WorldWideScience

Sample records for ground-water transport model

  1. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  2. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  3. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  4. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  5. Application of a soil and ground-water pollutant-transport model

    International Nuclear Information System (INIS)

    Reeves, M.; Duguid, J.O.

    1975-01-01

    A general two-dimensional model was developed for simulation of saturated-unsaturated transport of radionuclides in ground water. This model is being applied to the transport of radionuclides from waste-disposal sites, where field investigations are currently under way to obtain the necessary parameters. A zero-order simulation of a waste-disposal trench is presented. Estimated values of the soil properties have been used since very limited experimental information is available at the present time. However, as more measured values become available from field studies, the simulation will be updated. The end product of this research will be a reliable computer model useful both in predicting future transport of radionuclides from buried waste and in examining control measures if they are shown to be necessary. (U.S.)

  6. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  7. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  8. Review of ground-water flow and transport models in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type.

  9. Review of ground-water flow and transport models in the unsaturated zone

    International Nuclear Information System (INIS)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type

  10. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  11. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  12. An Updated Site Scale Saturated Zone Ground Water Transport Model For Yucca Mountain

    International Nuclear Information System (INIS)

    S. Kelkar; H. Viswanathan; A. Eddebbarrh; M. Ding; P. Reimus; B. Robinson; B. Arnold; A. Meijer

    2006-01-01

    The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated Kd distributions for radionuclides of interest, and updated retardation factor distributions for colloid filtration. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14 C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficient and matrix diffusion coefficients. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters

  13. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  14. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  15. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  16. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  17. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  18. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    Science.gov (United States)

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal

  19. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  20. SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Winston, Richard B.; Voss, Clifford I.

    2004-01-01

    This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned

  1. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. Computer code used: SWIFT II (flow and transport code). 4 figs., 12 refs

  2. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  3. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B; Hunter, R.L.; Pickens, J.F.

    1991-02-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The US Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. 12 refs., 4 figs

  4. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  5. Simplified estimation technique for organic contaminant transport in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Piver, W T; Lindstrom, F T

    1984-05-01

    The analytical solution for one-dimensional dispersive-advective transport of a single solute in a saturated soil accompanied by adsorption onto soil surfaces and first-order reaction rate kinetics for degradation can be used to evaluate the suitability of potential sites for burial of organic chemicals. The technique can be used to the greatest advantage with organic chemicals that are present in ground waters in small amounts. The steady-state solution provides a rapid method for chemical landfill site evaluation because it contains the important variables that describe interactions between hydrodynamics and chemical transformation. With this solution, solute concentration, at a specified distance from the landfill site, is a function of the initial concentration and two dimensionless groups. In the first group, the relative weights of advective and dispersive variables are compared, and in the second group the relative weights of hydrodynamic and degradation variables are compared. The ratio of hydrodynamic to degradation variables can be rearranged and written as (a/sub L lambda)/(q/epsilon), where a/sub L/ is the dispersivity of the soil, lambda is the reaction rate constant, q is ground water flow velocity, and epsilon is the soil porosity. When this term has a value less than 0.01, the degradation process is occurring at such a slow rate relative to the hydrodynamics that it can be neglected. Under these conditions the site is unsuitable because the chemicals are unreactive, and concentrations in ground waters will change very slowly with distance away from the landfill site.

  6. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  7. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs

  8. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    Science.gov (United States)

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  9. A new breed of innovative ground water modeling

    International Nuclear Information System (INIS)

    Gelinas, R.J.; Doss, S.K.; Ziagos, J.; McKereghan, P.; Vogele, T.; Nelson, R.G.

    1995-07-01

    Sparse data is a critical obstacle in every ground water remediation project. Lack of data necessitates non-unique interpolations that can distort modeled distributions of contaminants and essential physical properties (e.g., permeability, porosity). These properties largely determine the rates and paths that contaminants may take in migrating from sources to receptor locations. We apply both forward and inverse model estimates to resolve this problem because coupled modeling provides the only way to obtain constitutive property distributions that simultaneously simulate the flow and transport behavior observed in borehole measurements. Innovations in multidimensional modeling are a key to achieving more effective subsurface characterizations, remedial designs, risk assessments, and compliance monitoring in efforts to accelerate cleanup and reduce costs in national environmental remediations. Fundamentally new modeling concepts and novel software have emerged recently from two decades of research on self-adaptive solvers of partial differential equations (PDEs). We have tested a revolutionary software product, PDEase, applying it to coupled forward and inverse flow problems. In the Superfund cleanup effort at Lawrence Livermore National Laboratory's (LLNL) Livermore Site, the new modeling paradigm of PDEase enables ground water professionals to simply provide the flow equations, site geometry, sources, sinks, constitutive parameters, and boundary conditions. Its symbolic processors then construct the actual numerical solution code and solve it automatically. Powerful grid refinements that conform adaptively to evolving flow features are executed dynamically with iterative finite-element solutions that minimize numerical errors to user-specified limits. Numerical solution accuracy can be tested easily with the diagnostic information and interactive graphical displays that appear as the solutions are generated

  10. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  11. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  12. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  13. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  14. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    and Ridge siliciclastic HGMR and the Locust Grove Watershed in the Coastal Plain Uplands HGMR. A nutrient-reduction scenario was created for East Mahantango Creek, where the average residence time was determined to be approximately 10 years on the basis of the output of particle tracking from a ground-water-flow model. This scenario showed decreases of nearly 50 percent in base-flow concentrations of nitrate in streams within the first year after the reduction in nitrogen input; smaller reductions in nitrate concentration occurred in each subsequent year. A second scenario for that same watershed, in which the same 10-year average residence time was assumed and an exponential model was used for analysis, showed that a 50-percent reduction in base-flow concentrations of nitrate could take up to 5 years. For the Locust Grove Watershed, in which an average residence time of 32 years was assumed, simulation with the exponential model showed that it may take more than 20 years to achieve a 50-percent reduction in base-flow concentra-tions of nitrate. Although it was not possible to construct such scenarios for all watersheds, these examples show the range of possible responses to changes in nutrient inputs in two very different types of watersheds.Findings from this study include information on factors that affect ground-water age, spatial distribution of ages, and nitrogen transport. In the East Mahantango Creek Watershed and the Polecat Creek Watershed, the residence time varied spatially depending on the position of the flow path, and temporally depending on the recharge conditions. Generally, ground water in areas near the stream had short residence times and the water in upland areas had longer residence times. Water traveling through deep layers had longer residence times than water traveling through shallow layers, and residence times were faster under high recharge conditions than low recharge conditions. Ground water in the Pocomoke Watershed exhibits a

  15. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  16. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  17. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  18. Transport of lincomycin to surface and ground water from manure-amended cropland.

    Science.gov (United States)

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  19. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  20. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Science.gov (United States)

    2010-02-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0047] Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of Accidental Radionuclide Releases; Solicitation of Public... ground water flow and transport of accidental radionuclide releases necessary to demonstrate compliance...

  1. Completing the ground-water model: ''We need more data''

    International Nuclear Information System (INIS)

    Rehmeyer, D.L.

    1995-01-01

    Computer modeling of geologic structures and groundwater flow has progressed from simple number crunching in the sixties to sophisticated and complex structure and flow models in the nineties (Hatheway, 1994). In the environmental field, a detailed knowledge of the subsurface geology is required and essential for successful ground-water remediation, planning, and investigations. Current options for determining shallow (0--400 ft) subsurface geology includes standard borings, cone penetrometer, ground penetrating radar (GPR), or resistivity surveys (RS). Standards borings are expensive coverage and the close spacing required for generating accurate model data. The cone penetrometer is less expensive and faster than conventional borings. However, both the cone penetrometer and borings are limited by access and are intrusive, providing additional paths for contaminant migration. While both standard GPR and RS are non-intrusive, they suffer from other limitations. A high conductivity soil (clay) will diminish the effectiveness of GPR. The signal is absorbed and dissipated in the first few inches of high conductivity soil. The depth of penetration of RS is better, but the vertical resolution for distinguishing between finely interbedded layers is much lower. An ideal system for subsurface geologic analysis would be non-intrusive, have the depth of penetration of RS, while offering the vertical resolution of GPR> Electromagnetic methods (EM) offer distinct advantages in helping to solve these problems: (a) they are non-intrusive, and (b) the technology to support EM probing-pulse generation, data collection--is well established. Quaternary Resource Investigations, Inc., (QRI) has developed such a system

  2. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  3. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  4. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    Science.gov (United States)

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  5. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  6. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  7. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  8. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection.The Glen Canyon aquifer within the study area is conceptualized in two parts—an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter.Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  9. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  10. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  11. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Science.gov (United States)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  12. A strategy for modeling ground water rebound in abandoned deep mine systems.

    Science.gov (United States)

    Adams, R; Younger, P L

    2001-01-01

    Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.

  13. Assessment of ground-water flow and chemical transport in a tidally influenced aquifer using geostatistical filtering and hydrocarbon fingerprinting

    International Nuclear Information System (INIS)

    Marquis, S.A. Jr.; Smith, E.A.

    1994-01-01

    Traditional environmental investigations at tidally influenced hazardous waste sites such as marine fuel storage terminals have generally failed to characterize ground-water flow and chemical transport because they have been based on only a cursory knowledge of plume geometry, chemicals encountered, and hydrogeologic setting and synoptic ground-water level measurement. Single-time observations cannot be used to accurately determine flow direction and gradient in tidally fluctuating aquifers since these measurements delineate hydraulic head at only one point in time during a tidal cycle, not the net effect of the fluctuations. In this study, a more rigorous approach was used to characterize flow and chemical transport in a tidally influenced aquifer at a marine fuel storage terminal using: (1) ground-water-level monitoring over three tidal cycles (72 hours), (2) geostatistical filtering of ground-water-level data using 25-hour and 71-hour filtering methods, and (3) hydrocarbon fingerprinting analysis. The results from the study indicate that naphtha released from one of the on-site naphtha tanks has been the predominant contributor to the hydrocarbon plume both on-site and downgradient off-site and that net ground-water and hydrocarbon movement has been to the southeast away from the tank since 1989

  14. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  15. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  16. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  17. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Burillo Montúfar, Juan Carlos; Reyes Cortés, Manuel; Reyes Cortés, Ignacio Alfonso; Espino Valdez, Ma. Socorro; Hinojosa de la Garza, Octavio Raúl; Nevárez Ronquillo, Diana Pamela; Herrera Peraza, Eduardo; Rentería Villalobos, Marusia; Montero Cabrera, María Elena

    2012-01-01

    In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238 U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are R f238 ≈ 250–14,000 for the unsaturated zone and ≈110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

  18. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  19. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    Science.gov (United States)

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams

  20. Transbios - a unified model for assessment of the effect of noxious materials in ground water to the biosphere. Compilation of the model

    International Nuclear Information System (INIS)

    Rejlek, G.

    1992-06-01

    This model of radionuclide propagation in the biosphere is part of the project 'Final Deposition of Low- and Medium- active Wastes from Hospitals, University Institutes and Industry'. The six parts are: a flow-and transport model in ground water, an evaporation-transpiration model, a transfer model soil-to-plant, a water cycle- and a food chain model. Solutions are designed and peculiarities of the program are outlined. Finally the individual parts are integrated into the overall model

  1. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  2. Computer modeling of ground-water flow at the Savannah River Plant

    International Nuclear Information System (INIS)

    Root, R.W. Jr.

    1979-01-01

    Mathematical equations describing ground-water flow are used in a computer model being developed to predict the space-time distribution of hydraulic head beneath a part of the Savannah River Plant site. These equations are solved by a three-dimensional finite-difference scheme. Preliminary calibration of the hydraulic head model has been completed and calculated results compare well with water-level changes observed in the field. 10 figures, 1 table

  3. Ecological transport and radiation doses from ground water borne radioactive matters

    International Nuclear Information System (INIS)

    Bergman, R.; Bergstroem, U.; Evans, S.

    1978-12-01

    Turnover of radioactive matter entering the biosphere with ground water has been studied with regard to exposure and dose to critical groups and populations. The main alternatives considered for outflow of radioactive effluents to the biosphere are: outflow in a valley containing wells, outflow to a fresh-water lake, and outflow in a coastal region of the Baltic Sea. Mathematical models of a set of coupled ecosystems on local, regional- intermediate- and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical analysis, based on first order kinetics for the exchange of matter in a system according to compartment principles, also includes products in decay chains, i.e. daughter nuclides generated by decay of nuclides under ecological cycling. The time dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from reprosessed fuel. Dose and dose commitment have been calculted for different release patterns comprising idealised episodes for outflow to the biosphere during short periods and outflow governed by constant leakage from a source on the border between geosphere and biosphere. (author)

  4. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  5. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  6. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  7. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  8. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  10. Application of the conjugate-gradient method to ground-water models

    Science.gov (United States)

    Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  11. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Bandy, P.J.; Hall, L.F.

    1993-03-01

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG ampersand G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code

  12. Parameter estimation techniques and uncertainty in ground water flow model predictions

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  13. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  14. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  15. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  16. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  17. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  18. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  19. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  20. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  1. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  2. MASCOT user's guide--Version 2.0: Analytical solutions for multidimensional transport of a four-member radionuclide decay chain in ground water

    International Nuclear Information System (INIS)

    Gureghian, A.B.

    1988-07-01

    The MASCOT code computes the two- and three-dimensional space-time dependent convective-dispersive transport of a four-member radionuclide decay chain in unbounded homogeneous porous media, for constant and radionuclide-dependent release, and assuming steady- state isothermal ground-water flow and parallel streamlines. The model can handle a single or multiple finite line source or a Gaussian distributed source in the two-dimensional case, and a single or multiple patch source or bivariate-normal distributed source in the three-dimensional case. The differential equations are solved by Laplace and Fourier transforms and a Gauss-Legendre integration scheme. 33 figs., 3 tabs

  3. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes

  4. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs

  5. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  6. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  7. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  8. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  9. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    Science.gov (United States)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  10. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  11. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  12. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  13. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Dunbar, D.B.; Thackston, J.W.

    1985-10-01

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  14. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  15. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  16. Hydrogeological assessment based on ground water flow modeling around Atbara town

    International Nuclear Information System (INIS)

    Ahmed, S. H. M.

    2010-10-01

    Study area lies in the River Nile state North Central of Sudan between latitudes 17 o 34 - 18 o 00 N and longitudes 33 o 55 - 34 o 43 E. The geological settings of the study area are composed of pre-Cambrian Basement Complex, upper Cretaceous Nubian sandstone formation, Oligocene Hudi Chert, and quaternary superficial deposits in ascending order. Generally there are two main aquifers: shallow or upper aquifer in the alluvial deposits (5 - 37 m thick) and deep or lower aquifer in cretaceous Nubian sand stone (17 - 60 m). The upper aquifer is semi confined, whereas, the lower aquifer is almost confined except in the area around Atbara Town. Hydraulic conductivities of the aquifer varies between 1.89 x 10 -1 to 8.95 x 10 -1 m/min. Most of the water quality in the study area is suitable for domestic, agriculture, and industrial used with the exception of small pockets at Atbara town and some village in West of study area where salinity and contaminations were detected. Generally most of water quality in the study area is fit for human consumption. The ground water flow model of the study area was constricted using 40 column, 50 rows and 3 layers, forming 6000 cells covering the model domain. The model was calibrated using 3D Finite difference visual MODFLOW. The model calibration criteria such as mean absolute error (MAE), root mean square error (RMS) and mass balance error of water into and of out of the system were adjusted to less 1.3, 1.6 m, and 2.5% respectively. The contour maps of the simulated heads produced by visual MODFLOW show fair similarity with the contour map drawn using initial heads which confirm the reliability of Visual MODFLOW application and acceptable model calibration for the problem. As the result of model prediction, the calibration seemed to be more acceptable with average (RMS) of 2.5 m and average absolute mean error (AM) of 1.38 m and average normalized root mean square (NRMS) of (2.02%). Prediction results reflect the increasing of

  17. Evaluation of the matrix exponential for use in ground-water-flow and solute-transport simulations; theoretical framework

    Science.gov (United States)

    Umari, A.M.; Gorelick, S.M.

    1986-01-01

    It is possible to obtain analytic solutions to the groundwater flow and solute transport equations if space variables are discretized but time is left continuous. From these solutions, hydraulic head and concentration fields for any future time can be obtained without ' marching ' through intermediate time steps. This analytical approach involves matrix exponentiation and is referred to as the Matrix Exponential Time Advancement (META) method. Two algorithms are presented for the META method, one for symmetric and the other for non-symmetric exponent matrices. A numerical accuracy indicator, referred to as the matrix condition number, was defined and used to determine the maximum number of significant figures that may be lost in the META method computations. The relative computational and storage requirements of the META method with respect to the time marching method increase with the number of nodes in the discretized problem. The potential greater accuracy of the META method and the associated greater reliability through use of the matrix condition number have to be weighed against this increased relative computational and storage requirements of this approach as the number of nodes becomes large. For a particular number of nodes, the META method may be computationally more efficient than the time-marching method, depending on the size of time steps used in the latter. A numerical example illustrates application of the META method to a sample ground-water-flow problem. (Author 's abstract)

  18. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  19. GRASP [GRound-Water Adjunct Sensitivity Program]: A computer code to perform post-SWENT [simulator for water, energy, and nuclide transport] adjoint sensitivity analysis of steady-state ground-water flow: Technical report

    International Nuclear Information System (INIS)

    Wilson, J.L.; RamaRao, B.S.; McNeish, J.A.

    1986-11-01

    GRASP (GRound-Water Adjunct Senstivity Program) computes measures of the behavior of a ground-water system and the system's performance for waste isolation, and estimates the sensitivities of these measures to system parameters. The computed measures are referred to as ''performance measures'' and include weighted squared deviations of computed and observed pressures or heads, local Darcy velocity components and magnitudes, boundary fluxes, and travel distance and time along travel paths. The sensitivities are computed by the adjoint method and are exact derivatives of the performance measures with respect to the parameters for the modeled system, taken about the assumed parameter values. GRASP presumes steady-state, saturated grondwater flow, and post-processes the results of a multidimensional (1-D, 2-D, 3-D) finite-difference flow code. This document describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. The implementation of GRASP is verified with simple one- and two-dimensional flow problems, for which analytical expressions of performance measures and sensitivities are derived. The linkage between GRASP and multidimensional finite-difference flow codes is described. This document also contains a detailed user's manual. The use of GRASP to evaluate nuclear waste disposal issues has been emphasized throughout the report. The performance measures and their sensitivities can be employed to assist in directing data collection programs, expedite model calibration, and objectively determine the sensitivity of projected system performance to parameters

  20. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    Science.gov (United States)

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steadystate and transient conditions of ground-water flow within a single model layer.The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination.The calibrated steady-state model reproduces long-term average water levels within +5.1 or –3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0

  1. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    Science.gov (United States)

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the

  2. Variable thickness transient ground-water flow model. Volume 3. Program listings

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow

  3. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  4. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  5. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  6. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  7. Ground water contamination analysis by using a fully coupled numerical model

    International Nuclear Information System (INIS)

    Yahya Sukirman; Norhan Abd Rahman; Raihan Ismail

    1999-01-01

    Groundwater contamination in the subsurface is not a new or emerging issue, which can be highly toxic at very low concentrations. It can cause a great damage to our environment and public health. In recent years, accidental oil spill, leaking from underground storage and pipeline are getting more and more attention from various parties. There are very important to improve the understanding of the mobilization, transport mechanism and fate of hydrocarbon in the subsurface in checking the risk of public exposure to the contaminants and in evaluating various remediation scenarios. In this paper, groundwater contamination by nonaqueous phase liquids (NAPLs), such as organic solvents and petroleum hydrocarbons, will be simulated for a multiphase flow, heat flow and pollutant transport phenomenon in a semisaturated porous medium. The governing partial differential equations, in terms of soil displacements, fluid pressures, energy balance and concentrations are coupled and behave non-linearly but can be solved by a numerical method. Finally, the developed finite element model has been applied to analyze the transport behavior of hydrocarbon pollutant in subsurface, which can be used to propose a suitable remedial scheme for the groundwater contamination problems. (Author)

  8. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  9. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  10. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  11. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: Results from thirteen studies across the United States

    Science.gov (United States)

    Puckett, L.J.

    2004-01-01

    During the last two decades there has been growing interest in the capacity of riparian buffer zones to remove nitrate from ground waters moving through them. Riparian zone sediments often contain organic carbon, which favors formation of reducing conditions that can lead to removal of nitrate through denitrification. Over the past decade the National Water Quality Assessment (NAWQA) Program has investigated the transport and fate of nitrate in ground and surface waters in study areas across the United States. In these studies riparian zone efficiency in removing nitrate varied widely as a result of variations in hydrogeologic factors. These factors include (1) denitrification in the up-gradient aquifer due to the presence of organic carbon or other electron donors, (2) long residence times (>50 years) along ground-water flow paths allowing even slow reactions to completely remove nitrate, (3) dilution of nitrate enriched waters with older water having little nitrate, (4) bypassing of riparian zones due to extensive use of drains and ditches, and (5) movement of ground water along deep flow paths below reducing zones. By developing a better understanding of the hydrogeologic settings in which riparian buffer zones are likely to be inefficient we can develop improved nutrient management plans. ?? US Government 2004.

  12. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  13. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  14. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  15. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.

  16. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  17. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  18. Investigation of the behavior of VOCs in ground water across fine- and coarse-grained geological contacts using a medium-scale physical model

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F.; Chiarappa, M.L.

    1998-03-01

    One of the serious impediments to the remediation of ground water contaminated with volatile organic compounds (VOCs) is that the VOCs are retarded with respect to the movement of the ground water. Although the processes that result in VOC retardation are poorly understood, we have developed a conceptual model that includes several retarding mechanisms. These include adsorption to inorganic surfaces, absorption to organic carbon, and diffusion into areas of immobile waters. This project was designed to evaluate the relative contributions of these mechanisms; by improving our understanding, we hope to inspire new remediation technologies or approaches. Our project consisted of a series of column experiments designed to measure the retardation, in different geological media, of four common ground water VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) which have differing physical and chemical characteristics. It also included a series of diffusion parameters that constrain the model, we compared the data from these experiments to the output of a computational model.

  19. Quasi-three-dimensional analysis of ground water flow and dissolved multicomponent solute transport in saturated porous media

    International Nuclear Information System (INIS)

    Tang, Yi.

    1991-01-01

    A computational procedure was developed in this study to provide flexibility needed in the application of three-dimensional groundwater flow and dissolved multicomponent solute transport simulations. In the first part of this study, analytical solutions were proposed for the dissolved single-component solute transport problem. These closed form solutions were developed for homogeneous but stratified porous media. This analytical model took into account two-dimensional diffusion-advection in the main aquifer layer and one-dimensional diffusion-advection in the adjacent aquitards, as well as first order radioactive decay and linear adsorption isotherm in both aquifer and aquitards. The associated analytical solutions for solute concentration distributions in the aquifer and aquitards were obtained using Laplace Transformation and Method of Separation of Variables techniques. Next, in order to analyze the problem numerically, a quasi-three-dimensional finite element algorithm was developed based on the multilayer aquifer concept. In this phase, advection, dispersion, adsorption and first order multi-species chemical reaction terms were included to the analysis. Employing this model, without restriction on groundwater flow pattern in the multilayer aquifer system, one may analyze the complex behavior of the groundwater flow and solute movement pattern in the system. These numerical models may be utilized as calibration tools in site characterization studies, or as predictive models during the initial stages of a typical site investigation study. Through application to several test and field problems, the usefulness, accuracy and efficiency of the proposed models were demonstrated. Comparison of results with analytical solution, experimental data and other numerical methods were also discussed

  20. Danubian lowland - ground water model. Final Report. Vol. 1. Summary Report

    International Nuclear Information System (INIS)

    1995-12-01

    The summary report contains the next parts: (0) Executive summary; (1) Introduction; (2) Project staffing; (3) Project management issues; (4) Establishment of the integrated modelling system; (5) Summary of model application; (6) Conclusions and recommendations; and List of references

  1. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  2. Danubian lowland - ground water model. Final Report. Vol. 1. Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danish Hydraulic Inst. (DK); BV, DHV Consultants [NL; TNO, Inst. of Applied Geoscience (NL); Water Quality Institute (DK); Krueger, I [DK; The Royal Veterinary and Agricultural Univ. (DK); Water Resources Research Institute (SK); Research Institute of Irrigation (SK); Consulting Ltd, Ground Water [SK; Faculty of Natural Sciences, Comenius Univ. (SK)

    1995-12-01

    The summary report contains the next parts: (0) Executive summary; (1) Introduction; (2) Project staffing; (3) Project management issues; (4) Establishment of the integrated modelling system; (5) Summary of model application; (6) Conclusions and recommendations; and List of references. Contains several maps in the parts. figs, tabs, 146 refs.

  3. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  4. Variable thickness transient ground-water flow model. Volume 1. Formulation

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented

  5. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  6. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  7. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  8. Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-10-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.

  9. Removal of heavy-metal pollutants from ground water using a reverse-osmosis/coupled-transport hybrid system

    International Nuclear Information System (INIS)

    Edlund, D.J.; Friesen, D.T.; Ray, R.J.; Scholfield, R.W.

    1993-01-01

    Two membrane processes - reverse osmosis (RO) and coupled transport (CT) - are useful in removing heavy metals from aqueous solutions and producing purified water. Each process has advantages. RO produces clean water reliably and relatively inexpensively. However, the pollutants are removed nonselectively and cannot be appreciably concentrated. CT removes pollutants selectively and can concentrate them by several orders of magnitude, but CT suffers from limited reliability and performs poorly at low pollutant concentrations. By combining these two unit processes in a hybrid process, it is possible to capitalize on the advantages of each process and to minimize their disadvantages. The RO/CT hybrid process the authors are developing removes more than 98% of the uranium and chromium in a contaminated groundwater stream - reducing concentrations of each pollutant to less than 100 ppb. These pollutants are simultaneously recovered as a concentrate at metal-ion concentrations greater than 1 wt% in relatively pure form. The hybrid process promises to be reliable and to reduce treatment costs below that for costs if either CT or RO were used alone. Even more importantly, the high selectivity of the hybrid process minimizes the volume of waste requiring disposal

  10. Chemical mechanisms of /sup 60/Co transport in ground water from intermediate-level liquid waste trench 7: progress report for period ending June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.L.; Crerar, D.A.; Duguid, J.O.

    1976-11-01

    A seep approximately 50 meters east of trench 7 within the ORNL restricted area contains /sup 60/Co in concentrations of 10/sup 4/ to 10/sup 6/ dpm/g in the soil and 10/sup 3/ dpm/ml in the water. Traces of /sup 125/Sb and various transuranics have also been detected in the soil. However, because the volume of water discharge from the seep is small, the total radionuclide contribution from the trench 7 area to White Oak Creek and the Clinch River is insignificant. The /sup 60/Co is transported in the ground-water from the trench to the seep as organic complexes and is absorbed by manganese oxides and to a lesser extent by iron sesquioxides in the shale and soil. In the absence of these organic complexing agents, /sup 60/Co mobilization would be negligible because the sediment absorption capacity for inorganic forms of /sup 60/Co is extremely high. The primary objective of this study has been to investigate /sup 60/Co transport and absorption mechanisms as observed in the study area. Because the organic complexing characteristics of transition metals and transuranics are similar, the mechanisms of /sup 60/Co transport determined in this study may also apply to plutonium and other alpha-emitters. Also the experimental and analytical methods employed in this study apply to the identification of other migrating radionuclide complexes from other disposal trenches and pits at ORNL. The increased knowledge of transport and adsorption mechanisms will provide insight into methods of controlling the movement of radionuclides from these and future disposal areas.

  11. Chemical mechanisms of 60Co transport in ground water from intermediate-level liquid waste trench 7: progress report for period ending June 30, 1975

    International Nuclear Information System (INIS)

    Means, J.L.; Crerar, D.A.; Duguid, J.O.

    1976-11-01

    A seep approximately 50 meters east of trench 7 within the ORNL restricted area contains 60 Co in concentrations of 10 4 to 10 6 dpm/g in the soil and 10 3 dpm/ml in the water. Traces of 125 Sb and various transuranics have also been detected in the soil. However, because the volume of water discharge from the seep is small, the total radionuclide contribution from the trench 7 area to White Oak Creek and the Clinch River is insignificant. The 60 Co is transported in the ground-water from the trench to the seep as organic complexes and is absorbed by manganese oxides and to a lesser extent by iron sesquioxides in the shale and soil. In the absence of these organic complexing agents, 60 Co mobilization would be negligible because the sediment absorption capacity for inorganic forms of 60 Co is extremely high. The primary objective of this study has been to investigate 60 Co transport and absorption mechanisms as observed in the study area. Because the organic complexing characteristics of transition metals and transuranics are similar, the mechanisms of 60 Co transport determined in this study may also apply to plutonium and other alpha-emitters. Also the experimental and analytical methods employed in this study apply to the identification of other migrating radionuclide complexes from other disposal trenches and pits at ORNL. The increased knowledge of transport and adsorption mechanisms will provide insight into methods of controlling the movement of radionuclides from these and future disposal areas

  12. A Graphical-User Interface for the U. S. Geological Survey's SUTRA Code using Argus ONE (for simulation of variable-density saturated-unsaturated ground-water flow with solute or energy transport)

    Science.gov (United States)

    Voss, Clifford I.; Boldt, David; Shapiro, Allen M.

    1997-01-01

    This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.

  13. Finite-element three-dimensional ground-water (FE3DGW) flow model - formulation, program listings and users' manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Bond, F.W.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow

  14. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  15. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  16. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  17. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  18. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  19. Environmental Pathway Models-Ground-Water Modeling in Support of Remedial Decision Making at Sites Contaminated with Radioactive Material

    Science.gov (United States)

    The Joint Interagency Environmental Pathway Modeling Working Group wrote this report to promote appropriate and consistent use of mathematical environmental models in the remediation and restoration of sites contaminated by radioactive substances.

  20. Predicted effects on ground water of construction of Divide Cut section, Tennessee-Tombigbee Waterway, northeastern Mississippi, using a digital model

    Science.gov (United States)

    McBride, Mark S.

    1981-01-01

    The Tennessee-Tombigbee Waterway, connecting the Tennessee River in northeastern Mississippi with the Gulf of Mexico, is currently (1980) under construction. The Divide Section, the northernmost 39 miles of the Waterway, will consist, from north to south, of (1) a dredged channel, (2) the Divide Cut, and (3) an artifical lake impounded by the Bay Springs Dam. In all three , water will be at Tennessee River level. A three-dimensional digital model covering 3,273 square miles was constructed to simulate ground-water flow in the Gordo and Eutaw Formations and the Coffee Sand in the vicinity of the Divide Section. The model was calibrated to preconstruction water levels, then used to simulate the effects of stresses imposed by the construction of the Divide Section. The model indicates that the system stabilizes after major changes in conditions within a few months. The Divide Cut acts as a drain, lowering water levels as much as 55 feet. Drawdowns of 5 feet occur as much as 8 miles from the Cut. The 80-foot-high Bay Springs Dam raises ground-water levels by 5 feet as far as 6 miles from its impoundment. Drawdown is not likely to affect public water supplies significantly, but probably will adversely affect a relatively small number of private wells. (USGS)

  1. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    Science.gov (United States)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also

  2. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    Science.gov (United States)

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  3. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  4. Movement of radionuclides from river to ground water in vicinity of location for nuclear power plant

    International Nuclear Information System (INIS)

    Knezevic, Lj.; Lazic, S.; Vukovic, Z.

    1984-01-01

    The possibility of ground water contamination caused by radionuclide from river water to which liquid effluents were released from a nuclear power station was estimated using one-dimensional transport model. This model is suitable for a homogeneous medium and takes into account hydraulic convection and dispersion as well as physical-chemical retardation for the various radionuclides. (author)

  5. Composite liners protect ground water

    Energy Technology Data Exchange (ETDEWEB)

    Tatzky, R; August, H

    1987-12-01

    For about 10 years flexible membrane liners (FMLs) have been used as bottom liners to protect ground water in the vicinity of waste sites. But a permeation (absorption, diffusion, desorption) of chemical liquids, e.g. hydrocarbons (HC) and chlorinated hydrocarbons (CHC) will generally occur. The rates of permeation depend, first of all, on the chemical affinity, the thickness of the FML and the boundary conditions. In order to improve the barrier quality of polymeric membranes, it is necessary to study the transport processes of HC and CHC through the polymeric materials. Long-term tests with composite liners are additionally carried out. These are liners which consist of two components, flexible membrane and natural soil liner (recompacted clay, bentonite-soil mixtures). Laboratory studies show that with composite liners a perfect sealing of waste sites may be possible. Test methods for measuring permeation rates of HC and CHC through polymeric membranes and methods of testing for the development of composite liner systems are presented. (orig.)

  6. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  7. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  8. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  9. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    International Nuclear Information System (INIS)

    Waddell, R.K.

    1982-01-01

    Characteristics of the flow system are principally determined by locations of low-hydraulic-conductivity rocks (barriers); by amounts of recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by amount of flow into the study area from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Analyses of sensitivity of hydraulic head with respect to model-parameter variations indicate that the flux terms having the greatest impact on model output are recharge on Pahute Mesa, underflow from Gold Flat and Kawich Valley, and discharge at Ash Meadows. The most important transmissivity terms are those for rocks underlying the Amargosa Desert (exclusive of Amargosa Flat area), the Eleana Formation along the west side of Yucca Flat, and the Precambrian and Cambrian clastic rocks underlying the Groom Range. Sensitivities of fluxes derived from simulated heads and head sensitivities were used to determine the parameters that would most affect predictions of radionuclide transport from a hypothetical nuclear repository in the southwest quadrant of the Nevada Test Site. The important parameters for determining flux through western Jackass Flats and Yucca Mountain are recharge to and underflow beneath Pahute Mesa; and transmissivities of the Eleana Formation, clastic rocks underlying the Groom Range, tuffs underlying Fortymile Canyon, and tuffs beneath Yucca Mountain. In the eastern part of Jackass Flats, the important parameters are transmissivities of the Eleana Formation; clastic rocks underlying the Groom Range; transmissivity of tuffs beneath Fortymile Canyon; and recharge or discharge terms for Pahute Mesa, Ash Meadows, and the Sheep Range. Transmissivities of rocks beneath the Amargosa Desert are important for flux calculations there

  10. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  11. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  12. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models.

    Science.gov (United States)

    Shooshtarian, Mohammad Reza; Dehghani, Mansooreh; Margherita, Ferrante; Gea, Oliveri Conti; Mortezazadeh, Shima

    2018-04-01

    This study aggregated Land Change Modeller (LCM) as a useful model in GIS with an extended Groundwater Quality Index (GWQI) developed by fuzzy Multi-Criteria Group Decision-Making models to investigate the effect of land use change and conversion on groundwater quality being supplied for drinking. The model's performance was examined through an applied study in Shiraz, Iran, in a five year period (2011 to 2015). Four land use maps including urban, industrial, garden, and bare were employed in LCM model and the impact of change in area and their conversion to each other on GWQI changes was analysed. The correlation analysis indicated that increase in the urban land use area and conversion of bare to the residential/industrial land uses, had a relation with water quality decrease. Integration of LCM and GWQI can accurately and logically provide a numerical analysis of the possible impact of land use change and conversion, as one of the influencing factors, on the groundwater quality. Hence, the methodology could be used in urban development planning and management in macro level. Copyright © 2018. Published by Elsevier Ltd.

  13. Conversion and comparison of the mathematical, three-dimensional, finite-difference, ground-water flow model to the modular, three-dimensional, finite-difference, ground-water flow model for the Tesuque aquifer system in northern New Mexico

    Science.gov (United States)

    Umari, A.M.; Szeliga, T.L.

    1989-01-01

    The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)

  14. Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone

    Science.gov (United States)

    Lahvis, M.A.; Rehmann, L.C.

    1999-01-01

    The mathematical model, R-UNSAT, developed to simulate the transport of benzene and MTBE in representative sand and clay hydrogeologic systems was evaluated. The effects on groundwater were simulated for small, chronic-, and single-volume releases of gasoline trapped in unsaturated soil. Hydrocarbon biodegradation was simulated by using a dual Monod-type kinetics model that includes oxygen and the reactive constituents. MTBE was assumed to be non-reactive. For MTBE, infiltration had the greatest effect on transport to groundwater. Infiltration also affected mass losses of MTBE to the atmosphere, particularly, in fine-grained soils. Depth to groundwater and soil type primarily affected travel times of MTBE to groundwater, but could affect mass-loading rates to groundwater if infiltration is insignificant. For benzene, transport to groundwater was significant only if the depth to the water table was groundwater were generally smaller for benzene than for MTBE by more than two orders of magnitude. Thus, water that recharges an aquifer beneath a spill can be enriched in MTBE relative to benzene when compared to the composition of water in equilibrium with gasoline.

  15. Assessment of vulnerability zones for ground water pollution using GIS-DRASTIC-EC model: A field-based approach

    Science.gov (United States)

    Anantha Rao, D.; Naik, Pradeep K.; Jain, Sunil K.; Vinod Kumar, K.; Dhanamjaya Rao, E. N.

    2018-06-01

    Assessment of groundwater vulnerability to pollution is an essential pre-requisite for better planning of an area. We present the groundwater vulnerability assessment in parts of the Yamuna Nagar District, Haryana State, India in an area of about 800 km2, considered to be a freshwater zone in the foothills of the Siwalik Hill Ranges. Such areas in the Lower Himalayas form good groundwater recharge zones, and should always be free from contamination. But, the administration has been trying to promote industrialization along these foothill zones without actually assessing the environmental consequences such activities may invite in the future. GIS-DRASTIC model has been used with field based data inputs for studying the vulnerability assessment. But, we find that inclusion electrical conductivity (EC) as a model parameter makes it more robust. Therefore, we rename it as GIS-DRASTIC-EC model. The model identifies three vulnerability zones such as low, moderate and high with an areal extent of 5%, 80% and 15%, respectively. On the basis of major chemical parameters alone, the groundwater in the foothill zones apparently looks safe, but analysis with the help of GIS-DRASTIC-EC model gives a better perspective of the groundwater quality in terms of identifying the vulnerable areas.

  16. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  17. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  18. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  19. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW with a surface runoff model-the Soil Conservation Service (SCS were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2 m(3/m(2/h in the bare slope scenario, while the observed values were 1.54×10(-2 m(3/m(2/h and 0.12×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min, the simulated mean groundwater runoff modulus was 2.82×10(-2 m(3/m(2/h in the bare slope scenario, while the observed volumes were 3.46×10(-2 m(3/m(2/h and 4.91×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  20. M3 version 3.0: Verification and validation; Hydrochemical model of ground water at repository site

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B. (Dept. of Earth Sciences, Univ. of Zaragoza, Zaragoza (Spain)); Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo, Bromma (Sweden)); Gurban, Ioana (3D-Terra (Canada))

    2009-01-15

    Hydrochemical evaluation is a complex type of work that is carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help to quantify the processes in an objective way, a multivariate mathematical tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater, and to calculate the mixing proportions and mass balances from groundwater data. The M3 code is a groundwater response model, which means that changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing proportions (%), while the sinks and sources of an element associated with reactions are reported in mg/L. This report contains a set of verification and validation exercises with the intention of building confidence in the use of the M3 methodology. At the same time, clear answers are given to questions related to the accuracy and the precision of the results, including the inherent uncertainties and the errors that can be made

  1. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  2. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  3. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  4. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  5. Radon determination in ground water

    International Nuclear Information System (INIS)

    Segovia A, N.; Bulbulian G, S.

    1991-08-01

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and 226 Ra- supported 222 Rn. Some of them were also studied for 234 U/ 238 U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  6. Progress toward the development of a ground-water velocity model for the radioactive waste management facility, Savannah River Plant, South Carolina: Quarterly report

    International Nuclear Information System (INIS)

    Parizek, R.R.; Root, R.W. Jr.

    1984-01-01

    This report presents the status and results of work performed to develop a numerical groundwater velocity model for the radioactive waste management facility at the Savannah River Plant (SRP). Work dealt with developing a hydrologic budget for the McQueen Branch drainage basin. Two hydrologic budgets were developed, covering two periods of time. The first period was from November 1, 1982 to May 19, 1984; the second period was from March 1, 1983 to March 31, 1984. Total precipitation for this period was 52.48 inches, all as rainfall. Water levels measured in wells in the basin quarterly, monthly, and continuously showed basically the same response over the period of the study. Maximum fluctuation of water levels of wells in the basin was five to seven feet during the study. Stream discharge measurements in McQueen Branch showed base flow varying between 1.5 and 5.7 cfs. Lowest base flow occurred during the summer, when evapotranspiration was greatest. Some impact of daily ground-water evapotranspiration from the Branch floodplain was seen in continuous stream records. These daily effects peaked in magnitude during the summer, disappeared during winter, and gradually returned during spring. Underflow past the Branch gauging station out of the basin was determined to be negligible. Leakage downward through the Green Clay is difficult to determine but is believed to be small, based on the overall results of the budget study

  7. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  8. Ground water chemistry. Practice oriented guideline for the numerical modelling concerning condition, contamination and remediation of aquatic systems. 2. ed.; Grundwasserchemie. Praxisorientierter Leitfaden zur numerischen Modellierung von Beschaffenheit, Kontamination und Sanierung aquatischer Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Broder J.; Planer-Friedrich, Britta [TU Bergakademie Freiberg (Germany). Inst. fuer Geologie

    2008-07-01

    The second print run of 'ground water chemistry' is supposed to be a practice oriented guideline for a fast introduction into the thermodynamic modeling. Besides a minimum theoretical background the book is focused to practical examples using the computer program PHREEQC. The reprint includes the additional possibilities of the CD-MUSIC concept for surface modeling. Examples concerning reactive mass transport include not only the 1D transport code PGREEQC, but also a 3D example using PHAST und the graphical user interface WPHAST. Uncertainties of thermodynamic data may be modeled using the program LJGUNSKILE. As before detailed descriptions allow the user to reach step by step more complex hydrogeochemical modeling. All of the cited computer codes are compiled on an enclosed CD. [German] Auch die zweite Auflage von 'Grundwasserchemie' bietet als praxisorientierter Leitfaden einen schnellen Einstieg in die thermodynamische Modellierung. Neben einem minimalen theoretischen Hintergrund liegt der Fokus auf praktischen Beispielen mit dem Computerprogramm PHREEQC. In der Neuauflage sind nun zusaetzlich die Moeglichkeiten des CD-MUSIC Konzepts zur Oberflaechenmodellierung erklaert. Beispiele zum reaktiven Stofftransport umfassen nicht nur den 1d Transport in PHREEQC, sondern auch ein 3d Beispiel mittels PHAST und der graphischen Benutzeroberflaeche WPHAST. Unsicherheiten thermodynamischer Daten koennen mit Hilfe des Programms LJGUNSKILE modelliert werden. Wie in der ersten Auflage helfen detaillierte Beschreibungen der Loesungen dem Nutzer, Schritt fuer Schritt von einfachen hin zu immer komplexeren hydrogeochemischen Modellierungen zu gelangen. Alle Programme sowie die Loesungen zu den Aufgaben befinden sich auf der CD zum Buch. (orig.)

  9. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  10. Theoretical aspects on the phenomenon of contamination of ground waters

    International Nuclear Information System (INIS)

    Echeverri, G.E.

    1998-01-01

    The phenomenon of contamination of ground waters and the destination of certain constituents of the water keep in mind diverse mechanisms of physical nature, chemistry and biological; in this work it is consigned in a concise way, the theoretical aspects of these topics, that is to say, the basic principles of the ground water hydraulics, the fundamental concepts of the physics of the movement and the chemistry of the ground water, as well as the equations that govern the phenomenon of contamination of the mass of water contained in the interstices of the floors and the rocks, broadly used in the mathematical modeling of the phenomenon

  11. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  12. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  13. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  14. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    Science.gov (United States)

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  15. User guide for the farm process (FMP1) for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, MODFLOW-2000

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, R.T.; Maddock, Thomas; Leake, S.A.

    2006-01-01

    There is a need to estimate dynamically integrated supply-and-demand components of irrigated agriculture as part of the simulation of surface-water and ground-water flow. To meet this need, a computer program called the Farm Process (FMP1) was developed for the U.S. Geological Survey three-dimensional finite-difference modular ground-water flow model, MODFLOW- 2000 (MF2K). The FMP1 allows MF2K users to simulate conjunctive use of surface- and ground water for irrigated agriculture for historical and future simulations, water-rights issues and operational decisions, nondrought and drought scenarios. By dynamically integrating farm delivery requirement, surface- and ground-water delivery, as well as irrigation-return flow, the FMP1 allows for the estimation of supplemental well pumpage. While farm delivery requirement and irrigation return flow are simulated by the FMP1, the surface-water delivery to the farm can be simulated optionally by coupling the FMP1 with the Streamflow Routing Package (SFR1) and the farm well pumping can be simulated optionally by coupling the FMP1 to the Multi-Node Well (MNW) Package. In addition, semi-routed deliveries can be specified that are associated with points of diversion in the SFR1 stream network. Nonrouted surface-water deliveries can be specified independently of any stream network. The FMP1 maintains a dual mass balance of a farm budget and as part of the ground-water budget. Irrigation demand, supply, and return flow are in part subject to head-dependent sources and sinks such as evapotranspiration from ground water and leakage between the conveyance system and the aquifer. Farm well discharge and farm net recharge are source/sink terms in the FMP1, which depend on transpiration uptake from ground water and other head dependent consumptive use components. For heads rising above the bottom of the root zone, the actual transpiration is taken to vary proportionally with the depth of the active root zone, which can be restricted

  16. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 2. Ground water

    International Nuclear Information System (INIS)

    1984-01-01

    Only one article in the publication is relevant to INIS: Environmental isotopes and hydrochemistry in ground water studies. A very short review is given on the ground water resources of the Kalahari in Gordonia. Ground water in mining exploration and the geophysics of ground water and the methods used in the geophysics are discussed. The dolomitic aquifers, especially in the southern and western Transvaal and ground water models are also reviewed

  17. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  18. Transitions in midwestern ground water law

    International Nuclear Information System (INIS)

    Bowman, J.A.; Clark, G.R.

    1989-01-01

    The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest

  19. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  20. Dating of ground water: an evaluation of its use in the assessment of HLW repositories

    International Nuclear Information System (INIS)

    Davis, S.N.; Bentley, H.W.; Zito, R.

    1984-01-01

    Dating of ground water is potentially useful in the evaluation of the hydrogeologic hazards associated with proposed repositories for high-level radioactive waste in the following ways: (1) identification of areas of static ground water where regional migration of radionuclides should be minimal; (2) help with the calibration of numerical transport models; (3) estimation of water velocities; (4) help with the prediction of future natural changes in the chemistry of ground water; and (5) help with the interpretation of the Pleistocene history of a region which will have a bearing on the development of hazards not related directly to ground water. Methods judged to be most useful for dating water are hydrodynamic calculations, the use of atmospherically derived radionuclides, and the measurement of the accumulated products of the decay of certain radionuclides. Thus far, the most useful atmospherically derived radionuclide is chlorine-36 with a half-life of about 3 x 10 5 years. Iodine-129, with a half-life of 1.6 x 10 7 years, is potentially useful in dating and tracing some waters older than 5 x 10 6 years. Further study is needed, however

  1. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  2. A deterministic-probabilistic model for contaminant transport. User manual

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, F W; Crowe, A

    1980-08-01

    This manual describes a deterministic-probabilistic contaminant transport (DPCT) computer model designed to simulate mass transfer by ground-water movement in a vertical section of the earth's crust. The model can account for convection, dispersion, radioactive decay, and cation exchange for a single component. A velocity is calculated from the convective transport of the ground water for each reference particle in the modeled region; dispersion is accounted for in the particle motion by adding a readorn component to the deterministic motion. The model is sufficiently general to enable the user to specify virtually any type of water table or geologic configuration, and a variety of boundary conditions. A major emphasis in the model development has been placed on making the model simple to use, and information provided in the User Manual will permit changes to the computer code to be made relatively easily for those that might be required for specific applications. (author)

  3. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  4. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  5. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  6. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  7. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  8. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  9. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  10. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  11. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  12. Environmental isotopes as early warning tools to control the abstraction of deep ground waters

    International Nuclear Information System (INIS)

    Seiler, K.P.; Maloszewski, P.; Weise, S.M.; Loosli, H.H.

    1999-01-01

    Early warning system for the exploitation of ground water from the passive zone can not be based on the measurement of pollutant concentrations itself. The environmental tracer data are suggested to be used as indicators for changes in conservative mass transport processes from shallow to deep or very deep to deep ground waters

  13. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  14. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details

    Science.gov (United States)

    Torak, L.J.

    1993-01-01

    A MODular Finite-Element, digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water-flow. The modular structure of MODFE places the computationally independent tasks that are performed routinely by digital-computer programs simulating ground-water flow into separate subroutines, which are executed from the main program by control statements. Each subroutine consists of complete sets of computations, or modules, which are identified by comment statements, and can be modified by the user without affecting unrelated computations elsewhere in the program. Simulation capabilities can be added or modified by either adding or modifying subroutines that perform specific computational tasks, and the modular-program structure allows the user to create versions of MODFE that contain only the simulation capabilities that pertain to the ground-water problem of interest. MODFE is written in a Fortran programming language that makes it virtually device independent and compatible with desk-top personal computers and large mainframes. MODFE uses computer storage and execution time efficiently by taking advantage of symmetry and sparseness within the coefficient matrices of the finite-element equations. Parts of the matrix coefficients are computed and stored as single-subscripted variables, which are assembled into a complete coefficient just prior to solution. Computer storage is reused during simulation to decrease storage requirements. Descriptions of subroutines that execute the computational steps of the modular-program structure are given in tables that cross reference the subroutines with particular versions of MODFE. Programming details of linear and nonlinear hydrologic terms are provided. Structure diagrams for the main programs show the order in which subroutines are executed for each version and illustrate some of the linear and nonlinear versions of MODFE that are possible. Computational aspects of

  15. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  16. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  17. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  18. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  19. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  20. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  1. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  2. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  3. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  4. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  5. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  6. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  7. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  8. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  9. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  10. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  11. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  12. Gas-driven pump for ground-water samples

    Science.gov (United States)

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  13. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  14. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  15. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...... the fracture conditions of the various clay tills. Tests performed at the Danish Geotechnical Institute with large undisturbed columns of clay till show that there is a relation between the strength of the clay till and the hydraulic conductivity. Geotechnical methods may therefore be the key to determine...

  16. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  17. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  18. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  19. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  20. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  1. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  2. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  3. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  4. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  5. Ground water work breakdown structure dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  6. Ground water work breakdown structure dictionary

    International Nuclear Information System (INIS)

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  7. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  8. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  9. A contribution on the problem of ground water pollution

    International Nuclear Information System (INIS)

    Zilliox, L.; Muntzer, P.; Kresser, W.

    1982-01-01

    The authors present the underlying physics of processes relevant to the problem of ground water pollution. A series of models are discussed which include two-dimensional diffusion from a point source of pollution in a uniform homogeneous medium and the modifying effect of inhomogeneities, together with displacement processes for miscible liquids in saturated porous media. In conclusion an account of laboratory and theoretical investigations of these diffusion processes in layered media of different permeabilities is given. (J.R.B.)

  10. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  11. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  12. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  13. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  16. Simplified model for radioactive contaminant transport: the TRANSS code

    International Nuclear Information System (INIS)

    Simmons, C.S.; Kincaid, C.T.; Reisenauer, A.E.

    1986-09-01

    A simplified ground-water transport model called TRANSS was devised to estimate the rate of migration of a decaying radionuclide that is subject to sorption governed by a linear isotherm. Transport is modeled as a contaminant mass transmitted along a collection of streamlines constituting a streamtube, which connects a source release zone with an environmental arrival zone. The probability-weighted contaminant arrival distribution along each streamline is represented by an analytical solution of the one-dimensional advection-dispersion equation with constant velocity and dispersion coefficient. The appropriate effective constant velocity for each streamline is based on the exact travel time required to traverse a streamline with a known length. An assumption used in the model to facilitate the mathematical simplification is that transverse dispersion within a streamtube is negligible. Release of contaminant from a source is described in terms of a fraction-remaining curve provided as input information. However, an option included in the code is the calculation of a fraction-remaining curve based on four specialized release models: (1) constant release rate, (2) solubility-controlled release, (3) adsorption-controlled release, and (4) diffusion-controlled release from beneath an infiltration barrier. To apply the code, a user supplies only a certain minimal number of parameters: a probability-weighted list of travel times for streamlines, a local-scale dispersion coefficient, a sorption distribution coefficient, total initial radionuclide inventory, radioactive half-life, a release model choice, and size dimensions of the source. The code is intended to provide scoping estimates of contaminant transport and does not predict the evolution of a concentration distribution in a ground-water flow field. Moreover, the required travel times along streamlines must be obtained from a prior ground-water flow simulation

  17. Development of a thermal hydraulic modelling of ground water of the Malm in the Munich metropolitan area; Entwicklung einer thermisch-hydraulischen Grundwassermodellierung des Malm im Grossraum Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Dussel, M.; Lueschen, E.; Thomas, R. [Leibniz-Institut fuer Angewandte Geophysik, Hannover (DE)] (and others)

    2011-10-24

    The mutual potential influence of geothermal duplicates and the scientific investigation of the relationship between seismic and hydraulic parameters are investigated in the joint research project 'Geothermal characterization of fractured karst limestone aquifers in the Munich metropolitan area'. Thirteen doublets and triplets being in production or sunk illustrate the great geothermal potential and provide important data on the development of a thermal-hydraulic modeling of the reservoir. 3D seismic Unterhaching, 3D structural model, hydrogeological model and a high-resolution 3D temperature model form the basis of the numerical modeling. Different seismic signatures, seismic attributes and variations in the interval velocities characterize the ground geophysically, and were interpreted under consideration of geological and hydrogeological background information as well as borehole measurements in terms of hydraulically conductive homogeneous areas. For the Munich metropolitan area, the numerical modeling is a decision aid for the future optimized and sustainable hydrothermal utilization of the Malm aquifer.

  18. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  19. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual

  20. Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil

    Science.gov (United States)

    Nordstrom, D. Kirk; McNutt, R.H.; Puigdomenech, I.; Smellie, John A.T.; Wolf, M.

    1992-01-01

    Surface and ground waters, collected over a period of three years from the Osamu Utsumi uranium mine and the Morro do Ferro thorium/rare-earth element (Th/REE) deposits, were analyzed and interpreted to identify the major hydrogeochemical processes. These results provided information on the current geochemical evolution of ground waters for two study sites within the Poços de Caldas Natural Analogue Project.

  1. Activation analysis of ground water of Chandigarh

    International Nuclear Information System (INIS)

    Mittal, V.K.

    1997-01-01

    Ground water samples from Chandigarh were analysed for 22 trace elements using neutron activation analysis (NAA) technique. These samples were drawn from shallow aquifers using hand pumps. It was found that for most of the elements the concentrations were well within the ISI/WHO recommended values. However, samples collected from the industrial belt of the city showed higher concentrations of trace elements, particularly some toxic ones. (author). 6 refs., 1 tab

  2. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  3. Ground-water reconnaissance of American Samoa

    Science.gov (United States)

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  4. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  5. Environmental isotope observations on Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    Environmental isotope measurements have been conducted on the outputs of some of the main dewatering points in both north and south mining areas as well as on numerous other observation points in the Sishen compartment. The effect of the dykes bounding the compartment could be observed from the behaviour of the isotopic composition of ground waters in the conduit zone. Measurements were done on radiocarbon, tritium oxygen-18 and carbon-13

  6. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  7. Reading Ground Water Levels with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  8. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  9. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    possible range of values that need to be considered. Tritium measurements confirm that the recent ground water type, originally identified on the basis of deuterium and chloride measurements, contains a significant proportion of recent, post-1950, water. Better tritium analyses, together with a greater number of carbon-13 analyses on dissolved inorganic carbon, would have helped interpret the carbon-14 analyses that were obtained primarily from relatively shallow ground waters (< 500 m depth). The SITE-94 Central Scenario climate model suggests that three glaciations may occur in the Northern Hemisphere during the next 120,000 years. If such glaciations do occur, possible climate-driven changes in ground-water geochemistry, particularly in redox conditions, could occur in the Fennoscandian shield. During two of these glaciations, 2- to3-km high ice sheets are predicted to form over the Fennoscandian shield, extending over Aespoe island and further south. Modeling of ground-water flow and transport suggests the possibility of deep and fast penetration of glacial melt waters during periods of glacial advance. The intruding melt waters have a median travel time of less than 100 years to 500 m depth. Ice composition data from the base of the Greenland ice sheet suggests that the melt waters will be highly enriched in dissolved oxygen, with concentrations at least 3 to 5 times higher than would be obtained at atmospheric equilibrium. The relative scarcity of fast-reacting pyrite in hydraulically conductive fractures, and the expected scarcity of organic carbon that would be exposed to the intruding melt waters, implies that Fe(II)-rich silicate minerals would be the primary reductants for the intruding dissolved oxygen. Current information suggests that the reaction rates would not be sufficiently fast to prevent penetration of oxygenated melt waters to a depth of at least 500 m. Despite clear evidence of past, deep, glacial meltwater penetration, convincing geochemical

  10. A three-dimensional ground-water-flow model modified to reduce computer-memory requirements and better simulate confining-bed and aquifer pinchouts

    Science.gov (United States)

    Leahy, P.P.

    1982-01-01

    The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)

  11. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  12. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  13. Ground water in Creek County, Oklahoma

    Science.gov (United States)

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  14. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  15. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  16. Ground water input to coastal salt ponds of southern Rhode Island estimated using 226Ra as a tracer.

    Science.gov (United States)

    Scott, M K; Moran, S B

    2001-01-01

    The naturally occurring radionuclide 226Ra (t1/2 = 1600 years) was used as a tracer to determine ground water input to Point Judith, Potter, Green Hill and Ninigret ponds in southern Rhode Island. Measurements of 226Ra activity were made in samples collected from salt ponds, pore waters, sediments, and local ground water wells during June-August, 1997. These results were combined with a simple box model to derive ground water input fluxes of 0.1-0.3 cm3 cm-2 d-1 (2-5 x 10(7) L d-1), which are comparable to previous estimates of ground water input to these ponds.

  17. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  18. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  19. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    International Nuclear Information System (INIS)

    Asrari, E.; Masoudi, M.

    2009-01-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  20. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  1. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  2. Plutonium radionuclides in the ground waters at Enewetak Atoll

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Marsh, K.; Eagle, R.; Holladay, G.; Buddemeier, R.W.

    1975-01-01

    In 1974 a groundwater program was initiated at Eniwetok Atoll to study systematically the hydrology and the ground water geochemistry on selected islands of the Atoll. The program provides chemical and radiochemical data for assessment of water quality on those islands designated for rehabilitation. These and other data are used to interpret the mechanisms by which radionuclides are cycled in the soil-groundwater system. Because of the international concern over the long-term buildup, availability, and transport of plutonium in the environment, this program emphasizes analysis of the element. The results of the study show that on all islands sampled, small quantities of plutonium radionuclides have migrated through the soil columns and are redistributed throughout the groundwater reservoirs. The observed maximum surface concentrations are less than 0.02 percent of the maximal recommended concentration for drinking water. Concentrations of 137 Cs are found to correlate with water freshness, but those of 239 , 240 Pu show no such relationship. The mechanisms moving 239 , 240 Pu through the ground water reservoirs are independent of the processes controlling the cycling of 137 Cs and fresh water. A reasonable linear correlation is found between mean surface-water concentrations and soil burdens. This indicates that the quantities of 239 , 240 Pu migrating to the groundwater surface layers are, to a first approximation, independent of the physical, chemical or biological characteristics of the islands. (auth)

  3. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  4. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  5. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  6. Cost-effective sampling of ground water monitoring wells. Revision 1

    International Nuclear Information System (INIS)

    Ridley, M.; Johnson, V.

    1995-11-01

    CS is a systematic methodology for estimating the lowest-frequency sampling schedule for a given groundwater monitoring location which will still provide needed information for regulatory and remedial decision-making. Increases in frequency dictated by remedial actions are left to the judgement of personnel reviewing the recommendations. To become more applicable throughout the life cycle of a ground water cleanup project or for compliance monitoring, several improvements are envisioned, including: chemical signature analysis to identify minimum suites of contaminants for a well, a simple flow and transport model so that sampling of downgradient wells are increased before movement of contamination, and a sampling cost estimation capability. By blending qualitative and quantitative approaches, we hope to create a defensible system while retaining interpretation ease and relevance to decision making

  7. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  8. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  11. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  12. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  13. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  14. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  15. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    Science.gov (United States)

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  16. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  17. Non-stationary open-flow filtration of ground waters at the Pripyat'-Dnieper inter river

    International Nuclear Information System (INIS)

    Tarapon, A.G.

    1989-01-01

    Consideration is given to filtration of ground waters into rivers and to effect of drainage devices. Investigations were conducted with use of modelling of planned and profile filtration of ground waters at the electric models. Efficiency of engineering protection facilities suggested, was studied to prevent contamination of water intakes. Modelling shown, that contamination washing out process was in a cycle character with 1 year period. Use of drainage canal with the water level 0.8 m lower than in the river, is an effective way to prevent filtration of ground waters into the Pripyat' and the Dnieper from the upper open-flow aquiver

  18. Ground water quality evaluation in Beed city, Maharashtra, India ...

    African Journals Online (AJOL)

    A survey was undertaken to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical and bacteriological parameters into consideration. The present investigation is aimed to calculate Water Quality Index (WQI) of ground water and to assess the impact of pollutants due to agriculture ...

  19. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  20. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  1. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  2. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  3. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  4. MIGFRAC - a code for modelling of radionuclide transport in fracture media

    International Nuclear Information System (INIS)

    Satyanarayana, S.V.M.; Mohankumar, N.; Sasidhar, P.

    2002-05-01

    Radionuclides migrate through diffusion process from radioactive waste disposal facilities into fractures present in the host rock. The transport phenomenon is aided by the circulating ground waters. To model the transport of radionuclides in the charnockite rock formations present at Kalpakkam, a numerical code - MIGFRAC has been developed at SHINE Group, IGCAR. The code has been subjected to rigorous tests and the results of the build up of radionuclide concentrations are validated with a test case up to a distance of 100 meter along the fracture. The report discusses the model, code features and the results obtained up to a distance of 400 meter are presented. (author)

  5. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    Science.gov (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  6. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  7. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  8. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  9. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  10. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    that need to be considered. Tritium measurements confirm that the recent ground water type, originally identified on the basis of deuterium and chloride measurements, contains a significant proportion of recent, post-1950, water. Better tritium analyses, together with a greater number of carbon-13 analyses on dissolved inorganic carbon, would have helped interpret the carbon-14 analyses that were obtained primarily from relatively shallow ground waters ( 2 H, 18 O) that may provide information on the origin of ground waters and also on the hydrologic disturbances induced by sampling, testing and excavation activities. Dissolved gas and dissolved gas isotopic analyses should also be conducted to obtain further information on ground-water origin, recharge temperatures, flow-wetted surface areas, and ground-water residence times. Many other isotopic analyses may also be of use in evaluating ground-water residence times and transport properties and these should also be conducted where appropriate. Greater efforts should be placed on the mineralogical, chemical and isotopic characterization of fracture filling materials. The chemical, isotopic and mineralogical composition of solid materials should be examined because of the possibility that they may contain a record of past changes in the ground-water environment

  11. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  12. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  13. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  14. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  15. Ground water impact assessment report for the 216-B-3 Pond system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

    1995-01-01

    Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts

  16. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    Science.gov (United States)

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Water-quality and geohydrologic data were collected from 19 monitor wells and a stream in an agricultural area in southeastern Wisconsin. These sites were located along a 2,700-ft transect from a local ground-water high to the stream. The transect is approximately parallel to the horizontal direction of ground-water flow at the water table. Most of the wells were installed in unconsolidated deposits at five locations along the transect and include an upgradient well nest, a midgradient well nest, a downgradient well nest, wells in the lowland area near the stream, and wells installed in the stream bottom. The data collected from this study site were used to describe the water quality and geohydrology of the area and to explain and model the variations in water chemistry along selected ground-water flowpaths.

  17. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  18. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  19. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  20. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  1. Ground water in the Piedmont upland of central Maryland

    Science.gov (United States)

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  2. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  3. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  4. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  5. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  6. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  7. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  8. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  9. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  10. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  11. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  12. ground water quality evaluation in beed city, maharashtra, india

    African Journals Online (AJOL)

    Khatib Afsar

    2013-12-18

    Dec 18, 2013 ... to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical .... All ideal value s (Vio) are taken as zero for the drinking water ..... Conference: Ustron, Poland, 2004, Routledge, New York.

  13. Bacteriological investigation of ground water sources in selected ...

    African Journals Online (AJOL)

    cml

    2012-06-16

    Jun 16, 2012 ... Microbial contamination of ground water sources is a common problem in all the big cities, which endangers ... include leakage of pipes, pollution from sewerage pipes ..... and Quality Control Authority, Karachi, Pakistan.

  14. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  15. Contamination of Ground Water Due To Landfill Leachate

    OpenAIRE

    M. V. S. Raju

    2012-01-01

    The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations ...

  16. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  17. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  18. Accommodating ground water velocity uncertainties in the advection-dispersion approach to geologic nuclear waste migration

    International Nuclear Information System (INIS)

    Thomas, G.F.

    1994-01-01

    This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)

  19. Ground-water, surface-water, and water-chemistry data, Black Mesa Area, northeastern Arizona: 2000-2001, and performance and sensitivity of the 1988 USGS numerical model of the N aquifer

    Science.gov (United States)

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2000, total ground-water withdrawals were 7,740 acre-feet, industrial use was 4,490 acre-feet, and municipal use was 3,250 acre-feet. From 1999 to 2000, total withdrawals increased by 9 percent, industrial use increased by 7 percent, and municipal use increased by 12 percent. From 1999 to 2001, water levels declined in 10 of 15 wells in the unconfined part of the aquifer, and the median change was -0.4 foot. Water levels declined in 8 of 16 wells in the confined part of the aquifer, and the median change was -0.2 foot. From the prestress period (prior to 1965) to 2001, the median water-level change for 33 wells was -17.2 feet. Median water-level changes were -1.2 feet for 15 wells in the unconfined part of the aquifer and -31.0 feet for 18 wells in the confined part. Discharges were measured once in 1999 and once in 2001 at four springs. Discharges decreased by 5 percent and 33 percent at two springs and increased by 3 percent and 81 percent at two springs. For about the past 10 years, discharges did not significantly change in Burro Spring, the unnamed spring near Dennehotso, and Moenkopi School Spring. The record of discharge from a consistent measuring point for Pasture Canyon Spring is too short for statistical analysis of trends. Continuous records of surface-water discharge have been collected

  20. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  1. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  2. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    Science.gov (United States)

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  3. Atmospheric and radiogenic gases in ground waters from the Stripa granite

    International Nuclear Information System (INIS)

    Andrews, J.N.; Hussain, N.; Youngman, M.J.

    1989-01-01

    Ground waters from depths of 350 m to 1,250 m in the Stripa granite contain dissolved radiogenic He in amounts up to 50,000 times that due to air-saturation. The groundwater He-contents increase with depth and lie close to the expected profile for He loss by aqueous diffusion (D = 0.032 m 2 a -1 ). Measurements on core samples show that the rock has retained about 10% of the possible cumulative radiogenic He and that this component is lost by matrix diffusion (D = 5 x 10 -7 m 2 a -1 ). Diffusive equilibrium between He in fracture fluids and in the adjacent rock matrix is rapidly established for the narrow fracture widths of the flow system. A major loss of stored He by both diffusion and advection along fluid-filled fractures is attributed to the proximity of a major fraction of uranium to the aqueous flow system because of its deposition within an interconnective microfracture system. The crustal flux of He is limited by its diffusion coefficient in the matrix of a granitic crust but may be supplemented by transport due to fluid circulation. The 3 He/ 4 He ratio of the excess He present in the Stripa ground waters, corresponds to that expected for radiogenic He production within the granite. The 40 Ar/ 36 Ar ratio of dissolved Ar shows that radiogenic 40 Ar has been released from the rock matrix, especially for ground waters from greater than 450 m depth. Slow alteration reactions are the most probable cause of this radiogenic 40 Ar release which has occurred in the more saline ground waters. Groundwater recharge temperatures, estimated from their noble gas contents, are about 3 degree C lower than those for modern shallow ground waters in the locality and are related to the stable isotope composition of the groundwater

  4. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    Science.gov (United States)

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway-from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 microg L(-1), in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows.

  5. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Science.gov (United States)

    Taylor, George C.

    1971-01-01

    Hydrologic instrumentation and methodology for assessing water-resource potentials have originated largely in the developed countries of the temperature zone. The developing countries lie largely in the tropic zone, which contains the full gamut of the earth's climatic environments, including most of those of the temperate zone. For this reason, most hydrologic techniques have world-wide applicability. Techniques for assessing water-resource potentials for the high priority goals of economic growth are well established in the developing countries--but much more are well established in the developing countries--but much more so in some than in other. Conventional techniques for measurement and evaluation of basic hydrologic parameters are now well-understood in the developing countries and are generally adequate for their current needs and those of the immediate future. Institutional and economic constraints, however, inhibit growth of sustained programs of hydrologic data collection and application of the data to problems in engineering technology. Computer-based technology, including processing of hydrologic data and mathematical modelling of hydrologic parameters i also well-begun in many developing countries and has much wider potential application. In some developing counties, however, there is a tendency to look on the computer as a panacea for deficiencies in basic hydrologic data collection programs. This fallacy must be discouraged, as the computer is a tool and not a "magic box." There is no real substitute for sound programs of basic data collection. Nuclear and isotopic techniques are being used increasingly in the developed countries in the measurement and evaluation of virtually all hydrologic parameter in which conventional techniques have been used traditionally. Even in the developed countries, however, many hydrologists are not using nuclear techniques, simply because they lack knowledge of the principles involved and of the potential benefits

  6. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  7. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  8. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  9. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    Science.gov (United States)

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  10. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  11. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  12. Simulation of ground water contamination by tritium: Application to a Moroccan Site

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Nacir, B.; Ziagos, J.; Demir, Z.; Hajjani, A.

    2006-01-01

    Tritium is a radioactive element. Its movement in the environment depends on the chemical forms that it takes. Tritiated water is one of this forms. The infiltration of tritiated water can causes contamination of the environment and the underground water. In this context, we have taken into account a waste contaminated by Tritium and stored in the surface of the soil. We studied the impact of an infiltration of a unit activity of this radioelement in the Moroccan site of Maamora localized in the Rharb region. The principal objective of the work presented in this paper is to give necessary information for the site environmental surveillance program establishment. The assessment is based on the characteristics of the site considered. It is carried out using the methodology taken into account in the Lawrence Livermore National Laboratory (LLNL) for the pollutant transport simulation in the unsaturated zone (between the soil and underground water). This methodology is based on the mathematical model called NUFT[1,2] witch is a unified suite of multiphase, multicomponent models for numerical solution of non-isothermal flow and transport in porous media with application to subsurface contaminant transport problems. NUFT have been developed in LLNL (Livermore-USA). Considering a quantity of one Curie of Tritium and considering the assumptions of impact assessments of the radioactivity on the Maamora ground water, the concentration of this radionuclide in water, will be lower than 0,4% of the acceptable Tritium limit in water. Taking in to account the physical and hydrogeological characteristics of the site studied and in the basis of the site radiological baseline, the environmental impact of the tritium infiltration into the underground water is negligible for the case studied

  13. Evaluation of the ground-water resources of parts of Lancaster and Berks Counties, Pennsylvania

    Science.gov (United States)

    Gerhart, J.M.; Lazorchick, G.J.

    1984-01-01

    Secondary openings in bedrock are the avenues for virtually all ground-water flow in a 626-sqare-mile area in Lancaster and Berks Counties, Pennsylvania. The number, size, and interconnection of secondary openings are functions of lithology, depth, and topography. Ground water actively circulates to depths of 150 to 300 feet below land surface. Total average annual ground-water recharge for the area is 388 million gallons per day, most of which discharges to streams from local, unconfined flow systems. A digital ground-water flow model was developed to simulate unconfined flow under several different recharge and withdrawal scenarios. On the basis of lithologic and hydrologic differences, the modeled area was sub-divided into 22 hydrogeologic units. A finite-difference grid with rectangular blocks, each 2,015 by 2,332 feet, was used. The model was calibrated under steady-state and transient conditions. The steady-state calibration was used to determine hydraulic conductivities and stream leakage coefficients and the transient calibration was used to determine specific yields. The 22 hydrogeologic units fall into four general lithologies: Carbonate rocks, metamorphic rocks, Paleozoic sedimentary rocks, and Triassic sedimentary rocks. Average hydraulic conductivity ranges from about 8.8 feet per day in carbonate units to about .5 feet per day in metamorphic units. The Stonehenge Formation (limestone) has the greatest average hydraulic conductivity--85.2 feet per day in carbonate units to about 0.11 feet per day in the greatest gaining-strem leakage coefficient--16.81 feet per day. Specific yield ranges from 0.06 to 0.09 in carbonate units, and is 0.02 to 0.015, and 0.012 in metamorphic, Paleozoic sedimentary, and Triassic sedimentary units, respectively. Transient simulations were made to determine the effects of four different combinations of natural and artificial stresses. Natural aquifer conditions (no ground-water withdrawals) and actual aquifer conditions

  14. Ground-water activation from the upcoming operation of MI40 beam absorber

    International Nuclear Information System (INIS)

    Bhat, C.M.; Read, A.L.

    1996-09-01

    During the course of normal operation, a particle accelerator can produce radionuclides in the adjacent soil and in the beam line elements through the interactions of accelerated particles and/or secondary particles produced in the beam absorbers, targets, and sometimes elsewhere through routine beam losses. The production and concentration of these radionuclides depends on the beam parameters such as energy, intensity, particle type, and target configuration. The radionuclides produced in the soil can potentially migrate to the ground water. Soil activation and migration to the ground water depends on the details of the local hydrogeology. Generally, very few places such as the beam stops, target stations, injection and extraction sectors can have high enough radiation fields to produce radionuclides in the soil outside the enclosures. During the design, construction, or an upgrade in the intensity of existing beams, measures are taken to minimize the production of activated soil. The only leachable radionuclides known to be produced in the Fermilab soil are 3 H, 7 Be , 22 Na, 45 Ca and 54 Mn and it has been determined that only 3 H, and 22 Na, because of their longer half lives and greater leachabilities, may significantly impact ground water resources.In the past, Fermilab has developed and used the Single Resident Well Model (SRWM) to estimate the ground water activation. Recently, the Concentration Model (CM), a more realistic method which depends on the site hydrogeology has been developed to decide the shielding requirements of the high radiation sites, and to calculate the ground water activation and its subsequent migration to the aquifer. In this report, the concentration of radionuclide released to the surface waters and the aquifer around the MI40 beam absorber are calculated. Subsequently, the ultimate limit on the primary proton beam intensity to be aborted on the Main Injector beam absorber is determined

  15. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  16. A strategy for improving pump and treat ground water remediation

    International Nuclear Information System (INIS)

    Hoffman, F.

    1992-07-01

    Established pump and treat ground water remediation has a reputation for being too expensive and time consuming, especially when cleanup standards are set at very low levels, e.g., 50 ft below ground surface) widespread ground water contamination. The perceived shortcomings of pump and treat result from the (1) tendency of most contaminants to sorb to formation materials, thus retarding contaminant removal; (2) geologic complexity, which requires detailed characterization for the design of optimal extraction systems within available resources; and (3) failure to apply dynamic well field management techniques. An alternative strategy for improving pump and treat ground water remediation consists of (1) detailed characterization of the geology, hydrology, and chemistry; (2) use of computer-aided data interpretation, data display, and decision support systems; (3) removal of sources, if possible; (4) initial design for plume containment and source remediation; (5) phased installation of the well field; (6) detailed monitoring of the remediation; (7) active ongoing re-evaluation of the operating well field, including redesign as appropriate (dynamic management); (8) re-injection of treated ground water to speed the flushing of contaminants; and (9) setting of appropriate cleanup levels or goals. Use of some or all of these techniques can dramatically reduce the time required to achieve cleanup goals and thus the cost of ground water remediation

  17. Analytic game—theoretic approach to ground-water extraction

    Science.gov (United States)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  18. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  19. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  20. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  1. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  2. Identification of contaminants of concern in Hanford ground waters

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Evans, J.C.; Bryce, R.W.

    1990-01-01

    More than 1,500 waste-disposal sites have been identified at the U.S. Department of Energy Hanford Site. At the request of the U.S. Environmental Protection Agency, these sites were aggregated into four administrative areas for listing on the National Priority List. Within the four aggregate areas, 646 inactive sites were selected for further evaluation using the Hazard Ranking System (HRS). Evaluation of inactive waste sites by HRS provided valuable insight to design a focused radiological- and hazardous-substance monitoring network. Hanford Site-wide ground-water monitoring was expanded to address not only radioactive constituents but also hazardous chemicals. The HRS scoring process considers the likelihood of ground-water contamination from past disposal practices at inactive waste sites. The network designed to monitor ground water at those facilities identified 129 I, 99 Tc, 90 Sr, uranium, chromium, carbon tetrachloride, and cyanide

  3. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  4. Report of analyses for light hydrocarbons in ground water

    International Nuclear Information System (INIS)

    Dromgoole, E.L.

    1982-04-01

    This report contains on microfiche the results of analyses for methane, ethane, propane, and butane in 11,659 ground water samples collected in 47 western and three eastern 1 0 x 2 0 quadrangles of the National Topographic Map Series (Figures 1 and 2), along with a brief description of the analytical technique used and some simple, descriptive statistics. The ground water samples were collected as part of the National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance. Further information on the ground water samples can be obtained by consulting the NURE data reports for the individual quadrangles. This information includes (1) measurements characterizing water samples (pH, conductivity, and alkalinity), (2) physical measurements, where applicable (water temperature, well description, and other measurements), and (3) elemental analyses

  5. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  6. Modeling of 60Co transport by groundwater

    International Nuclear Information System (INIS)

    Serebryakov, B.E.; Ivanov, E.A.; Shchukin, A.P.

    2006-01-01

    Results of calculation of the 60 Co migration in a water-bearing horizon after the accident Novo-Voronezh NPP in 1985 are presented. The accident was connected with the liquid radioactive waste leakage into the ground water. The features of 60 Co migration in the water-bearing horizon and its coming into the Don river are calculated by means of three-dimensional models. Population irradiation estimations show that the accident did not lead to exceeding the recommended dose limits [ru

  7. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  8. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  9. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  10. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  11. Temporal variation of uranium in ground water with conductivity

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Chaudhury, Moushumi D.; Jha, S.K.; Tripathi, R.M.

    2015-01-01

    The concentration of uranium in drinking water sources is a matter of health concern since it has been proved to be chemo-toxic to humans. Uranium being a more soluble actinide is also very mobile in the environment. The effect of water quality parameters and their co-relation to uranium content in the water is an interesting study to understand and predict its behavior in ground water and subsequently to judge the hazard posed. Hence studies on spatial and temporal variation of uranium concentration with electrical conductivity, pH, total dissolved solids and salinity in ground water was carried out. (author)

  12. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    Energy Technology Data Exchange (ETDEWEB)

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  13. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  14. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  15. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    Science.gov (United States)

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The

  16. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    2001-01-01

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  17. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  18. Chapter 5: Summary of model application

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter provides a brief summary of the model applications described in Volume III of the Final Report. This chapter dealt with the selected water management regimes; ground water flow regimes; agriculture; ground water quality; hydrodynamics, sediment transport and water quality in the Danube; hydrodynamics, sediment transport and water quality in the river branch system; hydrodynamics, sediment transport and water quality in the Hrusov reservoir and with ecology in this Danube area

  19. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  20. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  1. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  2. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  3. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  4. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Paces, J.B.; Taylor, E.M.; Bush, C.

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ± 1, 30 ± 3, 45 ± 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in a good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites

  5. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    Science.gov (United States)

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  6. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    Science.gov (United States)

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Status Of Physico-Chemical Parameter Of Ground Water Of Gorakhpur City U.P. India

    Directory of Open Access Journals (Sweden)

    Priyanka Chaudhary

    2015-08-01

    Full Text Available ABSTRACT The ground water is most prime water which has multipurpose use ranging from drinking to industrial and agricultural uses. The continuously increase in the level of pollution of water is a serious problem. The city of Gorakhpur is not untouched with this serious issue .The pollution level of the major water sources in and around the city is increase rapidly. The main objective of the present study is to study the variation of ground water quality in Gorakhpur district by collecting 20 samples of water from hand pump from 20 locations well distributed with in Gorakhpur district were analyzed for different parameters such as pH electric conductivity chloride total free chlorine hardness fluoride nitrate iron Turbidity potassium. Groundwater is polluted from seepage pits refuse dumps septic tanks barnyards manures transport accident and different pollutant. Important sources of ground water pollution are sewage is dumped in shallow soak pits. It gives rise to cholera hepatitis dysenteries etc. especially in areas with high water table.

  8. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  9. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  10. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  11. Impact of recharge through residual oil upon sampling of underlying ground water

    International Nuclear Information System (INIS)

    Wise, W.R.; Chang, Chichung; Klopp, R.A.; Bedient, P.B.

    1991-01-01

    At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observed the effects of the recharge process. Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present

  12. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  13. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  14. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  15. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  16. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  17. Geophysical techniques for the study of ground water pollution: A ...

    African Journals Online (AJOL)

    Geophysical techniques for the study of ground water pollution: A review. IB Osazuwa, NK Abdulahi. Abstract. No Abstract. Nigerian Journal of Physics Vol. 20 (1) 2008: pp.163-174. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  18. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  19. Ground-water conditions in the vicinity of Enid, Oklahoma

    Science.gov (United States)

    Schoff, Stuart L.

    1948-01-01

    This memorandum summaries matter discussed at a meeting of the City Commission of Enid, Oklahoma, on Thursday, January 15, 1948, at which the write presented a brief analysis of the ground-water resources available to the City of Enid and answered questions brought up by the commissioners.

  20. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  1. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  2. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    International Nuclear Information System (INIS)

    Carrieri, C.; Masciopinto, C.

    2000-01-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m 3 /d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health [it

  3. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    International Nuclear Information System (INIS)

    Wingle, W.L.; Poeter, E.P.; McKenna, S.A.

    1999-01-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Solute transport model for radioisotopes in layered soil

    International Nuclear Information System (INIS)

    Essel, P.

    2010-01-01

    The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)

  5. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  6. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  7. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  8. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  9. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  10. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  11. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  12. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  13. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  14. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  15. Reference waste form, basalts, and ground water systems for waste interaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables.

  16. FACTORS AFFECTING GROUND WATER POLLUTION IN THE MEADOW OF BORCEA ARM

    Directory of Open Access Journals (Sweden)

    Cecilia NEAGU

    2014-04-01

    Full Text Available This paper aims to study the factors leading to water pollution by nitrates in the Meadow of Borcea arm, mainly derived from agricultural sources. mIn oder to model the amount of nitrate nitrogen in the soil, which can be partially used by plants or leached into the ground water, research was made on alluvial soil in the Meadow of Borcea arm. I tried to study in the laboratory the influence of three factors of nitrate nitrogen pollution of ground water: soil type, environmental conditions (temperature and humidity and the amount of mineral fertilizers incorporated. The resulting amount of nitrate nitrogen resulted with nitrogen fertilizer dose, and the temperature and it was affected by humidity especially 40-80% of field capacity.

  17. CASIM and ground water activation calculations at the A0 abort

    International Nuclear Information System (INIS)

    Cheng-Yang Tan

    2000-01-01

    The results of CASIM and ground water activation calculations for the A0 abort is presented in this paper. CASIM calculations were done at 150 GeV and 1 TeV for the following transverse beam sizes (σxσy): (0.15 x 0.15)mm 2 , (0.15 x 0.15)cm 2 , and (1.5 x 1.5)cm 2 . The results from CASIM were used to calculate the ground water activation using the Concentration Model. The results show that there is only a weak dependence on the transverse beam size and that the maximum number of protons which can be aborted at A0 per year is 7.6 x 10 16 protons/year at 150 GeV and 1.7 x 10 16 protons/year at 1 TeV

  18. Reference waste form, basalts, and ground water systems for waste interaction studies

    International Nuclear Information System (INIS)

    Deju, R.A.; Ledgerwood, R.K.; Long, P.E.

    1978-09-01

    This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository. Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site. 12 figures, 13 tables

  19. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  20. Assessment of acid mine drainage remediation schemes on ground water flow regimes at a reclaimed mine site

    International Nuclear Information System (INIS)

    Gabr, M.A.; Bowders, J.J.

    1994-01-01

    Ground water modeling and a field monitoring program were conducted for a 35-acre reclaimed surface mine site that continues to produce acid mine drainage (AMD). The modeling effort was focused on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD production. The field work included surface surveys and monitoring of ground water levels with time, seepage areas, and sedimentation ponds located on the site. The surveys provided the physical and topographic characteristics of the site. Pump tests conducted at the site provided general hydraulic conductivities (k) for two major areas of the site; undisturbed area (k ≅ 2.9 x 10 -5 ft/s) and disturbed area (k ≅ 3.3 x 10 -4 ft/s to 2.0 x 10 -3 ft/s). The monitored ground water data indicated rapid change in ground water levels during recharge events. Such behavior is indicative of flow regime that is dominated by fracture flow. Modeling of an approximately 700 ft by 1,500 ft area of the site was achieved using the US GS code MODFLOW, and ground water field measurements were used to calibrate the model. A hydraulic conductivity of about 1.15 x 10 -3 ft/s was estimated for the undisturbed area and 1.15 x 10 -2 ft/s for the reclaimed area. Remedial measures for diverting the ground water away from the areas of spoil included the use of a subsurface seepage cutoff wall and discrete sealing techniques. Modeling results indicated that the most effective remedial technique for this site is the use of a subsurface seepage cutoff wall installed at the interface (highwall) between the disturbed and undisturbed zones. Using this scheme caused a dewatering effect in the reclaimed area and therefore reduction in the volume of the AMD generated at the site

  1. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  2. Toward implementation of a national ground water monitoring network

    Science.gov (United States)

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  3. Environmental and ground-water surveillance at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Luttrell, S.P.

    1995-01-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment

  4. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  5. Ground-water development and problems in Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1954-01-01

    The development of groundwater for irrigation in Idaho, as most of you know, has proceeded at phenomenal rate since the Second World War. In the period 1907 to 1944 inclusive only about 328 valid permits and licenses to appropriate ground water were issued by the state. thereafter 28 permits became valid in 1945, 83 in 1946, and 121 in 1947. Sine 1947 permits and licenses have been issued at the rate of more than 400 a year.  

  6. Florida's ground water quality monitoring program: background hydrogeochemistry

    OpenAIRE

    Maddox, Gary; Upchurch, Sam; Lloyd, Jacqueline; Scott, Tom

    1992-01-01

    The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Flori...

  7. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    Raje, N.; Swain, K.K.

    2002-01-01

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  8. The isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    An intensive hydrological and geophysical survey of fresh water occurance in the Gordonia area, promoted a parallel study of the isotope hydrology and hydrochemistry of both the fresh and saline ground waters of the area. Measurements of 14 C, 3 H, 13 C and 18 O as well of major element hydrochemistry were conducted on numerous samples. Radiocarbon concentrations range from 6 pmc to 111 pmc. Significant tritium is only observed in cases where 14 C concentrations are significantly higher than 90 pmc

  9. Effect of high-extraction coal mining on surface and ground waters

    International Nuclear Information System (INIS)

    Kendorski, F.S.

    1993-01-01

    Since first quantified around 1979, much new data have become available. In examining the sources of data and the methods and intents of the researchers of over 65 case histories, it became apparent that the strata behaviors were being confused with overlapping vertical extents reported for the fractured zones and aquiclude zones depending on whether the researcher was interested in water intrusion into the mine or in water loss from surface or ground waters. These more recent data, and critical examination of existing data, have led to the realization that the former Aquiclude Zone defined for its ability to prevent or minimize the intrusion of ground or surface waters into mines has another important character in increasing storage of surface and shallow ground waters in response to mining with no permanent loss of waters. This zone is here named the Dilated Zone. Surface and ground waters can drain into this zone, but seldom into the mine, and can eventually be recovered through closing of dilations by mine subsidence progression away from the area, or filling of the additional void space created, or both. A revised model has been developed which accommodates the available data, by modifying the zones as follows: collapse and disaggregation extending 6 to 10 times the mined thickness above the panel; continuous fracturing extending approximately 24 times the mined thickness above the panel, allowing temporary drainage of intersected surface and ground waters; development of a zone of dilated, increased storativity, and leaky strata with little enhanced vertical permeability from 24 to 60 times the mined thickness above the panel above the continuous fracturing zone, and below the constrained or surface effects zones; maintenance of a constrained but leaky zone above the dilated zone and below the surface effects zone; and limited surface fracturing in areas of extension extending up to 50 ft or so beneath the ground surface. 119 ref., 5 figs., 2 tabs

  10. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  11. Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics

    International Nuclear Information System (INIS)

    Modis, K.

    2010-01-01

    An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.

  12. Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics

    Energy Technology Data Exchange (ETDEWEB)

    Modis, K. [National Technical Univ. of Athens, Athens (Greece)

    2010-07-01

    An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.

  13. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  14. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  15. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  16. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite

  17. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  18. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  19. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifer caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow

  20. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  1. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  4. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  5. Understanding transport barriers through modelling

    International Nuclear Information System (INIS)

    Rozhansky, V

    2004-01-01

    Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation

  6. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  7. Sixth national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The 1992 Outdoor Action Conference was comprised of three days of technical presentations, workshops, demonstrations, and an exhibition. The sessions were devoted to the following topics: Vadose Zone Monitoring Technology; Ground Water Monitoring Technology; Ground Water Sampling Technology; Soil and Ground Water Remediation; and Surface and Borehole Geophysics. The meeting was sponsored by the National Ground Water Association. These papers were published exactly as submitted, without technical and grammatical editing or peer review

  8. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  9. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    Science.gov (United States)

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    included parent or degradate compounds of acetochlor, alachlor, atrazine, and metolachlor. Overall, pesticide concentrations in ground-water samples collected in 2003 and 2004 were small and did not exceed public drinking-water standards where established. On average, more pesticides were detected in the flow-path wells than in the glacial-till network wells. The presence of a perennial stream within 1,640 feet of a well was correlated to smaller nitrate-N concentrations in the well water, and the presence of a road ditch within 164 feet of the well was correlated to the presence of detectable pesticides in the well water. All other variables tested showed no significant correlations to nitrate-N concentrations or pesticide detections. Unsaturated zone soil cores collected in 2002 from well boreholes indicated that nitrogen in the forms of nitrate-N and ammonia as nitrogen (ammonia-N) was available in the unsaturated zone for transport to ground water. Concentrations of nitrate-N and ammonia-N in these soil cores were inversely correlated to depth, and nitrate-N concentrations were correlated to chloride concentrations.

  10. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  11. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  12. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  13. Estimates of ground-water recharge rates for two small basins in central Nevada

    Science.gov (United States)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  14. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  15. Environmentally assisted cracking behaviour of copper in simulated ground water

    International Nuclear Information System (INIS)

    Hietanen, S.; Ehrnsten, U.; Saario, T.

    1996-05-01

    Environmentally assisted cracking (EAC) behaviour of pure oxygen free copper in simulated ground water with additions of sodium nitrite was studied. Low frequency corrosion fatigue tests with high positive load ratio values under crosshead speed control were performed using precracked diskshaped compact specimens C(T). The load ratio values were about 0.9 and the frequencies were between 0.0008 and 0.0017 Hz. Tests were performed under electrochemical potential control in an autoclave at room temperature and at 80 deg C. The aim of the study was to investigate the effects of repository environment on environmentally assisted cracking susceptibility of pure copper. (5 refs., 31 figs., 5 tabs.)

  16. Characteristics and chemical composition of ground water in Bara basin

    International Nuclear Information System (INIS)

    Gibla, O.A.M.

    2007-01-01

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO 3 ''-''-), nitrite (No 2 ''-), ammonia-nitrogen (NH 3 -N), fluoride(F), sulphide(S''-''-) and sulphate(SO 4 ''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO 3 ''-''-,HCO 3 ''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from physical and chemical

  17. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  18. Characteristics and chemical composition of ground water in Bara basin

    Energy Technology Data Exchange (ETDEWEB)

    Gibla, O A.M. [Sudan University of Science and Technology, College of Graduate Studies, Khartoum (Sudan)

    2007-01-15

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO{sub 3}''-''-), nitrite (No{sub 2}''-), ammonia-nitrogen (NH{sub 3}-N), fluoride(F), sulphide(S''-''-) and sulphate(SO{sub 4}''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO{sub 3}''-''-,HCO{sub 3}''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from

  19. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    Science.gov (United States)

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  20. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  1. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  2. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    Science.gov (United States)

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    agricultural industry by urban growth. Present-day agricultural supplies are obtained largely from surface-water sources in Palm Beach County and ground-water sources in Miami-Dade County, whereas Broward County agricultural growers have been largely displaced. The construction of a complex canal drainage system and large well fields has substantially altered the surface- and ground-water hydrologic systems. The drainage system constructed between 1910 and 1928 mostly failed to transport flood flows, however, and exacerbated periods of low rainfall and drought by overdraining the surficial aquifer system. Following completion of the 1930s Hoover Dike levee system that was designed to reduce Lake Okeechobee flood flows, the Central and Southern Florida Flood Control Project initiated the restructure of the existing conveyance system in 1948 through canal expansion, construction of protective levees and control structures, and greater management of ground-water levels in the surficial aquifer system. Gated canal control structures discharge excess surface water during the wet season and remain closed during the dry season to induce recharge by canal seepage and well withdrawals. Management of surface water through canal systems has successfully maintained lower ground-water levels inland to curb urban and agricultural flooding, and has been used to increase ground-water levels near the coast to impede saltwater intrusion. Coastal discharge, however, appears to have declined, due in part to water being rerouted to secondary canals, and to induced recharge to the surficial aquifer system by large municipal withdrawals. Southeastern Florida is underlain by Holocene- to Tertiary-age karstic limestone deposits that form (in descending order): a highly prolific surficial aquifer system, a poorly permeable intermediate confining system, and a permeable Floridan aquifer system. Prior to construction of a complex drainage netwo

  3. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters

    International Nuclear Information System (INIS)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-01-01

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  4. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  5. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  6. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  7. Radiocarbon ages of ground water as a basis for the determination of safe limits of aquifer exploitation

    International Nuclear Information System (INIS)

    Tamers, M.A.; Stipp, J.J.; Weiner, R.

    1975-01-01

    Deep ground waters of the Biscayne aquifer of south Florida were studied with radiocarbon dating techniques. Dissolved carbonates served as the material for the age determinations. Limestone dilution corrections of the measured carbon-14 activities were made by comparison of the relative concentrations of bicarbonate and total carbonates. The deep well waters of the southern portion of the deposit have corrected radiocarbon contents indicating thermonuclear weapon testing contamination; they are, therefore, less than 20 years old. The ages of the ground waters generally increase in the northern direction. This is interpreted as due to the greater depth of the deposit of that region. A model is formulated for ground water movement in an unconfined producing hydrological unit and applied to the radiocarbon results of the most intensively exploited zone of the Biscayne aquifer. It is shown that the water which is extracted by the municipal wells in this area is limited to the bottom third of the deposit. The avoidance of pollution from the surrounding septic tanks in the shallower depths of the area is explained in this way. The model leads to an objective estimation of the safe limit for the ground water extraction rate in the zone. By application of radiocarbon dating, it is possible to obtain useful information without disturbing the water supply

  8. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  9. Effects of energy development on ground water quality: an overview and preliminary assessment

    International Nuclear Information System (INIS)

    Parker, W.M. III; Yin, S.C.L.; Davis, M.J.; Kutz, W.J.

    1981-07-01

    A preliminary national overview of the various effects on ground water quality likely to result from energy development. Based on estimates of present and projected energy-development activities, those regions of the country are identified where ground water quality has the potential for being adversely affected. The general causes of change in ground water quality are reviewed. Specific effects on ground water quality of selected energy technologies are discussed, and some case-history material is provided. A brief overview of pertinent legislation relating to the protection and management of ground water quality is presented. Six methodologies that have some value for assessing the potential effects on ground water quality of energy development activities are reviewed. A method of identifying regions in the 48 contiguous states where there is a potential for ground water quality problems is described and then applied

  10. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  11. Supra regional ground water modelling - in-depth analysis of the groundwater flow patterns in eastern Smaaland. Comparison with different conceptual descriptions; Storregional grundvattenmodellering - foerdjupad analys av floedesfoerhaallanden i oestra Smaaland. Jaemfoerelse av olika konceptuella beskrivningar

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Lars O. [Lars O Ericsson Consulting AB, Stockholm (Sweden); Holmen, Johan [Golder Associates, Uppsala (Sweden); Rhen, Ingvar; Blomquist, Niklas [SWECO VIAK, Stockholm (Sweden)

    2006-05-15

    One of many geoscientific questions in connection with the siting of a final repository for spent nuclear fuel in Sweden has to do with understanding the large-scale flow patterns of the naturally circulating groundwater. The recharge and discharge of the groundwater is therefore a subject for both SKB's research activities and the interest of the regulatory authorities. This report aims at providing an in-depth scientific analysis of the groundwater flow pattern based on the criteria and suitability indicators which SKB has previously presented with respect to recharge and discharge aspects in a supra regional perspective. The analysis was conducted within the framework of a project whose goals were to: evaluate conceptual simplifications and model uncertainties in supra regional groundwater modelling, and to carry out an in-depth and comprehensive analysis of regional flow conditions in eastern Smaaland. Achieving these goals has required an approach based on the use of available geoscientific data on the Smaaland region combined with an analysis of different conceptual assumptions and system descriptions. The following general conclusions can be drawn from the study and the applied methodology: The factor of greatest importance for the regional flow pattern (from repository depth) is the topography. The discharge areas are mainly found in the low-lying parts of the topography, along valleys, and the recharge areas occur on the heights. The topographic undulation is of greater importance than the properties of the conductivity field. Different lithological units, regional deformation zones, local heterogeneity, Quaternary deposits etc are of less importance than the undulation of the topography. For areas described and analyzed with the most realistic assumptions, the groundwater flow pattern can be described as a primarily local flow process. The median flow path length in the study is on the order of 2 km, and the fraction of supra regional flow paths

  12. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  13. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  14. Ground-Water Nutrient Flux to Coastal Waters and Numerical Simulation of Wastewater Injection at Kihei, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.

    2007-01-01

    Water sampling and numerical modeling were used to estimate ground-water nutrient fluxes in the Kihei area of Maui, where growth of macroalgae (seaweed) on coral reefs raises ecologic concerns and accumulation on beaches has caused odor and removal problems. Fluxes and model results are highly approximate, first-order estimates because very few wells were sampled and there are few field data to constrain model calibration. Ground-water recharge was estimated to be 22.6 Mgal/d (million gallons per day) within a 73-square-mile area having a coastline length of 8 miles or 13 km (kilometers). Nearly all of the recharge discharges at the coast because ground-water withdrawals are small. Another 3.0 Mgal/d of tertiary-treated wastewater effluent is injected into the regional aquifer at a County treatment plant midway along the coast and about a mile from shore. The injection plume is 0.93 miles wide (1.5 km) at the shore, as estimated from a three-dimensional numerical ground-water model. Wastewater injected beneath the brackish ground-water lens rises buoyantly and spreads out at the top of the lens, diverting and mixing with ambient ground water. Ground water discharging from the core of the injection plume is less than 5 years old and is about 60 percent effluent at the shore, according to the model. Dissolved nitrogen and phosphorus concentrations in treated effluent were 7.33 and 1.72 milligrams per liter, roughly 6 and 26 times background concentrations at an upgradient well. Background nitrogen and phosphorus fluxes carried by ground water are 7.7 and 0.44 kg/d-km (kilograms per day per kilometer of coast). Injected wastewater fluxes distributed across the plume width are 55 and 13 kg/d-km nitrogen and phosphorus, roughly 7 and 30 times background flux. However, not all of the injected load reaches coastal waters because nutrients are naturally attenuated in the oxygen-depleted effluent plume. Water from a downgradient well reflects this attenuation and provides a

  15. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  16. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    Science.gov (United States)

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T

  17. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  18. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    International Nuclear Information System (INIS)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using