average values of the measured parameters are used for the exergy analysis. The analysis results show that the two largest exergy losses occur in the heat pump and terminals, with losses of 55.3% and 22.06%, respectively, and the lowest exergy efficiency occurs in the ground heat exchange system. Therefore, GCHP system designers should pay close attention to the selection of heat pumps and terminals, especially in the design of ground heat exchange systems. Compared with the scenario system in which fan coil units (FCUs are substituted for the radiant floors, the adoption of radiant floors can result in a decrease of 12% in heating load, an increase of 3.24% in exergy efficiency of terminals and an increase of 1.18% in total exergy efficiency of the system. The results may point out the direction and ways of optimizing GCHP systems.

  13. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  14. Hybrid ground-source heat pump system with active air source regeneration

    International Nuclear Information System (INIS)

    Allaerts, K.; Coomans, M.; Salenbien, R.

    2015-01-01

    Highlights: • A hybrid ground source heat pump system with two separate borefields is modelled. • The maximum underground storage temperature depends on the size of the drycooler. • Drycooler selection curves are given as function of underground storage temperature. • The size of the cold storage is reduced with 47% in the cost optimal configuration. • The cooling seasonal performance factor decreases with reduced storage capacity. - Abstract: Ground-source heat pump systems (GSHP) offer great advantages over traditional heating and cooling installations. However, their applications are limited due to the high initial costs of borehole drilling. One way to avoid these costs is by reducing the size of the borefield, e.g. by combining the system with other renewable energy sources or by using active regeneration to increase the system efficiency. In this paper a hybrid ground-source heat pump system (HGSHP) is analyzed. The borefield is split into a warm part and a cold part, which allows for seasonal thermal-energy storage. Additionally, supplementary drycoolers capture heat during summer and cold during winter. The relationship between the underground storage size and temperature and the drycooler capacity is described, using an office building in Flanders (Belgium) as reference case. Results show that with a HGSHP system a significant borefield size reduction can be achieved without compromising system performance; i.e. for the reference case a reduction of 47% was achieved in the cost-optimal configuration. It is also shown that the cooling seasonal performance factor decreases significantly with underground storage capacity. In addition, the HGSHP can be used to maintain or restore thermal balance in the geothermal source when heating and cooling loads do not match

  15. Integrated management system - ground for the global performance

    International Nuclear Information System (INIS)

    Pereira Filho, Jorge Amorim

    2000-01-01

    Organizations working in the pursuit of a sustainable development must create and continuously update their management systems, in order to achieve harmonic and lasting global results, capable of satisfying partners and clients in short and long terms. Such an improvement can be obtained by integrating preexisting classic management models, applicable to organizations of all types and scales. The implementation of this unique resulting system obeys systematic steps of planning, development, checking and correction, aiming to continuously improve the management. It is in fact a very challenging process because it demands changing people minds, increasing the amount of work and learning of new skills. Though hard-working, such implementation is encouraged both by perceiving the necessity to attain the strategic objectives and by seeing that there are some requisites not yet fully covered by the present system. Finally, this improved management system results in a better global performance, recorded under four angles: financial, increased client satisfaction, better internal processes and continuous learning, driving the organization to be more competitive and successful in the future. (author)

  16. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  17. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  18. Cooling performance of a vertical ground-coupled heat pump system installed in a school building

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yujin; Lee, Jae-Keun; Jeong, Young-Man; Koo, Kyung-Min [Department of Mechanical Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea); Lee, Dong-Hyuk; Kim, In-Kyu; Jin, Sim-Won [LG Electronics, 391-2 Gaeumjeong-dong, Changwon City, Gyeongnam (Korea); Kim, Soo H. [Department of Nanosystems and Nanoprocess Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea)

    2009-03-15

    This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be {proportional_to}8.3 and {proportional_to}5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of {proportional_to}3.9 and overall COP of {proportional_to}3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser. (author)

  19. Practical Approach on Lightning and Grounding Protection System

    OpenAIRE

    Shan Jose Varghese

    2015-01-01

    Lightning Protection and Grounding of Electrical and Mechanical equipment’s for the Protection of the Human Beings, Structure of the building and equipment protection, safe working of the Worker at Industry as per my latest practical knowledge in the site environment in extreme climatic condition of low lying areas of the Gulf Region in the challenging projects. All the conductor calculation, Lightning Risk Factor calculations, all the system information regarding the ...

  20. Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Finster, F.

    1997-01-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc

  1. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  2. The new FTU continuous monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Podda, S [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Vitale, V [Euratom-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2005-11-15

    The Frascati Tokamak Upgrade (FTU) continuous (slow) data acquisition system has been redesigned to allow easy monitoring of the status of the plant. In the new system 'Opto22(TM)' modules, which use Ethernet as fieldbus, substitute the old 'programmable logic controller (PLC)' devices allowing easy access to and display of many continuous measurements. Data collected by 'Opto22' modules are stored in a 'MySQL' database via a driver written in C++ language. A 'CORBA' server, running on the same machine hosting the 'MySQL' server, allows the database access from any remote client regardless of the local platform. A remarkable aspect looks out for the use of totally free software packages. This new architecture overcomes the limitations of the previous monitoring system:*an interface based on internet browser allows to easily configure Opto22 modules and MySQL database; a graphical interface, developed in Java, allows data management and visualization; the above operations are completely platform independent. In addition the CORBA server introduces the advantages of:hardware independence, thus allowing maximum flexibility in the choice of platforms and system components; both network and programming languages being completely transparent. This paper will present the new system architecture, last results and future developments.

  3. The new FTU continuous monitoring system

    International Nuclear Information System (INIS)

    Bertocchi, A.; Podda, S.; Vitale, V.

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) continuous (slow) data acquisition system has been redesigned to allow easy monitoring of the status of the plant. In the new system 'Opto22(TM)' modules, which use Ethernet as fieldbus, substitute the old 'programmable logic controller (PLC)' devices allowing easy access to and display of many continuous measurements. Data collected by 'Opto22' modules are stored in a 'MySQL' database via a driver written in C++ language. A 'CORBA' server, running on the same machine hosting the 'MySQL' server, allows the database access from any remote client regardless of the local platform. A remarkable aspect looks out for the use of totally free software packages. This new architecture overcomes the limitations of the previous monitoring system:*an interface based on internet browser allows to easily configure Opto22 modules and MySQL database; a graphical interface, developed in Java, allows data management and visualization; the above operations are completely platform independent. In addition the CORBA server introduces the advantages of:hardware independence, thus allowing maximum flexibility in the choice of platforms and system components; both network and programming languages being completely transparent. This paper will present the new system architecture, last results and future developments

  4. QoS-Aware Resource Allocation for Network Virtualization in an Integrated Train Ground Communication System

    Directory of Open Access Journals (Sweden)

    Li Zhu

    2018-01-01

    Full Text Available Urban rail transit plays an increasingly important role in urbanization processes. Communications-Based Train Control (CBTC Systems, Passenger Information Systems (PIS, and Closed Circuit Television (CCTV are key applications of urban rail transit to ensure its normal operation. In existing urban rail transit systems, different applications are deployed with independent train ground communication systems. When the train ground communication systems are built repeatedly, limited wireless spectrum will be wasted, and the maintenance work will also become complicated. In this paper, we design a network virtualization based integrated train ground communication system, in which all the applications in urban rail transit can share the same physical infrastructure. In order to better satisfy the Quality of Service (QoS requirement of each application, this paper proposes a virtual resource allocation algorithm based on QoS guarantee, base station load balance, and application station fairness. Moreover, with the latest achievement of distributed convex optimization, we exploit a novel distributed optimization method based on alternating direction method of multipliers (ADMM to solve the virtual resource allocation problem. Extensive simulation results indicate that the QoS of the designed integrated train ground communication system can be improved significantly using the proposed algorithm.

  5. Automatic Scheduling and Planning (ASAP) in future ground control systems

    Science.gov (United States)

    Matlin, Sam

    1988-01-01

    This report describes two complementary approaches to the problem of space mission planning and scheduling. The first is an Expert System or Knowledge-Based System for automatically resolving most of the activity conflicts in a candidate plan. The second is an Interactive Graphics Decision Aid to assist the operator in manually resolving the residual conflicts which are beyond the scope of the Expert System. The two system designs are consistent with future ground control station activity requirements, support activity timing constraints, resource limits and activity priority guidelines.

  6. 14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.

    Science.gov (United States)

    2010-01-01

    ... deviation alerting system. 121.360 Section 121.360 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.360 Ground proximity warning-glide slope deviation alerting system. (a) No... system that meets the performance and environmental standards of TSO-C92 (available from the FAA, 800...

  7. DRINKING WATER QUALITY IN DISTRIBUTION SYSTEMS OF SURFACE AND GROUND WATERWORKS IN FINLAND

    Directory of Open Access Journals (Sweden)

    Jenni Meirami Ikonen

    2017-06-01

    Full Text Available Physico-chemical and microbiological water quality in the drinking water distribution systems (DWDSs of five waterworks in Finland with different raw water sources and treatment processes was explored. Water quality was monitored during four seasons with on-line equipment and bulk water samples were analysed in laboratory. Seasonal changes in the water quality were more evident in DWDSs of surface waterworks compared to the ground waterworks and artificially recharging ground waterworks (AGR. Between seasons, temperature changed significantly in every system but pH and EC changed only in one AGR system. Seasonal change was seen also in the absorbance values of all systems. The concentration of microbially available phosphorus (MAP, μg PO₄-P/l was the highest in drinking water originating from the waterworks supplying groundwater. Total assimilable organic carbon (AOC, μg AOC-C/l concentrations were significantly different between the DWDSs other than between the two AGR systems. This study reports differences in the water quality between surface and ground waterworks using a wide set of parameters commonly used for monitoring. The results confirm that every distribution system is unique, and the water quality is affected by environmental factors, raw water source, treatment methods and disinfection.

  8. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  9. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  10. Transient analysis for grounding systems considering the ground ionization; Analisis transitorio de sistemas de puesta a tierra considerando la ionizacion del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Salgado Salgado, Luis Alberto

    2008-06-15

    All electrical installation must have an effective grounding system. The purpose of this grounding system is to provide a low impedance path for draining electric currents generated by faults, switching operations or atmospheric discharges to earth, avoiding damage to people, equipment or installations. High currents drained to ground leads to an electric field which can be capable of breaking down the dielectric strength of the ground. When this happens, the ionization phenomena takes place, which reduce the grounding system impedance and modify its performance. In this thesis, a computational model for evaluating the transient performance of grounding systems subjected to high magnitude and frequency currents is presented. The model is based in a transmission line approach and the grounding system transient analysis is carried out in the frequency domain. The time domain translation is performed by means of the Fast Fourier Inverse Transform (FFIT). The computer model is capable of simulating soil ionization. The computer model developed is used to study the performance of vertical rods and grounding grids of different sizes. In every case, different electric field magnitudes and soil's resistivity were used, currents of different frequency components and magnitude values where used as well. The obtained results presented were compared and validated with other computer model results and measurements published in the literature. [Spanish] Toda instalacion electrica debe contar con un sistema de puesta a tierra efectivo. La finalidad de este sistema es proporcionar un camino de baja impedancia para drenar a tierra las corrientes generadas por fallas, maniobras o fenomenos naturales como las descargas atmosfericas, evitando de esta manera danos a las personas, equipos o instalaciones. Cuando las corrientes drenadas a tierra son de gran magnitud se origina un campo electrico critico capaz de romper la rigidez dielectrica del suelo que rodea los conductores del

  11. Online identification of continuous bimodal and trimodal piecewise affine systems

    NARCIS (Netherlands)

    Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and

  12. Industrial variographic analysis for continuous sampling system validation

    DEFF Research Database (Denmark)

    Engström, Karin; Esbensen, Kim Harry

    2017-01-01

    Karin Engström, LKAB mining, Kiruna, Sweden, continues to present illuminative cases from process industry. Here she reveals more from her ongoing PhD project showing application of variographic characterisation for on-line continuous control of process sampling systems, including the one...

  13. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-01-15

    The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the modelling of ground-coupled heat pump (GCHP) system. The GCHP system connected to a test room with 16.24 m{sup 2} floor area in Firat University, Elazig (38.41 N, 39.14 E), Turkey, was designed and constructed. The heating and cooling loads of the test room were 2.5 and 3.1 kW at design conditions, respectively. The system was commissioned in November 2002 and the performance tests have been carried out since then. The average performance coefficients of the system (COPS) for horizontal ground heat exchanger (GHE) in the different trenches, at 1 and 2 m depths, were obtained to be 2.92 and 3.2, respectively. Experimental performances were performed to verify the results from the ANFIS approach. In order to achieve the optimal result, several computer simulations have been carried out with different membership functions and various number of membership functions. The most suitable membership function and number of membership functions are found as Gauss and 2, respectively. For this number level, after the training, it is found that root-mean squared (RMS) value is 0.0047, and absolute fraction of variance (R{sup 2}) value is 0.9999 and coefficient of variation in percent (cov) value is 0.1363. This paper shows that the values predicted with the ANFIS, especially with the hybrid learning algorithm, can be used to predict the performance of the GCHP system quite accurately. (author)

  14. An Innovative Use of Renewable Ground Heat for Insulation in Low Exergy Building Systems

    Directory of Open Access Journals (Sweden)

    Hansjürg Leibundgut

    2012-08-01

    Full Text Available Ground heat is a renewable resource that is readily available for buildings in cool climates, but its relatively low temperature requires the use of a heat pump to extract it for heating. We developed a system that uses low temperature ground heat directly in a building wall to reduce transmission heat losses. The Active Low Exergy Geothermal Insulation Systems (ALEGIS minimizes exergy demand and maximizes the use of renewable geothermal heat from the ground. A fluid is pumped into a small pipe network in an external layer of a wall construction that is linked to a ground heat source. This decouples the building from the outside temperature, therefore eliminating large peak demands and reducing the primary energy demand. Our steady-state analysis shows that at a design temperature of −10 °C the 6 cm thick active insulation system has equivalent performance to 11 cm of passive insulation. Our comparison of heating performance of a building with our active insulation system versus a building with static insulation of the same thickness shows a 15% reduction in annual electricity demand, and thus exergy input. We present an overview of the operation and analysis of our low exergy concept and its modeled performance.

  15. Air operations language for military space ground systems

    Science.gov (United States)

    Davis, P.

    The trends in military space ground system architecture is toward large amounts of software and more widely distributed processors. At the same time, life cycle cost considerations dictate that fewer personnel with minimized skill levels and knowledge operate and support these systems. This squeeze necessitates more human engineering and operational planning into the design of these systems. Several techniques have been developed to satisfy these requirements. An operations language is one of these techniques. It involves a specially defined syntax for control of the system. Individual directives are able to be grouped into operations language procedures. These procedures can be prepared offline ahead of time by more skilled personnel and then used to ensure repeatability of operational sequences and reduce operator errors. The use of an operations language also provides benefits for the handling of contingency operations as well as in the system testing and validation programs.

  16. Sticky continuous processes have consistent price systems

    DEFF Research Database (Denmark)

    Bender, Christian; Pakkanen, Mikko; Sayit, Hasanjan

    Under proportional transaction costs, a price process is said to have a consistent price system, if there is a semimartingale with an equivalent martingale measure that evolves within the bid-ask spread. We show that a continuous, multi-asset price process has a consistent price system, under...

  17. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  18. Nonextensive formalism and continuous Hamiltonian systems

    International Nuclear Information System (INIS)

    Boon, Jean Pierre; Lutsko, James F.

    2011-01-01

    A recurring question in nonequilibrium statistical mechanics is what deviation from standard statistical mechanics gives rise to non-Boltzmann behavior and to nonlinear response, which amounts to identifying the emergence of 'statistics from dynamics' in systems out of equilibrium. Among several possible analytical developments which have been proposed, the idea of nonextensive statistics introduced by Tsallis about 20 years ago was to develop a statistical mechanical theory for systems out of equilibrium where the Boltzmann distribution no longer holds, and to generalize the Boltzmann entropy by a more general function S q while maintaining the formalism of thermodynamics. From a phenomenological viewpoint, nonextensive statistics appeared to be of interest because maximization of the generalized entropy S q yields the q-exponential distribution which has been successfully used to describe distributions observed in a large class of phenomena, in particular power law distributions for q>1. Here we re-examine the validity of the nonextensive formalism for continuous Hamiltonian systems. In particular we consider the q-ideal gas, a model system of quasi-particles where the effect of the interactions are included in the particle properties. On the basis of exact results for the q-ideal gas, we find that the theory is restricted to the range q<1, which raises the question of its formal validity range for continuous Hamiltonian systems.

  19. Analysis of CPolSK-based FSO system working in space-to-ground channel

    Science.gov (United States)

    Su, Yuwei; Sato, Takuro

    2018-03-01

    In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.

  20. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  1. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  2. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  3. A hazard of the Intraflo continuous flush system.

    Science.gov (United States)

    Schwartz, A J; Stoner, B B; Jobes, D R

    1977-01-01

    Patency of pressure sensing systems can be provided by the Intraflow Continuous Flush System (Sorenson Research Company, Salt Lake City, UT 84115). This device allows continuous flow of flush solution through a regulatory valve while preventing transmission of the high pressure of the flush solution. The case presented describes the recognition of a false elevation of a monitored pressure secondary to the malfunction of the Intraflo regulatory valve. Elimination of the flush solution high pressure during monitoring prevents inappropriate data collection.

  4. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  5. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  6. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  7. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  8. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  9. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  10. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  11. Ground System Architectures Workshop GMSEC SERVICES SUITE (GSS): an Agile Development Story

    Science.gov (United States)

    Ly, Vuong

    2017-01-01

    The GMSEC (Goddard Mission Services Evolution Center) Services Suite (GSS) is a collection of tools and software services along with a robust customizable web-based portal that enables the user to capture, monitor, report, and analyze system-wide GMSEC data. Given our plug-and-play architecture and the needs for rapid system development, we opted to follow the Scrum Agile Methodology for software development. Being one of the first few projects to implement the Agile methodology at NASA GSFC, in this presentation we will present our approaches, tools, successes, and challenges in implementing this methodology. The GMSEC architecture provides a scalable, extensible ground and flight system for existing and future missions. GMSEC comes with a robust Application Programming Interface (GMSEC API) and a core set of Java-based GMSEC components that facilitate the development of a GMSEC-based ground system. Over the past few years, we have seen an upbeat in the number of customers who are moving from a native desktop application environment to a web based environment particularly for data monitoring and analysis. We also see a need to provide separation of the business logic from the GUI display for our Java-based components and also to consolidate all the GUI displays into one interface. This combination of separation and consolidation brings immediate value to a GMSEC-based ground system through increased ease of data access via a uniform interface, built-in security measures, centralized configuration management, and ease of feature extensibility.

  12. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  13. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    Science.gov (United States)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  14. Dynamics of radon-222 near below ground surface

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Nishimura, Susumu.

    1986-01-01

    The concentrations and variation of 222 Rn were investigated both in unconfined groundwater and in the aerated zone to obtain information as to the behavior of Rn close to ground surface. The Rn concentrations in unconfined groundwater near the surface were depletive by the extent of about 50 % compared with that of lower part in a borehole, then the continuous extraction of groundwater causes pronounced increase of the concentration. The method, which monitors continuously the Rn concentration in such surroundings, was developed, where the unconfined groundwater extracted was injected into another borehole and sprayed gas was measured using an ionization chamber. The read-out values of this system well followed the variation of concentrations caused by the meteorological parameter, especially infiltrating water. The increase of 222 Rn concentration in the aerated zone above the water level was clearly observed following the ascendant of groundwater level caused by the infiltrating water, whereas the change of concentration in soil air just below the ground surface obeyed mainly to the wetness of soil and unconfined groundwater level rather than atmospheric pressure. (author)

  15. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  16. Modern developments for ground-based monitoring of fire behavior and effects

    Science.gov (United States)

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  17. The installation of a multiport ground-water sampling system in the 300 Area

    International Nuclear Information System (INIS)

    Gilmore, T.J.

    1989-06-01

    In 1988, the Pacific Northwest Laboratory installed a multiport groundwater sampling system in well 399-1-20, drilled north of the 300 Area on the Hanford Site in southwestern Washington State. The purpose of installing the multiport system is to evaluate methods of determining the vertical distribution of contaminants and hydraulic heads in ground water. Well 399-1-20 is adjacent to a cluster of four Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells. This proximity makes it possible to compare sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Drilling and installation of the multiport system took 42 working days. Six sampling ports were installed in the upper unconfined aquifer at depths of approximately 120, 103, 86, 74, 56, and 44 feet. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. The system was installed by backfilling sand around the sampling ports and isolating the ports with bentonite seals. The method proved adequate. For future installation, however, development and evaluation of an alternative method is recommended. In the alternative method suggested, the multiport system would be placed inside a cased and screened well, using packers to isolate the sampling zones. 4 refs., 8 figs., 1 tab

  18. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    Science.gov (United States)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  19. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  20. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  1. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  2. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  3. Effects of space weather on high-latitude ground systems

    Science.gov (United States)

    Pirjola, Risto

    Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.

  4. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  5. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  6. Evaluation of a continuous-positive pressure generating system

    Directory of Open Access Journals (Sweden)

    Herrera N

    2016-03-01

    Full Text Available Nestor Herrera,1,2 Roberto Regnícoli,1,2 Mariel Murad1,2 1Neonatology Unit, Italian Hospital Garibaldi, Rosario, Argentina; 2Experimental Medicine and Surgery Unit, Italian University Institute of Rosario, Argentina Abstract: The use of systems that apply continuous-positive airway pressure by means of noninvasive methods is widespread in the neonatal care practice and has been associated with a decrease in the use of invasive mechanical ventilation, less administration of exogenous surfactant, and bronchopulmonary dysplasia. Few experimental studies on the functioning of the neonatology systems that generate continuous-positive airway pressure have been reported. A flow resistor system associated with an underwater seal resistor in a lung test model was described, and it was compared with an underwater seal threshold resistor system. Important differences in the pressures generated in the different systems studied were verified. The generation of pressure was associated with the immersion depth and the diameter of the bubble tubing. The flow resistor associated with an underwater seal, with small bubble tubing, showed no important differences in the evaluated pressures, exerting a stabilizing effect on the generated pressures. The importance of measuring the pressure generated by the different systems studied was verified, due to the differences between the working pressures set and the pressures measured. Keywords: continuous-positive pressure, flow and threshold resistor, BCPAP

  7. Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well

    Science.gov (United States)

    Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.

    1999-12-01

    This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.

  8. Project TN-030: hydrogeology - ORNL radioactive waste burial grounds

    International Nuclear Information System (INIS)

    1981-01-01

    Continuation of an effort started in 1980, the water-level and precipitation data collected during the early years of the project were compiled into a series of five basic data reports. Technical advice on the design of piezometers in Burial Ground 5 was provided, and their construction has been monitored. Field work has continued, principally in Burial Grounds 5 and 6

  9. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  10. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  11. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    Science.gov (United States)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the

  12. Plug and Play Realtime Diagnosis for Ground Processing System Integration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's "Ground Systems Development and Operations Program" is moving towards transforming parts of the Kennedy Space Center from a historically government-only...

  13. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  14. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  15. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  16. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  17. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  18. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  19. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  20. The assembly and use of continuous flow systems for chemical synthesis.

    Science.gov (United States)

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  1. There is need in new generation smart grid for the space and ground energy systems

    Directory of Open Access Journals (Sweden)

    Ageev Alexander

    2018-01-01

    Full Text Available The aim of the article is to considerate the opportunities of synchronization of the space and ground systems that generate and transfer energy on the basis of new generation smart grid using. The authors substantiate the necessity of new intellectual monitoring services that assess the processes took place in "generation-transportation-distribution-consumption" space and ground systems. This is made in order to improve the dynamic indicators of the energy system and to avoid the emergencies. The authors also give a prognosis of the dynamic indicators of the electric power super-system in analyzing metastable conditions in different energy modes.

  2. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  3. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    Science.gov (United States)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  4. Feasibility of using pyranometers for continuous estimation of ground cover fraction in table grape vineyards

    Directory of Open Access Journals (Sweden)

    Antonio Martinez-Cob

    2014-06-01

    Full Text Available This paper evaluates the feasibility of using pyranometers for continuous estimation of ground cover fraction (GCF at remote, unattended sites. Photographical techniques were used for measuring GCF (GCFref at a table grape vineyard grown under a net. Daily pyranometer-driven GCF estimates (GCFpyr were obtained from solar radiation measurements above and below the canopy. For GCFpyr computation, solar radiation was averaged for two hours around solar noon (midday periods and for daylight periods (8:00 to 18:00 Universal Time Coordinated. GCFpyr and GCFref (daylight periods showed a good agreement: mean estimation error, 0.000; root mean square error, 0.113; index of agreement, 0.967. The high GCF attained, the large measurement range for GCF and the presence of the net above the table grape were the likely reasons for the good performance of GCFpyr in this crop despite the short number of pyranometers used. Further research is required to develop more appropriate calibration equations of GCFpyr and for a more detailed evaluation of using a short number of pyranometers to estimate GCF.

  5. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  6. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  7. Continuous glucose monitoring systems for type 1 diabetes mellitus

    NARCIS (Netherlands)

    Langendam, Miranda; Luijf, Yoeri M.; Hooft, Lotty; DeVries, J. Hans; Mudde, Aart H.; Scholten, Rob J. P. M.

    2012-01-01

    Background Self-monitoring of blood glucose is essential to optimise glycaemic control in type 1 diabetes mellitus. Continuous glucose monitoring (CGM) systems measure interstitial fluid glucose levels to provide semi-continuous information about glucose levels, which identifies fluctuations that

  8. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  9. Numerical Simulation of Galvanic Corrosion Caused by Shaft Grounding Systems in Steel Ship Hulls

    National Research Council Canada - National Science Library

    Wang, Y

    2005-01-01

    The shaft grounding systems used on board HMC ships have substantially reduced the shaft-to-hull resistance and, thus, improved the performance of the shipboard impressed current cathodic protection (ICCP) system...

  10. Biochemical Contributions to Corrosion of Carbon Steel and Alloy 22 in a Continual Flow System

    International Nuclear Information System (INIS)

    Horn, J.; Martin, S.; Masterson, B.; Lian, T.

    1998-01-01

    Microbiologically influenced corrosion (MIC) may decrease the functional lifetime of nuclear waste packaging materials in the potential geologic repository at Yucca Mountain (YM), Nevada. Biochemical contributions to corrosion of package materials are being determined in reactors containing crushed repository-site rock with the endogenous microbial community, and candidate waste package materials. These systems are being continually supplied with simulated ground water. Periodically, bulk chemistries are analyzed on the system outflow, and surfacial chemistries are assessed on withdrawn material coupons. Both Fe and Mn dissolved from C1020 coupons under conditions that included the presence of YM microorganisms. Insoluble corrosion products remained in a reduced state at the coupon surface, indicating at least a localized anoxic condition; soluble reduced Mn and Fe were also detected in solution, while precipitated and spalled products were oxidized. Alloy 22 surfaces showed a layer of chrome oxide, almost certainly in the Cr(III) oxidation state, on microcosm-exposed coupons, while no soluble chrome was detected in solution. The results of these studies will be compared to identical testing on systems containing sterilized rock to generate, and ultimately predict, microbial contributions to waste package corrosion chemistries

  11. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  12. Continuous emission monitoring systems for power plants. The state-of-the-art

    International Nuclear Information System (INIS)

    Bamberger, J.A.

    1988-01-01

    Continuous monitoring of power plant emissions is performed to improve combustion and control equipment efficiency, and in response to various government agency requirements. This paper focuses upon recent developments in Continuous Emission Monitoring (CEM) and Systems (CEMS) for power plants. Topics presented include the perspective of the U.S. Environmental Protection Agency and the states: Continuous Monitoring of Power Plant Emissions - An EPA Perspective; Pennsylvania's Proposed Continuous Emission Monitoring System Data Telemetry Requirements for Municipal, Hospital and Infectious Waste Incinerators; the importance of quality assurance; Continuous Emission Monitoring and Quality Assurance Requirements for New Power Plants; Highlights of Pennsylvania's Continuous Emission Monitoring System Quality Assurance Program; improved system specifications and data acquisition methods; Improved Specifications for Continuous Emission Monitoring; A Microcomputer-Based Data Acquisition System for CEMS; CEMS applications; Expanded Use of CEMS in Acid Rain Control Programs: Opinions of Users, Control Agencies and Vendors; and an innovative measurement technique to assess electrostatic precipitator performance; The Assessment of Pulverized Coal Fly Ash Collection in Electrostatic Precipitators Using an Instrumental Assessment Technique

  13. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  14. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Science.gov (United States)

    2010-10-01

    ..., fire fighting, emergency rescue, scientific research, commercial mining, or construction. (1) Parties... radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...

  15. SP-100 ground engineering system at Hanford. Revision 1

    International Nuclear Information System (INIS)

    Ethridge, J.L.

    1985-12-01

    The SP-100 reactor is intended to provide a reliable power source for space applications. The reactor development program includes a ground test of the reactor systems to demonstrate that reliability and safety issues have been resolved. The use of an existing containment structure provides a unique facility with large safety margins and ample space. Preliminary seismic analysis shows that current site earthquake criteria can be met. The building is currently utilized to house engineering personnel, and the containment area is in use as an assembly facility. Only minimal activity is required to activate major support systems. All of the principal support facilities are in close proximity to the proposed test site. The various systems and facilities and their status are identified

  16. SP-100 Ground Engineering System at Hanford. Volume 1

    International Nuclear Information System (INIS)

    1985-01-01

    The SP-100 reactor is intended to provide a reliable power source for space applications. The reactor development program includes a ground test of the reactor systems to demonstrate that reliability and safety issues have been resolved. The use of an existing containment structure provides a unique facility with large safety margins and ample space. Preliminary seismic analysis shows that current site earthquake criteria can be met. The building is currently utilized to house engineering personnel, and the containment area is in use as an assembly facility. Only minimal activity is required to activate major support systems. All of the principal support facilities are in close proximity to the proposed test site. The various systems and facilities and their status are identified

  17. SP-100 ground engineering system at Hanford. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The SP-100 reactor is intended to provide a reliable power source for space applications. The reactor development program includes a ground test of the reactor systems to demonstrate that reliability and safety issues have been resolved. The use of an existing containment structure provides a unique facility with large safety margins and ample space. Preliminary seismic analysis shows that current site earthquake criteria can be met. The building is currently utilized to house engineering personnel, and the containment area is in use as an assembly facility. Only minimal activity is required to activate major support systems. All of the principal support facilities are in close proximity to the proposed test site. The various systems and facilities and their status are identified

  18. Using XML Configuration-Driven Development to Create a Customizable Ground Data System

    Science.gov (United States)

    Nash, Brent; DeMore, Martha

    2009-01-01

    The Mission data Processing and Control Subsystem (MPCS) is being developed as a multi-mission Ground Data System with the Mars Science Laboratory (MSL) as the first fully supported mission. MPCS is a fully featured, Java-based Ground Data System (GDS) for telecommand and telemetry processing based on Configuration-Driven Development (CDD). The eXtensible Markup Language (XML) is the ideal language for CDD because it is easily readable and editable by all levels of users and is also backed by a World Wide Web Consortium (W3C) standard and numerous powerful processing tools that make it uniquely flexible. The CDD approach adopted by MPCS minimizes changes to compiled code by using XML to create a series of configuration files that provide both coarse and fine grained control over all aspects of GDS operation.

  19. Below- and above-ground effects of deadwood and termites in plantation forests

    Science.gov (United States)

    Michael D. Ulyshen; Richard Shefferson; Scott Horn; Melanie K. Taylor; Bryana Bush; Cavell Brownie; Sebastian Seibold; Michael S. Strickland

    2017-01-01

    Deadwood is an important legacy structure in managed forests, providing continuity in shelter and resource availability for many organisms and acting as a vehicle by which nutrients can be passed from one stand to the next following a harvest. Despite existing at the interface between below- and above-ground systems, however, much remains unknown about the role woody...

  20. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  1. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  2. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  3. Perceptual multistability in figure-ground segregation using motion stimuli.

    Science.gov (United States)

    Gori, Simone; Giora, Enrico; Pedersini, Riccardo

    2008-11-01

    In a series of experiments using ambiguous stimuli, we investigate the effects of displaying ordered, discrete series of images on the dynamics of figure-ground segregation. For low frame presentation speeds, the series were perceived as a sequence of discontinuous, static images, while for high speeds they were perceived as continuous. We conclude that using stimuli varying continuously along one parameter results in stronger hysteresis and reduces spontaneous switching compared to matched static stimuli with discontinuous parameter changes. The additional evidence that the size of the hysteresis effects depended on trial duration is consistent with the stochastic nature of the dynamics governing figure-ground segregation. The results showed that for continuously changing stimuli, alternative figure-ground organizations are resolved via low-level, dynamical competition. A second series of experiments confirmed these results with an ambiguous stimulus based on Petter's effect.

  4. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M

    2014-01-01

    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  5. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  6. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  7. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  8. Lessons learned on the Ground Test Accelerator control system

    International Nuclear Information System (INIS)

    Kozubal, A.J.; Weiss, R.E.

    1994-01-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers' toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ''Experimental Physics and Industrial Control System'' (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects

  9. Feasibility of introducing continuous systems in surface mines of India

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, S K

    1987-06-01

    The paper presents a brief outline of the mineral types, production trends and techno-economic feasiblity associated with the possible introduction of continuous mining systems to India. Production trends are outlined for coal, limestone, bauxite, phosphate, and iron ore. Continuous mining systems described are heavy-duty bucket wheel excavators, road milling type machines and shearing type machines. 8 refs.

  10. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    Science.gov (United States)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  11. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  12. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  13. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  14. Ground truth data collection on mining industrial explosions registered by the International Monitoring System

    International Nuclear Information System (INIS)

    Ehl'tekov, A.Yu.; Gordon, V.P.; Firsov, V.A.; Chervyakov, V.B.

    2004-01-01

    The presentation is dedicated to organizational and technical issues connected with the task of Comprehensive Test-Ban-Treaty Organization timely notification on large chemical explosions including data on explosion location and time, on applied explosive substance quantity and type, and also on configuration and assumed purpose of explosion. Explosions registered by International Monitoring System are of special interest. Their data could be used for calibration of the monitoring system. Ground truth data collection and some explosions location results on Russia's mining enterprises were given. Ground truth data collection peculiarities according to mining industrial explosions were considered. (author)

  15. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    Science.gov (United States)

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  16. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  17. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Sitisaiyidah Saiwari

    2016-08-01

    Full Text Available As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid, extruder parameters (screw configuration, screw speed, fill factor and ancillary equipment (pre-treatment, extrudate handling. The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given.

  18. Optimization of Serial Combined System of Ground-Coupled Heat Pump and Solar Collector

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun; CHEN Yan; LU Suzhen; CUI Junkui

    2009-01-01

    A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results,in which the solar collector was combined serially with a ground-coupled heat pump(GCHP).The universal optimal equations were solved by the constrained variable metric method considering both the performance and economics.Then the model was applied to a specific case concerning an actual solar assisted GCHP system for space heating.The results indicated a system coefficient of performance(COP)of 3.9 for the optimal method under the seriaI heating mode,and 3.2 for the conventional one.In addition,the optimum solution also showed advantages in energy and cost saving.1eading to a 16.7%improvement in the heat pump performance at 17.2%less energy consumption and 11.8%lower annual cost,respectively.

  19. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  20. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  1. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  2. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    Science.gov (United States)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  3. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Wang, Jinggang

    2010-01-01

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

  4. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yi; Yang, Hongxing [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Jinggang [Hebei University of Engineering, Handan (China)

    2010-09-15

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building. (author)

  5. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Science.gov (United States)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countablely many quasistable states has at least the computational power of a universal Turing machine. Such an analyses assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  6. Rough case-based reasoning system for continues casting

    Science.gov (United States)

    Su, Wenbin; Lei, Zhufeng

    2018-04-01

    The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.

  7. Evolving Reliability and Maintainability Allocations for NASA Ground Systems

    Science.gov (United States)

    Munoz, Gisela; Toon, T.; Toon, J.; Conner, A.; Adams, T.; Miranda, D.

    2016-01-01

    This paper describes the methodology and value of modifying allocations to reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) programs subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. This iterative process provided an opportunity for the reliability engineering team to reevaluate allocations as systems moved beyond their conceptual and preliminary design phases. These new allocations are based on updated designs and maintainability characteristics of the components. It was found that trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper discusses the results of reliability and maintainability reallocations made for the GSDO subsystems as the program nears the end of its design phase.

  8. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  9. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B; Hunter, R.L.; Pickens, J.F.

    1991-02-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The US Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. 12 refs., 4 figs

  10. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  11. System for detecting and limiting electrical ground faults within electrical devices

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1990-01-01

    This paper discusses, in a nuclear power plant of a variety wherein a reactor is provided including a reactor vessel retaining a liquid metal coolant, a reactor core and an electromagnetic pump having inductive windings insulatively retained within the electrically conductive wall of an enclosure, the method for controlling electrical ground fault current between a the inductive winding and the walls. It comprises providing an electrically isolated power source by inductive coupling with the plant power supply; rectifying the power source to provide an isolated d.c. power source; providing an inverter powered from the isolated d.c. power source under the control of the plant control system for selectively energizing the inductive windings; providing a fault control conductor electrically connected with the pump enclosure wall and extending as an electrical return for ground fault current to the inverter; and providing an electrical resistance between the conductor and the isolated inverter having an impedance selected to limit the fault current below a predetermined value limiting arc damage at any the electrical ground fault location

  12. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    Suplisson, Angela W.

    The US Air Force recently fielded the F-16 Automatic Ground Collision Avoidance System (Auto GCAS). This system meets the operational requirements of being both aggressive and timely, meaning that extremely agile avoidance maneuvers will be executed at the last second to avoid the ground. This small window of automatic operation maneuvering in close proximity to the ground makes the problem challenging. There currently exists no similar Auto GCAS for manned military 'heavy' aircraft with lower climb performance such as transport, tanker, or bomber aircraft. The F-16 Auto GCAS recovery is a single pre-planned roll to wings-level and 5-g pull-up which is very effective for fighters due to their high g and climb performance, but it is not suitable for military heavy aircraft. This research proposes a new optimal control approach to the ground collision avoidance problem for heavy aircraft by mapping the aggressive and timely requirements of the automatic recovery to the optimal control formulation which includes lateral maneuvers around terrain. This novel mapping creates two ways to pose the optimal control problem for Auto GCAS; one as a Max Distance with a Timely Trigger formulation and the other as a Min Control with an Aggressive Trigger formulation. Further, the optimal path and optimal control admitted by these two formulations are demonstrated to be equivalent at the point the automatic recovery is initiated for the simplified 2-D case. The Min Control formulation was demonstrated to have faster computational speed and was chosen for the 3-D case. Results are presented for representative heavy aircraft scenarios against 3-D digital terrain. The Min Control formulation was then compared to a Multi-Trajectory Auto GCAS with five pre-planned maneuvers. Metrics were developed to quantify the improvement from using an optimal approach versus the pre-planned maneuvers. The proposed optimal Min Control method was demonstrated to require less control or trigger later

  13. [Development of a continuous blood pressure monitoring and recording system].

    Science.gov (United States)

    Zhang, Yang; Li, Yong; Gao, Shumei; Song, Yilin

    2012-09-01

    A small experimental system is constructed with working principle of continuous blood pressure monitoring based on the volume compensation method. The preliminary experimental results show that the system can collect blood pressure signals at the radial artery effectively. The digital PID algorithm can track the variation of blood pressure. And the accuracy of continuous blood pressure detecting achieve the level of same kind of product.

  14. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  15. Robust model predictive control for constrained continuous-time nonlinear systems

    Science.gov (United States)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  16. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  17. Temperature distributions in boreholes of a vertical ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Esen, Yuksel [Department of Construction Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-12-15

    The objective of this study is to show the temperature distribution development in the borehole of the ground-coupled heat pump systems (GCHPs) with time. The time interval for the study is 48 h. The vertical GCHP system using R-22 as refrigerant has a three single U-tube ground heat exchanger (GHE) made of polyethylene pipe with a 40 mm outside diameter. The GHE was placed in a vertical borehole (VB) with 30 (VB1), 60 (VB2) and 90 (VB3) m depths and 150 mm diameters. The experimental results were obtained in cooling and heating seasons of 2006-2007. A two-dimensional finite element model (FEM) was developed to simulate temperature distribution development in the soil surrounding the GHEs of GCHPs operating in the cooling and the heating modes. The finite element modelling of the GCHP system was performed using the ANSYS code. The FEM incorporated pipes, the grout and the surrounding formation. From the cases studied, this approach appears to be the most promising for estimation the temperature distribution response of GHEs to thermal loading. (author)

  18. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  19. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  20. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  1. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  2. Evaluation of ground motion scaling methods for analysis of structural systems

    Science.gov (United States)

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  3. 226Ra and 228Ra in ground water of the Cambrian-Ordovician Aquifer System in northern Illinois

    International Nuclear Information System (INIS)

    Gilkeson, R.H.; Holtzman, R.B.

    1982-01-01

    Over a large region of Illinois, ground water of the Cambrian-Ordovician Aquifer System exceeds the US EPA drinking water standard of 5 pCi/L for the combined concentration of 226 Ra and 228 Ra. 226 Ra concentrations range from 226 Ra is the geochemistry of uranium in the ground-water flow system, while the 228 Ra activity in ground water which ranges from 232 Th-bearing minerals in the aquifer strata. The comparison of recent analyses to historical data gathered over the last 20 years indicates that, with few exceptions, 226 Ra and 228 Ra activities in ground water have remained constant. The combined concentrations of the two nuclides in ground water of the aquifer system ranged from 226 Ra concentrations were high (greater than or equal to 10 pCi/L), those of 228 Ra were low (less than or equal to 2 pCi/L), but, with few exceptions, in regions where 228 Ra concentrations were high, those of 226 Ra were also high. The range of values raises questions concerning the validity of the US EPA regulation which requires analysis for 228 Ra only when the concentration of 226 Ra exceeds 3.0 pCi/L

  4. Optical studies in the holographic ground station

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  5. A computer-aided continuous assessment system

    Directory of Open Access Journals (Sweden)

    B. C.H. Turton

    1996-12-01

    Full Text Available Universities within the United Kingdom have had to cope with a massive expansion in undergraduate student numbers over the last five years (Committee of Scottish University Principals, 1993; CVCP Briefing Note, 1994. In addition, there has been a move towards modularization and a closer monitoring of a student's progress throughout the year. Since the price/performance ratio of computer systems has continued to improve, Computer- Assisted Learning (CAL has become an attractive option. (Fry, 1990; Benford et al, 1994; Laurillard et al, 1994. To this end, the Universities Funding Council (UFQ has funded the Teaching and Learning Technology Programme (TLTP. However universities also have a duty to assess as well as to teach. This paper describes a Computer-Aided Assessment (CAA system capable of assisting in grading students and providing feedback. In this particular case, a continuously assessed course (Low-Level Languages of over 100 students is considered. Typically, three man-days are required to mark one assessed piece of coursework from the students in this class. Any feedback on how the questions were dealt with by the student are of necessity brief. Most of the feedback is provided in a tutorial session that covers the pitfalls encountered by the majority of the students.

  6. Automating the SMAP Ground Data System to Support Lights-Out Operations

    Science.gov (United States)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  7. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. Computer code used: SWIFT II (flow and transport code). 4 figs., 12 refs

  8. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  9. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  10. Grounded theory in music therapy research.

    Science.gov (United States)

    O'Callaghan, Clare

    2012-01-01

    Grounded theory is one of the most common methodologies used in constructivist (qualitative) music therapy research. Researchers use the term "grounded theory" when denoting varying research designs and theoretical outcomes. This may be challenging for novice researchers when considering whether grounded theory is appropriate for their research phenomena. This paper examines grounded theory within music therapy research. Grounded theory is briefly described, including some of its "contested" ideas. A literature search was conducted using the descriptor "music therapy and grounded theory" in Pubmed, CINAHL PsychlNFO, SCOPUS, ERIC (CSA), Web of Science databases, and a music therapy monograph series. A descriptive analysis was performed on the uncovered studies to examine researched phenomena, grounded theory methods used, and how findings were presented, Thirty music therapy research projects were found in refereed journals and monographs from 1993 to "in press." The Strauss and Corbin approach to grounded theory dominates the field. Descriptors to signify grounded theory components in the studies greatly varied. Researchers have used partial or complete grounded theory methods to examine clients', family members', staff, music therapy "overhearers," music therapists', and students' experiences, as well as music therapy creative products and professional views, issues, and literature. Seven grounded theories were offered. It is suggested that grounded theory researchers clarify what and who inspired their design, why partial grounded theory methods were used (when relevant), and their ontology. By elucidating assumptions underpinning the data collection, analysis, and findings' contribution, researchers will continue to improve music therapy research using grounded theory methods.

  11. ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY

    Institute of Scientific and Technical Information of China (English)

    M. Rahimi A. Riazi

    2012-01-01

    In this article,we introduce the concept of entropy functional for continuous systems on compact metric spaces,and prove some of its properties.We also extract the Kolmogorov entropy from the entropy functional.

  12. A system to test the ground surface conditions of construction sites--for safe and efficient work without physical strain.

    Science.gov (United States)

    Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank

    2005-07-01

    Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.

  13. Continuous restraint control systems: safety improvement for various occupants

    NARCIS (Netherlands)

    Laan, E. van der; Jager, B. de; Veldpaus, F.; Steinbuch, M.; Nunen, E. van; Willemsen, D.

    2009-01-01

    Occupant safety can be significantly improved by continuous restraint control systems. These restraint systems adjust their configuration during the impact according to the actual operating conditions, such as occupant size, weight, occupant position, belt usage and crash severity. In this study,

  14. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... this paragraph. (b) Separate monitoring systems for each waste management component of a facility are... which circumscribes the several waste management components. (c) All monitoring wells must be cased in a... Section 265.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  15. Ground test accelerator control system software

    International Nuclear Information System (INIS)

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01

    This paper reports on the GTA control system that provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial 110 equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic start-up and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A data base provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form

  16. Determining Component Probability using Problem Report Data for Ground Systems used in Manned Space Flight

    Science.gov (United States)

    Monaghan, Mark W.; Gillespie, Amanda M.

    2013-01-01

    During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.

  17. Advanced ground-penetrating, imaging radar for bridge inspection

    International Nuclear Information System (INIS)

    Warhus, J.P.; Nelson, S.D.; Mast, J.E.; Johansson, E.M.

    1994-01-01

    During FY-93, the authors continued with development and experimental evaluation of components and system concepts aimed at improving ground-penetrating imaging radar (GPIR) for nondestructive evaluation of bridge decks and other high-value concrete structures. They developed and implemented a laboratory test bed, including features to facilitate component testing antenna system configuration evaluation, and collection of experimental data from realistic test objects. In addition, they developed pulse generators and antennas for evaluation and use in antenna configuration studies. This project was part of a cooperative effort with the Computational Electronics and Electromagnetics and Remote Imaging and Signal Engineering Thrust Areas, which contributed signal- and image-processing algorithm and software development and modeling support

  18. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  19. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  20. Spaceflight Systems Training: A Comparison and Contrasting of Techniques for Training Ground Operators and Onboard Crewmembers

    Science.gov (United States)

    Balmain, Clinton; Fleming, Mark

    2009-01-01

    When developing techniques and products for instruction on manned spaceflight systems, training organizations are often faced with two very different customers: ground operators and onboard crewmembers. Frequently, instructional development focuses on one of these customers with the assumption that the other s needs will be met by default. Experience teaches us that differing approaches are required when developing training tailored to the specific needs of each customer. As a rule, ground operators require focused instruction on specific areas of expertise. Their knowledge should be of the details of the hardware, software, and operational techniques associated with that system. They often benefit from historical knowledge of how their system has operated over its lifetime. Since several different ground operators may be interfacing with the same system, each individual operator must understand the agreed-to principles by which that system will be run. In contrast, onboard crewmembers require a more broad, hands-on awareness of their operational environment. Their training should be developed with an understanding of the physical environment in which they live and work and the day-to-day tasks they are most likely to perform. Rarely do they require a deep understanding of the details of a system; it is often sufficient to teach them just enough to maintain situational awareness and perform basic tasks associated with maintenance and operation of onboard systems. Crewmembers may also develop unique onboard operational techniques that differ from preceding crews. They should be taught what flexibility they have in systems operations and how their specific habits can be communicated to ground support personnel. This paper will explore the techniques that can be employed when developing training for these unique customers. We will explore the history of International Space Station training development and how past efforts can guide us in creating training for users of

  1. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  2. Advanced continuous cultivation methods for systems microbiology.

    Science.gov (United States)

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  3. A novel continuous subcutaneous lactate monitoring system.

    Science.gov (United States)

    Poscia, A; Messeri, D; Moscone, D; Ricci, F; Valgimigli, F

    2005-05-15

    A novel continuous lactate monitoring system has been developed modifying the GlucoDay portable medical device (A. Menarini Diagnostics), already present in the European market, and used to continuously measure glucose levels. Lactate oxidase based biosensors have been developed immobilising the enzyme on nylon net and placing it on a Pt electrode. The biosensor was connected to the portable device provided with a micro-pump and coupled to a microdialysis system. It is capable to record subcutaneous lactate every 3 min. In vitro analytical results confirmed that the sensors respond linearly in the interval of concentration between 0.1 and 10 mmol/L, covering the whole physiological range. During prolonged monitoring periods, the response of the biosensors remained stable, showing a limited drift of 8%, within 60 h. Stability tests are still on route. However, preliminary results have shown a shelf life of about 10 months. In vivo experiments performed on healthy rabbits have demonstrated the good accuracy and reproducibility of the system. A correlation coefficient equal to 0.9547 (N=80) was found, which represents a good correlation between the GlucoDay and the laboratory reference analyser. A 16 h in vivo monitoring on a healthy volunteer has been also performed.

  4. Sensitivity of Base-Isolated Systems to Ground Motion Characteristics: A Stochastic Approach

    International Nuclear Information System (INIS)

    Kaya, Yavuz; Safak, Erdal

    2008-01-01

    Base isolators dissipate energy through their nonlinear behavior when subjected to earthquake-induced loads. A widely used base isolation system for structures involves installing lead-rubber bearings (LRB) at the foundation level. The force-deformation behavior of LRB isolators can be modeled by a bilinear hysteretic model. This paper investigates the effects of ground motion characteristics on the response of bilinear hysteretic oscillators by using a stochastic approach. Ground shaking is characterized by its power spectral density function (PSDF), which includes corner frequency, seismic moment, moment magnitude, and site effects as its parameters. The PSDF of the oscillator response is calculated by using the equivalent-linearization techniques of random vibration theory for hysteretic nonlinear systems. Knowing the PSDF of the response, we can calculate the mean square and the expected maximum response spectra for a range of natural periods and ductility values. The results show that moment magnitude is a critical factor determining the response. Site effects do not seem to have a significant influence

  5. Continuous improvement of the BNFL transport integrated management system

    International Nuclear Information System (INIS)

    Hale, J.A.

    1998-01-01

    The integrated Management System of BNFL Transport and Pacific Nuclear Transport Limited (PNTL) is subject to continuous improvement by the application of established improvement techniques adopted by BNFL. The technique currently being used is the application of a Total Quality Management (TQM) philosophy, involving the identification of key processes, benchmarking against existing measures, initiating various improvement projects and applying process changes within the Company. The measurement technique being used is based upon the European Foundation for Quality Management Model (EFQM). A major initiative was started in 1996 to include the requirements of the Environmental Management Systems standard ISO 14001 within the existing integrated management system. This resulted in additional activities added to the system, modification to some existing activities and additional training for personnel. The system was audited by a third party certification organisation, Lloyds Register Quality Assurance (LRQA), during 1997. This paper describes the arrangements to review and update the integrated management system of BNFL Transport and PNTL to include the requirements of the environmental standard ISO 14001 and it also discusses the continuous improvement process adopted by BNFL Transport. (authors)

  6. Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20

    Science.gov (United States)

    Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at Texpected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.

  7. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  8. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  9. Extremal entanglement and mixedness in continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-01-01

    We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr ρ 2 for the state ρ) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity. Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies

  10. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  11. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  12. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  13. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  14. A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation

    OpenAIRE

    Harik, El Houssein Chouaib; Guérin, François; Guinand, Frédéric; Brethé, Jean-François; Pelvillain, Hervé

    2014-01-01

    International audience; —This paper presents a novel decentralized interactive architecture for aerial and ground mobile robots cooperation. The aerial mobile robot is used to provide a global coverage during an area inspection, while the ground mobile robot is used to provide a local coverage of ground features. We include a human-in-the-loop to provide waypoints for the ground mobile robot to progress safely in the inspected area. The aerial mobile robot follows continuously the ground mobi...

  15. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Directory of Open Access Journals (Sweden)

    C. Eichler

    2015-12-01

    Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  16. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  17. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  18. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  19. XML Flight/Ground Data Dictionary Management

    Science.gov (United States)

    Wright, Jesse; Wiklow, Colette

    2007-01-01

    A computer program generates Extensible Markup Language (XML) files that effect coupling between the command- and telemetry-handling software running aboard a spacecraft and the corresponding software running in ground support systems. The XML files are produced by use of information from the flight software and from flight-system engineering. The XML files are converted to legacy ground-system data formats for command and telemetry, transformed into Web-based and printed documentation, and used in developing new ground-system data-handling software. Previously, the information about telemetry and command was scattered in various paper documents that were not synchronized. The process of searching and reading the documents was time-consuming and introduced errors. In contrast, the XML files contain all of the information in one place. XML structures can evolve in such a manner as to enable the addition, to the XML files, of the metadata necessary to track the changes and the associated documentation. The use of this software has reduced the extent of manual operations in developing a ground data system, thereby saving considerable time and removing errors that previously arose in the translation and transcription of software information from the flight to the ground system.

  20. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  1. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  2. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  3. Preliminary Assessment of Detection Efficiency for the Geostationary Lightning Mapper Using Intercomparisons with Ground-Based Systems

    Science.gov (United States)

    Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William

    2018-01-01

    As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.

  4. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  5. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  6. Continuous Improvement and Collaborative Improvement: Similarities and Differences

    NARCIS (Netherlands)

    Middel, H.G.A.; Boer, Harm; Fisscher, O.A.M.

    2006-01-01

    A substantial body of theoretical and practical knowledge has been developed on continuous improvement. However, there is still a considerable lack of empirically grounded contributions and theories on collaborative improvement, that is, continuous improvement in an inter-organizational setting. The

  7. H-Bridge Transformerless Inverter with Common Ground for Single-Phase Solar-Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new single-phase H-Bridge transformerless inverter with common ground for grid-connected photovoltaic systems (hereafter it is called ‘Siwakoti-H’ inverter). The inverter works on the principle of flying capacitor and consists of only four power switches (two reverse blocking...... IGBT's (RB-IGBT) and two MOSFET's), a capacitor and a small filter at the output stage. The proposed topology share a common ground with the grid and the PV source. A Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to modulate the inverter to minimize switching loss, output current...

  8. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  9. Continuous vacuum processing system for quartz crystal resonators

    International Nuclear Information System (INIS)

    Ney, R.J.; Hafner, E.

    1979-01-01

    An ultrahigh vacuum continuous cycle quartz crystal fabrication facility has been developed that assures an essentially contamination-free environment throughout the final manufacturing steps of the crystal unit. The system consists of five essentially tubular vacuum chambers that are interconnected through gate valves. The unplated crystal resonators, mounted in ceramic flatback frames and loaded on carrier trays, enter the vacuum system through an entrance air lock, are UV/ozone cleaned, baked at 300 0 C, plated to frequency, thermocompression sealed, and exit as completed crystal units through an exit air lock, while the bake, plate and seal chambers remain under continuous vacuum permanently. In-line conveyor belts are used, in conjunction with balanced vacuum manipulators, to move the resonator components to the various work stations. Unique high density, highly directional nozzle beam evaporation sources, capable of long term operation without reloading, are used for electroding the resonators simultaneously on both sides. The design goal for the system is a production rate of 200 units per 8 hour day; it is adaptable to automatic operation

  10. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  11. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  12. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  13. The continuous improvement system of nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Rivera C, A.

    2009-10-01

    This paper describes the continuous improvement system of nuclear power plant of Laguna Verde and the achievements in implementing the same and additionally two study cases are presents. In February 2009 is noteworthy because the World Association of Nuclear Operators we identified as a learning organization, qualification which shows that the continuous improvement system has matured, and this system will expose as I get to learn to capitalize on our own experiences and external experiences diffused by the nuclear industry. In 2007 the management of nuclear power plants integrates its improvement systems and calls it continuous improvement system and is presented in the same extensive report that won the National Quality Award. This system is made up of 5 subsystems operating individually and are also related 1) human performance; 2) referential comparison or benchmarking; 3) self-assessment; 4) corrective action and 5) external operating experience. Five subsystems that plan, generate, capture, manage, communicate and protect the knowledge generated during the processes execution of nuclear power plant of Laguna Verde, as well as from external sources. The target set in 2007 was to increase the intellectual capital to always give response to meeting the security requirements, but creating a higher value to quality, customer, environment protection and society. In brief each of them, highlighting the objective, expectations management, implementation and some benefits. At the end they will describe two study cases selected to illustrate these cases as the organization learns by their continuous improvement system. (Author)

  14. Quantum information and continuous variable systems

    International Nuclear Information System (INIS)

    Giedke, G.K.

    2001-08-01

    This thesis treats several questions concerning quantum information theory of infinite dimensional continuous variable (CV) systems. We investigate the separability properties of Gaussian states of such systems. Both the separability and the distillability problem for bipartite Gaussian states are solved by deriving operational criteria for these properties. We consider multipartite Gaussian states and obtain a necessary and sufficient condition that allows the complete classification of three-mode tripartite states according to their separability properties. Moreover we study entanglement distillation protocols. We show that the standard protocols for qubits are robust against imperfect implementation of the required quantum operations. For bipartite Gaussian states we find a universal scheme to distill all distillable states and propose a concrete quantum optical realization. (author)

  15. Performance analysis of hybrid ground-coupled heat pump system with multi-functions

    International Nuclear Information System (INIS)

    You, Tian; Wang, Baolong; Wu, Wei; Shi, Wenxing; Li, Xianting

    2015-01-01

    Highlights: • The hybrid GCHP system with multi-functions is proposed. • The system maintains the soil temperature and heating reliability steady. • The multi-functional operation of HCUT can save more energy of the system. - Abstract: Underground thermal imbalance is a significant problem for ground-coupled heat pump (GCHP) systems that serve predominately heated buildings in cold regions, which extract more heat from the ground and inject less heat, especially in buildings requiring domestic hot water (DHW). To solve this problem, a previously developed heat compensation unit with thermosyphon (HCUT) is integrated with a GCHP unit to build a hybrid GCHP system. To improve the energy savings of this hybrid GCHP system, the HCUT unit is set to have multiple functions (heat compensation, direct DHW and direct space heating) in this paper. To analyze the improved system performance, a hotel requiring air-conditioning and DHW is selected and simulated in three typical cold cities using the dynamic software DeST and TRNSYS. The results indicate that the hybrid GCHP system can maintain the underground thermal balance while keeping the indoor air temperature within the design range. Furthermore, the HCUT unit efficiently reduces the energy consumption via its multi-functional operations. Compared to the previous system that only used HCUT for heat compensation, adding the direct DHW function further saves 7.5–11.0% energy in heat compensation (HC) and DHW (i.e., 3.6–4.8% of the whole system). Simultaneously adding the direct DHW and space heating functions to the HCUT can save 9.8–12.9% energy in HC and DHW (i.e., 5.1–6.0% of the whole system). The hybrid GCHP system with a multi-functional HCUT provides more energy savings while maintaining the underground thermal balance in cold regions that demand both air-conditioning and DHW

  16. Design and development of an automated D.C. ground fault detection and location system for Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Ramesh, N.; Jain, J.K.; Srivastava, A.P.

    2002-01-01

    Full text: The original design of Cirus safety system provided for automatic detection of ground fault in class I D.C. power supply system and its annunciation followed by delayed reactor trip. Identification of a faulty section was required to be done manually by switching off various sections one at a time thus requiring a lot of shutdown time to identify the faulty section. Since class I power supply is provided for safety control system, quick detection and location of ground faults in this supply is necessary as these faults have potential to bypass safety interlocks and hence the need for a new system for automatic location of a faulty section. Since such systems are not readily available in the market, in-house efforts were made to design and develop a plant-specific system, which has been installed and commissioned

  17. Effects of farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Anderson, J.L.; Dowdy, R.H.

    1998-01-01

    Ground-water quality in an unconfined sand and gravel aquifer was monitored during 1991-95 at the Minnesota Management Systems Evaluation Area (MSEA) near Princeton, Minnesota. The objectives of the study were to:

  18. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-05-15

    This paper reports a techno-economic comparison between a ground-coupled heat pump (GCHP) system and an air-coupled heat pump (ACHP) system. The systems connected to a test room in Firat University, Elazig (38.41{sup o}N, 39.14{sup o}E), Turkey, were designed and constructed for space cooling. The performances of the GCHP and the ACHP system were experimentally determined. The experimental results were obtained from June to September in cooling season of 2004. The average cooling performance coefficients (COP{sub sys}) of the GCHP system for horizontal ground heat exchanger (HGHE) in the different trenches, at 1 and 2m depths, were obtained to be 3.85 and 4.26, respectively and the COP{sub sys} of the ACHP system was determined to be 3.17. The test results indicate that system parameters can have an important effect on performance, and that GCHP systems are economically preferable to ACHP systems for the purpose of space cooling. (author)

  19. SCOS 2: A distributed architecture for ground system control

    Science.gov (United States)

    Keyte, Karl P.

    The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.

  20. Operational calibration and validation of landsat data continuity mission (LDCM) sensors using the image assessment system (IAS)

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron

    2010-01-01

    Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.

  1. Continuous control systems for non-contact ECG

    Science.gov (United States)

    Kodkin, Vladimir L.; Yakovleva, Galina V.; Smirnov, Alexey S.

    2017-03-01

    South Ural State University is still conducting the research work dedicated to innovations in biomedicine. Development of system for continuous control and diagnosis of the functional state in large groups of people is based on studies of non-contact ECG recording reported by the authors at the SPIE conference in 2016. The next stage of studies has been performed this year.

  2. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  3. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  4. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  5. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems.

    Science.gov (United States)

    Fang, Fuming; Shinozaki, Takahiro

    2018-01-01

    Human-computer interface systems whose input is based on eye movements can serve as a means of communication for patients with locked-in syndrome. Eye-writing is one such system; users can input characters by moving their eyes to follow the lines of the strokes corresponding to characters. Although this input method makes it easy for patients to get started because of their familiarity with handwriting, existing eye-writing systems suffer from slow input rates because they require a pause between input characters to simplify the automatic recognition process. In this paper, we propose a continuous eye-writing recognition system that achieves a rapid input rate because it accepts characters eye-written continuously, with no pauses. For recognition purposes, the proposed system first detects eye movements using electrooculography (EOG), and then a hidden Markov model (HMM) is applied to model the EOG signals and recognize the eye-written characters. Additionally, this paper investigates an EOG adaptation that uses a deep neural network (DNN)-based HMM. Experiments with six participants showed an average input speed of 27.9 character/min using Japanese Katakana as the input target characters. A Katakana character-recognition error rate of only 5.0% was achieved using 13.8 minutes of adaptation data.

  6. A Social Accountable Model for Medical Education System in Iran: A Grounded-Theory

    Directory of Open Access Journals (Sweden)

    Mohammadreza Abdolmaleki

    2017-10-01

    Full Text Available Social accountability has been increasingly discussed over the past three decades in various fields providing service to the community and has been expressed as a goal for various areas. In medical education system, like other social accountability areas, it is considered as one of the main objectives globally. The aim of this study was to seek a social accountability theory in the medical education system that is capable of identifying all the standards, norms, and conditions within the country related to the study subject and recognize their relationship. In this study, a total of eight experts in the field of social accountability in medical education system with executive or study experience were interviewedpersonally. After analysis of interviews, 379 codes, 59 secondary categories, 16 subcategories, and 9 main categories were obtained. The resulting data was collected and analyzed at three levels of open coding, axial coding, and selective coding in the form of grounded theory study of “Accountability model of medical education in Iran”, which can be used in education system’s policies and planning for social accountability, given that almost all effective components of social accountability in highereducation health system with causal and facilitator associations were determined.Keywords: SOCIAL ACCOUNTABILITY, COMMUNITY–ORIENTED MEDICINE, COMMUNITY MEDICINE, EDUCATION SYSTEM, GROUNDED THEORY

  7. 30 CFR 18.54 - High-voltage continuous mining machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...

  8. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... an evaluation of the applicable components listed in paragraphs (c)(1) through (8) of this section... facilities, and controls, (6) Monitoring, reporting, and data verification, (7) System management and...

  9. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  10. Evolution of an open system as a continuous measurement of this system by its environment

    International Nuclear Information System (INIS)

    Mensky, Michael B.

    2003-01-01

    The restricted-path-integral (RPI) description of a continuous quantum measurement is rederived starting from the description of an open system by the Feynman-Vernon influence functional. For this end the total evolution operator of the compound system consisting of the open system and its environment is decomposed into the sum of partial evolution operators. Accordingly, the influence functional of the open system is decomposed into the integral of partial influence functionals (PIF). If the partial evolution operators or PIF are chosen in such a way that they decohere (do not interfere with each other), then the formalism of RPI effectively arises. The evolution of the open system may then be interpreted as a continuous measurement of this system by its environment. This is possible if the environment is macroscopic or mesoscopic

  11. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  12. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory

    OpenAIRE

    Göran Goldkuhl; Stefan Cronholm

    2010-01-01

    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  13. 33 CFR 183.415 - Grounding.

    Science.gov (United States)

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.415 Grounding. If a boat has more than one gasoline engine, grounded cranking motor circuits must be connected to...

  14. The on-ground acquisition and data analysis system for the PDS detector on board the SAX satellite

    International Nuclear Information System (INIS)

    Dal Fiume, D.; Nicastro, L.; Orlandini, M.; Trifoglio, M.

    1997-01-01

    The Phoswich Detection System (PDS) is the high-energy (15-300 keV) instrument on board the Italian-Dutch X-ray astronomy satellite SAX. Functional tests were carried out at BICRON (Newbury, Ohio USA) and at LABEN (Vimodrone Italy). Full ground calibrations have been performed between the end of 1994 and the beginning of 1995. The authors describe in the following the system that they used to acquire and analyse the data coming from the PDS experiment during the ground tests and calibration. It will be used to store and maintain data during both the pre-operational and the operational phases. In a previous report (Dal Fiume D., Frontera F., Orlandini M., and Trifoglio M., AIP Conf. Proc., 61 (1994) 395) they described the general architecture of the data analysis system. In this report they give a detailed description of the entire system, including the hardware and software developed by LABEN to acquire data during on-ground tests. A complete description of the different modules, user interface, inter-process communications, analysis and display tools are presented. Current status of the project is discussed

  15. Statistics of resonances in one-dimensional continuous systems

    Indian Academy of Sciences (India)

    Vol. 73, No. 3. — journal of. September 2009 physics pp. 565–572. Statistics of resonances in one-dimensional continuous systems. JOSHUA FEINBERG. Physics Department, University of Haifa at Oranim, Tivon 36006, Israel ..... relativistic quantum mechanics (Israel Program for Scientific Translations, Jerusalem,. 1969).

  16. APPLICATION OF BUSINESS CONTINUITY MANAGEMENT SYSTEM INTO THE CRISIS MANAGEMENT FIELD

    Directory of Open Access Journals (Sweden)

    Hana MALACHOVÁ

    2016-12-01

    Full Text Available Establishing business continuity management (BCM creates the basis of every organization’s strategy. BCM includes complex procedures that help solving unexpected situations of natural and anthropogenic nature (e.g. fire or flood. Planning of the BCM is a process that helps organizations identify critical processes and implement plans for securing and restoring key processes. The aim of this paper is to demonstrate the application of a systemic approach to BCM known as Business Continuity Management System (BCMS into the military field. This article describes the life cycle of the BCMS, which is based on PDCA cycle. Subsequently it is applied to the activities carried out by the University of Defence during activation of forces and means in the frame of the Integrated Rescue System (IRS in case of emergency – an accident in a nuclear power plant in the Czech Republic. Activities in various stages of deployment of allocated forces and means are managed and evaluated using the Military Continuity Management System (MCMS application.

  17. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  18. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  19. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  20. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  1. Ground Systems Development and Operations (GSDO) Education 101: Exploration Begins Here [Grades 9-12

    Science.gov (United States)

    Hill, Trudy

    2012-01-01

    Presentation to inform the non-NASA general public and school children of ground systems development and operations activities at Kennedy Space Center, particularly on what GSDO is and does, in a high level overview.

  2. The GNSS-based Ground Tracking System (GTS) of GFZ; from GITEWS to PROTECTS and beyond

    Science.gov (United States)

    Falck, Carsten; Merx, Alexander; Ramatschi, Markus

    2013-04-01

    Introduction An automatic system for the near real-time determination and visualization of ground motions, respectively co-seismic deformations of the Earth's surface, was developed by GFZ (German Research Centre for Geosciences) within the project GITEWS (German Indonesian Tsunami Early Warning System). The system is capable to deliver 3D-displacement vectors for locations with appropriate GPS-equipment in the vicinity of an earthquake's epicenter with a delay of only a few minutes. These vectors can help to assess the earthquake causing tectonic movements, which must be known to make reliable early warning predictions, e.g., concerning the generation of tsunami waves. The GTS (Ground Tracking System) has been integrated into InaTEWS (Indonesian Tsunami Early Warning System) and is in operation at the national warning center in Jakarta since November 2008. After the end of the project GITEWS GFZ continues to support the GTS in Indonesia within the frame of PROTECTS (Project for Training, Education and Consulting for Tsunami Early Warning Systems) and recently some new developments have been introduced. We now aim to make further use of the achievements made, e.g., by developing a license model for the GTS software package. Motivation After the Tsunami of 26th December 2004 the German government initiated the GITEWS project to develop the main components for a tsunami early warning system in Indonesia. The GFZ, as the consortial leader of GITEWS, had several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of GFZ was assigned to develop a GNSS-based component, which since then is known as the GTS (Ground Tracking System). System benefit The ground motion information delivered by the GTS is a valuable source for a fast understanding of an earthquake's mechanism with a high relevance to assess the probability and magnitude of a potentially following tsunami. The system may detect highest displacement vector values, where

  3. A low-cost ground loop detection system for Aditya-U Tokamak

    International Nuclear Information System (INIS)

    Kumar, Rohit; Kumawat, Devilal; Macwan, Tanmay; Ranjan, Vaibhav; Aich, Suman; Sathyanaryana, K.; Ghosh, J.; Tanna, R.L.

    2017-01-01

    Aditya-U is a medium sized Limiter-Divertor Tokamak machine. Different set of Magnetic Coils are installed for the generation of Magnetic field for the Plasma Initiation and Control in Pulse Mode. Support Structures with proper electrical Insulation are provided to Align and Hold these Magnetic Coils for the Plasma Operation. As machine operates at very high currents of kA’s range, very high vibrations are created during operations which can result in the breakdown of electrical insulation between different coils/systems/structures. The details of low cost ground loop detection system will be discussed in this paper

  4. Airfield Ground Safety

    National Research Council Canada - National Science Library

    Petrescu, Jon

    2000-01-01

    .... The system developed under AGS, called the Ground Safety Tracking and Reporting System, uses multisensor data fusion from in-pavement inductive loop sensors to address a critical problem affecting out nation's airports: runway incursions...

  5. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  6. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  7. COMPARATIVE ANALYSIS OF GROUNDING RESISTANCE VALUE IN SOIL AND SEPTICTANK

    Directory of Open Access Journals (Sweden)

    Abdul Syakur

    2012-02-01

    Full Text Available The aim of grounding system to protect of electrical equipment and instrumentation system and peopletogether. The lightning stroke near the strucutre of building can damage of equipment and instrumentationsystem. Therefore, it is very important to protect theese electrical and electronic equipment from lightningstrike uses lightning protection system and grounding system.This paper presents kind of grounding system at type of soil and place. The measurement of groundingresistance in soil and septictank have done. Types of soil for grounding resistance measuring aremarshland, clay and rockland.The measurement results of grounding resistance show that value of grounding resistance depend ondeepness of electrode and kind of soil and septictank. Grounding resistance value in septictank is morelower than soil.

  8. Optimization of ground source heat pumps systems through the implementation of hybrid systems; Optimizacion de las instalaciones de bomba de calor geotermica mediante la implementacion de sistemas hibridos

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, M. S.; Martinez, S.

    2009-07-01

    One of the fundamental aspects to consider in the design of a ground heat pump system is the heat balance in the ground since thermal saturation of the ground produces a decreasing of the performance of the system throughout its useful life. The hybrid geothermal system which combined geothermal heat pump system with other systems for generation or dissipation energy are very suitable for balancing the heat exchanger meters needed for the proper functioning of the system, important aspect to reduce costs and achieve attractive return periods of the initial investment. Energesis Ingenieria has developed and implemented in two office buildings, a design of hybrid systems based on the combination of a geothermal heat pump and air-condensed units (dry coolers) that can ensure energy efficiencies comparable to geothermal pure systems, reducing substantially the investment cost. (Author) 5 refs.

  9. The application of ground source heat pumps to a subdivision-wide district heating system

    International Nuclear Information System (INIS)

    Ciavaglia, L.

    2005-01-01

    Design guidelines for economic ground source heat pumps (GSHP) in district energy systems were presented. The broad economics of using central GSHP in a community district energy system were examined. Design parameters needed to utilize GSHP in district energy system were outlined. The sensitivity of energy prices and the costs of major capital were reviewed. District heating load duration curves were outlined. It was suggested that varying GSHP capacity from 0 to 100 per cent of load was advisable. In addition, capacity should be balanced with gas boiler technology. The amortizing of capital within energy costs was recommended. It was suggested that the best scenario was a minimum of 50 per cent ground energy. Details of pipings and heat exchanger costs were presented, along with costs for gas boilers and gas costs for the district energy system. Charts of current costing and reduction of piping capital were included. It was concluded that GSHP can be a viable component of a district energy system, as a GSHP based district energy system can provide more stable energy prices than conventional fossil fuel systems. It was suggested that sizing of GSHP at, or near, 40 per cent of peak demand provided optimal conditions with respect to energy cost and use of earth energy. tabs., figs

  10. Resolution of holograms produced by the fluid experiment system and the holography ground system

    Science.gov (United States)

    Brooks, Howard L.

    1987-01-01

    The Fluid Experiment System (FES) was developed to study low temperature crystal growth of triglycine sulfate from solution in a low gravity environment onboard Spacelab. The first flight of FES was in 1985. FES uses an optical system to take holograms of the growing crystal to be analyzed after the mission in the Holography Ground System (HGS) located in the Test Laboratory at Marshall Space Flight Center. Microscopic observation of the images formed by the reconstructed holograms is critical to determining crystal growth rate and particle velocity. FES and HGS were designed for a resolution of better than 20 micrometers, but initial observation of the flight holograms show a limit of 80 micrometers. The resolution of the FES holograms is investigated, as well as the role of beam intensity ratio and exposure time on the resolution of HGS produced holograms.

  11. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

    Directory of Open Access Journals (Sweden)

    Annalisa Milella

    2012-09-01

    Full Text Available Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.

  12. Soil Physical and Environmental Conditions Controlling Patterned-Ground Variability at a Continuous Permafrost Site, Svalbard

    DEFF Research Database (Denmark)

    Watanabe, Tatsuya; Matsuoka, Norikazu; Christiansen, Hanne Hvidtfeldt

    2017-01-01

    properties and principal component analysis indicate that the distribution of patterned ground depends primarily on soil texture, soil moisture and the winter ground thermal regime associated with snow cover. Mudboils and composite patterns (mudboils surrounded by small polygons) occupy well-drained areas...... composed of clay-rich aeolian sediments. Compared to mudboils, composite patterns show a sharper contrast in soil texture between barren centres and vegetated rims. Hummocks filled with organic materials develop on poorly drained lowlands associated with a shallow water table. Ice-wedge polygons...

  13. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  14. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  15. Effect of electrode shape on grounding resistances - Part 2

    DEFF Research Database (Denmark)

    Tomaskovicova, Sonia; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2016-01-01

    Although electric resistivity tomography (ERT) is now regarded as a standard tool in permafrost monitoring, high grounding resistances continue to limit the acquisition of time series over complete freeze-thaw cycles. In an attempt to alleviate the grounding resistance problem, we have tested three...... electrode designs featuring increasing sizes and surface area, in the laboratory and at three different field sites in Greenland. Grounding resistance measurements showed that changing the electrode shape (using plates instead of rods) reduced the grounding resistances at all sites by 28%-69% during...... unfrozen and frozen ground conditions. Using meshes instead of plates (the same rectangular shape and a larger effective surface area) further improved the grounding resistances by 29%-37% in winter. Replacement of rod electrodes of one entire permanent permafrost monitoring array by meshes resulted...

  16. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  17. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  18. Multi-sided metallization of textile fibres by using magnetron system with grounded cathode

    Directory of Open Access Journals (Sweden)

    Chodun Rafał

    2017-10-01

    Full Text Available The synthesis of coatings on textiles fibers enables functionalization of their properties e.g.: changing the reaction on IR radiation. In our experiment, a magnetron with a grounded cathode and positively biased anode was used as a source of plasma. A ring anode was positioned at 8 cm distance from the cathode. Samples of glass and cotton textile were placed at the plane of the anode. Ti and TiN coatings were deposited by sputtering of titanium target in Ar or Ar+ N2 atmosphere. SEM studies showed that, using the magnetron system described above, the textile fibers were covered by the 2 μm to 3 μm thick coatings. Unexpectedly, the coatings were deposited at both sides of the samples: the front side was exposed to glow discharge plasma and the backside was completely shaded from the plasma. IR optical investigation exhibited significant change in reflectance and transmittance of the coated textiles. The using of standard magnetron system (grounded anode and cathode at negative potential resulted in a coating deposition at the textile side exposed to the plasma action only. We believe that the multi-sided deposition of coatings observed during the process run with magnetron with grounded cathode is a result of an ambipolar diffusion mechanism in the anodic potential drop region.

  19. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    International Nuclear Information System (INIS)

    Carrieri, C.; Masciopinto, C.

    2000-01-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m 3 /d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health [it

  20. Study on sampling of continuous linear system based on generalized Fourier transform

    Science.gov (United States)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  1. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  2. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William; Cordes, Stephen Michael

    2017-10-10

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a difference between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.

  3. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  4. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Science.gov (United States)

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  5. Mitigation of ground motion effects via feedback systems in the Compact Linear Collider

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel

    The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...

  6. Methodology for evaluating the grounding system in electrical substations; Metodologia para la evaluacion del sistema de puesta a tierra en subestaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Torrelles Rivas, L.F [Universidad Nacional Experimental Politecnica: Antonio Jose de Sucre (UNEXPO), Guayana, Bolivar (Venezuela)]. E-mail: torrellesluis@gmail.com; Alvarez, P. [Petroleos de Venezuela S.A (PDVSA), Maturin, Monagas (Venezuela)]. E-mail: alvarezph@pdvsa.com

    2013-03-15

    The present work proposes a methodology for evaluating grounding systems in electrical substations from medium and high voltage, in order to diagnose the state of the elements of the grounding system and the corresponding electrical variables. The assessment methodology developed includes a visual inspection phase to the elements of the substation. Then, by performing measurements and data analysis, the electrical continuity between the components of the substation and the mesh ground is verified, the soil resistivity and resistance of the mesh. Also included in the methodology the calculation of the step and touch voltage of the substation, based on the criteria of the International IEEE standards. We study the case of the 115 kV Pirital Substation belonging to PDVSA Oriente Transmission Network. [Spanish] En el presente trabajo se plantea una metodologia para la evaluacion de sistemas de puesta a tierra en subestaciones electricas de media y alta tension, con la finalidad de diagnosticar el estado de los elementos que conforman dicho sistema y las variables electricas correspondientes. La metodologia de evaluacion desarrollada incluye una fase de inspeccion visual de los elementos que conforman la subestacion. Luego, mediante la ejecucion de mediciones y analisis de datos, se verifica la continuidad electrica entre los componentes de la subestacion y la malla de puesta a tierra, la resistividad del suelo y resistencia de la malla. Se incluye tambien en la metodologia el calculo de las tensiones de paso y de toque de la subestacion, segun lo fundamentado en los criterios de los estandares Internacionales IEEE. Se estudia el caso de la Subestacion Pirital 115 kV perteneciente a la Red de Transmision de PDVSA Oriente.

  7. Asymptotic failure rate of a continuously monitored system

    International Nuclear Information System (INIS)

    Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.

    2006-01-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy

  8. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  9. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  10. Computation of Ground-State Properties in Molecular Systems: Back-Propagation with Auxiliary-Field Quantum Monte Carlo.

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2017-11-14

    We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.

  11. A nano continuous variable transmission system from nanotubes

    Science.gov (United States)

    Cai, Kun; Shi, Jiao; Xie, Yi Min; Qin, Qing H.

    2018-02-01

    A nano continuous variable transmission (nano-CVT) system is proposed by means of carbon nanotubes (CNTs). The dynamic behavior of the CNT-based nanosystem is assessed using molecular dynamics simulations. The system contains a rotary CNT-motor and a CNT-bearing. The tube axes of the nanomotor and the rotor in the bearing are laid in parallel, and the distance between them is known as the eccentricity of the rotor with a diameter of d. By changing the eccentricity (e) of the rotor from 0 to d, some interesting rotation transmission phenomena are discovered, whose procedures can be used to design various nanodevices. This might include the failure of rotation transmission—i.e. the rotor has no rotation—when e ≥ d at an extremely low temperature, or when the edges of the two tubes are orthogonal at their intersections in any condition. This hints that the state of the nanosystem can be used as an on/off switch or breaker. For a system with e = d and a high temperature, the rotor rotates in the reverse direction of the motor. This means that the output signal (rotation) is the reverse of the input signal. When changing the eccentricity from 0 to d continuously, the output signal gradually decreases from a positive value to a negative value; as a result a nano-CVT system is obtained.

  12. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    Science.gov (United States)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  13. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  14. Methods for Automated and Continuous Commissioning of Building Systems

    Energy Technology Data Exchange (ETDEWEB)

    Larry Luskay; Michael Brambley; Srinivas Katipamula

    2003-04-30

    Avoidance of poorly installed HVAC systems is best accomplished at the close of construction by having a building and its systems put ''through their paces'' with a well conducted commissioning process. This research project focused on developing key components to enable the development of tools that will automatically detect and correct equipment operating problems, thus providing continuous and automatic commissioning of the HVAC systems throughout the life of a facility. A study of pervasive operating problems reveled the following would most benefit from an automated and continuous commissioning process: (1) faulty economizer operation; (2) malfunctioning sensors; (3) malfunctioning valves and dampers, and (4) access to project design data. Methodologies for detecting system operation faults in these areas were developed and validated in ''bare-bones'' forms within standard software such as spreadsheets, databases, statistical or mathematical packages. Demonstrations included flow diagrams and simplified mock-up applications. Techniques to manage data were demonstrated by illustrating how test forms could be populated with original design information and the recommended sequence of operation for equipment systems. Proposed tools would use measured data, design data, and equipment operating parameters to diagnosis system problems. Steps for future research are suggested to help more toward practical application of automated commissioning and its high potential to improve equipment availability, increase occupant comfort, and extend the life of system equipment.

  15. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  16. Cognitive Factors in Predicting Continued Use of Information Systems with Technology Adoption Models

    Science.gov (United States)

    Huang, Chi-Cheng

    2017-01-01

    Introduction: The ultimate viability of an information system is dependent on individuals' continued use of the information system. In this study, we use the technology acceptance model and the theory of interpersonal behaviour to predict continued use of information systems. Method: We established a Web questionnaire on the mySurvey Website and…

  17. Ground-water surveillance at the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility

  18. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  19. Year long variability of ground electrical conductivity in the sandy ...

    African Journals Online (AJOL)

    Ground electrical conductivity was measured continuously on a soil type in Nigeria for one year using the Model R-50 Soil Test Resistivity Meter Equipment. The Wenner arrangement of electrodes, which is one of the probe methods of ground resistivity measurement, was employed for the measurement. About 67% of all ...

  20. Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.

  1. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  2. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    Science.gov (United States)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  3. On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

    Directory of Open Access Journals (Sweden)

    Guido Ala

    2018-03-01

    Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

  4. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  5. Distributed software framework and continuous integration in hydroinformatics systems

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  6. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  7. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  8. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  9. Verification of Continuous Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...

  10. Policy choices in dementia care-An exploratory analysis of the Alberta continuing care system (ACCS) using system dynamics.

    Science.gov (United States)

    Cepoiu-Martin, Monica; Bischak, Diane P

    2018-02-01

    The increase in the incidence of dementia in the aging population and the decrease in the availability of informal caregivers put pressure on continuing care systems to care for a growing number of people with disabilities. Policy changes in the continuing care system need to address this shift in the population structure. One of the most effective tools for assessing policies in complex systems is system dynamics. Nevertheless, this method is underused in continuing care capacity planning. A system dynamics model of the Alberta Continuing Care System was developed using stylized data. Sensitivity analyses and policy evaluations were conducted to demonstrate the use of system dynamics modelling in this area of public health planning. We focused our policy exploration on introducing staff/resident benchmarks in both supportive living and long-term care (LTC). The sensitivity analyses presented in this paper help identify leverage points in the system that need to be acknowledged when policy decisions are made. Our policy explorations showed that the deficits of staff increase dramatically when benchmarks are introduced, as expected, but at the end of the simulation period, the difference in deficits of both nurses and health care aids are similar between the 2 scenarios tested. Modifying the benchmarks in LTC only versus in both supportive living and LTC has similar effects on staff deficits in long term, under the assumptions of this particular model. The continuing care system dynamics model can be used to test various policy scenarios, allowing decision makers to visualize the effect of a certain policy choice on different system variables and to compare different policy options. Our exploration illustrates the use of system dynamics models for policy making in complex health care systems. © 2017 John Wiley & Sons, Ltd.

  11. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  12. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  13. Proposed Entanglement Swapping in Continuous Variable Systems via Braiding

    International Nuclear Information System (INIS)

    Su Hongyi; Chen Jingling; Deng Dongling; Wu Chunfeng

    2010-01-01

    We study entanglement swapping in continuous variable systems by using braiding transformations. It is found that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realized based on the braiding operators. (general)

  14. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  15. CDP a graphic system for the interactive simulation and the dynamic analysis of continuous systems

    International Nuclear Information System (INIS)

    Ricci, A.; Teolis, A.

    1973-01-01

    An IBM 2250 graphic system for the interactive simulation of continuous sytems is illustrated. Time dependent quantities can be plotted or an animated, real or schematic, representation of the system being studied can be given

  16. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  17. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  18. 40 CFR 65.161 - Continuous records and monitoring system data handling.

    Science.gov (United States)

    2010-07-01

    ... section. (D) Owners and operators shall retain the current description of the monitoring system as long as... Routing to a Fuel Gas System or a Process § 65.161 Continuous records and monitoring system data handling...) Monitoring system breakdowns, repairs, preventive maintenance, calibration checks, and zero (low-level) and...

  19. Automatic continuous monitoring system for dangerous sites and cargoes

    International Nuclear Information System (INIS)

    Smirnov, S.N.

    2009-01-01

    The problems of creation of automatic comprehensive continuous monitoring system for nuclear and radiation sites and cargoes of Rosatom Corporation, which carries out data collecting, processing, storage and transmission, including informational support to decision-making, as well as support to modelling and forecasting functions, are considered. The system includes components of two levels: site and industry. Currently the system is used to monitor over 8000 integrated parameters, which characterise the status of nuclear and radiation safety on Rosatom sites, environmental and fire safety

  20. Application of a multi-channel system for continuous monitoring and an early warning system.

    Science.gov (United States)

    Lee, J H; Song, C H; Kim, B C; Gu, M B

    2006-01-01

    A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.

  1. A continuous wave fan beam tomography system having a best estimating filter

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    A continuous wave fan beam tomographic system is described which continuously samples X-ray absorption values and a means of providing a best-estimate of the X-ray absorption values at discrete points in time determined by sampling signal s(t). The means to provide the best-estimate include a continuous filter having a frequency range defined by the geometry of the mechanical system. Errors due to the statistical variation in photon emissions of the X-ray source are thereby minimized and the effective signal-to-noise ratio of signals is enhanced, which in turn allows a significant reduction in radiation dosage. (author)

  2. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-08-31

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... (except full-face continuous mining machines) with proximity detection systems. Miners working near..., each underground coal mine operator would be required to install proximity detection systems on...

  3. Modelling ground movements at Campi Flegrei caldera (Italy): the role of the shallow geothermal system

    Science.gov (United States)

    Troiano, Antonio; Giulia di Giuseppe, Maria; Petrillo, Zaccaria; Troise, Claudia; de Natale, Giuseppe

    2010-05-01

    Campi Flegrei caldera is characterized by large ground movements, well known since Roman times. Superimposed to a general secular subsidence occurring at a rate of 1.5-2.0 cm/year, an episode of sharp uplift is in progress since 1969, with peak rates up to 1 m/year (in 1982-1984), similar to another episode which culminated with the 1538 eruption. Peak uplift episodes are often followed by some amount of subsidence, which prevent a simple interpretation in terms of purely magmatic inflation phenomena. Such up and down episodes of ground deformations are rather common at large calderas, like in Yellowstone (USA), Long Valley (USA), etc. Here we propose an interpretation based on a mixed mechanical-fluid-dynamical model, in which part of the uplift is generated by increase of water pressure in the shallow geothermal system, as a response to rapid inflow of magmatic fluids exsolved from a deeper magma chamber. We use the program THOUGH2 to model the changes of temperature and pressure in the geothermal system due to the magmatic fluids inflow. Changes in pressure in the caldera volume are then used to compute ground deformations. This way, a theoretical time evolution of ground deformation has been obtained, which compares well with the observed one, if appropriate values of permeability are used. We discuss the implication of such a model for eruption forecast purposes, and the extent at which the required values of permeability can be really representative of the real medium.

  4. Lightning discrimination by a ground-based nuclear burst detection system

    International Nuclear Information System (INIS)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis

  5. Lightning discrimination by a ground-based nuclear burst detection system

    Energy Technology Data Exchange (ETDEWEB)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.

  6. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground

  7. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    Science.gov (United States)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  8. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  9. Water spray ventilator system for continuous mining machines

    Science.gov (United States)

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  10. On Chinese National Continuous Operating Reference Station System of GNSS

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-11-01

    Full Text Available Objective: Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System can maintain a accurate, 3D, geocentric and dynamic reference coordinate frame in the corresponding area, can provide positioning and navigation service. It can also serve for the meteorology, geodynamics, earthquake monitoring and Location Based services (LBS etc in the same area. Until now, our country can’t provide a facing National CORS System serving for every profession and trade, and the national sharing platform of CORS System resources has not been established. So this paper discusses some valuable insight how to construct the National CORS System in China. Method: Constructing goal、Service object、CORS distribution、CORS geographic、geology and communication environment and other factors, are major considerations for the Constructing the National CORS System. Moreover, constructing GNSS CORS is more specific, mainly from four aspects, namely site-selection、civil construction、security measures and equipment-selection for consideration. Outcome: The project of the Constructing Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is put forward, and is discussed from goal、principle、project and other for construction. Some meaning thought how to construct the National CORS System is submitted Conclusion: The Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is the lack of a unified planning and design in the national level. So far, the national CORS system serving all walks of life has not been provided, and the national sharing platform of CORS System resources has not been established The primary mission of the Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is as follows: using data set of GNSS and receiving, transport, process, integration, transmit information and

  11. Adaptive-impulsive synchronization in drive-response networks of continuous systems and its application

    International Nuclear Information System (INIS)

    Sun Mei; Zeng Changyan; Tao Yangwei; Tian Lixin

    2009-01-01

    Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lue's system as the nodes of the networks.

  12. Role of entropy in the ground state formation of frustrated systems

    Science.gov (United States)

    Sereni, Julian G.

    2018-05-01

    The absence of magnetic order in Rare Earth-based frustrated compounds allows to recognize the action of the third law of thermodynamics in the low temperature behavior of those systems. One of the most relevant findings is the appearance of a coincident specific heat Cm / T|T→0 ≈ 7 J /molK2 'plateau' in six Yb systems. This characteristic feature occurs after a systematic modification of the thermal trajectory of their entropies Sm (T) in the range of a few hundred milikelvin degrees. Such behavior is explained by the formation of an entropy-bottleneck imposed by the third law constraint (Sm|T→0 ≥ 0), that drives the system into alternative ground states. Based in these finding, three possible approaches to the Sm|T→0 limit observed in real systems are analyzed in terms of the ∂2Sm / ∂T2 dependencies.

  13. Application and API for Real-time Visualization of Ground-motions and Tsunami

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  14. Ground collectors for heat pumps; Grondcollectoren voor warmtepompen

    Energy Technology Data Exchange (ETDEWEB)

    Van Krevel, A. [Techneco, Leidschendam (Netherlands)

    1999-10-01

    The dimensioning and cost optimisation of a closed vertical ground collector system has been studied. The so-called Earth Energy Designer (EED) computer software, specially developed for the calculations involved in such systems, proved to be a particularly useful tool. The most significant findings from the first part of the study, 'Heat extraction from the ground', are presented and some common misconceptions about ground collector systems are clarified. 2 refs.

  15. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  16. Grounded theory in medical education research: AMEE Guide No. 70.

    Science.gov (United States)

    Watling, Christopher J; Lingard, Lorelei

    2012-01-01

    Qualitative research in general and the grounded theory approach in particular, have become increasingly prominent in medical education research in recent years. In this Guide, we first provide a historical perspective on the origin and evolution of grounded theory. We then outline the principles underlying the grounded theory approach and the procedures for doing a grounded theory study, illustrating these elements with real examples. Next, we address key critiques of grounded theory, which continue to shape how the method is perceived and used. Finally, pitfalls and controversies in grounded theory research are examined to provide a balanced view of both the potential and the challenges of this approach. This Guide aims to assist researchers new to grounded theory to approach their studies in a disciplined and rigorous fashion, to challenge experienced researchers to reflect on their assumptions, and to arm readers of medical education research with an approach to critically appraising the quality of grounded theory studies.

  17. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, M.; Wiljanen, B. (Roadscanners Oy, Rovaniemi (Finland))

    2008-09-15

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  18. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    International Nuclear Information System (INIS)

    Silvast, M.; Wiljanen, B.

    2008-09-01

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  19. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  20. Evaluation of Early Ground Control Station Configurations for Interacting with a UAS Traffic Management (UTM) System

    Science.gov (United States)

    Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey

    2017-01-01

    The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.

  1. A comprehensive assessment of ionospheric gradients observed in Ecuador during 2013 and 2014 for ground based augmentation systems

    Science.gov (United States)

    Sánchez-Naranjo, S.; Rincón, W.; Ramos-Pollán, R.; González, F. A.; Soley, S.

    2017-04-01

    Ground Based Augmentation Systems GBAS provide differential corrections to approaching and landing aircrafts in the vicinities of an airport. The ionosphere can introduce an error not accountable by those differential corrections, and a threat model for the Conterminous United States region CONUS was developed in order to consider the highest gradients measured. This study presents the first extensive analysis of ionospheric gradients for Ecuador, from data fully covering 2013 and 2014 collected by their national Global Navigation Satellite System GNSS monitoring network (REGME). In this work it is applied an automated methodology adapted for low latitudes for processing data from dual frequency receivers networks, by considering data from all available days in the date range of the study regardless the geomagnetic indices values. The events found above the CONUS threat model occurred during days of nominal geomagnetic indices, confirming: (1) the higher bounds required for an ionospheric threat model for Ecuador, and (2) that geomagnetic indices are not enough to indicate relevant ionospheric anomalies in low latitude regions, reinforcing the necessity of a continuous monitoring of ionosphere. As additional contribution, the events database is published online, making it available to other researchers.

  2. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  3. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  4. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  5. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  6. Analysis of continuous fermentation processes in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Jarzebski, A B; Malinowski, J J [Polish Academy of Sciences, Gliwice (Poland). Inst. of Chemical Engineering; Goma, G; Soucaille, P [INSA, 31 - Toulouse (France). Dept. de Genie Biochimique et Alimentaire

    1992-05-01

    Simulations of continuous ethanol or acetonobutylic fermentations in aqueous two-phase systems show that at high substrate feed concentrations it is possible to obtain solvent productivities about 25-40% higher than in conventional systems with cell recycle if the biomass bleed rate is kept about one tenth of the value of D. (orig.).

  7. Continuous Fraud Detection in Enterprise Systems through Audit Trail Analysis

    Directory of Open Access Journals (Sweden)

    Peter J. Best

    2009-03-01

    Full Text Available Enterprise systems, real time recording and real time reporting pose new and significant challenges to the accounting and auditing professions. This includes developing methods and tools for continuous assurance and fraud detection. In this paper we propose a methodology for continuous fraud detection that exploits security audit logs, changes in master records and accounting audit trails in enterprise systems. The steps in this process are: (1 threat monitoring-surveillance of security audit logs for ‘red flags’, (2 automated extraction and analysis of data from audit trails, and (3 using forensic investigation techniques to determine whether a fraud has actually occurred. We demonstrate how mySAP, an enterprise system, can be used for audit trail analysis in detecting financial frauds; afterwards we use a case study of a suspected fraud to illustrate how to implement the methodology.

  8. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  9. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  10. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  11. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  12. First Results of a Tandem Terrestrial-Unmanned Aerial mapKITE System with Kinematic Ground Control Points for Corridor Mapping

    Directory of Open Access Journals (Sweden)

    Pere Molina

    2017-01-01

    Full Text Available In this article, we report about the first results of the mapKITE system, a tandem terrestrial-aerial concept for geodata acquisition and processing, obtained in corridor mapping missions. The system combines an Unmanned Aerial System (UAS and a Terrestrial Mobile Mapping System (TMMS operated in a singular way: real-time waypoints are computed from the TMMS platform and sent to the UAS in a follow-me scheme. This approach leads to a simultaneous acquisition of aerial-plus-ground geodata and, moreover, opens the door to an advanced post-processing approach for sensor orientation. The current contribution focuses on analysing the impact of the new, dynamic Kinematic Ground Control Points (KGCPs, which arise inherently from the mapKITE paradigm, as an alternative to conventional, costly Ground Control Points (GCPs. In the frame of a mapKITE campaign carried out in June 2016, we present results entailing sensor orientation and calibration accuracy assessment through ground check points, and precision and correlation analysis of self-calibration parameters’ estimation. Conclusions indicate that the mapKITE concept eliminates the need for GCPs when using only KGCPs plus a couple of GCPs at each corridor end, achieving check point horizontal accuracy of μ E , N ≈ 1.7 px (3.4 cm and μ h ≈ 4.3 px (8.6 cm. Since obtained from a simplified version of the system, these preliminary results are encouraging from a future perspective.

  13. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  14. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    Science.gov (United States)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  15. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  16. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  17. A design for a ground-based data management system

    Science.gov (United States)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  18. Novel roaming and stationary tethered aerial robots for continuous mobile missions in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Beom W.; Choi, Su Y.; Rim, Chun T. [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cai, Guowei; Seneviratne, Lakmal [Dept. of Aerospace Engineering, Khalifa University, Abu Dhabi (United Arab Emirates)

    2016-08-15

    In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

  19. Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Beom W. Gu

    2016-08-01

    Full Text Available In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs for radioactive material sampling and stationary tethered aerial robots (STARs for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

  20. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)