WorldWideScience

Sample records for ground-water-derived surface-water streamflow

  1. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  2. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  3. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  4. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  5. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    were published in 5- year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled “Quality of Surface Waters of the United States.” Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled “Ground-Water Levels in the United States.” Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as “U.S. Geological Survey Water-Data Report IA-01-1.” These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

  6. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  7. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    fertilizer or animal waste. Wells at the Blackwater Creek and Hillsborough River at State Road 39 transects showed little seasonal variation in dissolved organic carbon. Dissolved organic carbon concentrations, however, were greater during the wet season than during the dry season at the Hillsborough River Tract transect, indicating some influence from surface-water sources. During dry periods, streamflow in the upper Hillsborough River was sustained by ground water from the underlying Upper Floridan aquifer. During wet periods, streamflow had additional contributions from runoff, and release of water from extensive riverine wetlands, and by overflow from the Withlacoochee River. In contrast, streamflow in Blackwater and Itchepackesassa Creeks was less constant, with many no-flow days occurring during dry periods. During wet season storm events, streamflow peaks occur more rapidly because there is greater confinement between the surficial deposits and the Upper Floridan aquifer, and these creeks have been highly channelized, leaving less of the adjacent wetlands intact. During dry periods, Blackwater Creek is dry upstream from its confluence with Itchepackesassa Creek, and all downstream flow is from Itchepackesassa Creek. Much of the dry season flow in Itchepackesassa Creek originates from a treated wastewater effluent outfall located on East Canal. Long-term streamflow at the Hillsborough River and Blackwater Creek stations was greater than the discharge observed during the study period. Water quality in the upper Hillsborough River is influenced by ground-water discharge. The chemical composition of water from Blackwater Creek, Itchepackesassa Creek, and East Canal was more variable because there was less ground-water discharge to these creeks than to the upper Hillsborough River, and because of the influence of wastewater effluent. Strontium isotope data indicated that the source of the water at all Hillsborough River sites during the dry season was the Oli

  8. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  9. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  10. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  11. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  12. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  13. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  14. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  15. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  16. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  17. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, runoff from livestock pens, and seepage from pits containing animal wastes. Long-term fecal coliform data at two sampling stations on the Rio de la Plata indicate that since 1984, the geometric mean of five consecutive samples commonly has been at or below 2,000 colonies per 100 milliliters (established as the sanitary quality goal in Puerto Rico for Class SD type waters). At the sampling station upstream of Comerio, the geometric mean concentration has been near 500 colonies per 100 milliliters; downstream of the town of Comerio, the geometric mean concentration has been near 2,000 colonies per 100 milliliters concentration. The data at these stations also indicate that fecal coliform concentrations increase commonly above 2,000 colonies per 100 milliliters during storm-runoff events, ranging from 1,000 to 100,000 colonies per 100 milliliters at both stations. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Comerio into five hydrogeologic terranes. The integrated database was then used to evaluate the ground-water development potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be important locally in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The integrated hydrogeologic approach used in this study can serve as an important tool for regulatory agencies of Puerto Rico and the municipio of Comerio to evaluate the ground-water resource development potential, examine ground- and surface-water interaction, and determine the effect of land-use practices on ground-water quantity and quality. Stream low-flow statistics document the general hydrology under current land and water uses. Low-flow characteristics may substantially change as a re

  18. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  19. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    Science.gov (United States)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  20. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    selected samplings. One set of ground-water samples was collected for helium-3/tritium and chlorofluorocarbon (CFC) age dating. Several lines of evidence indicate that surface water is the primary input to the Straight Creek ground-water system. Straight Creek streamflow and water levels in wells closest to the apex of the Straight Creek debris fan and closest to Straight Creek itself appear to respond to the same seasonal inputs. Oxygen and hydrogen isotopic compositions in Straight Creek surface water and ground water are similar, and concentrations of most dissolved constituents in most Straight Creek surface-water and shallow (debris-flow and alluvial) aquifer ground-water samples correlate strongly with sulfate (concentrations decrease linearly with sulfate in a downgradient direction). After infiltration of surface water, dilution along the flow path is the dominant mechanism controlling ground-water chemistry. However, concentrations of some constituents can be higher in ground water than can be accounted for by concentrations in Straight Creek surface water, and additional sources of these constituents must therefore be inferred. Constituents for which concentrations in ground water can be high relative to surface water include calcium, magnesium, strontium, silica, sodium, and potassium in ground water from debris-flow and alluvial aquifers and manganese, calcium, magnesium, strontium, sodium, and potassium in ground water from the bedrock aquifer. All ground water is a calcium sulfate type, often at or near gypsum saturation because of abundant gypsum in the aquifer material developed from co-existing calcite and pyrite mineralization. Calcite dissolution, the major buffering mechanism for bedrock aquifer ground water, also contributes to relatively higher calcium concentrations in some ground water. The main source of the second most abundant cation, magnesium, is probably dissolution of magnesium-rich carbonates or silicates. Strontium may also be

  1. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  2. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  3. Review and analysis of available streamflow and water-quality data for Park County, Colorado, 1962-98

    Science.gov (United States)

    Kimbrough, Robert A.

    2001-01-01

    Information on streamflow and surface-water and ground-water quality in Park County, Colorado, was compiled from several Federal, State, and local agencies. The data were reviewed and analyzed to provide a perspective of recent (1962-98) water-resource conditions and to help identify current and future water-quantity and water-quality concerns. Streamflow has been monitored at more than 40 sites in the county, and data for some sites date back to the early 1900's. Existing data indicate a need for increased archival of streamflow data for future use and analysis. In 1998, streamflow was continuously monitored at about 30 sites, but data were stored in a data base for only 10 sites. Water-quality data were compiled for 125 surface-water sites, 398 wells, and 30 springs. The amount of data varied considerably among sites; however, the available information provided a general indication of where water-quality constituent concentrations met or exceeded water-quality standards. Park County is primarily drained by streams in the South Platte River Basin and to a lesser extent by streams in the Arkansas River Basin. In the South Platte River Basin in Park County, more than one-half the annual streamflow occurs in May, June, and July in response to snowmelt in the mountainous headwaters. The annual snowpack is comparatively less in the Arkansas River Basin in Park County, and mean monthly streamflow is more consistent throughout the year. In some streams, the timing and magnitude of streamflow have been altered by main-stem reservoirs or by interbasin water transfers. Most values of surface-water temperature, dissolved oxygen, and pH were within recommended limits set by the Colorado Department of Public Health and Environment. Specific conductance (an indirect measure of the dissolved-solids concentration) generally was lowest in streams of the upper South Platte River Basin and higher in the southern one-half of the county in the Arkansas River Basin and in the South

  4. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  5. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  6. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  7. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  8. Climate, water use, and land surface transformation in an irrigation intensive watershed - streamflow responses from 1950 through 2010

    Science.gov (United States)

    Dale, Joseph; Zou, Chris B.; Andrews, William J.; Long, James M.; Liang, Ye; Qiao, Lei

    2015-01-01

    Climatic variability and land surface change have a wide range of effects on streamflow and are often difficult to separate. We analyzed long-term records of climate, land use and land cover, and re-constructed the water budget based on precipitation, groundwater levels, and water use from 1950 through 2010 in the Cimarron–Skeleton watershed and a portion of the Cimarron–Eagle Chief watershed in Oklahoma, an irrigation-intensive agricultural watershed in the Southern Great Plains, USA. Our results show that intensive irrigation through alluvial aquifer withdrawal modifies climatic feedback and alters streamflow response to precipitation. Increase in consumptive water use was associated with decreases in annual streamflow, while returning croplands to non-irrigated grasslands was associated with increases in streamflow. Along with groundwater withdrawal, anthropogenic-induced factors and activities contributed nearly half to the observed variability of annual streamflow. Streamflow was more responsive to precipitation during the period of intensive irrigation between 1965 and 1984 than the period of relatively lower water use between 1985 and 2010. The Cimarron River is transitioning from a historically flashy river to one that is more stable with a lower frequency of both high and low flow pulses, a higher baseflow, and an increased median flow due in part to the return of cropland to grassland. These results demonstrated the interrelationship among climate, land use, groundwater withdrawal and streamflow regime and the potential to design agricultural production systems and adjust irrigation to mitigate impact of increasing climate variability on streamflow in irrigation intensive agricultural watershed.

  9. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    combustion-derived compounds; (10) personal care and domestic use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. Source and finished water samples were collected during phase 2 and analyzed for constituents that were detected frequently during phase 1. This report presents concentration data for AOCs in ground water, surface water, and finished water of CWSs sampled for SWQA studies during 2002-05. Specifically, this report presents the analytical results of samples collected during phase 1 including (1) samples from 221 wells that were analyzed for 258 AOCs; (2) monthly samples from 9 surface-water sites that were analyzed for 258 AOCs during phase 1; and (3) samples from a subset of the wells and surface-water sites located in areas with substantial agricultural production that were analyzed for 3 additional pesticides and 16 pesticide degradates. Samples collected during phase 2 were analyzed for selected AOCs that were detected most frequently in source water during phase 1 sampling; analytical results for phase 2 are presented for (1) samples of source water and finished water from 94 wells; and (2) samples of source water and finished water samples that were collected monthly and during selected flow conditions at 8 surface-water sites. Results of quality-assurance/quality-control samples collected for SWQA studies during 2002-05 also are presented.

  10. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  11. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  12. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  13. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  14. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  15. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  16. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  18. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  19. Effect of high-extraction coal mining on surface and ground waters

    International Nuclear Information System (INIS)

    Kendorski, F.S.

    1993-01-01

    Since first quantified around 1979, much new data have become available. In examining the sources of data and the methods and intents of the researchers of over 65 case histories, it became apparent that the strata behaviors were being confused with overlapping vertical extents reported for the fractured zones and aquiclude zones depending on whether the researcher was interested in water intrusion into the mine or in water loss from surface or ground waters. These more recent data, and critical examination of existing data, have led to the realization that the former Aquiclude Zone defined for its ability to prevent or minimize the intrusion of ground or surface waters into mines has another important character in increasing storage of surface and shallow ground waters in response to mining with no permanent loss of waters. This zone is here named the Dilated Zone. Surface and ground waters can drain into this zone, but seldom into the mine, and can eventually be recovered through closing of dilations by mine subsidence progression away from the area, or filling of the additional void space created, or both. A revised model has been developed which accommodates the available data, by modifying the zones as follows: collapse and disaggregation extending 6 to 10 times the mined thickness above the panel; continuous fracturing extending approximately 24 times the mined thickness above the panel, allowing temporary drainage of intersected surface and ground waters; development of a zone of dilated, increased storativity, and leaky strata with little enhanced vertical permeability from 24 to 60 times the mined thickness above the panel above the continuous fracturing zone, and below the constrained or surface effects zones; maintenance of a constrained but leaky zone above the dilated zone and below the surface effects zone; and limited surface fracturing in areas of extension extending up to 50 ft or so beneath the ground surface. 119 ref., 5 figs., 2 tabs

  20. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  1. Influence of surface mining on ground water (effects and possibilities of prevention)

    Energy Technology Data Exchange (ETDEWEB)

    Libicki, J

    1977-01-01

    This article analyzes the negative impact of surface mining on ground water. The effects of water depression on water supply for households and industry, and for vegetation and agriculture are evaluated. The negative impact of lowering the ground water level under various water conditions are analyzed: (1) vegetation is supplied with water only by rainfall, (2) vegetation is supplied with water in some seasons by rainfall and in some by ground water, and (3) vegetation uses ground water only. The impact of deteriorating water supply on forests is discussed. Problems connected with storage of waste materials in abandoned surface mines are also discussed. The influence of black coal ash and waste material from coal preparation plants on ground water is analyzed: penetration of some elements and chemical compounds to the ground water and its pollution. Some preventive measures are proposed: injection of grout in the bottom and walls of storage areas to reduce their permeability (organic resins can also be used but they are more expensive). The distance between injection boreholes should be 15 to 20 m. Covering the bottom of the storage area with plastic sheets can also be applied.

  2. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  3. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  4. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  5. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  6. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  7. Water resources of the Cook Inlet Basin, Alaska

    Science.gov (United States)

    Freethey, Geoffrey W.; Scully, David R.

    1980-01-01

    Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)

  8. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  9. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  10. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    Science.gov (United States)

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Technical approach for the management of UMTRA ground water investigation-derived wastes

    International Nuclear Information System (INIS)

    1994-02-01

    During characterization, remediation, or monitoring activities of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project, ground water samples are collected to assess the extent and amount of waterborne contamination that might have come from the mill tailings. This sampling sometimes occurs in contaminated areas where ground water quality has been degraded. Ground water sampling activities may result in field-generated wastes that must be disposed of in a manner protective of human health and the environment. During ground water sampling, appropriate measures must be taken to dispose of presampling purge water and well development water that is pumped to flush out any newly constructed wells. Additionally, pumping tests may produce thousands of gallons of potentially contaminated ground water that must be properly managed. In addition to the liquid wastes, there is the potential for bringing contaminated soils to the ground surface during the drilling and installation of water wells in areas where the subsurface soils may be contaminated. These soils must be properly managed as well. This paper addresses the general technical approach that the UMTRA Project will follow in managing field-generated wastes from well drilling, development, sampling, and testing. It will provide guidance for the preparation of Technical Assistance Contractor (TAC) Standard Operating Procedures (SOP) for the management and disposal of field-generated wastes from ground water monitoring and remediation activities

  12. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  13. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  14. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  15. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  16. Streamflow of 2016—Water year summary

    Science.gov (United States)

    Jian, Xiaodong; Wolock, David M.; Lins, Harry F.; Brady, Steven J.

    2017-09-26

    The maps and graphs in this summary describe national streamflow conditions for water year 2016 (October 1, 2015, to September 30, 2016) in the context of streamflow ranks relative to the 87-year period of 1930–2016, unless otherwise noted. The illustrations are based on observed data from the U.S. Geological Survey’s (USGS) National Streamflow Network. The period of 1930–2016 was used because the number of streamgages before 1930 was too small to provide representative data for computing statistics for most regions of the country.In the summary, reference is made to the term “runoff,” which is the depth to which a river basin, State, or other geographic area would be covered with water if all the streamflow within the area during a specified period was uniformly distributed on it. Runoff quantifies the magnitude of water flowing through the Nation’s rivers and streams in measurement units that can be compared from one area to another.In all the graphics, a rank of 1 indicates the highest flow of all years analyzed and 87 indicates the lowest flow of all years. Rankings of streamflow are grouped into much below normal, below normal, normal, above normal, and much above normal based on percentiles of flow (less than 10 percent, 10–24 percent, 25–75 percent, 76–90 percent, and greater than 90 percent, respectively). Some of the data used to produce the maps and graphs are provisional and subject to change.

  17. Transport of lincomycin to surface and ground water from manure-amended cropland.

    Science.gov (United States)

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  18. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifer caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow

  19. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    , Horse Lake Creek, and Willow Creek watersheds, which are underlain mostly by Cretaceous-aged marine shale, was compositionally similar and had large concentrations of sulfate relative to the other streams in the study area, though the water from the Navajo River had lower specific-conductance values than did the water from Horse Lake Creek above Heron Reservoir and Willow Creek above Azotea Creek. Generally, surface-water quality varied with streamflow conditions throughout the year. Streamflow in spring and summer is generally a mixture of base flow (the component of streamflow derived from groundwater discharged to the stream channel) diluted with runoff from snowmelt and precipitation events, whereas streamflow in fall and winter is generally solely base flow. Major- and trace-element concentrations in the streams sampled were lower than U.S. Environmental Protection Agency primary and secondary drinking-water standards and New Mexico Environment Department surface-water standards for the streams. In general, years with increased annual discharge, compared to years with decreased annual discharge, had a smaller percentage of discharge in March, a larger percentage of discharge in June, an interval of discharge derived from snowmelt runoff that occurred later in the year, and a larger discharge in June. Additionally, years with increased annual discharge generally had a longer duration of runoff, and the streamflow indicators occurred at dates later in the year than the years with less snowmelt runoff. Additionally, the seasonal distribution of streamflow was more strongly controlled by the change in the amount of annual discharge than by changes in streamflow over time. The variation of streamflow conditions over time at one streamflow-gaging station in the study area, Navajo River at Banded Peak Ranch, was not significantly monotonic over the period of record with a Kendall’s tau of 0.0426 and with a p-value of 0.5938 for 1937 to 2009 (a trend was considered

  20. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  1. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  2. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    Science.gov (United States)

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  3. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  4. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  5. Ground water in the Piedmont upland of central Maryland

    Science.gov (United States)

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  6. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  7. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  8. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  9. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  10. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  11. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    International Nuclear Information System (INIS)

    Imes, J.L.; Kleeschulte, M.J.

    1997-01-01

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field

  12. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  13. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  14. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  15. DRINKING WATER QUALITY IN DISTRIBUTION SYSTEMS OF SURFACE AND GROUND WATERWORKS IN FINLAND

    Directory of Open Access Journals (Sweden)

    Jenni Meirami Ikonen

    2017-06-01

    Full Text Available Physico-chemical and microbiological water quality in the drinking water distribution systems (DWDSs of five waterworks in Finland with different raw water sources and treatment processes was explored. Water quality was monitored during four seasons with on-line equipment and bulk water samples were analysed in laboratory. Seasonal changes in the water quality were more evident in DWDSs of surface waterworks compared to the ground waterworks and artificially recharging ground waterworks (AGR. Between seasons, temperature changed significantly in every system but pH and EC changed only in one AGR system. Seasonal change was seen also in the absorbance values of all systems. The concentration of microbially available phosphorus (MAP, μg PO₄-P/l was the highest in drinking water originating from the waterworks supplying groundwater. Total assimilable organic carbon (AOC, μg AOC-C/l concentrations were significantly different between the DWDSs other than between the two AGR systems. This study reports differences in the water quality between surface and ground waterworks using a wide set of parameters commonly used for monitoring. The results confirm that every distribution system is unique, and the water quality is affected by environmental factors, raw water source, treatment methods and disinfection.

  16. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  17. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  18. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  19. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  20. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    Science.gov (United States)

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  1. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  2. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  3. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  4. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  5. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  6. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  7. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    five main sources (from largest to smallest): Silver Creek streamflow gain, ground-water pumpage, Big Wood River streamflow gain, direct evapotranspiration from riparian vegetation, and subsurface outflow (treated separately). Total estimated mean 1995-2004 annual outflow or discharge from the aquifer system is 250,000 acre-ft/yr (350 ft3/s). Estimated total discharge is 240,000 acre-ft/yr (330 ft3/s) for both the wet year 1995 and the dry year 2001. The budget residual is the difference between estimated ground-water inflow and outflow and encompasses subsurface outflow, ground-water storage change, and budget error. For 1995-2004, mean annual inflow exceeded outflow by 20,000 acre-ft/yr (28 ft3/s); for the wet year 1995, mean annual inflow exceeded outflow by 30,000 acre-ft/yr (41 ft3/s); for the dry year 2001, mean annual outflow exceeded inflow by 20,000 acre-ft/yr (28 ft3/s). These values represent 8, 13, and 8 percent, respectively, of total outflows for the same periods. It is difficult to differentiate the relative contributions of the three residual components, although the estimated fluctuations between the wet and dry year budgets likely are primarily caused by changes in ground-water storage. The individual components in the wet and dry year ground-water budgets responded in a consistent manner to changes in precipitation and temperature. Although the ground-water budgets for the three periods indicated that ground-water storage is replenished in wet years, statistical analyses by Skinner and others (2007) suggest that such replenishment is not complete and over the long term more water is removed from storage than is replaced. In other words, despite restoration of water to ground-water storage in wet years, changes have occurred in either recharge and (or) discharge to cause ground-water storage to decline over time. Such changes may include, but are not limited to: lining or abandoning canals and ditches, conversion of surface-water irriga

  8. Use of Isotopic Techniques for the Assessment of Hydrological Interactions Between Ground and Surface Waters - Rio Man, Cienaga Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, P.; Dapena, C.; Betancur, T. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Man River basin is located in the lower foothills of the western and central ranges of the tropical Andes, Colombia. In this area hydrological studies and hydrochemical analyses were carried out and isotopic techniques applied to describe and understand the interactions between ground and surface waters. To expand this model and to include elements other than local hydrodynamics, relationships between regional precipitation, recharge, regional flow paths and hydraulic gradients controlling water flows from big rivers to groundwater are currently being explored. Accordingly, an isotope local meteoric water line was derived and it was discovered that the relationship between ground and surface waters is similar in wet and dry seasons. Precipitation constitutes the main recharge source, base flow is important in supporting flow in rivers, streams and wetlands, and evaporation causes effects over water systems in dry periods. A tendency towards increasing air temperatures has been detected in the Man River; this change may cause negative impacts over the hydrological system, affecting evapotranspiration- recharge processes. (author)

  9. Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls

    Directory of Open Access Journals (Sweden)

    J.J. Gibson

    2016-03-01

    Full Text Available Study region: This study is based on the rapidly developing Athabasca Oil Sands region, northeastern Alberta. Study focus: Hydrograph separation using stable isotopes of water is applied to partition streamflow sources in the Athabasca River and its tributaries. Distinct isotopic labelling of snow, rain, groundwater and surface water are applied to estimate the contribution of these sources to streamflow from analysis of multi-year records of isotopes in streamflow. New hydrological insights for the region: The results provide new insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R., accounting for 39–50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R., accounting for 45–81% of annual streamflow. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water by fill and spill mechanisms. Systematic shifts in regional groundwater to surface-water ratios are expected to be an important control on spatial and temporal distribution of water quality parameters and useful for evaluating the susceptibility of rivers to climate and development impacts. Keywords: Stable isotopes, Hydrograph separation, Groundwater, Surface water, Snowmelt, Oil sands

  10. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  11. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York

    Science.gov (United States)

    Flipse, W.J.; Bonner, F.T.

    1985-01-01

    Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to

  12. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows

  13. Return to normal streamflows and water levels: summary of hydrologic conditions in Georgia, 2013

    Science.gov (United States)

    Knaak, Andrew E.; Caslow, Kerry; Peck, Michael F.

    2015-01-01

    The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 340 real-time continuous-record streamflow-gaging stations (streamgages), including 10 real-time lake-level monitoring stations, 67 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 180 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits of this monitoring network is that the analyses of the data provide a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.

  14. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  15. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    Science.gov (United States)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  16. Existence of Insecticides in Tap Drinking Surface and Ground Water in Dakahlyia Governorate, Egypt in 2011

    Directory of Open Access Journals (Sweden)

    RA Mandour

    2011-12-01

    Full Text Available Background: The environmental degradation products of pesticides may enter drinking water and result in serious health problems. Objective: To evaluate the occurrence of insecticides in drinking surface and ground water in Dakahlyia Governorate, northern Egypt in 2011. Methods: We studied blood samples collected from 36 consecutive patients diagnosed with pesticides poisoning and 36 tap drinking water (surface and ground. Blood and water samples were analyzed for pesticides using gas chromatography-electron captured detector (GC-ECD. In addition, blood samples were analyzed for plasma pseudo-cholinesterase level (PChE and red blood cells acetyl cholinesterase activity (AChE. Results: The results confirmed the presence of high concentrations of insecticides, including organonitrogenous and organochlorine in tap drinking surface and ground water. Conclusion: Drinking water contaminated with insecticides constitutes an important health concern in Dakahlyia governorate, Egypt.

  17. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  18. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  19. Determination of pesticides in surface and ground water used for human consumption in Guatemala

    International Nuclear Information System (INIS)

    Knedel, W.; Chiquin, J.C.; Perez, J.; Rosales, S.

    1999-01-01

    A 15 month sampling and analysis programme was carried out to monitor concentrations of 37 targeted organochlorine, organophosphorus and organopyrethroid pesticides in surface and ground water in Guatemala. The 80 sampling points included 4 points in a lake, one point in each of the four lagoons, 10 municipal water systems of major towns, and 62 points along 52 rivers, most of which are located in the southern coast along borders with Mexico and El Salvador, and are one of the most productive areas in the country. The sampling used provided only preliminary information on the pattern of pesticide contamination of surface and ground water. It showed contamination of surface water in Los Esclavos watershed, Motagua river watershed as well as Villalobos, lake Amatitlan and Michatoya river watershed. Cypermethrin was the ubiquitous pesticides in some areas present in concentrations exceeding toxic levels for fish and other aquatic organisms. Several of the other targeted organophosphorus and ECD detectable pesticides were also detected in surface water. Some municipal water samples also had low levels of pesticides. (author)

  20. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  1. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  3. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  4. A national perspective on paleoclimate streamflow and water storage infrastructure in the conterminous United States

    Science.gov (United States)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward

    2017-04-01

    ) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western US, however, similar modes of temporal variability were rarely present prior to the 1950s. The 20th century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflow in the Pacific Northwest and Northeast are negatively correlated with the central US suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts. The converging issues of a slowly growing US population, evolving demands for food, energy, and water, aging dams, and reduced water storage capacity through decommissioning and sedimentation highlights the pressing need for a national water assessment and a subsequent national water plan. There are many factors that need to be understood in order to appropriately assess dam and reservoir requirements across the CONUS and to improve water use and flood protection efficiency. In addition to historical and paleoclimate-informed surface water supply, factors requiring consideration in planning for future dam and reservoir infrastructure include: -the role of conjunctive surface and groundwater storage and use; -basin-scale operational strategies to balance sectoral water demand; -projections of surface water supply; -projections of regional water demands; -impacts of water conservation; and -the influence of water policy and financial instruments.

  5. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  6. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  7. Overview of water resources in and near Wichita and Affiliated Tribes treaty lands in western Oklahoma

    Science.gov (United States)

    Abbott, Marvin M.; Tortorelli, R.L.; Becker, M.F.; Trombley, T.J.

    2003-01-01

    This report is an overview of water resources in and near the Wichita and Affiliated Tribes treaty lands in western Oklahoma. The tribal treaty lands are about 1,140 square miles and are bordered by the Canadian River on the north, the Washita River on the south, 98? west longitude on the east, and 98? 40' west longitude on the west. Seventy percent of the study area lies within the Washita River drainage basin and 30 percent of the area lies within the Canadian River drainage basin. March through June are months of greatest average streamflow, with 49 to 57 percent of the annual streamflow occurring in these four months. November through February, July, and August have the least average streamflow with only 26 to 36 percent of the annual streamflow occurring in these six months. Two streamflow-gaging stations, Canadian River at Bridgeport and Cobb Creek near Fort Cobb, indicated peak streamflows generally decrease with regulation. Two other streamflow-gaging stations, Washita River at Carnegie and Washita River at Anadarko, indicated a decrease in peak streamflows after regulation at less than the 100-year recurrence and an increase in peak streamflows greater than the 100-year recurrence. Canadian River at Bridgeport and Washita River at Carnegie had estimated annual low flows that generally increased with regulation. Cobb Creek near Fort Cobb had a decrease of estimated annual low flows after regulation. There are greater than 900 ground-water wells in the tribal treaty lands. Eighty percent of the wells are in Caddo County.The major aquifers in the study area are the Rush Springs Aquifer and portions of the Canadian River and Washita River valley alluvial aquifers. The Rush Springs Aquifer is used extensively for irrigation as well as industrial and municipal purposes, especially near population centers.The Canadian River and Washita River valley alluvial aquifers are not used extensively in the study area. Well yields from the Rush Springs Aquifer ranged from

  8. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    Science.gov (United States)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  9. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  10. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    streamflow downstream from pumping centers but generally will not result in streams going dry, provided the water is returned to the basin. Export of water from the basin will require careful consideration of the effects of such withdrawals on low streamflow. Export from the Pawcatuck basin of 27 million gallons per day, estimated to be available from ground-water reservoirs in the upper Pawcatuck basin, in addition to 37.5 million gallons per day available in the lower Pawcatuck basin, will markedly reduce low streamflow. The 90-percent duration flow of the Pawcatuck River at Westerly would be reduced from 75 million gallons per day to perhaps as little as 21 million gallons per day. The chemical quality of water from both the sand and gravel aquifer and associated streams is suitable for most purposes. The water is soft, slightly acidic, and typically has a dissolved-solids content of less than 75 milligrams per liter. Some treatment may be required locally for removal of iron and manganese to meet recommended standards of the U.S. Public Health Service for drinking water.

  11. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  12. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  13. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  14. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  15. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  16. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed.Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans.Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not

  17. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  18. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed

    Science.gov (United States)

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu

    2011-01-01

    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  19. Indicators of streamflow alteration, habitat fragmentation, impervious cover, and water quality for Massachusetts stream basins

    Science.gov (United States)

    Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.

    2010-01-01

    Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although

  20. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  1. High-resolution projections of surface water availability for Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    J. C. Bennett

    2012-05-01

    Full Text Available Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961–1990 to 2070–2099 using high-resolution simulations. Six fine-scale (∼10 km2 simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM, a variable-resolution regional climate model (RCM. These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows.

    The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = −3% while IHACRES has the largest bias (median bias = −22%. We find the hydrological models that best simulate observed streamflows produce similar streamflow projections.

    There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania.

    This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability.

  2. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  3. Climate change streamflow scenarios designed for critical period water resources planning studies

    Science.gov (United States)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the

  4. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  5. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  6. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  7. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987 - November 1988

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, Ph, specific conductance, and water temperature. Monthly water-quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented. 14 refs., 4 figs., 14 tabs

  8. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  9. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  10. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  11. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  12. Exploring the link between meteorological drought and streamflow to inform water resource management

    Science.gov (United States)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  13. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  14. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  15. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  16. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  17. Restoration of intact ground waters and surface waters in the post-mining landscape; Wiederherstellung intakter Grund- und Oberflaechengewaesser nach dem Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Broder; Schipek, Mandy [Technische Univ. Bergakademie Freiberg (Germany); Scholz, Guenter; Rabe, Wolfgang; Clauss, Denny [MOVAB-D GmbH, Lauta (Germany)

    2011-12-15

    The restoration of the territories of former brown coal mining increasingly requires special efforts for the protection of affected ground waters and surface waters. With newly developed methods (the so-called inlake technology), recently various solutions to neutralize acidic mining lakes could be created. Simultaneously, this improves the water quality of adjacent aquifers at reasonable financial cost.

  18. New Module to Simulate Groundwater-Surface Water Interactions in Small-Scale Alluvial Aquifer System.

    Science.gov (United States)

    Flores, L.

    2017-12-01

    Streamflow depletion can occur when groundwater pumping wells lower water table elevations adjacent to a nearby stream. Being able to accurately model the severity of this process is of critical importance in semi-arid regions where groundwater-surface water interactions affect water rights and the sustainability of water resource practices. The finite-difference flow model MODFLOW is currently the standard for estimating groundwater-surface water interactions in many regions in the western United States. However, certain limitations of the model persist when highly-resolved spatial scales are used to represent the stream-aquifer system, e.g. when the size of computational grid cells is much less than the river width. In this study, an external module is developed and linked with MODFLOW that (1) allows for multiple computational grid cells over the width of the river; (2) computes streamflow and stream stage along the length of the river using the one-dimensional (1D) steady (over a stress period) shallow water equations, which allows for more accurate stream stages when normal flow cannot be assumed or a rating curve is not available; and (3) incorporates a process for computing streamflow loss when an unsaturated zone develops under the streambed. Use of the module not only provides highly-resolved estimates of streamflow depletion, but also of streambed hydraulic conductivity. The new module is applied to the stream-aquifer alluvial system along the South Platte River south of Denver, Colorado, with results tested against field-measured groundwater levels, streamflow, and streamflow depletion.

  19. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    Science.gov (United States)

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based

  20. Streambed infiltration and ground-water flow from the trout creek drainage, an intermittent tributary to the Humboldt River, north-central Nevada: Chapter K in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    finer-grained but better sorted gravels and sands are deposited near the foot.All flow in Trout Creek is lost to infiltration in the upper and middle reaches of the channel during years of normal to below-normal precipitation. During years of above-normal precipitation, streamflow extends beyond the piedmont alluvial plain to the lower reaches of the channel, where high rates of infiltration result in rapid stream loss. The frequency and duration of streambed infiltration is sufficient to maintain high water contents and low chloride concentrations, compared with interchannel areas, to depths of at least 6 m beneath the channel. Streamflow, streambed infiltration, and unsaturated-zone thickness are all highly variable along intermittent streams, resulting in recharge that is highly variable as well.Average annual ground-water recharge in the mountainous part of the Trout Creek drainage upstream of Marigold Mine was estimated on the basis of chloride balance to be 5.2 × 105 cubic meters. Combined with an average annual surface runoff exiting the mountains of 3.4 × 105cubic meters, the total annual volume of inflow to alluvial-basin sediments from the mountainous part of the Trout Creek is 8.6 × 105 cubic meters, assuming that all runoff infiltrates the stream channel. This equates to about 7 percent of average annual precipitation, which is about the same percentage estimated for ground-water recharge using the original Maxey-Eakin method.

  1. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  3. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  5. Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015

    Science.gov (United States)

    Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.

    2017-08-14

    A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.

  6. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  7. Estimates of ground-water recharge rates for two small basins in central Nevada

    Science.gov (United States)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  8. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  9. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  10. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    Science.gov (United States)

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  11. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  12. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  13. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  14. High-Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance

    Science.gov (United States)

    Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.

    2018-02-01

    Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

  15. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  16. Analytic game—theoretic approach to ground-water extraction

    Science.gov (United States)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  17. Ensemble streamflow assimilation with the National Water Model.

    Science.gov (United States)

    Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.

    2017-12-01

    Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.

  18. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  19. Contamination of the ground waters and surface waters by boron in Lerma Valley, NW-Argentina - an inventory

    International Nuclear Information System (INIS)

    Bundschuh, J.

    1992-01-01

    Ground- and surface waters in areas unaffected by pollution from borax and boric acid producing plants exhibit low boron concentrations of less than 300 μg B/l. Only at the boric acid plant 'Mineratea' is the groundwater contaminated, with up to 6200 μg B/l occurring within an area of 8 to 10 km 2 with more than 1000 μg boron/l. Even higher boron concentrations (up to 18 μg B/l) are present in polluted surface waters. Not the boron concentration in the irrigation water, but the absolute amount of boron added to the plants by irrigation is what determines plant toxicity. For the contaminated area of the boric acid 'Mineratea', characterized by boron concentrations of between 1000 and 6000 μg B/l, the maximal amounts of irrigation water that can be applied lies between 300 and 8 mm. In order to protect the local groundwater resoures from present and future contamination, environmental impact assessment on industrial projects in the area are required. In this way, the quality of the drinking and irrigation water can be guaranteed through suitable measures, without hindering further necessary industrial development of the region. (orig./UWA) [de

  20. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Little Clearfield Creek provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations, and suspended-sediment concentrations. Seventeen partial-record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water-quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented

  1. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  2. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  3. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    International Nuclear Information System (INIS)

    Liszewski, M.J.; Mann, L.J.

    1993-01-01

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey's National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels

  4. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    Energy Technology Data Exchange (ETDEWEB)

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  5. Streamflow and water-quality data for Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, December 1987-November 1988. Open File Report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Little Scrubgrass Creek basin, Venango and Butler Counties, Pennsylvania, from December 1987 to November 1988, to determine the prevailing quality of surface water throughout the basin. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water-quality station on Little Scrubgrass Creek near Lisbon, provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended sediment concentrations. Fourteen partial-record sites, located throughout the basin, were similarly sampled four times during the period of study. Streamflow and water-quality data obtained at these sites during various base flow periods are also presented

  6. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    International Nuclear Information System (INIS)

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Arain, Muhammad Balal; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Sarfraz, Raja Adil; Jamal, Muhammad Khan; Shah, Abdul Qadir

    2009-01-01

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 μg l -1 . Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 μg l -1 , respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 μg l -1 . The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na + , K + , and SO 4 2- were found to be higher in surface and ground water, while elevated levels of Ca 2+ and Cl - were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  7. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    upper Lake Quinsigamond, upper West River, and Stone Brook aquifers are capable of sustaining withdrawals of at least 1 million gallons per day more than their rates in the mid-1980s. The upper Mill River and Auburn aquifers are not capable of sustaining additional withdrawals of 0.25 million gallons per day. Ground-water quality in the Auburn aquifer has been degraded by activities and contaminants associated with urbanization.A nearly continuous deposit of stratified drift almost 30 miles long and from 400 feet to more than 1 mile wide occupies lowland areas along the southeastern part of the Blackstone River. These deposits were divided into four aquifers ranging in areal extent from 1.8 to 3.5 square miles. These aquifers have maximum saturated thicknesses ranging from 54 to 170 feet and maximum transmissivities ranging from less than 1,500 to more than 20,000 feet squared per day. The Blackstone River receives substantial amounts of treated municipal wastewater. Infiltration of poor-quality surface water has significantly increased the specific conductance and the concentrations of all major ions, ammonia, iron, and manganese in the water pumped from at least two wells near the river. These wells derive about 41 and 48 percent of their yield from infiltrated surface water. At both sites, aquifer heterogeneity controlled the movement of infiltrated water to the wells. At one of these sites, where the flow of infiltrated water was tracked (by use of a digital model) in three dimensions, infiltrated water moved to the well through gravel layers that did not constitute the entire thickness of the aquifer. Changes in stream discharge that resulted in changes in surface-water quality also affected the quality of ground water at that site. The western part of the Blackstone River Basin contains the smallest aquifers evaluated in the study area. Six aquifers, ranging in areal extent from 0.05 to 1.3 square miles, were identified. The hydraulic properties of most of these

  8. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  9. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  10. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    Science.gov (United States)

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  11. The impact of changing climate on surface and ground water quality in southeast of Ireland

    Science.gov (United States)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk

  12. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  13. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  14. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  15. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    Science.gov (United States)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  16. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  17. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  18. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  19. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  20. Transitions in midwestern ground water law

    International Nuclear Information System (INIS)

    Bowman, J.A.; Clark, G.R.

    1989-01-01

    The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest

  1. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  2. Global pattern of trends in streamflow and water availability in a changing climate.

    Science.gov (United States)

    Milly, P C D; Dunne, K A; Vecchia, A V

    2005-11-17

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  3. Streamflow and water-quality data for Meadow Run Basin, Fayette County, Pennsylvania, December 1987-November 1988. Open file report

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Witt, E.C.

    1989-01-01

    Streamflow and water-quality data were collected throughout the Meadow Run basin, Fayette County, Pennsylvania, from December 7, 1987 through November 15, 1988, to determine the prevailing quality of surface water over a range of hydrologic conditions. The data will assist the Pennsylvania Department of Environmental Resources during its review of coal-mine permit applications. A water-quality station near the mouth of Meadow Run provided continuous-record of stream stage, pH, specific conductance, and water temperature. Monthly water-quality samples collected at the station were analyzed for total and dissolved metals, nutrients, major cations and anions, and suspended-sediment concentrations

  4. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  5. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  6. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  7. Climate and surface water hydrology baseline data for Aurora Mine EIA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A climate and hydrology database was assembled to describe the existing climatic and surface water hydrological characteristics of the proposed Aurora Mine area in Leases 10, 12, 13, 31, and 34 east of the Athabasca River near Fort McKay. The study was based upon data available from the regional hydrometeorological monitoring network operated by the Governments of Canada and Alberta. The study also included the installation and monitoring of one climate station and five streamflow gauging stations on small watersheds in the area. The representative climatic and hydrologic characteristics of the area, including precipitation, evaporation, evapotranspiration, temperature and wind, were determined. Streamflow characteristics such as flood frequencies, low flow frequencies, water yield and flow durations representative of large gauged watersheds within the study area were also determined. The results offer a good basis for preliminary design of surface water management systems. It was recommended that the monitoring program should be continued to monitor potential environmental impacts of proposed development activities. 9 refs., 29 tabs., 32 figs.

  8. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  9. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  10. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  11. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  12. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  13. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  14. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    Energy Technology Data Exchange (ETDEWEB)

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  15. Deforestation effects on soil moisture, streamflow, and water balance in the central Appalachians

    Science.gov (United States)

    James H. Patric; James H. Patric

    1973-01-01

    Soil moisture, precipitation, and streamflow were measured on three watersheds in West Virginia, two deforested and one forested. Water content of barren soil always exceeded that of forest soil throughout the growing season and especially in dry weather. Streamflow increased 10 inches annually on the watersheds that were cleared, most of the increase occurring between...

  16. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    Science.gov (United States)

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the

  17. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  18. Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells

  19. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  20. United States streamflow probabilities and uncertainties based on anticipated El Niño, water year 2003

    Science.gov (United States)

    Dettinger, M.; Cayan, D.; Redmond, K.

    2002-01-01

    During the course of spring and summer 2002, tropical sea-surface temperatures in the eastern Pacific Ocean have warmed and the wind and pressure fields have shifted, so that by August, there was considerable confidence that water year (October–September) 2003 will be characterized by a weak to mild El Niño climate (http://iri.columbia.edu/climate/ENSO/currentinfo/archive/200208/QuickLook.html). At the same time, the Pacific Decadal Oscillation pattern of sea-surface temperatures in the North Pacific (Mantua et al., 1997) has shifted towards a more neutral state than in the past several years and will not be considered in detail here. Previous studies of the connections between El Niños and streamflow in the United States by the authors (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; Cayan et al., 1999; Dettinger et al., 2001) indicate that El Niño conditions influence historical streamflow distributions to varying extents. These conclusions, along with those of other researchers, suggest that foreknowledge of El Niño conditions can inform seasonal outlooks for streamflows throughout the Americas and elsewhere. For example, Dettinger et al. (2001), as distilled here into Fig. 1, showed that historical annual streamflow totals have correlated negatively with the Southern Oscillation Index (SOI, which is negatively associated with El Niños) in the U.S. Southwest as well as in the subtropics of South America, and correlate positively in the U.S. Northwest, in much of tropical South America, and, perhaps, in southernmost South America. These interhemispheric bands of El Niño influence are a matter of considerable concern for water- and land-managers throughout the Americas, and expand upon results from previous studies in the western United States (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992), including a recent analysis by Pizarro and Lall (2002), where water availability and hydrologic extremes are particularly pressing issues.

  1. Effects of water use and land use on streamflow and aquatic habitat in the Sudbury and Assabet River Basins, Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.; Parker, Gene W.; Armstrong, David S.; Carlson, Carl S.

    2010-01-01

    Water withdrawals from surface-water reservoirs and groundwater have affected streamflow in the Sudbury and Assabet River Basins. These effects are particularly evident in the upper Sudbury River Basin, which prompted the need to improve the understanding of water resources and aquatic habitat in these basins. In 2004, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation, developed a precipitation-runoff model that uses Hydrologic Simulation Program-FORTRAN (HSPF) to evaluate the effects of water use and projected future water-use and land-use change on streamflow. As part of this study, the aquatic habitat in the basins and the effects of streamflow alteration also were evaluated. Chapter 1 of the report covers the development of the HSPF model that focuses on the upper Sudbury River Basin (106 square miles) but covers the entire Sudbury and Assabet River Basins (339 square miles). The model was calibrated to an 11-year period (1993-2003) using observed or estimated streamflow at four streamgages. The model was then used to simulate long-term (1960-2004) streamflows to evaluate the effects of average 1993-2003 water use and projected 2030 water-use and land-use change over long-term climatic conditions. Simulations indicate that the average 1993-2003 withdrawals most altered streamflow relative to no withdrawals in small headwater subbasins where the ratios of mean annual withdrawals to mean annual streamflow are the highest. The effects of withdrawals are also appreciable in other parts of the upper Sudbury River Basin as a result of the perpetuation of the effects of large withdrawals in upstream reaches or in subbasins that also have a high ratio of withdrawal to streamflow. The simulated effects of potential 2030 water-use and land-use change indicate small decreases in flows as a result of increased water demands, but these flow alterations were offset as a result of decreased evapotranspiration

  2. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  3. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  4. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  5. Simulation of Intra- or transboundary surface-water-rights hierarchies using the farm process for MODFLOW-2000

    Science.gov (United States)

    Schmid, W.; Hanson, R.T.

    2007-01-01

    Water-rights driven surface-water allocations for irrigated agriculture can be simulated using the farm process for MODFLOW-2000. This paper describes and develops a model, which simulates routed surface-water deliveries to farms limited by streamflow, equal-appropriation allotments, or a ranked prior-appropriation system. Simulated diversions account for deliveries to all farms along a canal according to their water-rights ranking and for conveyance losses and gains. Simulated minimum streamflow requirements on diversions help guarantee supplies to senior farms located on downstream diverting canals. Prior appropriation can be applied to individual farms or to groups of farms modeled as "virtual farms" representing irrigation districts, irrigated regions in transboundary settings, or natural vegetation habitats. The integrated approach of jointly simulating canal diversions, surface-water deliveries subject to water-rights constraints, and groundwater allocations is verified on numerical experiments based on a realistic, but hypothetical, system of ranked virtual farms. Results are discussed in light of transboundary water appropriation and demonstrate the approach's suitability for simulating effects of water-rights hierarchies represented by international treaties, interstate stream compacts, intrastate water rights, or ecological requirements. ?? 2007 ASCE.

  6. Global pattern of trends in streamflow and water availability in a changing climate

    Science.gov (United States)

    Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V.

    2005-01-01

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10–40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10–30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  7. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  8. Ground and surface water developmental toxicity at a municipal landfill--Description and weather-related variation

    Science.gov (United States)

    Bruner, M.A.; Rao, M.; Dumont, J.N.; Hull, M.; Jones, T.; Bantle, J.A.

    1998-01-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4–7 preceding sampling.

  9. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    Science.gov (United States)

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  10. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  11. Application of surface geophysics to ground-water investigations

    Science.gov (United States)

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  12. Simulation of groundwater conditions and streamflow depletion to evaluate water availability in a Freeport, Maine, watershed

    Science.gov (United States)

    Nielsen, Martha G.; Locke, Daniel B.

    2012-01-01

    In order to evaluate water availability in the State of Maine, the U.S. Geological Survey (USGS) and the Maine Geological Survey began a cooperative investigation to provide the first rigorous evaluation of watersheds deemed "at risk" because of the combination of instream flow requirements and proportionally large water withdrawals. The study area for this investigation includes the Harvey and Merrill Brook watersheds and the Freeport aquifer in the towns of Freeport, Pownal, and Yarmouth, Maine. A numerical groundwater- flow model was used to evaluate groundwater withdrawals, groundwater-surface-water interactions, and the effect of water-management practices on streamflow. The water budget illustrates the effect that groundwater withdrawals have on streamflow and the movement of water within the system. Streamflow measurements were made following standard USGS techniques, from May through September 2009 at one site in the Merrill Brook watershed and four sites in the Harvey Brook watershed. A record-extension technique was applied to estimate long-term monthly streamflows at each of the five sites. The conceptual model of the groundwater system consists of a deep, confined aquifer (the Freeport aquifer) in a buried valley that trends through the middle of the study area, covered by a discontinuous confining unit, and topped by a thin upper saturated zone that is a mixture of sandy units, till, and weathered clay. Harvey and Merrill Brooks flow southward through the study area, and receive groundwater discharge from the upper saturated zone and from the deep aquifer through previously unknown discontinuities in the confining unit. The Freeport aquifer gets most of its recharge from local seepage around the edges of the confining unit, the remainder is received as inflow from the north within the buried valley. Groundwater withdrawals from the Freeport aquifer in the study area were obtained from the local water utility and estimated for other categories. Overall

  13. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  14. Water resources of the Park City area, Utah, with emphasis on ground water

    Science.gov (United States)

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  15. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  16. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  17. Analysing the Effects of Forest Cover and Irrigation Farm Dams on Streamflows of Water-Scarce Catchments in South Australia through the SWAT Model

    Directory of Open Access Journals (Sweden)

    Hong Hanh Nguyen

    2017-01-01

    Full Text Available To assist water resource managers with future land use planning efforts, the eco-hydrological model Soil and Water Assessment Tool (SWAT was applied to three catchments in South Australia that experience extreme low flow conditions. Particular land uses and management issues of interest included forest covers, known to affect water yields, and farm dams, known to intercept and change the hydrological dynamics in a catchment. The study achieved a satisfactory daily calibration when irrigation farm dams were incorporated in the model. For the catchment dominated by extreme low flows, a better daily simulation across a range of qualitative and quantitative metrics was gained using the base-flow static threshold optimization technique. Scenario analysis on effects of forest cover indicated an increase of surface flow and a reduction of base-flow when native eucalyptus lands were replaced by pastures and vice versa. A decreasing trend was observed for the overall water yield of catchments with more forest plantation due to the higher evapotranspiration (ET rate and the decline in surface flow. With regards to effects of irrigation farm dams, assessment on a daily time step suggested that a significant volume of water is stored in these systems with the water loss rate highest in June and July. On an annual basis, the model indicated that approximately 13.1% to 22.0% of water has been captured by farm dams for irrigation. However, the scenario analysis revealed that the purposes of use of farm dams rather than their volumetric capacities in the catchment determined the magnitude of effects on streamflows. Water extracted from farm dams for irrigation of orchards and vineyards are more likely to diminish streamflows than other land uses. Outputs from this study suggest that the water use restrictions from farm dams during recent drought periods were an effective tool to minimize impacts on streamflows.

  18. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  19. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants

    Science.gov (United States)

    Cheng, Peng; Li, Xuyong; Su, Jingjun; Hao, Shaonan

    2018-01-01

    Identification of the interactive responses of water quantity and quality to changes in nature and human stressors is important for the effective management of water resources. Many studies have been conducted to determine the influence of these stressors on river discharge and water quality. However, there is little information about whether sewage treatment plants can improve water quality in a region where river streamflow has decreased sharply. In this study, a seasonal trend decomposition method was used to analyze long-term (1996-2015) and seasonal trends in the streamflow and water quality of the Guanting Reservoir Basin, which is located in a semi-arid region of China. The results showed that the streamflow in the Guanting Reservoir Basin decreased sharply from 1996-2000 due to precipitation change and human activities (human use and reservoir regulation), while the streamflow decline over the longer period of time (1996-2015) could be attributed to human activities. During the same time, the river water quality improved significantly, having a positive relationship with the capacity of wastewater treatment facilities. The water quality in the Guanting Reservoir showed a deferred response to the reduced external loading, due to internal loading from sediments. These results implied that for rivers in which streamflow has declined sharply, the water quality could be improved significantly by actions to control water pollution control. This study not only provides useful information for water resource management in the Guanting Reservoir Basin, but also supports the implementation of water pollution control measures in other rivers with a sharp decline in streamflow.

  20. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  1. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  2. Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960-2011

    Science.gov (United States)

    Norton, Parker A.; Anderson, Mark T.; Stamm, John F.

    2014-01-01

    The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.

  3. Ground and surface water in New Mexico: are they protected against uranium mining and milling

    International Nuclear Information System (INIS)

    Townsend, K.K.

    1978-01-01

    Inadequate funds to allow New Mexico to collect data on the effects of uranium mining and milling on ground and surface water resources and vigorous opposition by the uranium companies have made the Environmental Protection Agency reluctant to adopt the state's request for control of discharges. The state is unable to monitor for the presence of toxic materials and questions have been raised over EPA's jurisdiction over groundwater. Federal and state water pollution regulations are reviewed and weaknesses noted, particularly the effect of terrain and the limitations on regulation of navigable waters

  4. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  5. Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction

    Science.gov (United States)

    Fernández, Alfonso; Muñoz, Ariel; González-Reyes, Álvaro; Aguilera-Betti, Isabella; Toledo, Isadora; Puchi, Paulina; Sauchyn, David; Crespo, Sebastián; Frene, Cristian; Mundo, Ignacio; González, Mauro; Vignola, Raffaele

    2018-05-01

    Streamflow in south-central Chile (SCC, ˜ 37-42° S) is vital for agriculture, forestry production, hydroelectricity, and human consumption. Recent drought episodes have generated hydrological deficits with damaging effects on these activities. This region is projected to undergo major reductions in water availability, concomitant with projected increases in water demand. However, the lack of long-term records hampers the development of accurate estimations of natural variability and trends. In order to provide more information on long-term streamflow variability and trends in SCC, here we report findings of an analysis of instrumental records and a tree-ring reconstruction of the summer streamflow of the Río Imperial ( ˜ 37° 40' S-38° 50' S). This is the first reconstruction in Chile targeted at this season. Results from the instrumental streamflow record ( ˜ 1940 onwards) indicated that the hydrological regime is fundamentally pluvial with a small snowmelt contribution during spring, and evidenced a decreasing trend, both for the summer and the full annual record. The reconstruction showed that streamflow below the average characterized the post-1980 period, with more frequent, but not more intense, drought episodes. We additionally found that the recent positive phase of the Southern Annular Mode has significantly influenced streamflow. These findings agree with previous studies, suggesting a robust regional signal and a shift to a new hydrological scenario. In this paper, we also discuss implications of these results for water managers and stakeholders; we provide rationale and examples that support the need for the incorporation of tree-ring reconstructions into water resources management.

  6. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    Science.gov (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  7. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  8. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  9. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    Science.gov (United States)

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  10. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  11. Stream-aquifer relations and the potentiometric surface of the Upper Floridan aquifer in the lower Apalachicola-Chattahoochee-Flint River basin in parts of Georgia, Florida, and Alabama, 1999-2000

    Science.gov (United States)

    Mosner, Melinda S.

    2002-01-01

    The Upper Floridan aquifer is the principal source of water for domestic and agricultural use in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin. Recent drought and increased water use have made understanding surface- and ground-water relations a priority for water-resource managers in the region. From July 1999 through August 2000, less than normal precipitation reduced streamflow in the area to less than 12 percent of average mean-daily streamflow and ground-water levels reached record or near-record lows. Effects of drought on stream-aquifer interactions in the basin were evaluated using baseflow estimation, ground-water seepage calculations, and potentiometric-surface maps. Ground-water discharge to streams, or baseflow, was estimated using three methods: field measurements, hydrograph separation, and linear regression analysis. Results were evaluated seasonally -- October 1999, April 2000, and August 2000 -- and for the period of record at four surface-water stations located on Kinchafoonee, Spring, Muckalee, and Turkey Creeks. Estimates of baseflow also were compared annually; ground-water discharge during the drought years, 1999 - 2000, was compared with ground-water discharge during a relatively wet year, 1994. Hydrograph separation indicated decreased base-flow of streams as the water level in the Upper Floridan aquifer declined. Mean-annual baseflow for Kinchafoonee, Spring, Muckalee, and Turkey Creeks ranged from 36 to 71 percent of total streamflow during the period of record. In 1994 baseflow accounted for only 37 to 56 percent of total streamflow, in 1999 baseflow comprised from 60 to 73 percent of total streamflow, and in 2000 baseflow comprised from 56 to 76 percent of streamflow. The percentage of total streamflow attributed to ground water increased during the drought, whereas other components of streamflow decreased (overland flow, interflow, and channel precipitation). Even though relative ground-water contributions were increased

  12. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  13. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  14. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  15. User guide for the farm process (FMP1) for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, MODFLOW-2000

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, R.T.; Maddock, Thomas; Leake, S.A.

    2006-01-01

    There is a need to estimate dynamically integrated supply-and-demand components of irrigated agriculture as part of the simulation of surface-water and ground-water flow. To meet this need, a computer program called the Farm Process (FMP1) was developed for the U.S. Geological Survey three-dimensional finite-difference modular ground-water flow model, MODFLOW- 2000 (MF2K). The FMP1 allows MF2K users to simulate conjunctive use of surface- and ground water for irrigated agriculture for historical and future simulations, water-rights issues and operational decisions, nondrought and drought scenarios. By dynamically integrating farm delivery requirement, surface- and ground-water delivery, as well as irrigation-return flow, the FMP1 allows for the estimation of supplemental well pumpage. While farm delivery requirement and irrigation return flow are simulated by the FMP1, the surface-water delivery to the farm can be simulated optionally by coupling the FMP1 with the Streamflow Routing Package (SFR1) and the farm well pumping can be simulated optionally by coupling the FMP1 to the Multi-Node Well (MNW) Package. In addition, semi-routed deliveries can be specified that are associated with points of diversion in the SFR1 stream network. Nonrouted surface-water deliveries can be specified independently of any stream network. The FMP1 maintains a dual mass balance of a farm budget and as part of the ground-water budget. Irrigation demand, supply, and return flow are in part subject to head-dependent sources and sinks such as evapotranspiration from ground water and leakage between the conveyance system and the aquifer. Farm well discharge and farm net recharge are source/sink terms in the FMP1, which depend on transpiration uptake from ground water and other head dependent consumptive use components. For heads rising above the bottom of the root zone, the actual transpiration is taken to vary proportionally with the depth of the active root zone, which can be restricted

  16. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona

    Science.gov (United States)

    Pool, Donald R.; Schmidt, Werner

    1997-01-01

    The temporal-gravity method was used to estimate ground-water storage change and specific -yield values at wells near Rillito Creek, Tucson, Arizona, between early December 1992 and early January 1994. The method applies Newton's Law of Gravitation to measure changes in the local gravitational field of the Earth that are caused by changes in the mass and volume of ground water. Gravity at 50 stations in a 6-square-mile area was measured repeatedly relative to gravity at two bedrock stations. Ephemeral recharge through streamflow infiltration during the winter of 1992-93 resulted in water-level rises and gravity increases near Rillito Creek as the volume of ground water in storage increased. Water levels in wells rose as much as 30 feet, and gravity increased as much as 90 microgals. Water levels declined and gravity decreased near the stream after the last major winter flow but continued to rise and increase, respectively, in downgradient areas. Water levels and gravity relative to bedrock were measured at 10 wells. Good linear correlations between water levels and gravity values at five wells nearest the stream allowed for the estimation of specific-yield values for corresponding stratigraphic units assuming the mass change occurred in an infinite horizonal slab of uniform thickness. Specific-yield values for the stream-channel deposits at three wells ranged from 0.15 to 0.34, and correlation coefficients ranged from 0.81 to 0.99. Specific-yield values for the Fort Lowell Formation at three wells ranged from 0.07 to 0.18, and correlation coefficients ranged from 0.82 to 0.93. Specific-yield values were not calculated for the five wells farthest from the stream because of insufficient water-level and gravity change or poor correlations between water level and gravity. Poor correlations between water levels and gravity resulted from ground-water storage change in perched aquifers and in the unsaturated zone near ephemeral streams. Seasonal distributions of ground-water

  17. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  18. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    International Nuclear Information System (INIS)

    Zhang, Yan; Li, Fadong; Zhang, Qiuying; Li, Jing; Liu, Qiang

    2014-01-01

    surface water in dry season was derived from fertilizer and sewage. • Through soil layer, nitrate in surface was flushed into groundwater in wet season. • Isotopes indicate that denitrification occurred in surface rather than groundwater

  19. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    seasonal variations. • Nitrate of surface water in dry season was derived from fertilizer and sewage. • Through soil layer, nitrate in surface was flushed into groundwater in wet season. • Isotopes indicate that denitrification occurred in surface rather than groundwater.

  20. How Conjunctive Use of Surface and Ground Water could Increase Resiliency in US?

    Science.gov (United States)

    Josset, L.; Rising, J. A.; Russo, T. A.; Troy, T. J.; Lall, U.; Allaire, M.

    2016-12-01

    Optimized management practices are crucial to ensuring water availability in the future. However this presents a tremendous challenge due to the many functions of water: water is not only central for our survival as drinking water or for irrigation, but it is also valued for industrial and recreational use. Sources of water meeting these needs range from rain water harvesting to reservoirs, water reuse, groundwater abstraction and desalination. A global conjunctive management approach is thus necessary to develop sustainable practices as all sectors are strongly coupled. Policy-makers and researchers have identified pluralism in water sources as a key solution to reach water security. We propose a novel approach to sustainable water management that accounts for multiple sources of water in an integrated manner. We formulate this challenge as an optimization problem where the choice of water sources is driven both by the availability of the sources and their relative cost. The results determine the optimal operational decisions for each sources (e.g. reservoirs releases, surface water withdrawals, groundwater abstraction and/or desalination water use) at each time step for a given time horizon. The physical surface and ground water systems are simulated inside the optimization by setting state equations as constraints. Additional constraints may be added to the model to represent the influence of policy decisions. To account for uncertainty in weather conditions and its impact on availability, the optimization is performed for an ensemble of climate scenarios. While many sectors and their interactions are represented, the computational cost is limited as the problem remains linear and thus enables large-scale applications and the propagation of uncertainty. The formulation is implemented within the model "America's Water Analysis, Synthesis and Heuristic", an integrated model for the conterminous US discretized at the county-scale. This enables a systematic

  1. CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland

    Directory of Open Access Journals (Sweden)

    Mikołaj Piniewski

    2017-04-01

    Full Text Available There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100 under two Representative Concentration Pathways (RCPs. The data set consists of three parts: (1 model inputs; (2 raw model outputs; (3 aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.

  2. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  3. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  4. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  5. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  6. A survey of the water resources of St. Thomas, Virgin Islands

    Science.gov (United States)

    Jordon, D.G.; Cosner, O.J.

    1973-01-01

    St. Thomas, with an area of 32 square miles, is the second largest of the Virgin Islands of the United States. The island is mountainous, and slopes commonly exceed 35 degrees along a central ridge 800 to 1,200 feet high running the length of the island. The general appearance is a panorama of numerous steep interstream spurs and rounded peaks. The island is made up of rocks of Cretaceous age, mostly volcanic flows and breccia s. A thin limestone and tuffaceous wacke complete the sequence of major rock types. All the rocks have been tilted and dip about 50 degrees north. Water in Charlotte Amalie, the capital, is supplied by sea-water desalting and water barged from Puerto Rico and is augmented by hillside rain catchments and individual roof catchments. Rainwater augmented by water hauling and a few wells is the source of water for the rural areas. Streamflow is meager--2 to 8 percent of the annual rainfall-and is predominantly storm runoff. Runoff after rainstorms seldom exceeds 5 percent of the rainfall. Runoff is rapid, however, and flash floods occasionally occur. Test drilling has shown that water can be obtained from fractured volcanic rocks in nearly all parts of the island. Wells will yield, generally, less than 1,000 gpd (gallons per day). In the upper Turpentine Run Valley and the Lovenlund Valley, short-term yields of individual wells are as great as 100 gallons per minute. Estimates of potential yield from these areas are 300,000 and 100,000 gpd, respectively. Two smaller areas--Long Bay and Lindberg Bay on the outskirts of Charlotte Amalie have estimated ground-water yields of 70,000 and 30,000 gpd, respectively. Fully developed, the surface- and ground-water resources of the island could yield 1.3 million gallons of water per day. Ground water is slightly saline, commonly containing more than 1,000 milligrams per liter dissolved solids. The principal source of the minerals is bulk fallout of sea- and land-derived dust from the atmosphere. Solution of

  7. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  8. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  9. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  10. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  11. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    Science.gov (United States)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  12. Plutonium radionuclides in the ground waters at Enewetak Atoll

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Marsh, K.; Eagle, R.; Holladay, G.; Buddemeier, R.W.

    1975-01-01

    In 1974 a groundwater program was initiated at Eniwetok Atoll to study systematically the hydrology and the ground water geochemistry on selected islands of the Atoll. The program provides chemical and radiochemical data for assessment of water quality on those islands designated for rehabilitation. These and other data are used to interpret the mechanisms by which radionuclides are cycled in the soil-groundwater system. Because of the international concern over the long-term buildup, availability, and transport of plutonium in the environment, this program emphasizes analysis of the element. The results of the study show that on all islands sampled, small quantities of plutonium radionuclides have migrated through the soil columns and are redistributed throughout the groundwater reservoirs. The observed maximum surface concentrations are less than 0.02 percent of the maximal recommended concentration for drinking water. Concentrations of 137 Cs are found to correlate with water freshness, but those of 239 , 240 Pu show no such relationship. The mechanisms moving 239 , 240 Pu through the ground water reservoirs are independent of the processes controlling the cycling of 137 Cs and fresh water. A reasonable linear correlation is found between mean surface-water concentrations and soil burdens. This indicates that the quantities of 239 , 240 Pu migrating to the groundwater surface layers are, to a first approximation, independent of the physical, chemical or biological characteristics of the islands. (auth)

  13. Geochemical baseline studies and relations between water quality and streamflow in the upper Blackfoot Watershed, Montana: data for July 1997-December 1998

    Science.gov (United States)

    Nagorski, Sonia A.; Moore, Johnnie N.; Smith, David B.

    2001-01-01

    We used ultraclean sampling techniques to study the solute (operationally defined as water geochemistry at five sites along the Upper Blackfoot River and four sites along the Landers Fork, some in more detail and more regularly than others. We collected samples also from Hogum Creek, a tributary to the Blackfoot, from Copper Creek, a tributary to the Landers Fork, and from ground water seeps contributing to the flow along the Landers Fork. To better define the physical dynamics of the hydrologic system and to determine geochemical loads, we measured streamflow at all the sites where we took samples for water quality analysis. The Upper Blackfoot River, which drains historic mines ca. 20 Km upstream of the study area, had higher trace metal concentrations than did the Landers Fork, which drains the pristine Scapegoat Wilderness area. In both rivers, many of the major elements were inversely related to streamflow, and at some sites, several show a hysteresis effect in which the concentrations were lower on the rising limb of the hydrograph than on the falling limb. However, many of the trace elements followed far more irregular trends, especially in the Blackfoot River. Elements such as As, Cu, Fe, Mn, S, and Zn exhibited complex and variable temporal patterns, which included almost no response to streamflow differences, increased concentrations following a summer storm and at the start of snowmelt in the spring, and/or increased concentrations throughout the course of spring runoff. In summary, complex interactions between the timing and magnitude of streamflow with physical and chemical processes within the watershed appeared to greatly influence the geochemistry at the sites, and streamflow values alone were not good predictors of solute concentrations in the rivers.

  14. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    International Nuclear Information System (INIS)

    Li, Wenhui; Gao, Lihong; Shi, Yali; Wang, Yuan; Liu, Jiemin; Cai, Yaqi

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L −1 , followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at environmentally

  15. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  16. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  17. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  18. Streamflow characteristics based on data through water year 2009 for selected streamflow-gaging stations in or near Montana: Chapter E in Montana StreamStats

    Science.gov (United States)

    McCarthy, Peter M.

    2016-04-05

    Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.

  19. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  20. Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey

    Science.gov (United States)

    Fusillo, Thomas V.

    1981-01-01

    Surface-water and ground-water quality, streamflow, and data on ground-water levels in the upper Great Egg Harbor River basin in the vicinity of the Winslow Crossing residential development in Winslow Township are evaluated. The data include continuous streamflow at four sites, monthly stream water quality at seven sites, ground-water levels and periodic ground-water quality in four wells from 1972 through 1978. Pumpage from the Cohansey Sand in the study area was lower than anticipated because of a slowdown in construction. The average pumpage of 0.48 million gallons per day during 1978 had little effect on ground-water levels. Dissolved-solids concentrations were lower in a well upgradient from the urbanized area. Elevated levels of dissolved solids, specific conductance, chloride, nitrate, and phosphorus were found in the shallow ground water in the vicinity of the Winslow wastewater treatment plant because of effluent infiltration ponds. Nitrate was greatly reduced in October 1974 by a change in the treatment process, which increased denitrification. Phosphorus concentrations in the ground water remained elevated, however. Water from the most urbanized drainage basin was a magnesium bicarbonate type, while the less developed basins had sodium chloride sulfate type waters. Water from the two developed basins had higher median pH (7.1) compared with that of the other basins (5.6-6.3). Winslow Crossing?s development had only a slight effect on the quality of water in Great Egg Harbor River. The river receives point and non-point discharges upstream from Winslow Crossing, and the quality of the water generally improves as the river flows downstream. Streamflow and rainfall were slightly above normal. Unit hydrograph analysis of one basin showed an 80 percent increase in the peak discharge of a 60-minute unit hydrograph (from approximately 150 to 270 cubic feet per second) after the development of 14 percent of the basin. Installation of a stormwater detention basin

  1. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    Science.gov (United States)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  2. Ground-water, surface-water, and water-chemistry data, Black Mesa Area, northeastern Arizona: 2000-2001, and performance and sensitivity of the 1988 USGS numerical model of the N aquifer

    Science.gov (United States)

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2000, total ground-water withdrawals were 7,740 acre-feet, industrial use was 4,490 acre-feet, and municipal use was 3,250 acre-feet. From 1999 to 2000, total withdrawals increased by 9 percent, industrial use increased by 7 percent, and municipal use increased by 12 percent. From 1999 to 2001, water levels declined in 10 of 15 wells in the unconfined part of the aquifer, and the median change was -0.4 foot. Water levels declined in 8 of 16 wells in the confined part of the aquifer, and the median change was -0.2 foot. From the prestress period (prior to 1965) to 2001, the median water-level change for 33 wells was -17.2 feet. Median water-level changes were -1.2 feet for 15 wells in the unconfined part of the aquifer and -31.0 feet for 18 wells in the confined part. Discharges were measured once in 1999 and once in 2001 at four springs. Discharges decreased by 5 percent and 33 percent at two springs and increased by 3 percent and 81 percent at two springs. For about the past 10 years, discharges did not significantly change in Burro Spring, the unnamed spring near Dennehotso, and Moenkopi School Spring. The record of discharge from a consistent measuring point for Pasture Canyon Spring is too short for statistical analysis of trends. Continuous records of surface-water discharge have been collected

  3. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  4. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  5. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  6. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  7. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  8. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    Science.gov (United States)

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  9. Sloshing of water in annular pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1979-10-01

    This report presents an analytical investigation of the sloshing response of water in annular-circular as well as simple-circular tanks under horizontal earthquake ground motions, and the results are verified with tests. This study was motivated because of the use of annular tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 120 ft inside and outside diameters and a water depth of 20 ft. The analysis was based upon potential flow theory and a computer program was written to obtain time-history plots of sloshing displacements of water and the dynamic pressures. Tests were carried out on 1/80th and 1/15th scale models under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding the natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found for relatively small displacements. The computer program gave satisfactory results as long as the maximum water surface displacements were less than 30 in., which is roughly the value obtained under full intensity of El Centro earthquake

  10. Groundwater-Surface water interaction in agricultural watershed that encompasses dense network of High Capacity wells

    Science.gov (United States)

    Talib, A.; Desai, A. R.

    2017-12-01

    The Central Sands region of Wisconsin is characterized by productive trout streams, lakes, farmland and forest. However, stream channelization, past wetland drainage, and ground water withdrawals have disrupted the hydrology of this Central Sands region. Climatically driven conditions in last decade (2000-2008) alone are unable to account for the severely depressed water levels. Increased interception and evapotranspiration from afforested areas in central sand Wisconsin may also be culprit for reduced water recharge. Hence, there is need to study the cumulative effects of changing precipitation patterns, groundwater withdrawals, and forest evapotranspiration to improve projections of the future of lake levels and water availability in this region. Here, the SWAT-MODFLOW coupled model approach was applied at large spatio-temporal scale. The coupled model fully integrates a watershed model (SWAT) with a groundwater flow model (MODFLOW). Surface water and ground water flows were simulated integratively at daily time step to estimate the groundwater discharge to the stream network in Central Sands that encompasses high capacity wells. The model was calibrated (2010-2013) and validated (2014-2017) based on streamflow, groundwater extraction, and water table elevation. As the long-term trends in some of the primary drivers is presently ambiguous in Central Sands under future climate, as is the case for total precipitation or timing of precipitation, we relied on a sensitivity student to quantitatively access how primary and secondary drivers may influence future net groundwater recharge. We demonstrate how such an approach could then be coupled with decision-making models to evaluate the effectiveness of groundwater withdrawal policies under a changing climate.

  11. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  12. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  13. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved

  14. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  15. Water resources of the Yadkin-Pee Dee River Basin, North Carolina

    Science.gov (United States)

    Fish, Robert Eugene; LeGrand, H.E.; Billingsley, G.A.

    1957-01-01

    Sufficient water is available in the basin of the Yadkin and Pee Dee Rivers to meet present requirements and those for many years to come if water use increases at about the present rate. Data presented in this report show that the average annual streamflow from approximately 82 percent of the basin area during the 25-year period, 1929-53, was about 6,200 mgd, representing essentially the total available water supply. Comparison of the available water supply to the estimated withdrawal use (excluding water power) of both surface and ground water of 600 mgd indicates the relative utilization of the water resources of the basin at present. If proper pollution controls are observed and practiced so that water in the various streams may be reused several times, the potential water available is even greater than indicated by the above comparison. Preliminary studies indicate that the quantity of water now being withdrawn from ground-water reservoirs in the basin is only a fraction of the total that may be obtained from this source. Twenty-eight of the 64 municipalities having public water-supply systems use surface water; however, as the largest cities in the area use surface supplies, about 85 percent of the water used for public supplies is from surface sources. Of the 20 complete-record stream-gaging stations now in operation in this area 7 have been in operation for 24 years or longer. Periodic measurements of the rate of flow have been made at 31 additional sites on streams scattered widely over the basin. All available streamflow data including those for 1953 are summarized in either graphic or tabular form, or both. Because of the critically low flows occurring during the drought of 1954, several illustrations include data for 1954 and the early months of 1955 for comparison with the minima of previous years. Adequate water for domestic use is available from wells throughout the basin. The consolidated rocks of the Piedmont furnish water for small industries and

  16. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  17. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further

  18. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  19. Sixth national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The 1992 Outdoor Action Conference was comprised of three days of technical presentations, workshops, demonstrations, and an exhibition. The sessions were devoted to the following topics: Vadose Zone Monitoring Technology; Ground Water Monitoring Technology; Ground Water Sampling Technology; Soil and Ground Water Remediation; and Surface and Borehole Geophysics. The meeting was sponsored by the National Ground Water Association. These papers were published exactly as submitted, without technical and grammatical editing or peer review

  20. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  1. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    Science.gov (United States)

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  2. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration

    Science.gov (United States)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin

    2015-04-01

    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  3. Compilation of streamflow statistics calculated from daily mean streamflow data collected during water years 1901–2015 for selected U.S. Geological Survey streamgages

    Science.gov (United States)

    Granato, Gregory E.; Ries, Kernell G.; Steeves, Peter A.

    2017-10-16

    Streamflow statistics are needed by decision makers for many planning, management, and design activities. The U.S. Geological Survey (USGS) StreamStats Web application provides convenient access to streamflow statistics for many streamgages by accessing the underlying StreamStatsDB database. In 2016, non-interpretive streamflow statistics were compiled for streamgages located throughout the Nation and stored in StreamStatsDB for use with StreamStats and other applications. Two previously published USGS computer programs that were designed to help calculate streamflow statistics were updated to better support StreamStats as part of this effort. These programs are named “GNWISQ” (Get National Water Information System Streamflow (Q) files), updated to version 1.1.1, and “QSTATS” (Streamflow (Q) Statistics), updated to version 1.1.2.Statistics for 20,438 streamgages that had 1 or more complete years of record during water years 1901 through 2015 were calculated from daily mean streamflow data; 19,415 of these streamgages were within the conterminous United States. About 89 percent of the 20,438 streamgages had 3 or more years of record, and about 65 percent had 10 or more years of record. Drainage areas of the 20,438 streamgages ranged from 0.01 to 1,144,500 square miles. The magnitude of annual average streamflow yields (streamflow per square mile) for these streamgages varied by almost six orders of magnitude, from 0.000029 to 34 cubic feet per second per square mile. About 64 percent of these streamgages did not have any zero-flow days during their available period of record. The 18,122 streamgages with 3 or more years of record were included in the StreamStatsDB compilation so they would be available via the StreamStats interface for user-selected streamgages. All the statistics are available in a USGS ScienceBase data release.

  4. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  5. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  6. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  7. Classification Scheme for Centuries of Reconstructed Streamflow Droughts in Water Resources Planning

    Science.gov (United States)

    Stagge, J.; Rosenberg, D. E.

    2017-12-01

    New advances in reconstructing streamflow from tree rings have permitted the reconstruction of flows back to the 1400s or earlier at a monthly, rather than annual, time scale. This is a critical step for incorporating centuries of streamflow reconstructions into water resources planning. Expanding the historical record is particularly important where the observed record contains few of these rare, but potentially disastrous extreme events. We present how a paleo-drought clustering approach was incorporated alongside more traditional water management planning in the Weber River basin, northern Utah. This study used newly developed monthly reconstructions of flow since 1430 CE and defined drought events as flow less than the 50th percentile during at least three contiguous months. Characteristics for each drought event included measures of drought duration, severity, cumulative loss, onset, seasonality, recession rate, and recovery rate. Reconstructed drought events were then clustered by hierarchical clustering to determine distinct drought "types" and the historical event that best represents the centroid of each cluster. The resulting 144 reconstructed drought events in the Weber basin clustered into nine distinct types, of which four were severe enough to potentially require drought management. Using the characteristic drought event for each of the severe drought clusters, water managers were able to estimate system reliability and the historical return frequency for each drought type. Plotting drought duration and severity from centuries of historical reconstructed events alongside observed events and climate change projections further placed recent events into a historical context. For example, the drought of record for the Weber River remains the most severe event in the record with regard to minimum flow percentile (1930, 7 years), but is far from the longest event in the longer historical record, where events beginning in 1658 and 1705 both lasted longer

  8. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  9. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    Science.gov (United States)

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  10. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  11. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  12. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  13. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  14. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  15. Susceptibility of ground water to surface and shallow sources of contamination in Mississippi

    Science.gov (United States)

    O'Hara, Charles G.

    1996-01-01

    Ground water, because of its extensive use in agriculture, industry, and public-water supply, is one of Mississippi's most important natural resources.  Ground water is the source for about 80 percent of the total freshwater used by the State's population (Solley and others, 1993).  About 2,600 Mgal/d of freshwater is withdrawn from aquifers in Mississippi (D.E. Burt, Jr., U.S. Geological Survey, oral commun., 1995).  Wells capable of yielding 200 gal/min of water with quality suitable for most uses can be developed nearly anywhere in the State (Bednar, 1988).  The U.S. Geological Survey (USGS), in cooperation with the Mississippi Department of Environmental Quality, Office of Pollution Control, and the Mississippi Department of Agriculture and Commerce, Bureau of Plant Industry, conducted an investigation to evaluate the susceptibility of ground water to contamination from surgace and shallow sources in Mississippi.  A geographic information system (GIS) was used to develop and analyze statewide spatial data layers that contain geologic, hydrologic, physiographic, and cultural information.

  16. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  17. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  18. User's Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hall, L.F.

    1993-05-01

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam reg-sign, a text-based database system, was chosen. WordPerfect 5.1 copyright is being used as a text-editor to input data records into askSam

  19. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  20. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  1. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    Science.gov (United States)

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Selected organic wastewater compounds (OWCs) such as household, industrial, and agricultural-use compounds, pharmaceuticals, antibiotics, and sterols and hormones were measured at 65 sites in Minnesota as part of a cooperative study among the Minnesota Department of Health, Minnesota Pollution Control Agency, and the U.S. Geological Survey. Samples were collected in Minnesota during October 2000 through November 2002 and analyzed for the presence and distribution of 91 OWCs at sites including wastewater treatment plant influent and effluent; landfill and feedlot lagoon leachate; surface water; ground water (underlying sewered and unsewered mixed urban land use, a waste dump, and feedlots); and the intake and finished drinking water from drinking water facilities.

  2. Changes in biological communities of the Fountain Creek Basin, Colorado, 2003–2016, in relation to antecedent streamflow, water quality, and habitat

    Science.gov (United States)

    Roberts, James J.; Bruce, James F.; Zuellig, Robert E.

    2018-01-08

    The analysis described in this report is part of a longterm project monitoring the biological communities, habitat, and water quality of the Fountain Creek Basin. Biology, habitat, and water-quality data have been collected at 10 sites since 2003. These data include annual samples of aquatic invertebrate communities, fish communities, water quality, and quantitative riverine habitat. This report examines trends in biological communities from 2003 to 2016 and explores relationships between biological communities and abiotic variables (antecedent streamflow, physical habitat, and water quality). Six biological metrics (three invertebrate and three fish) and four individual fish species were used to examine trends in these data and how streamflow, habitat, and (or) water quality may explain these trends. The analysis of 79 trends shows that the majority of significant trends decreased over the trend period. Overall, 19 trends before adjustments for streamflow in the fish (12) and invertebrate (7) metrics were all decreasing except for the metric Invertebrate Species Richness at the most upstream site in Monument Creek. Seven of these trends were explained by streamflow and four trends were revealed that were originally masked by variability in antecedent streamflow. Only two sites (Jimmy Camp Creek at Fountain, CO and Fountain Creek near Pinon, CO) had no trends in the fish or invertebrate metrics. Ten of the streamflow-adjusted trends were explained by habitat, one was explained by water quality, and five were not explained by any of the variables that were tested. Overall, from 2003 to 2016, all the fish metric trends were decreasing with an average decline of 40 percent, and invertebrate metrics decreased on average by 9.5 percent. A potential peak streamflow threshold was identified above which there is severely limited production of age-0 flathead chub (Platygobio gracilis).

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project's second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water

  5. Draft programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) is responsible for performing remedial action to bring surface and ground water contaminant levels at 24 inactive uranium processing sites into compliance with the US Environmental Protection Agency (EPA) standards. DOE is accomplishing this through the Uranium Mill Tailings Remedial Action (UMTRA) Surface and Ground Water Projects. Remedial action will be conducted with the concurrence of the US Nuclear Regulatory Commission (NRC) and the full participation of affected states and Indian tribes. Uranium processing activities at most of 24 the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as uranium and nitrate. The purpose of the UMTRA Ground Water Project is to eliminate, or reduce to acceptable levels, the potential health and the environmental consequences of milling activities by meeting the EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance strategies. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently

  6. Advanced investigation on the change in the streamflow into the water source of the middle route of China's water diversion project

    Science.gov (United States)

    She, Dunxian; Xia, Jun; Shao, Quanxi; Taylor, John A.; Zhang, Liping; Zhang, Xiang; Zhang, Yanjun; Gu, Huanghe

    2017-07-01

    To alleviate water shortage in northern China, the middle route of the South to North Water Diversion Project (MRP) was constructed by the Chinese government. A dramatic reduction in the annual streamflow into Danjiangkou Reservoir (ASDR), the water source of MRP, during 1990 has raised some concerns on the MRP's operation. This paper employed an advanced segmented regression model with more recent data to have a clear picture and understand the changing pattern of the ASDR. Our study first revealed a zigzag changing pattern (decreasing-increasing-decreasing-increasing) of ASDR during 1960-2013, which was supported by statistical criteria compared with a monotonic or single abrupt change. Particularly, the significantly decreasing trend from 1990s was reversed after 2000, and such change may relieve the concern about the water availability in the future. Sensitivity analysis showed that changes in streamflow were largely influenced by the combined effects of precipitation (P) and potential evapotranspiration (ET0) and were more sensitive to P than ET0. As ET0 is estimated from other primary variables, further analysis was conducted to understand the sensitivities of ET0 to its primary driving variables (wind speed, actual vapor pressure, temperature, and sunshine duration) and indicated that ET0 is mostly sensitive to actual vapor pressure during 1960-2013. The findings will assist the MRP's operation and management. Moreover, the results in this study also indicate that an adaptive water diversion plan, rather than the current plan with a constant annual amount of diversion water, might be a better option in the MRP's operation.

  7. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  8. Water resources inventory of Connecticut Part 6: Upper Housatonic River basin

    Science.gov (United States)

    Cervione, Michael A.; Mazzaferro, David L.; Melvin, Robert T.

    1972-01-01

    The upper Housatonic River basin report area has an abundant supply of water of generally good quality, which is derived from precipitation on the area and streams entering the area. Annual precipitation has averaged about 46 inches over a 30-year period. Of this, approximately 22 inches of water is returned to the atmosphere each year by evaporation and transpiration; the remainder flows overland to streams or percolates downward to the water table and ultimately flows out of the report area in the Housatonic River or in smaller streams tributary to the Hudson River. During the autumn and winter precipitation normally is sufficient to cause a substantial increase in the amount of water stored in surface reservoirs and in aquifers, whereas in the summer, losses through evaporation and transpiration result in sharply reduced streamflow and lowered ground-water levels. Mean monthly storage of water in November is 2.8 inches more than it is in June. The amount of water that flows into, through, and out of the report area represents the total amount potentially available for use ignoring reuse. For the 30-year period 1931 through 1960, the annual runoff from precipitation has averaged 24 inches (294 billion gallons). During the same period, inflows from Massachusetts and New York have averaged 220 and 64 billion gallons per year, respectively. A total average annual runoff of 578 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is rarely feasible to use all of it. On the other hand, with increased development, some water may be reused several times. The water availability may be tapped as it flows through the area or is temporarily stored in streams, lakes, and aquifers. The amounts that can be developed differ from place to place and time to time, depending on the amount of precipitation, on the size of drainage area, on the thickness, transmissivity, and areal extent of aquifers, and on the

  9. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    Science.gov (United States)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  10. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  11. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  12. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  13. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    Science.gov (United States)

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are

  14. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  15. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  16. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  18. Isolation and characterization of aerobic culturable arsenic resistant bacteria from different water sources such as surface water and ground water in Rautahat, Nepal

    International Nuclear Information System (INIS)

    Shakya, S.; Pradhan, B.; Smth, L.; Shrestha, J.; Tuladhar, S.

    2009-01-01

    Arsenicosis is a problem that is primarily caused by the consumption of arsenic-contaminated water. The different surveys have identified that Terai region in Nepal is at risk of ground water arsenic contamination. With the recent adoption of the 50 part per billion (ppb) of Nepal and 10 ppb by United States Environmental protection agency standard for arsenic in drinking water, it has been estimated that the Rautahat has its share of hotspots that exceeds the level in drinking water. (Author)

  19. Isolation and characterization of aerobic culturable arsenic resistant bacteria from different water sources such as surface water and ground water in Rautahat, Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, S.; Pradhan, B.; Smth, L.; Shrestha, J.; Tuladhar, S.

    2009-07-01

    Arsenicosis is a problem that is primarily caused by the consumption of arsenic-contaminated water. The different surveys have identified that Terai region in Nepal is at risk of ground water arsenic contamination. With the recent adoption of the 50 part per billion (ppb) of Nepal and 10 ppb by United States Environmental protection agency standard for arsenic in drinking water, it has been estimated that the Rautahat has its share of hotspots that exceeds the level in drinking water. (Author)

  20. Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961-2010

    Science.gov (United States)

    Gazoorian, Christopher L.

    2015-01-01

    The lakes, rivers, and streams of New York State provide an essential water resource for the State. The information provided by time series hydrologic data is essential to understanding ways to promote healthy instream ecology and to strengthen the scientific basis for sound water management decision making in New York. The U.S. Geological Survey, in cooperation with The Nature Conservancy and the New York State Energy Research and Development Authority, has developed the New York Streamflow Estimation Tool to estimate a daily mean hydrograph for the period from October 1, 1960, to September 30, 2010, at ungaged locations across the State. The New York Streamflow Estimation Tool produces a complete estimated daily mean time series from which daily flow statistics can be estimated. In addition, the New York Streamflow Estimation Tool provides a means for quantitative flow assessments at ungaged locations that can be used to address the objectives of the Clean Water Act—to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.

  1. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware

    Science.gov (United States)

    Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.

    2018-01-01

    The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.

  2. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  3. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  4. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  5. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  6. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  7. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Bandy, P.J.; Hall, L.F.

    1993-03-01

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG ampersand G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code

  8. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  9. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  10. A strategy for improving pump and treat ground water remediation

    International Nuclear Information System (INIS)

    Hoffman, F.

    1992-07-01

    Established pump and treat ground water remediation has a reputation for being too expensive and time consuming, especially when cleanup standards are set at very low levels, e.g., 50 ft below ground surface) widespread ground water contamination. The perceived shortcomings of pump and treat result from the (1) tendency of most contaminants to sorb to formation materials, thus retarding contaminant removal; (2) geologic complexity, which requires detailed characterization for the design of optimal extraction systems within available resources; and (3) failure to apply dynamic well field management techniques. An alternative strategy for improving pump and treat ground water remediation consists of (1) detailed characterization of the geology, hydrology, and chemistry; (2) use of computer-aided data interpretation, data display, and decision support systems; (3) removal of sources, if possible; (4) initial design for plume containment and source remediation; (5) phased installation of the well field; (6) detailed monitoring of the remediation; (7) active ongoing re-evaluation of the operating well field, including redesign as appropriate (dynamic management); (8) re-injection of treated ground water to speed the flushing of contaminants; and (9) setting of appropriate cleanup levels or goals. Use of some or all of these techniques can dramatically reduce the time required to achieve cleanup goals and thus the cost of ground water remediation

  11. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  12. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  13. How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications

    Science.gov (United States)

    McMillan, Hilary; Seibert, Jan; Petersen-Overleir, Asgeir; Lang, Michel; White, Paul; Snelder, Ton; Rutherford, Kit; Krueger, Tobias; Mason, Robert; Kiang, Julie

    2017-07-01

    Streamflow data are used for important environmental and economic decisions, such as specifying and regulating minimum flows, managing water supplies, and planning for flood hazards. Despite significant uncertainty in most flow data, the flow series for these applications are often communicated and used without uncertainty information. In this commentary, we argue that proper analysis of uncertainty in river flow data can reduce costs and promote robust conclusions in water management applications. We substantiate our argument by providing case studies from Norway and New Zealand where streamflow uncertainty analysis has uncovered economic costs in the hydropower industry, improved public acceptance of a controversial water management policy, and tested the accuracy of water quality trends. We discuss the need for practical uncertainty assessment tools that generate multiple flow series realizations rather than simple error bounds. Although examples of such tools are in development, considerable barriers for uncertainty analysis and communication still exist for practitioners, and future research must aim to provide easier access and usability of uncertainty estimates. We conclude that flow uncertainty analysis is critical for good water management decisions.

  14. In situ influence of coal ash dump on the quality of neighboring surface and ground waters by applying correlation statistic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jasna M. Djinovic; Aleksandar R. Popovic [University of Belgrade, Belgrade (Serbia and Montenegro). Center of Chemistry, Institute of Chemistry, Technology and Metallurgy

    2007-01-15

    The aim of this study was to establish the real in situ influence of coal ash and slag transport and storage on the quality of neighboring surface and ground waters by applying correlation statistic analysis. It was found that the waste waters from the coal ash dump do not have any influence on the quality of the Danube river water. The Danube and the waste waters, however, influence the quality of the ground waters of the Petka spring. Changes in the concentrations of elements in the Danube or in the waste waters can have immediate or delayed impact on the quality of the spring waters. The immediate impact has calcium, magnesium, zinc, copper, vanadium, cobalt from Danube; magnesium, vanadium from overflow and drainage waters; copper from drainage water. And the delayed impact has calcium, magnesium, vanadium and silicon from the Danube waters, cobalt from drainage waters, chromium and silicon from overflow waters and magnesium and vanadium from both overflow and drainage waters. 20 refs., 2 figs., 4 tabs.

  15. GSFLOW model simulations used to evaluate the impact of irrigated agriculture on surface water - groundwater interaction

    Data.gov (United States)

    Department of the Interior — Watershed-scale coupled surface water (SW) – groundwater (GW) flow modeling was used to examine changes in streamflow and SW – GW interaction resulting from...

  16. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  17. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  18. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  19. Southern California Water Bulletin for 1953: General review of the water resources of Southern California for the water year of 1952-53 with special reference to the surface runoff for the water year of 1951-52

    Science.gov (United States)

    Hofman, Walter; Briggs, R.C.; Littlefield, W.M.

    1954-01-01

    This WATER BULLETTIN is one of a series issued annually since June 1944. Its main purpose is to present a brief analysis of those phases of the local water supply associated with the work of the Geological Survey. The first part of this review deals with the water resources for the water year ending September 30, 1953. It contains a brief analysis of the annual precipitation, the provisional runoff at a few stations, the changes in water reserves both in surface reservoirs and underground, and the imported waters. It concludes by pointing out the deficiences in the local water reserves. This bulletin has been prepared by the Surface Water Branch; the section on ground-water conditions was prepared chiefly from information supplied by the Ground Hater Branch.

  20. Dating of ground water: an evaluation of its use in the assessment of HLW repositories

    International Nuclear Information System (INIS)

    Davis, S.N.; Bentley, H.W.; Zito, R.

    1984-01-01

    Dating of ground water is potentially useful in the evaluation of the hydrogeologic hazards associated with proposed repositories for high-level radioactive waste in the following ways: (1) identification of areas of static ground water where regional migration of radionuclides should be minimal; (2) help with the calibration of numerical transport models; (3) estimation of water velocities; (4) help with the prediction of future natural changes in the chemistry of ground water; and (5) help with the interpretation of the Pleistocene history of a region which will have a bearing on the development of hazards not related directly to ground water. Methods judged to be most useful for dating water are hydrodynamic calculations, the use of atmospherically derived radionuclides, and the measurement of the accumulated products of the decay of certain radionuclides. Thus far, the most useful atmospherically derived radionuclide is chlorine-36 with a half-life of about 3 x 10 5 years. Iodine-129, with a half-life of 1.6 x 10 7 years, is potentially useful in dating and tracing some waters older than 5 x 10 6 years. Further study is needed, however

  1. Evaluation of potential impacts of climate change and water management on streamflow in the Rovuma River, Mozambique and Tanzania

    Science.gov (United States)

    Minihane, M.; Lettenmaier, D. P.

    2012-12-01

    Economic development and public health are tied to water resources development in many parts of the world. Effective use of water management infrastructure investments requires projections of future climatic and water use conditions. This is particularly true in developing countries. We explore in this work water resource availability in the Rovuma River, which lies in a sparsely-populated region of southeastern Africa, on the border of Mozambique and Tanzania. While there are only limited documented observations of flow of the Rovuma River and it's tributaries, particularly in recent years, there is widespread interest in development of the water resources of the region. The national governments are interested in hydropower potential while private companies, many of them large multinational organizations, have started irrigation programs to increase agricultural output. While the Mozambique and Tanzania governments have a joint agreement over the river development, there is a need to assess both current and potential future water resource conditions in the basin. The sustainability of these developments, however, may be affected by climate change. Here we quantify potential changes in streamflow in the Rovuma River under dry and wet climate projection scenarios using the delta method and the Variable Infiltration Capacity (VIC) macro-scale hydrology model. We then evaluate streamflow changes relative to water withdrawals required for a range of irrigated agriculture scenarios. Our analysis is intended to be a starting point for planners to consider potential impacts of both streamflow withdrawal permits (for irrigated agriculture) and future uncertain climate conditions.

  2. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  3. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  4. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  5. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    Science.gov (United States)

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    along the Kalamazoo River and Portage Creek are recharged in part from these streams. Locally, however, recharge from the streams is impeded, as their bottoms have become partly sealed by silt and solid waste matter. Water levels fluctuate with seasonal and annual changes in precipitation and in response to pumping. Pumpage by the city of Kalamazoo increased from about 300 million gallons in 1880 to 4.6 billion gallons in 1957. Despite the fact that billions of gallons are pumped annually from well fields in the Axtell Creek area, water levels in this vicinity have declined only a few feet, as the discharge from the fields is approximately compensated by recharge from precipitation and surface water. Pumpage of ground water by industry in 1948 was estimated at about 14 billion gallons, but the use of ground water for industrial purposes has since declined. Aquifer tests indicate that the coefficient of transmissibility of aquifers in the area ranges from as little as 18,000 to as high as 300,000 gpd (gallons per day) per foot, and that ground water occurs under watertable and artesian conditions. The ground water is of the calcium magnesium bicarbonate type. It is generally hard to very hard and commonly contains objectionable amounts of iron. Locally, the water contains appreciable amounts of sulfate. Study of the chemical analyses of waters from the area show that all of the tributaries to the Kalamazoo River are fed primarily by ground-water discharge.

  6. Ground and surface water quality along a dambo transect in Chihota smallholder farming area, Marondera district, Zimbabwe

    Science.gov (United States)

    Wuta, M.; Nyamadzawo, G.; Mlambo, J.; Nyamugafata, P.

    2016-04-01

    In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and

  7. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  8. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  9. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  12. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  13. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  14. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  15. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  16. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  17. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  18. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  19. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  20. Geohydrology, water quality, and simulation of ground-water flow in the vicinity of a former waste-oil refinery near Westville, Indiana, 1997-2000

    Science.gov (United States)

    Duwelius, Richard F.; Yeskis, Douglas J.; Wilson, John T.; Robinson, Bret A.

    2002-01-01

    Geohydrologic and water-quality data collected during 1997 through 2000 in the vicinity of a former waste-oil refinery near Westville, Indiana, define a plume of 1,4-dioxane in ground water that extends to the southwest approximately 0.8 miles from the refinery site. Concentrations of 1,4-dioxane in the plume ranged from 3 to 31,000 micrograms per liter. Ground water containing 1,4-dioxane is discharged to Crumpacker Ditch, approximately one-half mile west of the refinery site. Concentrations of 1,4-dioxane detected in surface water ranged from 8 to 140 micrograms per liter; 1,4-dioxane also is transported in ground water beneath the ditch.

  1. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  2. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  3. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    International Nuclear Information System (INIS)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments

  6. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  7. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, K.; Famiglietti, J. S.; David, C. H.; Reager, J. T., II

    2014-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  8. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    -lying surficial and underlying Upper Floridan aquifers. The Upper Floridan aquifer is present throughout the study area and is extremely permeable and typically capable of transmitting large volumes of water. This high permeability largely is due to the widening of fractures and formation of conduits within the aquifer through dissolu-tion of the limestone by infiltrating water. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes. A model of the Upper Floridan aquifer was created to better understand the ground-water system and to provide resource managers a tool to evaluate ground-water and surface-water interactions in the Suwannee River Basin. The model was developed to simulate a single Upper Floridan aquifer layer. Recharge datasets were developed to represent a net flux of water to the top of the aquifer or the water table during a period when the system was assumed to be under steady-state conditions (September 1990). A potentiometric-surface map representing water levels during September 1990 was prepared for the Suwannee River Water Management District (SRWMD), and the heads from those wells were used for calibration of the model. Additionally, flows at gaging sites for the Suwannee, Alapaha, Withlacoochee, Santa Fe, Fenholloway, Aucilla, Ecofina, and Steinhatchee Rivers were used during the calibration process to compare to model computed flows. Flows at seven first-magnitude springs selected by the SRWMD also were used to calibrate the model. Calibration criterion for matching potentiometric heads was to attain an absolute residual mean error of 5 percent or less of the head gradient of the system which would be about 5 feet. An absolute residual mean error of 4.79 feet was attained for final calibration. Calibration criterion for matching streamflow was based on the quality of measurements made in the field. All measurements used were rated ?good,? so the desire was for simulated values to be wi

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  11. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  12. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    Science.gov (United States)

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  13. Analysis of trends of water quality and streamflow in the Blackstone, Branch, Pawtuxet, and Pawcatuck Rivers, Massachusetts and Rhode Island, 1979 to 2015

    Science.gov (United States)

    Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.

    2017-02-21

    Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for

  14. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  15. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  16. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  17. Analysis of 20th century rainfall and streamflow to characterize drought and water resources in Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.

    2000-01-01

    During the period from 1990 to 1997, annual rainfall accumulation averaged 87% of normal at the 12 stations with the longest period of record in Puerto Rico, a Caribbean island with a 1999 population of 3.8 million. Streamflow in rivers supplying the La Plata and Loíza reservoirs, the principal water supply of the San Juan metropolitan area, was at or below the 10th flow percentile for 27% to 50% of the time between December 1993 and May 1996. Diminished reservoir levels in 1994 and 1995 affected more than 1 million people in the San Juan metropolitan area. Water rationing was implemented during this period and significant agricultural losses, valued at $165 million, were recorded in 1994. The public endured a year of mandatory water rationing in which sections of the city had their water-distribution networks shut off for 24 to 36 hours on alternate days. During the winter and spring of 1997–1998, water was rationed to more than 200,000 people in northwestern Puerto Rico because water level in the Guajataca reservoir was well below normal for two years because of rainfall deficits. The drought period of 1993–1996 was comparable in magnitude to a drought in 1966–1968, but water rationing was more severe during the 1993–1996 period, indicating that water management issues such as demand, storage capacity, water production and losses, and per capita consumption are increasingly important as population and development in Puerto Rico expand. [Key words: drought, streamflow, water resources, Caribbean, Puerto Rico, rainfall, water supply.

  18. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  19. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  20. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  1. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  2. Season-ahead streamflow forecast informed tax strategies for semi-arid water rights markets

    Science.gov (United States)

    Delorit, J. D.; Block, P. J.

    2016-12-01

    In many semi-arid regions multisectoral demands stress available water supplies. The Elqui River valley of north central Chile, which draws on limited capacity reservoirs supplied largely by annually variable snowmelt, is one of these cases. This variability forces water managers to develop demand-based allocation strategies which have typically resulted in water right volume reductions, applied equally per right. Compounding this issue is often deferred or delayed infrastructure investments, which has been linked Chile's Coasian approach to water markets, under which rights holders do not pay direct procurement costs, non-use fees, nor taxes. Here we build upon our previous research using forecasts of likely water rights reductions, informed by season-ahead prediction models of October-January (austral growing season) streamflow, to construct annual, forecast-sensitive, per right tax. We believe this tax, to be borne by right holders, will improve the beneficial use of water resources by stimulating water rights trading and improving system efficiency by generating funds for infrastructure investment, thereby reducing free-ridership and conflict between rights holders. Research outputs will include sectoral per right tax assessments, tax revenue generation, Elqui River valley economic output, and water rights trading activity.

  3. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    derived from Medano and Sand Creeks. Major ion chemistry of water from sites completed in the confined aquifer is different than water from sites completed in the unconfined aquifer, but insufficient data exist to quantify if the two aquifers are hydrologically disconnected. Radiocarbon dating of ground water in the confined aquifer indicates it is about 30,000 years old (plus or minus 3,000 years). The peak of the last major ice advance (Wisconsin) during the ice age occurred about 20,000 years before present; ground water from the confined aquifer is much older than that. Water quality and water levels of the interdunal ponds are not affected by waters from the confined aquifer. Instead, the interdunal ponds are affected directly by fluctuations in the water table of the unconfined aquifer. Any lowering of the water table of the unconfined aquifer would result in an immediate decrease in water levels of the interdunal ponds. The water quality of the interdunal ponds probably results from several factors, including the water quality of the unconfined aquifer, evaporation of the pond water, and biologic activity within the ponds.

  4. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    Science.gov (United States)

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  5. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  6. Missouri StreamStats—A water-resources web application

    Science.gov (United States)

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged

  7. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    Science.gov (United States)

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients

  8. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    approximately 326 square miles. For the most part, the model extent coincides with the 2005 revised extent of the Spokane Valley-Rathdrum Prairie aquifer as defined in a previous report. However, the model excludes Spirit and Hoodoo Valleys because of uncertainties about the ground-water flow directions in those valleys and the degree of hydraulic connection between the valleys and northern Rathdrum Prairie. The SVRP aquifer is considered to be a single hydrogeologic unit except in Hillyard Trough and the Little Spokane River Arm. In those areas, a continuous clay layer divides the aquifer into an upper, unconfined unit and a lower, confined unit. The model includes all known components of inflows to and outflows from the aquifer. Inflows to the SVRP aquifer include (1) recharge from precipitation, (2) inflows from tributary basins and adjacent uplands, (3) subsurface seepage and surface overflows from lakes that border the aquifer, (4) flow from losing segments of the Spokane River to the aquifer, (5) return percolation from irrigation, and (6) effluent from septic systems. Outflows from the SVRP aquifer include (1) ground-water withdrawals from wells, (2) flow from the aquifer to gaining segments of the Spokane River, (3) aquifer discharge to the Little Spokane River, and (4) subsurface outflow from the lower unit at the western limit of the model area near Long Lake. These inflow and outflow components are represented in the model by using MODFLOW-2000 packages. The parameter-estimation program PEST was used to calibrate the SVRP aquifer model. PEST implements a nonlinear least-squares regression method to estimate model parameters so that the differences between measured and simulated quantities are minimized with respect to an optimal criterion. Calibration data include 1,573 measurements of water levels and 313 measurements of streamflow gains and losses along segments of the Spokane and Little Spokane Rivers. Model parameters estimated during calib

  9. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  10. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2003-01-01

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  11. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    Science.gov (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  12. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control.

    Science.gov (United States)

    Zhao, Changsen; Yang, Shengtian; Liu, Junguo; Liu, Changming; Hao, Fanghua; Wang, Zhonggen; Zhang, Huitong; Song, Jinxi; Mitrovic, Simon M; Lim, Richard P

    2018-05-15

    The survival of aquatic biota in stream ecosystems depends on both water quantity and quality, and is particularly susceptible to degraded water quality in regulated rivers. Maintenance of environmental flows (e-flows) for aquatic biota with optimum water quantity and quality is essential for sustainable ecosystem services, especially in developing regions with insufficient stream monitoring of hydrology, water quality and aquatic biota. Few e-flow methods are available that closely link aquatic biota tolerances to pollutant concentrations in a simple and practical manner. In this paper a new method was proposed to assess e-flows that aimed to satisfy the requirements of aquatic biota for both the quantity and quality of the streamflow by linking fish tolerances to water quality criteria, or the allowable concentration of pollutants. For better operation of water projects and control of pollutants discharged into streams, this paper presented two coefficients for streamflow adjustment and pollutant control. Assessment of e-flows in the Wei River, the largest tributary of the Yellow River, shows that streamflow in dry seasons failed to meet e-flow requirements. Pollutant influx exerted a large pressure on the aquatic ecosystem, with pollutant concentrations much higher than that of the fish tolerance thresholds. We found that both flow velocity and water temperature exerted great influences on the pollutant degradation rate. Flow velocity had a much greater influence on pollutant degradation than did the standard deviation of flow velocity. This study provides new methods to closely link the tolerance of aquatic biota to water quality criteria for e-flow assessment. The recommended coefficients for streamflow adjustment and pollutant control, to dynamically regulate streamflow and control pollutant discharge, are helpful for river management and ecosystems rehabilitation. The relatively low data requirement also makes the method easy to use efficiently in developing

  13. Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins

    Science.gov (United States)

    Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.

    1968-01-01

    The lower Thames and southeastern coastal river basins have a relatively abundant supply of water of generally good quality which is derived from streams entering the area and precipitation that has fallen on the area. Annual precipitation has ranged from about 32 inches to 65 inches and has averaged about 48 inches over a 30-year period. Approximately 22 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the report area through estuaries and coastal streams or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the report area, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced stream-flow and lowered ground-water levels. The mean monthly storage of water on an average is about 3.8 inches higher in November than it is in June. The amount of water that flows through and out of the report area represents the total amount of water potentially available for use by man. For the 30-year period 1931 through 1960, the annual runoff from the report area has averaged nearly 26 inches (200 billion gallons), from the entire Thames River basin above Norwich about 24 inches (530 billion gallons), and from the Pawcatuck River basin about 26 inches (130 billion gallons). A total average annual runoff of 860 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is usually not economically feasible for man to use all of it. On the other hand, with increased development, it is possible that some water will be reused several times. The water available may be tapped as it flows through the area or is

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  1. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  2. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  4. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  5. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  6. Evaluation of shallow ground water use in command area of Dhoro Naro minor, Nawabshah

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2002-01-01

    Water supply data shows that the average supply of canal water to minor has been reduced to 30.9 cusecs (1.5 mm/day), which is about 41% (1.19mm/day) short of design supply due to water shortage in the system. To deal with water-short period and increase cultivation, the farmers (water users) have installed around 100 tube wells (from which 90 are functioning) to extract shallow ground water up to a depth of 40-50 feet (12.2-15.24m) having average discharge of tube well is 0.78 cusees (22 litres/sec). The water quality measured of these tube wells ranges between 371-8,858 PPM (0.58-13.9 dS/m). On average 3 hours/acre/week running of private tube wells contributes 0.5 mm/day to over come the shortage of water, which has resulted in 32% cropping intensity against 38% of design cropping intensity in spite of 41% short of designed supply of surface water. Moreover, the water table depth has gone down to an average depth of about 9.5 feet from the ground surface. Study has suggested that the pumping of these tube wells needs to be optimized to keep to water table depth up to 6 feet so as deterioration of shallow ground water be minimized and land be protected from secondary soil salinization. (author)

  7. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    Science.gov (United States)

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  8. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  9. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  10. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  11. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  12. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  13. FACTORS AFFECTING GROUND WATER POLLUTION IN THE MEADOW OF BORCEA ARM

    Directory of Open Access Journals (Sweden)

    Cecilia NEAGU

    2014-04-01

    Full Text Available This paper aims to study the factors leading to water pollution by nitrates in the Meadow of Borcea arm, mainly derived from agricultural sources. mIn oder to model the amount of nitrate nitrogen in the soil, which can be partially used by plants or leached into the ground water, research was made on alluvial soil in the Meadow of Borcea arm. I tried to study in the laboratory the influence of three factors of nitrate nitrogen pollution of ground water: soil type, environmental conditions (temperature and humidity and the amount of mineral fertilizers incorporated. The resulting amount of nitrate nitrogen resulted with nitrogen fertilizer dose, and the temperature and it was affected by humidity especially 40-80% of field capacity.

  14. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    the alluvial aquifer in the vicinity of the river. Flow-path lengths in the large-area flow system were considered to be on the order of hundreds of feet to more than a mile, whereas in the small-area flow system, they were considered to be on the order of feet to hundreds of feet. Mass-balance estimates of incremental ground-water discharge from the large- area flow system ranged from -27 to 17 cubic feet per second per mile in three reaches of the river; the median rate was 4.6 cubic feet per second per mile. The median percentage of surface-water discharge derived from ground-water discharge in the river reaches studied was 13 percent. Instantaneous measurements of ground-water discharge from the small-area flow system ranged from -1,360 to 1,000 cubic feet per second per mile, with a median value of -5.8 cubic feet per second per mile. Hourly measurements of discharge from the small-area flow system indicated that the high rates of discharge were transient and may have been caused by daily fluctuations in river stage due to changing effluent-discharge rates from the Metro Wastewater Reclamation District treatment plant. Higher river stages caused surface water to infiltrate bed sediments underlying the river channel, and lower river stages allowed ground water to discharge into the river. Although stage changes apparently cycled large quantities of water in and out of the small- area flow system, the process probably provided no net gain or loss of water to the river. In general, mass balance and instantaneous measurements of ground-water discharge indicated that the ground- water flow system in the vicinity of the river consisted of a large-area flow system that provided a net addition of water to the river and a small- area flow system that cycled water in and out of the riverbed sediments, but provided no net addition of water to the river. The small-area flow system was superimposed on the large-area flow system. The median values of pH and dissolved oxygen

  15. Statistical analysis of surface-water-quality data in and near the coal-mining region of southwestern Indiana, 1957-80

    Science.gov (United States)

    Martin, Jeffrey D.; Crawford, Charles G.

    1987-01-01

    The Surface Mining Control and Reclamation Act of 1977 requires that applications for coal-mining permits contain information about the water quality of streams at and near a proposed mine. To meet this need for information, streamflow, specific conductance, pH, and concentrations of total alkalinity, sulfate, dissolved solids, suspended solids, total iron, and total manganese at 37 stations were analyzed to determine the spatial and seasonal variations in water quality and to develop equations for predicting water quality. The season of lowest median streamflow was related to the size of the drainage area. Median streamflow was least during fall at 15 of 16 stations having drainage areas greater than 1,000 square miles but was least during summer at 17 of 21 stations having drainage areas less than 1,000 square miles. In general, the season of lowest median specific conductance occurred during the season of highest streamflow except at stations on the Wabash River. Median specific conductance was least during summer at 9 of 9 stations on the Wabash River, but was least during winter or spring (the seasons of highest streamflow) at 27 of the remaining 28 stations. Linear, inverse, semilog, log-log, and hyperbolic regression models were used to investigate the functional relations between water-quality characteristics and streamflow. Of 186 relations investigated, 143 were statistically significant. Specific conductance and concentrations of total alkalinity and sulfate were negatively related to streamflow at all stations except for a positive relation between total alkalinity concentration and streamflow at Patoka River near Princeton. Concentrations of total alkalinity and sulfate were positively related to specific conductance at all stations except for a negative relation at Patoka River near Princeton and for a positive and negative relation at Patoka River at Jasper. Most of these relations are good, have small confidence intervals, and will give reliable

  16. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  17. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  18. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  19. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  20. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  1. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  2. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  3. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  4. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  5. Ground-water reconnaissance of American Samoa

    Science.gov (United States)

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  6. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  7. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  8. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  9. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    Science.gov (United States)

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  10. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  11. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  12. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Cadore, Solange

    2015-01-01

    Barium can be found in waters up to 1 mg L -1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L -1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  13. On the derivation of specific yield and soil water retention characteristics in peatlands from rainfall, microrelief and water level data - Theory and Practice

    Science.gov (United States)

    Dettmann, Ullrich; Bechtold, Michel

    2016-04-01

    Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one

  14. Fiscal Year 1988 program report: Alaska Water Research Center

    International Nuclear Information System (INIS)

    Kane, D.L.

    1990-01-01

    The contents of this study includes: water problems and issues of Alaska; program goals and priorities; research project synopses are: radium levels in, and removal from, ground waters of interior alaska; assessment of stream-flow sediment transport for engineering projects; productivity within deep glacial gravels under subarctic Alaska rivers; nitrogen-cycle dynamics in a subarctic lake; and the use of peat mounds for treatment of household waste water

  15. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  16. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  17. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  18. Streamflow monitoring and statistics for development of water rights claims for Wild and Scenic Rivers, Owyhee Canyonlands Wilderness, Idaho, 2012

    Science.gov (United States)

    Wood, Molly S.; Fosness, Ryan L.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Bureau of Land Management (BLM), collected streamflow data in 2012 and estimated streamflow statistics for stream segments designated "Wild," "Scenic," or "Recreational" under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by BLM to develop and file a draft, federal reserved water right claim in autumn 2012 to protect federally designated "outstanding remarkable values" in the stream segments. BLM determined that the daily mean streamflow equaled or exceeded 20 and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull streamflow are important streamflow thresholds for maintaining outstanding remarkable values. Prior to this study, streamflow statistics estimated using available datasets and tools for the Owyhee Canyonlands Wilderness were inaccurate for use in the water rights claim. Streamflow measurements were made at varying intervals during February–September 2012 at 14 monitoring sites; 2 of the monitoring sites were equipped with telemetered streamgaging equipment. Synthetic streamflow records were created for 11 of the 14 monitoring sites using a partial‑record method or a drainage-area-ratio method. Streamflow records were obtained directly from an operating, long-term streamgage at one monitoring site, and from discontinued streamgages at two monitoring sites. For 10 sites analyzed using the partial-record method, discrete measurements were related to daily mean streamflow at a nearby, telemetered “index” streamgage. Resulting regression equations were used to estimate daily mean and annual peak streamflow at the monitoring sites during the full period of record for the index sites. A synthetic streamflow record for Sheep Creek was developed using a drainage-area-ratio method, because measured streamflows did not relate well to any index site to allow use of the partial

  19. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Graves, H.L.

    1987-01-01

    The basic problem consists of a liner flexible structure situated at or near the surface of a soil half-space. In keeping with typical small strain seismic analyses, the soil skeleton is represented as a linear medium in which all potential nonlinearities are at most lumped together into an equivalent hysteretic damping modulus. In addition, the ground water level is located at some depth relatively close to the structure, and in a position to impact on the seismic response of the facility. In order to estimate the response of this oil-water system, the two-phased medium formulation of Biot was used to treat the response of the solids and water as two separate linear media, coupled together through soil permeability and volume effects. (orig./HP)

  20. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  1. A review of methods for monitoring streamflow for sustainable water resource management

    Science.gov (United States)

    Dobriyal, Pariva; Badola, Ruchi; Tuboi, Chongpi; Hussain, Syed Ainul

    2017-10-01

    Monitoring of streamflow may help to determine the optimum levels of its use for sustainable water management in the face of climate change. We reviewed available methods for monitoring streamflow on the basis of six criteria viz. their applicability across different terrains and size of the streams, operational ease, time effectiveness, accuracy, environmental impact that they may cause and cost involve in it. On the basis of the strengths and weaknesses of each of the methods reviewed, we conclude that the timed volume method is apt for hilly terrain having smaller streams due to its operational ease and accuracy of results. Although comparatively expensive, the weir and flume methods are suitable for long term studies of small hill streams, since once the structure is put in place, it yields accurate results. In flat terrain, the float method is best suited for smaller streams for its operational ease and cost effectiveness, whereas, for larger streams, the particle image velocimetry may be used for its accuracy. Our review suggests that the selection of a method for monitoring streamflow may be based on volume of the stream, accuracy of the method, accessibility of the terrain and financial and physical resources available.

  2. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  3. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    Science.gov (United States)

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples

  4. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  5. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  6. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  7. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  8. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    Science.gov (United States)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  9. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    -Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.

  10. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  11. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  12. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  13. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  14. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    Science.gov (United States)

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  15. 3. SEGMITE International Symposium on Sustainable Development of Surface and Ground Water Resources

    International Nuclear Information System (INIS)

    Tabrez, A.R.

    1999-01-01

    The Society of Economic Geologist and Mineral Technologist (SEGMITE), National Institute of Oceanography (NIO) and Association of Geo-scientists for International Development with the collaboration of Export Promotion Bureau, Government of Pakistan has organised this symposium. The third Segmite International Symposium on Sustainable Development of surface and ground water resources was held on 8-10 march 1999 at Karachi, Pakistan. This book gives the conference information, brochure and abstracts of papers presented in the conference. There are about 38 abstracts submitted for the conference and related nature of the materials. Out of these 38 papers 16 are of nuclear oriented which are presented here separately. (A.B.)

  16. Radioactivity of household water in Finland

    International Nuclear Information System (INIS)

    Salonen, L.; Saxen, R.

    1991-01-01

    A nationwide study on artificial and natural radioactivity in household water has been under way in Finland since the 1960s. The occurrence of artificial radionuclides in the surface water of drainage basins has been monitored extensively. The proportion of household water derived from surface waters in Finland is currently 48 %, but its usage is decreasing whereas that of groundwater is increasing at an annual rate of 1 - 2 %. The natural radioactivity of household water has been studied in almost all of the waters distributed by public waterworks and in 5400 private ground water wells. The downward trend in 90 Sr, 137 Cs and 3 H concentrations in surface water continued from the middle 1960s until the Chernobyl accident. After the accident ten different radionuclides were detected in surface waters, but only 137 Cs made a minor contribution the radiation dose. The maximum effective dose via ingestion of water was about 0.001 mSv in 1986, and considerably lower in the following years

  17. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  18. Annotated bibliography on artificial recharge of ground water, 1955-67

    Science.gov (United States)

    Signor, Donald C.; Growitz, Douglas J.; Kam, William

    1970-01-01

    Artificial ground-water recharge has become more important as water use by agriculture, industry, and municipalities increases. Water management agencies are increasingly interested in potential use of recharge for pollution abatement, waste-water disposal, and re-use and reclamation of locally available supplies. Research projects and theoretical analyses of operational recharge systems show increased scientific emphasis on the practice. Overall ground-water basin management systems generally now contain considerations of artificial recharge, whether by direct or indirect methods. Artificial ground-water recharge is a means of conserving surface runoff for future use in places where it would otherwise be lost, of protecting ground-water basins from salt-water encroachment along coastal areas, and of storing and distributing imported water. The biblio-graphy emphasizes technology; however, annotations of articles on waste-water reclamation, ground-water management and ground-water basin management are included. Subjects closely related to artificial recharge, including colloidal flow through porous media, field or laboratory instrumentation, and waste disposal by deep well injection are included where they specifically relate to potential recharge problems. Where almost the same material has been published in several journals, all references are included on the assumption that some publications may be more readily available to interested persons than others. Other publications, especially those of foreign literature, provided abstracts that were used freely as time limitations precluded obtaining and annotating all materials. Abstracts taken from published sources are noted. These are: "Abstracts of North American Geology," U.S. Department of the Interior, Geological Survey; "Abstracts of Recent Published Material on Foil and Water Conservation," ARS-41 series, Agricultural F.esearch Service, U.S. Department of Agriculture; "Water and1 Water

  19. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  20. Boron content of South African surface waters: prelimenary assessment for irrigation

    International Nuclear Information System (INIS)

    Reid, P.C.; Davies, E.

    1989-01-01

    Boron, a naturally occuring constituent of surface and ground water, is an essential plant nutrient. However, at relatively low concentrations, boron becomes toxic to plant growth. In order to assess the boron status in South African surface waters, the Department of Water Affairs launched a long-term boron water quality assessment programme in 1985, encompassing the analysis of water samples taken at 91 sites throughout South Africa. Results to date indicate that the boron concentration in South African surface waters varies between 0,02 to 0,33 mg l -1 . At these concentrations even the most boron sensitive crops can be grown without fear of boron toxicity. 3 refs., 1 fig., 2 tabs

  1. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts

    Science.gov (United States)

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.

    2010-01-01

    Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed

  2. Ground water input to coastal salt ponds of southern Rhode Island estimated using 226Ra as a tracer.

    Science.gov (United States)

    Scott, M K; Moran, S B

    2001-01-01

    The naturally occurring radionuclide 226Ra (t1/2 = 1600 years) was used as a tracer to determine ground water input to Point Judith, Potter, Green Hill and Ninigret ponds in southern Rhode Island. Measurements of 226Ra activity were made in samples collected from salt ponds, pore waters, sediments, and local ground water wells during June-August, 1997. These results were combined with a simple box model to derive ground water input fluxes of 0.1-0.3 cm3 cm-2 d-1 (2-5 x 10(7) L d-1), which are comparable to previous estimates of ground water input to these ponds.

  3. Natural isotope technique for the exploration and exploitation of ground water

    International Nuclear Information System (INIS)

    Zainal Abidin; Hudi Hastowo; Aang Hanafiah

    2007-01-01

    In line with the condition of climate and hydrology, Indonesia has a fast amount of aquifers which are sources of ground water. In several areas large number of springs occurred with small to large debits which is a sign of ground water potential. Ground water is a potential reservoir to be use at maximum for several purposes such as drinking water, industry and tourism. Large cities such as Jakarta, Bandung and others depend on ground water for their industries and hotels. The exploitation of ground water use has to be controlled and monitoring of a management system have to be done. Research carried out only on the exploitation of geophysics and hydrology showed that the amount of ground water reservoirs is not enough to be used when it comes to justification to explore it. Other parameters are still be needed which are the origins and dating of the ground water, these last two factors mentioned have to be taken into consideration in the system of conversion and balance of water. An alternative technology to determine the two factors mentioned in a short time is the natural isotope technique of 18 O, 2 H and 14 C. This technique is used to determine the origin of water, and isotope 14 C is carried out to determine the age of ground water. Isotopes 18 H and 2 H are stable isotopes in the form of water and is integrated in the hydrological cycle. Their specific concentrations in rain water at several elevations are used as fingerprints to locate the area of ground water supplement and its origin. Isotope 14 C is a natural radioactive isotope with a half-life of 5.730 years and is found in the hydrology cycle and enters the ground water system through CO 2 gas which is dissolved in water. 14 C isotope could determine the age of ground water and is also able to indicate the potential/amount of ground water. Studies of exploration and exploration monitoring of ground water should be an integrated study by geohydrology, geophysics and isotope and could be a solution of

  4. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  5. Pesticide and Water management alternatives to mitigate potential ground-water contamination for selected counties in Utah

    OpenAIRE

    Ehteshami, Majid; Requena, Antonio M.; Peralta, R. C.; Deer, Howard M.; Hill, Robert W.; Ranjha, Ahmad Yar

    1990-01-01

    Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. Although pesticides are necessary in today's agriculture, they can be a serious problem if they reach and contaminate ground water, especially in places where drinking water needs are supplied from ground water. The relative reduction of potential ground-water contamination due to agricultural use of pesticides was analyzed for parti...

  6. Groundwater-surface water relations in the Fox River watershed: insights from exploratory studies in Illinois and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.

    2014-01-01

    Exploratory studies were conducted at sites bordering the Fox River in Waukesha, Wisconsin, during 2010 and McHenry, Illinois, during 2011–13. The objectives of the studies were to assess strategies for the study of and insights into the potential for directly connected groundwater and surface-water systems with natural groundwater discharge to streams diverted and (or) streamflow induced (captured) by nearby production-well withdrawals. Several collection efforts of about 2 weeks or less provided information and data on site geology, groundwater and surface-water levels, hydraulic gradients, water-temperature and stream-seepage patterns, and water chemistry including stables isotopes. Overview information is presented for the Waukesha study, and selected data and preliminary findings are presented for the McHenry study.

  7. Simulated Effects of Seasonal Ground-Water Pumpage for Irrigation on Hydrologic Conditions in the Lower Apalachicola-Chattahoochee-Flint River Basin, Southwestern Georgia and Parts of Alabama and Florida, 1999-2002

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2006-01-01

    To determine the effects of seasonal ground-water pumpage for irrigation, a finite-element ground-water flow model was developed for the Upper Floridan aquifer in the lower Flint River Basin area, including adjacent parts of the Chattahoochee and Apalachicola River Basins. The model simulates withdrawal from the aquifer at 3,280 irrigation, municipal, and industrial wells; stream-aquifer flow between the aquifer and 36 area streams; leakage to and from the overlying upper semiconfining unit; regional ground-water flow at the lateral boundaries of the model; and water-table recharge in areas where the aquifer is at or near land surface. Steady-state calibration to drought conditions of October 1999 indicated that the model could adequately simulate measured groundwater levels at 275 well locations and streamflow gains and losses along 53 reaches of area streams. A transient simulation having 12 monthly stress periods from March 2001 to February 2002 incorporated time-varying stress from irrigation pumpage, stream and lake stage, head in the overlying upper semiconfining unit, and infiltration rates. Analysis of simulated water budgets of the Upper Floridan aquifer provides estimates of the source of water pumped for irrigation. During October 1999, an estimated 127 million gallons per day (Mgal/d) of irrigation pumpage from the Upper Floridan aquifer in the model area were simulated to be derived from changes in: stream-aquifer flux (about 56 Mgal/d, or 44 percent); leakage to or from the upper semiconfining unit (about 49 Mgal/d, or 39 percent); regional flow (about 18 Mgal/d, or 14 percent); leakage to or from Lakes Seminole and Blackshear (about 2.7 Mgal/d, or 2 percent); and flux at the Upper Floridan aquifer updip boundary (about 1.8 Mgal/d, or 1 percent). During the 2001 growing season (May-August), estimated irrigation pumpage ranged from about 310 to 830 Mgal/ d, about 79 percent of the 12-month total. During the growing season, irrigation pumpage was

  8. Sloshing of water in torus pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1978-08-01

    This report presents an analytical and experimental investigation into the sloshing of water in torus tanks under horizontal earthquake ground motions. This study was motivated because of the use of torus tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 140 ft inside and outside diameters, a 30 ft diameter section, and a water depth of 15 ft. A general finite element analysis was developed for all axisymmetric tanks and a computer program was written to obtain time-history plots of sloshing displacements of water and dynamic pressures. Tests were carried out on a 1/60th scale model under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found within the range of displacements studied. The computer program gave satisfactory results within a maximum range of sloshing displacements in the full-size prototype of 30 in. which is greater than the value obtained under the full intensity of the El Centro earthquake (N-S component 1940). The range of linear behavior was studied experimentally by subjecting the torus model to increasing intensities of the El Centro earthquake

  9. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  10. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley Caldera, Mono County, California, USA

    International Nuclear Information System (INIS)

    Farrar, C.D.; Lyster, D.L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. This paper reports that early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by ground-water or geothermal development

  11. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  12. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  13. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  14. Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed

    Science.gov (United States)

    A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller

    2013-01-01

    The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...

  15. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  16. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  17. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  18. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  19. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Delle Site, Luigi [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Ghiringhelli, Luca M [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Andreussi, Oliviero [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy); Donadio, Davide [Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Parrinello, Michele [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy)

    2007-06-20

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the {radical}3 x {radical}3R30{sup o} structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  20. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    International Nuclear Information System (INIS)

    Delle Site, Luigi; Ghiringhelli, Luca M; Andreussi, Oliviero; Donadio, Davide; Parrinello, Michele

    2007-01-01

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the √3 x √3R30 o structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  1. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    Science.gov (United States)

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  4. Collection and corrections of oblique multiangle hyperspectral bidirectional reflectance imagery of the water surface

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.

    2017-10-01

    Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.

  5. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  6. Development of a Remotely Operated, Field-Deployable Tritium Analysis System for Surface and Ground Water Measurement

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Cable, P.R.; Noakes, J.E.; Spaulding, J.D.; Neary, M. P.; Wasyl, M.S.

    1996-01-01

    The environmental contamination resulting from decades of testing and manufacturing of nuclear materials for a national defense purposes is a problem now being faced by the United States. The Center for Applied Isotope Studies at the University of Georgia, in cooperation with the Westinghouse Savannah River Company and Packard Instrument Company, have developed a prototype unit for remote, near real time, in situ analysis of tritium in surface and ground water samples

  7. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  8. Screening models for releases of radionuclides to atmosphere, surface water, and ground -- Work sheets

    International Nuclear Information System (INIS)

    1996-01-01

    Three levels of screening for the atmospheric transport pathways and two levels for surface water are presented. The ground has only one screening level. Level 1 is the simplest approach and incorporates a high degree of conservatism. The estimate of the effective dose for this level assumes a concentration based upon the radionuclide concentration at the point of emission to the environment, i.e., at the stack for atmospheric emissions, at the end of the effluent pipe for liquid effluent releases, and at a well because of the buried radioactive material. Levels 2 and 3 are presented for atmospheric releases, and Level 2 for surface water releases only and are more detailed and correspondingly less conservative. Level 2 screening accounts for dispersion in the atmosphere and in surface waters and combines all recognized pathways into the screening factor. For the atmospheric pathway, Level 3 screening includes more definitive pathways analysis. Should the user be found in compliance on the basis of Level 1 screening, no further calculations are required. If the user fails Level 1, the user proceeds to the next level and checks for compliance. This process is repeated until the user passes screening (is in compliance) or no further screening levels exist. If the user fails the final level, professional assistance should be obtained in environmental radiological assessment. Work sheets are designed to lead the user through screening in a step-by-step manner until compliance is demonstrated or it is determined that more sophisticated methods or expertise are needed. Flow diagrams are provided as a guide to identify key steps in the screening process

  9. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  10. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  11. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  12. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    International Nuclear Information System (INIS)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  15. A strategy for modeling ground water rebound in abandoned deep mine systems.

    Science.gov (United States)

    Adams, R; Younger, P L

    2001-01-01

    Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.

  16. Durability of blended cements in contact with sulfate-bearing ground water

    International Nuclear Information System (INIS)

    Duerden, S.L.; Majumdar, A.J.; Walton, P.L.

    1990-01-01

    In the concept of radioactive waste disposal developed in the UK (United Kingdom), OPC (ordinary portland cement) blended with pulverized fuel ash or ground granulated blastfurnace slag is being considered for encapsulation of waste forms, as a material for backfilling and sealing a repository, and for concrete in repository construction. This paper describes a laboratory study of the long term durability of such cements in contact with sulfate-bearing ground water under accelerated exposure conditions. Mineralogical analysis of the cements over the exposure period, carried out with the aid of scanning electron microscope observations and x-ray diffraction studies, provides an indication of the stability of cementitious phases exposed to an aggressive environment. It is shown that for intact cement blocks there is minimal interaction between cement and sulfate-bearing ground water. Sulfate minerals produced by the reaction are accommodated in voids in the cement with no adverse effect on the cement structure. However, crystallization of C-S-H and sulfate minerals along cracks in hardened cement specimens causes expansion of fracture surfaces resulting in a more accessible route for ground water intrusion and radionuclide migration. The reaction of cement with ground water is greatly accelerated by the use of powdered material. Ettringite formed in the reaction is found to be unstable under these conditions. The mineralogical assemblage after exposure for 1 year is calcite, hydrotalcite, C-S-H and quartz

  17. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  18. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Modeling multisite streamflow dependence with maximum entropy copula

    Science.gov (United States)

    Hao, Z.; Singh, V. P.

    2013-10-01

    Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.

  20. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    Development of ground water for irrigation affects streamflow and water levels in the sand-plain area of central Wisconsin. Additional irrigation development may reduce opportunities for water-based recreation by degrading the streams as trout habitat and by lowering lake levels. This study was made to inventory present development of irrigation in the sand-plain area, assess potential future development, and estimate the effects of irrigation on streamflow and ground-water levels. The suitability of land and the availability of ground water for irrigation are dependent, to a large extent, upon the geology of the area. Rocks making up the ground-water reservoir include outwash, morainal deposits, and glacial lake deposits. These deposits are underlain by crystalline rocks and by sandstone, which act as the floor of the ground-water reservoir. Outwash, the main aquifer, supplies water to about 300 irrigation wells and maintains relatively stable flow in the streams draining the area. The saturated thickness of these deposits is more than 100 feet over much of the area and is as much as 180 feet in bedrock valleys. The saturated thickness of the outwash generally is great enough to provide sufficient water for large-scale irrigation in all but two areas --one near the town of Wisconsin Rapids and one near Dorro Couche Mound. Aquifer tests indicate that the permeability of the outwash is quite high, ranging from about 1,000 gpd per square foot to about 3,800 gpd per square foot, Specific capacities of irrigation wells in the area range from 14 to 157 gpm per foot of drawdown. Water use in the sand-plain area is mainly for irrigation and waterbased recreation. Irrigation development began in the area in the late 1940's, and by 1967 about 19,500 acre-feet of water were pumped to irrigate 34,000 acres of potatoes, snap beans, corn, cucumbers, and other crops. About 70 percent of the applied water was lost to evapotranspiration, and about 30 percent was returned to the