WorldWideScience

Sample records for ground-water flow path

  1. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  2. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  3. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B; Hunter, R.L.; Pickens, J.F.

    1991-02-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The US Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. 12 refs., 4 figs

  4. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. Computer code used: SWIFT II (flow and transport code). 4 figs., 12 refs

  5. Water budget for SRP burial ground area

    International Nuclear Information System (INIS)

    Hubbard, J.E.; Emslie, R.H.

    1984-01-01

    Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables

  6. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  7. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  8. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  9. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  10. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  11. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  12. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  13. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    McKee, E.H.

    1998-01-01

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range

  14. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  15. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  16. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  17. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    International Nuclear Information System (INIS)

    Imes, J.L.; Kleeschulte, M.J.

    1997-01-01

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field

  18. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  19. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  20. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  1. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  2. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  3. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  4. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    Science.gov (United States)

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  5. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  6. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  7. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments

    Directory of Open Access Journals (Sweden)

    M. H. Mueller

    2013-04-01

    Full Text Available The mean transit time (MTT of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.

  8. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes

  9. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  10. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  11. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  12. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    Science.gov (United States)

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  13. GRASP [GRound-Water Adjunct Sensitivity Program]: A computer code to perform post-SWENT [simulator for water, energy, and nuclide transport] adjoint sensitivity analysis of steady-state ground-water flow: Technical report

    International Nuclear Information System (INIS)

    Wilson, J.L.; RamaRao, B.S.; McNeish, J.A.

    1986-11-01

    GRASP (GRound-Water Adjunct Senstivity Program) computes measures of the behavior of a ground-water system and the system's performance for waste isolation, and estimates the sensitivities of these measures to system parameters. The computed measures are referred to as ''performance measures'' and include weighted squared deviations of computed and observed pressures or heads, local Darcy velocity components and magnitudes, boundary fluxes, and travel distance and time along travel paths. The sensitivities are computed by the adjoint method and are exact derivatives of the performance measures with respect to the parameters for the modeled system, taken about the assumed parameter values. GRASP presumes steady-state, saturated grondwater flow, and post-processes the results of a multidimensional (1-D, 2-D, 3-D) finite-difference flow code. This document describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. The implementation of GRASP is verified with simple one- and two-dimensional flow problems, for which analytical expressions of performance measures and sensitivities are derived. The linkage between GRASP and multidimensional finite-difference flow codes is described. This document also contains a detailed user's manual. The use of GRASP to evaluate nuclear waste disposal issues has been emphasized throughout the report. The performance measures and their sensitivities can be employed to assist in directing data collection programs, expedite model calibration, and objectively determine the sensitivity of projected system performance to parameters

  14. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  15. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  16. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    Science.gov (United States)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  17. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  18. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  19. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  20. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    Science.gov (United States)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage

  1. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  2. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  3. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  4. Evaluating the effect of sampling and spatial correlation on ground-water travel time uncertainty coupling geostatistical, stochastic, and first order, second moment methods

    International Nuclear Information System (INIS)

    Andrews, R.W.; LaVenue, A.M.; McNeish, J.A.

    1989-01-01

    Ground-water travel time predictions at potential high-level waste repositories are subject to a degree of uncertainty due to the scale of averaging incorporated in conceptual models of the ground-water flow regime as well as the lack of data on the spatial variability of the hydrogeologic parameters. The present study describes the effect of limited observations of a spatially correlated permeability field on the predicted ground-water travel time uncertainty. Varying permeability correlation lengths have been used to investigate the importance of this geostatistical property on the tails of the travel time distribution. This study uses both geostatistical and differential analysis techniques. Following the generation of a spatially correlated permeability field which is considered reality, semivariogram analyses are performed upon small random subsets of the generated field to determine the geostatistical properties of the field represented by the observations. Kriging is then employed to generate a kriged permeability field and the corresponding standard deviation of the estimated field conditioned by the limited observations. Using both the real and kriged fields, the ground-water flow regime is simulated and ground-water travel paths and travel times are determined for various starting points. These results are used to define the ground-water travel time uncertainty due to path variability. The variance of the ground-water travel time along particular paths due to the variance of the permeability field estimated using kriging is then calculated using the first order, second moment method. The uncertainties in predicted travel time due to path and parameter uncertainties are then combined into a single distribution

  5. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Faunt, C.C.

    1997-01-01

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs

  6. Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.

  7. Parameter estimation techniques and uncertainty in ground water flow model predictions

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  8. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  9. Ground-water flow and quality in the Atlantic City 800-foot sand, New Jersey

    Science.gov (United States)

    McAuley, Steven D.; Barringer, Julia L.; Paulachok, Gary N.; Clark, Jeffrey S.; Zapecza, Otto S.

    2001-01-01

    The regional, confined Atlantic City 800-foot sand is the principal source of water supply for coastal communities of southern New Jersey. In response to extensive use of the aquifer--nearly 21 million gallons per day in 1986--water levels have declined to about 100 feet below sea level near Atlantic City and remain below sea level throughout the coastal areas of southern New Jersey, raising concerns about the potential for saltwater intrusion into well fields. Water levels in the Atlantic City 800-foot sand have declined in response to pumping from the aquifer since the 1890's. Water levels in the first wells drilled into the Atlantic City 800-foot sand were above land surface, and water flowed continuously from the wells. By 1986, water levels were below sea level throughout most of the coastal areas. Under current conditions, wells near the coast derive most of their supply from lateral flow contributed from the unconfined part of the aquifer northwest of the updip limit of the confining unit that overlies the Atlantic City 800- foot sand. Ground water also flows laterally from offshore areas and leaks vertically through the overlying and underlying confining units into the Atlantic City 800-foot sand. The decline in water levels upsets the historical equilibrium between freshwater and ancient saltwater in offshore parts of the aquifer and permits the lateral movement of saltwater toward pumping centers. The rate of movement is accelerated as the decline in water levels increases. The chloride concentration of aquifer water 5.3 miles offshore of Atlantic City was measured as 77 mg/L (milligrams per liter) in 1985 at a U.S. Geological Survey observation well. Salty water has also moved toward wells in Cape May County. The confined, regional nature of the Atlantic City 800-foot sand permits water levels in Cape May County to decline in response to pumping in Atlantic County and vice versa. Historically, chloride concentrations as great as 1 ,510 mg/L have been

  10. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  11. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    constituents such as nutrients.The total gain in streamflow from the upper end to the lower end of each valley reach was positively correlated with the annual-runoff volume calculated for the drainage area of the reach. This correlation was not greatly affected by the proportions of ground-water and tributary contributions, except at two reaches that lost much of their tributary flow after the July survey. In these reaches, the gain in total streamflow showed a negative departure from this correlation.Calculated ground-water discharge exceeded the total tributary inflow in each valley reach in both surveys. Groundwater discharge, as a percentage of streamflow gain, was greatest among reaches in wide valleys (about 1,000-ft wide valley floors) that contain permeable valley fill because tributary flows were seasonally diminished or absent as a result of streambed infiltration. Tributary inflows, as a percentage of streamflow gain, were highest in reaches of narrow valleys (200-500-ft wide valley floors) with little valley fill and high annual runoff.Stream-water and ground-water quality were characterized by major-ion type as either (1) naturally occurring water types, relatively unaffected by road salt, or (2) road-salt-affected water types having elevated concentrations of chloride and sodium. The naturally occurring waters were typically the calcium-bicarbonate type, but some contained magnesium and (or) sulfate as secondary ions. Magnesium concentration in base flow is probably related to the amount of till and its carbonate content, or to the amount of lime used on cultivated fields within a drainage area. Sulfate was a defining ion only in dilute waters (with short or unreactive flow paths) with low concentrations of bicarbonate. Nearly all tributary waters were classified as naturally occurring water types.Ground-water discharge from nearly all valley reaches that contain State or county highways had elevated concentrations of chloride and sodsodium. The mean chloride

  12. Non-stationary open-flow filtration of ground waters at the Pripyat'-Dnieper inter river

    International Nuclear Information System (INIS)

    Tarapon, A.G.

    1989-01-01

    Consideration is given to filtration of ground waters into rivers and to effect of drainage devices. Investigations were conducted with use of modelling of planned and profile filtration of ground waters at the electric models. Efficiency of engineering protection facilities suggested, was studied to prevent contamination of water intakes. Modelling shown, that contamination washing out process was in a cycle character with 1 year period. Use of drainage canal with the water level 0.8 m lower than in the river, is an effective way to prevent filtration of ground waters into the Pripyat' and the Dnieper from the upper open-flow aquiver

  13. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  14. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  17. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Science.gov (United States)

    2010-02-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0047] Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of Accidental Radionuclide Releases; Solicitation of Public... ground water flow and transport of accidental radionuclide releases necessary to demonstrate compliance...

  18. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    Science.gov (United States)

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  19. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    selected samplings. One set of ground-water samples was collected for helium-3/tritium and chlorofluorocarbon (CFC) age dating. Several lines of evidence indicate that surface water is the primary input to the Straight Creek ground-water system. Straight Creek streamflow and water levels in wells closest to the apex of the Straight Creek debris fan and closest to Straight Creek itself appear to respond to the same seasonal inputs. Oxygen and hydrogen isotopic compositions in Straight Creek surface water and ground water are similar, and concentrations of most dissolved constituents in most Straight Creek surface-water and shallow (debris-flow and alluvial) aquifer ground-water samples correlate strongly with sulfate (concentrations decrease linearly with sulfate in a downgradient direction). After infiltration of surface water, dilution along the flow path is the dominant mechanism controlling ground-water chemistry. However, concentrations of some constituents can be higher in ground water than can be accounted for by concentrations in Straight Creek surface water, and additional sources of these constituents must therefore be inferred. Constituents for which concentrations in ground water can be high relative to surface water include calcium, magnesium, strontium, silica, sodium, and potassium in ground water from debris-flow and alluvial aquifers and manganese, calcium, magnesium, strontium, sodium, and potassium in ground water from the bedrock aquifer. All ground water is a calcium sulfate type, often at or near gypsum saturation because of abundant gypsum in the aquifer material developed from co-existing calcite and pyrite mineralization. Calcite dissolution, the major buffering mechanism for bedrock aquifer ground water, also contributes to relatively higher calcium concentrations in some ground water. The main source of the second most abundant cation, magnesium, is probably dissolution of magnesium-rich carbonates or silicates. Strontium may also be

  20. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  1. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  2. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  3. The impact of channel path length on PEMFC flow-field design

    Energy Technology Data Exchange (ETDEWEB)

    Shimpalee, S.; Greenway, S.; Van Zee, J.W. [Chemical Engineering Department, University of South Carolina, Columbia, SC 29208 (United States)

    2006-09-29

    Distributions in reactant species concentration in a PEMFC due to local consumption of fuel and local transport of water through the membrane cause distributions in current density, temperature, and water concentration in three dimensions in a PEMFC. These distributions can lead to flooding or drying of the membrane that may shorten the life of an MEA. Changing the cell's flow-field pattern to distribute the gas more evenly is one method of minimizing these stresses. This paper investigates how 200cm{sup 2} serpentine flow-fields with different number of gas paths, and thus different gas path lengths, affect performance and species distribution. The results show how the local temperature, water content, and current density distributions become more uniform for serpentine flow-field designs with shorter path lengths or larger number of channels. These results may be used to develop universal heuristics and dimensionless number correlations in the design of flow-fields and stacks. (author)

  4. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  5. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  6. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  7. Computer modeling of ground-water flow at the Savannah River Plant

    International Nuclear Information System (INIS)

    Root, R.W. Jr.

    1979-01-01

    Mathematical equations describing ground-water flow are used in a computer model being developed to predict the space-time distribution of hydraulic head beneath a part of the Savannah River Plant site. These equations are solved by a three-dimensional finite-difference scheme. Preliminary calibration of the hydraulic head model has been completed and calculated results compare well with water-level changes observed in the field. 10 figures, 1 table

  8. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  9. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  10. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  11. Degradation of ground ice in a changing climate: the potential impact of groundwater flow

    Science.gov (United States)

    de Grandpré, I.; Fortier, D.; Stephani, E.

    2011-12-01

    topography, soil geotechnical properties, water table and preferential flow paths characterization, ground and water temperature and active layer and permafrost depth were collected to built seepage, heat transfer and coupled advecto-conductive models. Results indicated that advective heat transfer processes associated with groundwater flow can have a substantial impact on permafrost degradation. After one year, the active layer was 4 m deeper in the advecto-conductive heat transfer model than in the conductive heat transfer model and this was corroborated with measured field data. Groundwater flow processes should therefore be taken into account in permafrost evolution models and climate warming scenarios.

  12. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  13. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  14. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  15. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  16. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    Science.gov (United States)

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Water-quality and geohydrologic data were collected from 19 monitor wells and a stream in an agricultural area in southeastern Wisconsin. These sites were located along a 2,700-ft transect from a local ground-water high to the stream. The transect is approximately parallel to the horizontal direction of ground-water flow at the water table. Most of the wells were installed in unconsolidated deposits at five locations along the transect and include an upgradient well nest, a midgradient well nest, a downgradient well nest, wells in the lowland area near the stream, and wells installed in the stream bottom. The data collected from this study site were used to describe the water quality and geohydrology of the area and to explain and model the variations in water chemistry along selected ground-water flowpaths.

  17. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  18. Use of Isotopic Techniques for the Assessment of Hydrological Interactions Between Ground and Surface Waters - Rio Man, Cienaga Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, P.; Dapena, C.; Betancur, T. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Man River basin is located in the lower foothills of the western and central ranges of the tropical Andes, Colombia. In this area hydrological studies and hydrochemical analyses were carried out and isotopic techniques applied to describe and understand the interactions between ground and surface waters. To expand this model and to include elements other than local hydrodynamics, relationships between regional precipitation, recharge, regional flow paths and hydraulic gradients controlling water flows from big rivers to groundwater are currently being explored. Accordingly, an isotope local meteoric water line was derived and it was discovered that the relationship between ground and surface waters is similar in wet and dry seasons. Precipitation constitutes the main recharge source, base flow is important in supporting flow in rivers, streams and wetlands, and evaporation causes effects over water systems in dry periods. A tendency towards increasing air temperatures has been detected in the Man River; this change may cause negative impacts over the hydrological system, affecting evapotranspiration- recharge processes. (author)

  19. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  20. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: Results from thirteen studies across the United States

    Science.gov (United States)

    Puckett, L.J.

    2004-01-01

    During the last two decades there has been growing interest in the capacity of riparian buffer zones to remove nitrate from ground waters moving through them. Riparian zone sediments often contain organic carbon, which favors formation of reducing conditions that can lead to removal of nitrate through denitrification. Over the past decade the National Water Quality Assessment (NAWQA) Program has investigated the transport and fate of nitrate in ground and surface waters in study areas across the United States. In these studies riparian zone efficiency in removing nitrate varied widely as a result of variations in hydrogeologic factors. These factors include (1) denitrification in the up-gradient aquifer due to the presence of organic carbon or other electron donors, (2) long residence times (>50 years) along ground-water flow paths allowing even slow reactions to completely remove nitrate, (3) dilution of nitrate enriched waters with older water having little nitrate, (4) bypassing of riparian zones due to extensive use of drains and ditches, and (5) movement of ground water along deep flow paths below reducing zones. By developing a better understanding of the hydrogeologic settings in which riparian buffer zones are likely to be inefficient we can develop improved nutrient management plans. ?? US Government 2004.

  1. Ground-water reconnaissance of American Samoa

    Science.gov (United States)

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  2. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  3. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Ground water is increasingly relied upon to satisfy the needs of a growing population in the upper Deschutes Basin, Oregon. Hydrogeologic studies are being undertaken to aid in management of the ground-water resource. An understanding of the geologic factors influencing ground-water flow is basic to those investigations. The geology of the area has a direct effect on the occurrence and movement of ground water. The permeability and storage properties of rock material are influenced by the proportion, size, and degree of interconnection of open spaces the rocks contain. These properties are the result of primary geologic processes such as volcanism and sedimentation, as well as subsequent processes such as faulting, weathering, or hydrothermal alteration. The geologic landscape in the study area evolved during about 30 million years of volcanic activity related to a north-south trending volcanic arc, the current manifestation of which are today’s Cascade Range volcanoes.

  4. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  5. Assessment of ground-water flow and chemical transport in a tidally influenced aquifer using geostatistical filtering and hydrocarbon fingerprinting

    International Nuclear Information System (INIS)

    Marquis, S.A. Jr.; Smith, E.A.

    1994-01-01

    Traditional environmental investigations at tidally influenced hazardous waste sites such as marine fuel storage terminals have generally failed to characterize ground-water flow and chemical transport because they have been based on only a cursory knowledge of plume geometry, chemicals encountered, and hydrogeologic setting and synoptic ground-water level measurement. Single-time observations cannot be used to accurately determine flow direction and gradient in tidally fluctuating aquifers since these measurements delineate hydraulic head at only one point in time during a tidal cycle, not the net effect of the fluctuations. In this study, a more rigorous approach was used to characterize flow and chemical transport in a tidally influenced aquifer at a marine fuel storage terminal using: (1) ground-water-level monitoring over three tidal cycles (72 hours), (2) geostatistical filtering of ground-water-level data using 25-hour and 71-hour filtering methods, and (3) hydrocarbon fingerprinting analysis. The results from the study indicate that naphtha released from one of the on-site naphtha tanks has been the predominant contributor to the hydrocarbon plume both on-site and downgradient off-site and that net ground-water and hydrocarbon movement has been to the southeast away from the tank since 1989

  6. A new breed of innovative ground water modeling

    International Nuclear Information System (INIS)

    Gelinas, R.J.; Doss, S.K.; Ziagos, J.; McKereghan, P.; Vogele, T.; Nelson, R.G.

    1995-07-01

    Sparse data is a critical obstacle in every ground water remediation project. Lack of data necessitates non-unique interpolations that can distort modeled distributions of contaminants and essential physical properties (e.g., permeability, porosity). These properties largely determine the rates and paths that contaminants may take in migrating from sources to receptor locations. We apply both forward and inverse model estimates to resolve this problem because coupled modeling provides the only way to obtain constitutive property distributions that simultaneously simulate the flow and transport behavior observed in borehole measurements. Innovations in multidimensional modeling are a key to achieving more effective subsurface characterizations, remedial designs, risk assessments, and compliance monitoring in efforts to accelerate cleanup and reduce costs in national environmental remediations. Fundamentally new modeling concepts and novel software have emerged recently from two decades of research on self-adaptive solvers of partial differential equations (PDEs). We have tested a revolutionary software product, PDEase, applying it to coupled forward and inverse flow problems. In the Superfund cleanup effort at Lawrence Livermore National Laboratory's (LLNL) Livermore Site, the new modeling paradigm of PDEase enables ground water professionals to simply provide the flow equations, site geometry, sources, sinks, constitutive parameters, and boundary conditions. Its symbolic processors then construct the actual numerical solution code and solve it automatically. Powerful grid refinements that conform adaptively to evolving flow features are executed dynamically with iterative finite-element solutions that minimize numerical errors to user-specified limits. Numerical solution accuracy can be tested easily with the diagnostic information and interactive graphical displays that appear as the solutions are generated

  7. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  8. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Stigsson, Martin; Marsic, Niko; Gylling, Bjoern

    2003-12-01

    paths from theoretical repository positions; Properties of the discharge areas for the flow paths from the repository; Magnitude and direction of groundwater flow at different depths. To be able to evaluate the importance of the entities above we have established a chain of models, in which the complexity of the flow domain is increased for each model. For all models a basic set of analyses have been carried out. By comparing the results of these analyses, it is possible to draw conclusions of the importance of different hydrogeological entities and level of hydrogeological complexity. In this study the flow pattern of the groundwater (the flow field) was analysed by the use of flow paths. The applied models create flow paths by use of simulated particles, particles that follow the flow of groundwater through the model (i.e. particle tracking). The flow paths were released at a depth that corresponds to a possible depth of a repository, i.e. depths between 490 and 540 m below ground surface. Paths were released in a regular pattern, one or several paths in each volume (cell or element) studied, regardless of the flow through the volume studied. Paths were released in a regular pattern considering (i) the whole model or (ii) areas inside of the shoreline (not below the Sea). The flow paths were analysed considering length and breakthrough time. Release positions that produced the longest path lengths and the longest breakthrough times were identified. Only advective flow paths were studied in the flow path analyses, diffusion, mechanical mixing and retardation were not included in the flow path analyses. The hydrogeological complexity of the models representing the domain studied was increased gradually; step by step different hydrogeological entities were added to the model: local topographic undulation, regional fracture zones, lakes, clay-areas, shore level progress, and density dependent flow. For all the studied cases, the conductivity and the porosity of the rock

  9. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Stigsson, Martin [Golder Associates, Stockholm (Sweden); Marsic, Niko; Gylling, Bjoern [Kemakta Konsult AB, Stockholm (Sweden)

    2003-12-01

    flow paths from theoretical repository positions; Properties of the discharge areas for the flow paths from the repository; Magnitude and direction of groundwater flow at different depths. To be able to evaluate the importance of the entities above we have established a chain of models, in which the complexity of the flow domain is increased for each model. For all models a basic set of analyses have been carried out. By comparing the results of these analyses, it is possible to draw conclusions of the importance of different hydrogeological entities and level of hydrogeological complexity. In this study the flow pattern of the groundwater (the flow field) was analysed by the use of flow paths. The applied models create flow paths by use of simulated particles, particles that follow the flow of groundwater through the model (i.e. particle tracking). The flow paths were released at a depth that corresponds to a possible depth of a repository, i.e. depths between 490 and 540 m below ground surface. Paths were released in a regular pattern, one or several paths in each volume (cell or element) studied, regardless of the flow through the volume studied. Paths were released in a regular pattern considering (i) the whole model or (ii) areas inside of the shoreline (not below the Sea). The flow paths were analysed considering length and breakthrough time. Release positions that produced the longest path lengths and the longest breakthrough times were identified. Only advective flow paths were studied in the flow path analyses, diffusion, mechanical mixing and retardation were not included in the flow path analyses. The hydrogeological complexity of the models representing the domain studied was increased gradually; step by step different hydrogeological entities were added to the model: local topographic undulation, regional fracture zones, lakes, clay-areas, shore level progress, and density dependent flow. For all the studied cases, the conductivity and the porosity of the

  10. Stochastic ground-water flow analysis FY-81 status report. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Vail, L.W.; Devary, J.L.

    1983-07-01

    Research was conducted at Pacific Northwest Laboratory to develop a research computational package for the stochastic analysis of ground-water flow. Both unsteady and steady-state analysis were examined, and a steady-state research code was developed for the study of stochastic processes. This report describes the theoretical development of both unsteady and steady analyses, and presents the preliminary studies undertaken to verify and exercise the encoded algorithm. The stochastic analysis of ground-water flow is a promising new method which can supply more comprehensive analyses of the ground-water environment. The work reported herein provided experience in the methodology while producing a research-oriented stochastic analysis capability. Single-layer aquifers of horizontal extent were selected for this effort. Kriging has been employed to describe the uncertainty in field data. The resulting stochastic parameters enter the problem physics through boundary conditions and Darcy's equation. The mean and variance of the piezometric head are estimated by the stochastic analysis

  11. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    Science.gov (United States)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups

  12. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  13. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  14. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  15. Ground-water quality, levels, and flow direction near Fort Cobb Reservoir, Caddo County, Oklahoma, 1998-2000

    Science.gov (United States)

    Becker, Carol J.

    2001-01-01

    Fort Cobb Reservoir in northwest Caddo County Oklahoma is managed by the Bureau of Reclamation for water supply, recreation, flood control, and wildlife. Excessive amounts of nitrogen in the watershed have the potential to cause long-term eutrophication of the reservoir and increase already elevated concentrations of nitrogen in the Rush Springs aquifer. The U.S. Geological Survey in cooperation with the Bureau of Reclamation studied ground water in the area surrounding a swine feeding operation located less than 2 miles upgradient from Fort Cobb Reservoir in Caddo County, Oklahoma. Objectives of the study were to (1) determine if the operation was contributing nitrogen to the ground water and (2) measure changes in ground-water levels and determine the local ground-water flow direction in the area surrounding the swine feeding operation. Nitrate concentrations (28.1 and 31.5 milligrams per liter) were largest in two ground-water samples from a well upgradient of the wastewater lagoon. Nitrate concentrations ranged from 4.30 to 8.20 milligrams per liter in samples from downgradient wells. Traces of ammonia and nitrite were detected in a downgradient well, but not in upgradient wells. d15N values indicate atmospheric nitrogen, synthetic fertilizer, or plants were the predominate sources of nitrate in ground water from the downgradient wells. The d15N values in these samples are depleted in nitrogen-15, indicating that animal waste was not a significant contributor of nitrate. Manganese concentrations (1,150 and 965 micrograms per liter) in samples from a downgradient well were substantially larger than concentrations in samples from other wells, exceeding the secondary drinking-water standard of 50 micrograms per liter. Larger concentrations of bicarbonate, magnesium, fluoride, and iron and a higher pH were also measured in water from a downgradient well. Ground-water levels in an observation well were higher from April to mid-July and lower during the late summer

  16. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  17. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  18. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  19. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  20. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  1. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifer caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow

  2. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  3. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  4. Pressurized water reactor flow arrangement

    International Nuclear Information System (INIS)

    Gibbons, J.F.; Knapp, R.W.

    1980-01-01

    A flow path is provided for cooling the control rods of a pressurized water reactor. According to this scheme, a small amount of cooling water enters the control rod guide tubes from the top and passes downwards through the tubes before rejoining the main coolant flow and passing through the reactor core. (LL)

  5. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  6. Implications of ground water chemistry and flow patterns for earthquake studies.

    Science.gov (United States)

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  7. RIMAPS characterization of a surface in the variable aperture fracture model and determination of the main paths for water flow

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    To understand the real incidence of fracture geometry in the unsteady behavior of flowing water channels, the RIMAPS (Rotated Image with Maximum Average Power Spectrum) technique is used to determine the main directions of these channels. This new characterization technique works on digitized images obtained from the surfaces under study. The present work presents the results of a comparison between the flow directions predicted by RIMAPS and the real channels directions observed in a laboratory experiment. A perfect accordance was verified between the directions obtained in both cases. It can be concluded from these results that geometrical characteristics of a fracture surface determine the main path directions for water flow. (author)

  8. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  9. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  10. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Dunbar, D.B.; Thackston, J.W.

    1985-10-01

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  11. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  12. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  13. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

    Science.gov (United States)

    Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.

    2016-04-01

    The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a

  14. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  15. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection.The Glen Canyon aquifer within the study area is conceptualized in two parts—an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter.Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  16. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  17. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    Science.gov (United States)

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  18. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the

  19. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  20. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  1. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  2. The use of field redox measurements in assessing remediation of ground water containing petroleum hydrocarbons and chlorinated organic compounds

    International Nuclear Information System (INIS)

    Warner, S.D.; Gallinatti, J.D.; Honniball, J.H.

    1995-01-01

    Field measurements of the reduction-oxidation (redox) condition of ground water were used to assess the effects of in situ remediation of ground water affected by petroleum hydrocarbons and chlorinated organic compounds at multiple sites in northern California. The redox condition of ground water, traditionally measured quickly and inexpensively using a meter that measures electrode potential (Eh), is a valuable parameter by which to assess the conditions that affect the relative stability of various chemicals in ground water. Although not specific to a given redox couple measurements obtained using the traditional Eh meter give a sense of the relative tendency for a ground water to be reducing or oxidizing by providing a measurement of the system Eh. Two cases demonstrate the use of ground water Eh measurements in assessing the effects of in situ ground water remediation. In the first case, ground water affected by petroleum hydrocarbons-gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX) (ambient Eh of -100 to +100 millivolts [mv]) was treated by injecting hydrogen peroxide to supply oxygen to the subsurface environment and stimulate microbial activity. The second case involved remediation of ground water containing chlorinated organic compounds. In this case, a subsurface permeable ground water treatment wall containing granular iron was installed across the flow path of the affected ground water. The in situ chemical treatment, which successfully dechlorinates compounds such as trichloroethylene, 1,2-dichloroethylene, and vinyl chloride, caused reducing conditions in the ground water, which resulted in the decrease in ground water Eh from am ambient reading of about -50 mv to about -400 mv

  3. Assessment of acid mine drainage remediation schemes on ground water flow regimes at a reclaimed mine site

    International Nuclear Information System (INIS)

    Gabr, M.A.; Bowders, J.J.

    1994-01-01

    Ground water modeling and a field monitoring program were conducted for a 35-acre reclaimed surface mine site that continues to produce acid mine drainage (AMD). The modeling effort was focused on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD production. The field work included surface surveys and monitoring of ground water levels with time, seepage areas, and sedimentation ponds located on the site. The surveys provided the physical and topographic characteristics of the site. Pump tests conducted at the site provided general hydraulic conductivities (k) for two major areas of the site; undisturbed area (k ≅ 2.9 x 10 -5 ft/s) and disturbed area (k ≅ 3.3 x 10 -4 ft/s to 2.0 x 10 -3 ft/s). The monitored ground water data indicated rapid change in ground water levels during recharge events. Such behavior is indicative of flow regime that is dominated by fracture flow. Modeling of an approximately 700 ft by 1,500 ft area of the site was achieved using the US GS code MODFLOW, and ground water field measurements were used to calibrate the model. A hydraulic conductivity of about 1.15 x 10 -3 ft/s was estimated for the undisturbed area and 1.15 x 10 -2 ft/s for the reclaimed area. Remedial measures for diverting the ground water away from the areas of spoil included the use of a subsurface seepage cutoff wall and discrete sealing techniques. Modeling results indicated that the most effective remedial technique for this site is the use of a subsurface seepage cutoff wall installed at the interface (highwall) between the disturbed and undisturbed zones. Using this scheme caused a dewatering effect in the reclaimed area and therefore reduction in the volume of the AMD generated at the site

  4. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    Science.gov (United States)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil

  5. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    the alluvial aquifer in the vicinity of the river. Flow-path lengths in the large-area flow system were considered to be on the order of hundreds of feet to more than a mile, whereas in the small-area flow system, they were considered to be on the order of feet to hundreds of feet. Mass-balance estimates of incremental ground-water discharge from the large- area flow system ranged from -27 to 17 cubic feet per second per mile in three reaches of the river; the median rate was 4.6 cubic feet per second per mile. The median percentage of surface-water discharge derived from ground-water discharge in the river reaches studied was 13 percent. Instantaneous measurements of ground-water discharge from the small-area flow system ranged from -1,360 to 1,000 cubic feet per second per mile, with a median value of -5.8 cubic feet per second per mile. Hourly measurements of discharge from the small-area flow system indicated that the high rates of discharge were transient and may have been caused by daily fluctuations in river stage due to changing effluent-discharge rates from the Metro Wastewater Reclamation District treatment plant. Higher river stages caused surface water to infiltrate bed sediments underlying the river channel, and lower river stages allowed ground water to discharge into the river. Although stage changes apparently cycled large quantities of water in and out of the small- area flow system, the process probably provided no net gain or loss of water to the river. In general, mass balance and instantaneous measurements of ground-water discharge indicated that the ground- water flow system in the vicinity of the river consisted of a large-area flow system that provided a net addition of water to the river and a small- area flow system that cycled water in and out of the riverbed sediments, but provided no net addition of water to the river. The small-area flow system was superimposed on the large-area flow system. The median values of pH and dissolved oxygen

  6. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  7. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  8. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  9. Occurrence of Agricultural Chemicals in Shallow Ground Water and the Unsaturated Zone, Northeast Nebraska Glacial Till, 2002-04

    Science.gov (United States)

    Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.

    2007-01-01

    Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and

  10. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  11. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    Science.gov (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  12. Design concept of the HPLWR moderator flow path

    International Nuclear Information System (INIS)

    Koehly, Christina; Schulenberg, Thomas; Starflinger, Joerg

    2009-01-01

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280degC reactor inlet temperature to 500degC core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. Prior to entering the first fuel assemblies, the coolant is used as moderator in water rods inside assemblies, in the gap volume between assembly boxes, as well as in the surrounding axial or radial reflectors. Even though assembly boxes and moderator rods are designed with a certain thermal insulation, heat is generated in the moderator water or transferred to it from the superheated steam inside assemblies, causing concern of natural convection phenomena with uncontrolled neutronic feedback on the core power distribution. Moreover, bypass flows of the moderator water need to be minimized at any thermal expansion of the reactor internal structures to avoid an unpredictable moderator mass flow. The design concept of the moderator flow path described in this paper is trying to overcome these problems. Downward flow of moderator water is limited to sub-cooled conditions, well below the pseudo-critical point of supercritical water. Dedicated orifices are foreseen to allow later correction of the mass flow split. The sealing concept accounts for larger thermal expansions of reactor components by using C-rings or bellows. A welded construction is preferred wherever possible to minimize leakage. The removable steam plenum is aligned at the extractable steam pipes to minimize thermal displacements at the sealing positions. The paper is showing several design details to illustrate the technical solutions. (author)

  13. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  14. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    five hydrogeologic terranes. This integrated database then was used to evaluate the ground-water potential of each hydrogeologic terrane. Lineament-trace analysis was used to help assess the ground-water development potential in the hydrogeologic terranes containing igneous rocks. Analyses suggest that areas with slopes greater than 15 degrees have relatively low ground-water development potential. The presence of fractures, independent of the topographic slope, may locally enhance the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The results of this study indicate that induced streamflow generally is needed to sustain low to moderate ground-water withdrawal rates in the five hydrogeologic terranes. The ground-water flow systems in the hydrogeologic terranes are only able to sustain small withdrawal rates that rarely exceed 50 gallons per minute. Areas with a high density of fractures, as could be the case at the intersection of lineament traces in the upper parts of the Rio Ca?as and Rio Yaguez watersheds, are worthy of exploratory drilling for ground-water development.

  15. Experimental and numerical study of the relation between flow paths and fate of a pesticide in a riparian wetland

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Dahl, Mette; Engesgaard, Peter Knudegaard

    2010-01-01

    flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average...... residence time of 205days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2–4, which is explained by the high organic...

  16. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte

  17. Calculating e-flow using UAV and ground monitoring

    Science.gov (United States)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements

  18. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  19. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  20. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  1. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  2. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  3. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  4. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River, Siberia

    Science.gov (United States)

    Frey, K. E.; Sobczak, W. V.; Mann, P. J.; Holmes, R. M.

    2015-08-01

    The Kolyma River in Northeast Siberia is among the six largest arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport will largely depend upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ∼ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorbance values were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow-path. In particular, CDOM absorption at 254 nm showed a strong relationship with dissolved organic carbon (DOC) concentrations across all water types (r2 = 0.958, p CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. The heterogeneity of environmental characteristics and extensive continuous permafrost of the Kolyma River basin combine to make this a critical region to investigate and monitor. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the Northeast Siberian

  5. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  6. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs

  7. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  8. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  9. Identification of flow paths and quantification of return flow volumes and timing at field scale

    Science.gov (United States)

    Claes, N.; Paige, G. B.; Parsekian, A.

    2017-12-01

    Flood irrigation, which constitutes a large part of agricultural water use, accounts for a significant amount of the water that is diverted from western streams. Return flow, the portion of the water applied to irrigated areas that returns to the stream, is important for maintaining base flows in streams and ecological function of riparian zones and wetlands hydrologically linked with streams. Prediction of timing and volumes of return flow during and after flood irrigation pose a challenge due to the heterogeneity of pedogenic and soil physical factors that influence vadose zone processes. In this study, we quantify volumes of return flow and potential pathways in the subsurface through a vadose zone flow model that is informed by both hydrological and geophysical observations in a Bayesian setting. We couple a two-dimensional vadose zone flow model through a Bayesian Markov Chain Monte Carlo approach with time lapse ERT, borehole NMR datasets that are collected during and after flood irrigation experiments, and soil physical lab analysis. The combination of both synthetic models and field observations leads to flow path identification and allows for quantification of volumes and timing and associated uncertainties of subsurface return that stems from flood irrigation. The quantification of the impact of soil heterogeneity enables us to translate these results to other sites and predict return flow under different soil physical settings. This is key when managing irrigation water resources and predictions of outcomes of different scenarios have to be evaluated.

  10. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  11. Preferential flow in water-repellent sandy soils : model development and lysimeter experiments

    NARCIS (Netherlands)

    Rooij, de G.H.

    1996-01-01


    When water enters a water-repellent topsoil, preferential flow paths develop and the flow bypasses a large part of the unsaturated zone. Therefore, preferential flow caused by water- repellency is expected to accelerate solute leaching to the groundwater. In soils with water-repellent

  12. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  13. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  14. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    Simulation of vertical water flow representing the release of water from the vadose zone to the aquifer of surroundings ... ground water pollution from agricultural, industrial and municipal .... Peak Flow Characteristics of Wyoming. Streams: US ...

  15. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    Science.gov (United States)

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  16. User guide for the farm process (FMP1) for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, MODFLOW-2000

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, R.T.; Maddock, Thomas; Leake, S.A.

    2006-01-01

    There is a need to estimate dynamically integrated supply-and-demand components of irrigated agriculture as part of the simulation of surface-water and ground-water flow. To meet this need, a computer program called the Farm Process (FMP1) was developed for the U.S. Geological Survey three-dimensional finite-difference modular ground-water flow model, MODFLOW- 2000 (MF2K). The FMP1 allows MF2K users to simulate conjunctive use of surface- and ground water for irrigated agriculture for historical and future simulations, water-rights issues and operational decisions, nondrought and drought scenarios. By dynamically integrating farm delivery requirement, surface- and ground-water delivery, as well as irrigation-return flow, the FMP1 allows for the estimation of supplemental well pumpage. While farm delivery requirement and irrigation return flow are simulated by the FMP1, the surface-water delivery to the farm can be simulated optionally by coupling the FMP1 with the Streamflow Routing Package (SFR1) and the farm well pumping can be simulated optionally by coupling the FMP1 to the Multi-Node Well (MNW) Package. In addition, semi-routed deliveries can be specified that are associated with points of diversion in the SFR1 stream network. Nonrouted surface-water deliveries can be specified independently of any stream network. The FMP1 maintains a dual mass balance of a farm budget and as part of the ground-water budget. Irrigation demand, supply, and return flow are in part subject to head-dependent sources and sinks such as evapotranspiration from ground water and leakage between the conveyance system and the aquifer. Farm well discharge and farm net recharge are source/sink terms in the FMP1, which depend on transpiration uptake from ground water and other head dependent consumptive use components. For heads rising above the bottom of the root zone, the actual transpiration is taken to vary proportionally with the depth of the active root zone, which can be restricted

  17. Hydrogeologic Framework Model for the Saturated-Zone Site-Scale Flow

    Energy Technology Data Exchange (ETDEWEB)

    Z. Peterman

    2003-03-05

    Yucca Mountain is being evaluated as a potential site for development of a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Ground water is considered to be the principal means for transporting radionuclides that may be released from the potential repository to the accessible environment, thereby possibly affecting public health and safety. The ground-water hydrology of the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow in the Yucca Mountain region generally can be described as consisting of two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick, generally deep-lying, Paleozoic carbonate rock sequence. Locally within the potential repository area, the flow is through a vertical sequence of welded and nonwelded tuffs that overlie the carbonate aquifer. Downgradient from the site, these tuffs terminate in basin fill deposits that are dominated by alluvium. Throughout the system, extensive and prevalent faults and fractures may control ground-water flow. The purpose of this Analysis/Modeling Report (AMR) is to document the three-dimensional (3D) hydrogeologic framework model (HFM) that has been constructed specifically to support development of a site-scale ground-water flow and transport model. Because the HFM provides the fundamental geometric framework for constructing the site-scale 3D ground-water flow model that will be used to evaluate potential radionuclide transport through the saturated zone (SZ) from beneath the potential repository to down-gradient compliance points, the HFM is important for assessing potential repository system performance. This AMR documents the progress of the understanding of the site-scale SZ ground-water flow system framework at Yucca Mountain based on data through July 1999. The

  18. Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

    Science.gov (United States)

    Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.

    2017-12-01

    Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction

  19. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  20. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.

  1. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  2. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  3. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  4. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  5. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  6. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  7. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  8. A strategy for modeling ground water rebound in abandoned deep mine systems.

    Science.gov (United States)

    Adams, R; Younger, P L

    2001-01-01

    Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.

  9. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  10. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  11. Application of the conjugate-gradient method to ground-water models

    Science.gov (United States)

    Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  12. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  13. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  14. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  15. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    Science.gov (United States)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  16. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  17. Review of ground-water flow and transport models in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type.

  18. Review of ground-water flow and transport models in the unsaturated zone

    International Nuclear Information System (INIS)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type

  19. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  20. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  1. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  2. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  3. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  4. Distribution flow: a general process in the top layer of water repellent soils

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1995-01-01

    Distribution flow is the process of water and solute flowing in a lateral direction over and through the very first millimetre or centimetre of the soil profile. A potassium bromide tracer was applied in two water-repellent sandy soils to follow the actual flow paths of water and solutes in the

  5. Evaluation of ground water nutrient loading to Priest Lake, Bonner County, Idaho

    International Nuclear Information System (INIS)

    Freeman, K.M.; Ralston, D.R.

    1994-01-01

    The quality of water of Idaho lakes is of increasing concern, particularly when related to waste disposal and land use practices within the watersheds. This study investigates the Kalispell Bay and Granite Creek areas. Conclusions are as follows: Both areas demonstrate direction of ground water towards Priest Lake. The Kalispell Bay area displays horizontal ground water flow throughout the entire area with an upward hydraulic gradient over a portion of the area. The Granite Creek Area displays strictly horizontal flow; both study areas contain particular sub-areas which display nutrient enrichment, particulary nitrogen, of ground water; the granite Creek study area contains a sub-area displaying both elevated nitrogen concentrations and positive tests for E. coli bacteria. 2 figs., 2 tabs

  6. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    Science.gov (United States)

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams

  7. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    g/L, with a median value of 9.6 μg/L. Factors affecting arsenic concentration in the carbonate-rock aquifer in addition to geothermal heating are its natural occurrence in the aquifer material and time of travel along the flow path.Most of the chemical analyses, especially for VOCs and nutrients, indicate little, if any, effect of overlying land-use patterns on ground-water quality. The water quality in recharge areas for the aquifer where human activities are more intense may be affected by urban and/or agricultural land uses as evidenced by pesticide detections. The proximity of the carbonate-rock aquifer at these sites to the land surface and the potential for local recharge to occur through the fractured rock likely results in the occurrence of these and other land-surface related contaminants in the ground water. Water from sites sampled near outcrops of carbonate-rock aquifer likely has a much shorter residence time resulting in a potential for detection of anthropogenic or land-surface related compounds. Sites located in discharge areas of the flow systems or wells that are completed at a great depth below the land surface generally show no effects of land-use activities on water quality. Flow times within the carbonate-rock aquifer, away from recharge areas, are on the order of thousands of years, so any contaminants introduced at the land surface that will not degrade along the flow path have not reached the sampled sites in these areas.

  8. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  9. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  10. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  11. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  12. Soil water retention curves of remoulded clay on drying and wetting paths

    International Nuclear Information System (INIS)

    Zhang Xiwei; Zhang Jian

    2010-01-01

    The present research focuses on the laboratory measurement of the Soil Water Retention Curve (SWRC), that expresses the relationship between water content (gravimetric or volumetric) or degree of saturation and soil suction. The SWRC plays an important role in an unsaturated soil mechanics framework and is required for the numerical modelling of any process of flow and transport in unsaturated soil problems, already as a part of constitutive model of unsaturated soil. Six remoulded London Clay samples were performed SWRC testing on the drying and wetting path, meanwhile measurement the volume change. The effect of initial water content and various drying/wetting paths were considered in the tests. The results of SWRC show that hysteretic characteristic in boundary drying/wetting curve, the water holding capacity was increased due to the increase of the initial water content. The shape of the SWRC strongly depended on the volume change. (authors)

  13. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  14. Completing the ground-water model: ''We need more data''

    International Nuclear Information System (INIS)

    Rehmeyer, D.L.

    1995-01-01

    Computer modeling of geologic structures and groundwater flow has progressed from simple number crunching in the sixties to sophisticated and complex structure and flow models in the nineties (Hatheway, 1994). In the environmental field, a detailed knowledge of the subsurface geology is required and essential for successful ground-water remediation, planning, and investigations. Current options for determining shallow (0--400 ft) subsurface geology includes standard borings, cone penetrometer, ground penetrating radar (GPR), or resistivity surveys (RS). Standards borings are expensive coverage and the close spacing required for generating accurate model data. The cone penetrometer is less expensive and faster than conventional borings. However, both the cone penetrometer and borings are limited by access and are intrusive, providing additional paths for contaminant migration. While both standard GPR and RS are non-intrusive, they suffer from other limitations. A high conductivity soil (clay) will diminish the effectiveness of GPR. The signal is absorbed and dissipated in the first few inches of high conductivity soil. The depth of penetration of RS is better, but the vertical resolution for distinguishing between finely interbedded layers is much lower. An ideal system for subsurface geologic analysis would be non-intrusive, have the depth of penetration of RS, while offering the vertical resolution of GPR> Electromagnetic methods (EM) offer distinct advantages in helping to solve these problems: (a) they are non-intrusive, and (b) the technology to support EM probing-pulse generation, data collection--is well established. Quaternary Resource Investigations, Inc., (QRI) has developed such a system

  15. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected

  16. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  17. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  18. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  19. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    Science.gov (United States)

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  20. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  1. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)

    2013-07-01

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  2. Tracers Reveal Recharge Elevations, Groundwater Flow Paths and Travel Times on Mount Shasta, California

    Directory of Open Access Journals (Sweden)

    Elizabeth Peters

    2018-01-01

    Full Text Available Mount Shasta (4322 m is famous for its spring water. Water for municipal, domestic and industrial use is obtained from local springs and wells, fed by annual snow melt and sustained perennially by the groundwater flow system. We examined geochemical and isotopic tracers in samples from wells and springs on Mount Shasta, at the headwaters of the Sacramento River, in order to better understand the hydrologic system. The topographic relief in the study area imparts robust signatures of recharge elevation to both stable isotopes of the water molecule (δ18O and δD and to dissolved noble gases, offering tools to identify recharge areas and delineate groundwater flow paths. Recharge elevations determined using stable isotopes and noble gas recharge temperatures are in close agreement and indicate that most snowmelt infiltrates at elevations between 2000 m and 2900 m, which coincides with areas of thin soils and barren land cover. Large springs in Mt Shasta City discharge at an elevation more than 1600 m lower. High elevation springs (>2000 m yield very young water (<2 years while lower elevation wells (1000–1500 m produce water with a residence time ranging from 6 years to over 60 years, based on observed tritium activities. Upslope movement of the tree line in the identified recharge elevation range due to a warming climate is likely to decrease infiltration and recharge, which will decrease spring discharge and production at wells, albeit with a time lag dependent upon the length of groundwater flow paths.

  3. Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction

    Science.gov (United States)

    Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian

    2002-01-01

    The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.

  4. Experimental and numerical study of the relation between flow paths and fate of a pesticide in a riparian wetland

    Science.gov (United States)

    Kidmose, Jacob; Dahl, Mette; Engesgaard, Peter; Nilsson, Bertel; Christensen, Britt S. B.; Andersen, Stine; Hoffmann, Carl Christian

    2010-05-01

    SummaryA field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average residence time of 205 days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425 days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2-4, which is explained by the high organic content in the peat layer of the wetland. Isoproturon was found to be aerobically degraded with a half-life in the order of 12-80 days. Based on the quantification of flow paths, residence times and half-lives it is estimated that about 2/3 of the injected Isoproturon is removed in the wetland. Thus, close to 1/3 may find its way to the stream through overland flow. It is also possible that high concentrations of metabolites will reach the stream.

  5. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  6. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    Science.gov (United States)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  7. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    Science.gov (United States)

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  8. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    Science.gov (United States)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  9. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  10. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  11. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  12. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  13. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  14. Core fracture analysis applied to ground water flow systems: Chickamauga Group, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bittner, E.; Dreier, R.B.

    1989-01-01

    The objective of this study is to correlate hydrologic properties with detailed geologic fabrics and to investigate the influence of a complex geologic setting on ground water systems. The Chickamauga Group (CH) located in Bethel Valley on the DOE Oak Ridge Reservation is comprised of limestones and interbedded shales. Five core holes (CH 1-5), oriented across strike, provide a cross section of the CH and were mapped for fracture density, orientation and cross-cutting relationships as well as lithologic variations. Correlation of structural and lithologic features with downhole geophysical logs and hydraulic conductivity values shows a relationship between lithology, fracture density and increased permeability in an otherwise low-permeability environment. Structures identified as influential in enhancing hydraulic conductivity include contractional bedding plane and tectonic stylolites and extensional fractures. Three sets of extensional fractures are indicated by cross-cutting relationships and various degrees of veining. Hydraulic conductivity values (K) for the five wells indicate two ground water flow systems in the valley. A shallow system (up to 150 feet deep) shows a range in K from 10E-4 centimeters per second to 10E-6 centimeters per second. Shallow horizons show more open fractures than are observed at depth, and these fractures appear to control the enhanced K in the shallow system. A subhorizontal interface that is not defined by pre-existing structures or a stratigraphic horizon separates the two flow systems. The deeper system ranges in K values from 10E-9 centimeters per second to 10E-5 centimeters per second. The higher K values at depth correspond to increased fracture density at lithologic contacts, zones of tectonic stylolitization and partially veined extension fractures. 11 refs., 11 figs., 2 tabs

  15. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  16. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Bandy, P.J.; Hall, L.F.

    1993-03-01

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG ampersand G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code

  17. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  18. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  19. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  20. Evaluation of the ground-water resources of parts of Lancaster and Berks Counties, Pennsylvania

    Science.gov (United States)

    Gerhart, J.M.; Lazorchick, G.J.

    1984-01-01

    Secondary openings in bedrock are the avenues for virtually all ground-water flow in a 626-sqare-mile area in Lancaster and Berks Counties, Pennsylvania. The number, size, and interconnection of secondary openings are functions of lithology, depth, and topography. Ground water actively circulates to depths of 150 to 300 feet below land surface. Total average annual ground-water recharge for the area is 388 million gallons per day, most of which discharges to streams from local, unconfined flow systems. A digital ground-water flow model was developed to simulate unconfined flow under several different recharge and withdrawal scenarios. On the basis of lithologic and hydrologic differences, the modeled area was sub-divided into 22 hydrogeologic units. A finite-difference grid with rectangular blocks, each 2,015 by 2,332 feet, was used. The model was calibrated under steady-state and transient conditions. The steady-state calibration was used to determine hydraulic conductivities and stream leakage coefficients and the transient calibration was used to determine specific yields. The 22 hydrogeologic units fall into four general lithologies: Carbonate rocks, metamorphic rocks, Paleozoic sedimentary rocks, and Triassic sedimentary rocks. Average hydraulic conductivity ranges from about 8.8 feet per day in carbonate units to about .5 feet per day in metamorphic units. The Stonehenge Formation (limestone) has the greatest average hydraulic conductivity--85.2 feet per day in carbonate units to about 0.11 feet per day in the greatest gaining-strem leakage coefficient--16.81 feet per day. Specific yield ranges from 0.06 to 0.09 in carbonate units, and is 0.02 to 0.015, and 0.012 in metamorphic, Paleozoic sedimentary, and Triassic sedimentary units, respectively. Transient simulations were made to determine the effects of four different combinations of natural and artificial stresses. Natural aquifer conditions (no ground-water withdrawals) and actual aquifer conditions

  1. Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-10-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.

  2. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    Science.gov (United States)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes

  3. Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04

    Science.gov (United States)

    Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the City of Seward, Nebraska, conducted a study of ground-water age and quality to improve understanding of: (1) traveltimes from recharge areas to public-supply wells, (2) the effects of geochemical reactions in the aquifer on water quality, and (3) how water quality has changed historically in response to land-use practices. Samples were collected from four supply wells in the Seward west well field and from nine monitoring wells along two approximate ground-water flow paths leading to the well field. Concentrations of three different chlorofluorocarbons (CFC-12, CFC-11, and CFC-113), sulfur hexafluoride (SF6), and ratios of tritium (3H) to helium-3 (3He) isotope derived from radioactive decay of 3H were used to determine the apparent recharge age of ground-water samples. Age interpretations were based primarily on 3H/3He and CFC-12 data. Estimates of apparent ground-water age from tracer data were complicated by mixing of water of different ages in 10 of the 13 ground-water samples collected. Apparent recharge dates of unmixed ground-water samples or mean recharge dates of young fractions of mixed water in samples collected from monitoring wells ranged from 1985 to 2002. For monitoring-well samples containing mixed water, the fraction of the sample composed of young water ranged from 26 to 77 percent of the sample. Apparent mean recharge dates of young fractions in samples collected from four supply wells in the Seward west well field ranged from about 1980 to 1990. Estimated fractions of the samples composed of young water ranged from 39 to 54 percent. It is implicit in the mixing calculations that the remainder of the sample that is not young water is composed of water that is more than 60 years old and contains no detectable quantities of modern atmospheric tracers. Estimated fractions of the mixed samples composed of 'old' water ranged from 23 to 74 percent. Although alternative mixing models can be used to

  4. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  5. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  6. Measurement of flow and direction of ground water by radioactive tracers: hydrological evaluation of a waste disposal site at 'Instituto de Pesquisas Energeticas e Nucleares (IPEN)'

    International Nuclear Information System (INIS)

    Chandra, U.; Aoki, P.E.; Ramos e Silva, J.A.; Castagnet, A.C.G.

    1981-05-01

    The method of determining flow and drection of ground water by using radioactive tracers in ground water borings is described. Various parameters controlling the measurements are discussed in detail. Application of the method in studying a variety of geohydrological problems, in view of the hydrological evaluation of the waste disposal site at IPEN, is indicated. Comparison of the method with conventional pumping tests is made. (I.C.R.) [pt

  7. PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2), a computer program for solving ground-water flow equations

    Science.gov (United States)

    Hill, Mary C.

    1990-01-01

    This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.

  8. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    Science.gov (United States)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  9. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  10. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    Science.gov (United States)

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through

  11. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  12. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations

    Science.gov (United States)

    Parkhurst, David L.; Christenson, Scott C.; Breit, George N.

    1993-01-01

    The National Water-Quality Assessment pilot project for the Central Oklahoma aquifer examined the chemical and isotopic composition of ground water, the abundances and textures of minerals in core samples, and water levels and hydraulic properties in the flow system to identify geochemical reactions occurring in the aquifer and rates and directions of ground-water flow. The aquifer underlies 3,000 square miles of central Oklahoma and consists of Permian red beds, including parts of the Permian Garber Sandstone, Wellington Formation, and Chase, Council Grove, and Admire Groups, and Quaternary alluvium and terrace deposits.In the part of the Garber Sandstone and Wellington Formation that is not confined by the Permian Hennessey Group, calcium, magnesium, and bicarbonate are the dominant ions in ground water; in the confined part of the Garber Sandstone and Wellington Formation and in the Chase, Council Grove, and Admire Groups, sodium and bicarbonate are the dominant ions in ground water. Nearly all of the Central Oklahoma aquifer has an oxic or post-oxic environment as indicated by the large dissolved concentrations of oxygen, nitrate, arsenic(V), chromium(VI), selenium(VI), vanadium, and uranium. Sulfidic and methanic environments are virtually absent.Petrographic textures indicate dolomite, calcite, sodic plagioclase, potassium feldspars, chlorite, rock fragments, and micas are dissolving, and iron oxides, manganese oxides, kaolinite, and quartz are precipitating. Variations in the quantity of exchangeable sodium in clays indicate that cation exchange is occurring within the aquifer. Gypsum may dissolve locally within the aquifer, as indicated by ground water with large concentra-tions of sulfate, but gypsum was not observed in core samples. Rainwater is not a major source for most elements in ground water, but evapotranspiration could cause rainwater to be a significant source of potassium, sulfate, phosphate and nitrogen species. Brines derived from seawater are

  13. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    Science.gov (United States)

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steadystate and transient conditions of ground-water flow within a single model layer.The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination.The calibrated steady-state model reproduces long-term average water levels within +5.1 or –3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0

  14. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  15. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  16. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  17. Water flow in single rock joints

    International Nuclear Information System (INIS)

    Hakami, Eva

    1989-05-01

    To study the hydromechanical properties of single rock joints a technique to make transparent replicas of natural joint surfaces has been developed. Five different joint samples were replicated and studied. The aperture distribution of the joints were obtained through a measurement method provided by the transparent replicas. The principle behind the method is that a water drop with a known volume, which is placed inside a joint, will cover a certain area of the surface depending on the average size of aperture at the actual point. Flow tests were performed on the same joint replicas. The tortuousity of the flow and the velocity along single stream lines were measured using colour injections into the water flow through the joints. The equivalent hydraulic apertures determined from the flow tests where shown to be smaller than the average mechanical apertures. The velocity of the flow varies strongly between different paths over the joint depending on the spatial distribution of the apertures. The degree of matedness between the joint surfaces is an important factor influencing the channeling character of the joints. (author) (38 refs.)

  18. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  19. Transitions in midwestern ground water law

    International Nuclear Information System (INIS)

    Bowman, J.A.; Clark, G.R.

    1989-01-01

    The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest

  20. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  1. PTRACK: A particle tracking program for evaluation travel path/travel time uncertainties

    International Nuclear Information System (INIS)

    Thompson, B.M.; Campbell, J.E.; Longsine, D.E.

    1987-12-01

    PTRACK is a model which tracks the path of a radionuclide particle released from a nuclear waste repository into a ground-water flow system in a two-dimensional representation of stratified geologic medium. The code calculates the time required for the particle to travel from the release point (the edge of the disturbed zone) to the specified horizontal or vertical boundary (the accessible environment). The physical properties of the geologic setting and the ground-water flow system can be treated as fixed values or as random variables sampled from their respective probability distributions. In the latter case, PTRACK assigns a sampled value for each parameter and tracks a particle for this trial (realization) of the system. Repeated realizations allow the effects of parameter uncertainty on travel paths/travel times to be quantified. The code can also calculate partial correlation coefficients between dependent variables and independent variables, which are useful in identifying important independent variables. This documentation describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. It also contains a detailed user's manual. The implementation of PTRACK is verified with several systems for which solutions have been calculated by hand. The integration of PTRACK with a Latin hypercube sampling (LHS) code is also discussed, although other sampling methods can be employed in place of LHS. 11 refs., 14 figs., 22 tabs

  2. Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)

    2016-05-15

    The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.

  3. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  4. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Fajã Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    This report documents current (2005-06) baseline ground-water conditions in three basins within the West African Republic of Cape Verde (Mosteiros on Fogo, Ribeira Paul on Santo Antão, and Ribeira Fajã on São Nicolau) based on existing data and additional data collected during this study. Ground-water conditions (indicators) include ground-water levels, ground-water recharge altitude, ground-water discharge amounts, ground-water age (residence time), and ground-water quality. These indicators are needed to evaluate (1) long-term changes in ground-water resources or water quality caused by planned ground-water development associated with agricultural projects in these basins, and (2) the feasibility of artificial recharge as a mitigation strategy to offset the potentially declining water levels associated with increased ground-water development.Ground-water levels in all three basins vary from less than a few meters to more than 170 meters below land surface. Continuous recorder and electric tape measurements at three monitoring wells (one per basin) showed variations between August 2005 and June 2006 of as much as 1.8 meters. Few historical water-level data were available for the Mosteiros or Ribeira Paul Basins. Historical records from Ribeira Fajã indicate very large ground-water declines during the 1980s and early 1990s, associated with dewatering of the Galleria Fajã tunnel. More-recent data indicate that ground-water levels in Ribeira Fajã have reached a new equilibrium, remaining fairly constant since the late 1990s.Because of the scarcity of observation wells within each basin, water-level data were combined with other techniques to evaluate ground-water conditions. These techniques include the quantification of ground-water discharge (well withdrawals, spring discharge, seepage to springs, and gallery drainage), field water-quality measurements, and the use of environmental tracers to evaluate sources of aquifer recharge, flow paths, and ground-water

  5. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  6. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  7. Three Principles of Water Flow in Soils

    Science.gov (United States)

    Guo, L.; Lin, H.

    2016-12-01

    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  8. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  9. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  10. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    Science.gov (United States)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  11. Effect of Different Ground Scenarios on Flow Structure of a Rotor At Hover Condition

    Science.gov (United States)

    Kocak, Goktug; Nalbantoglu, Volkan; Yavuz, Mehmet Metin

    2017-11-01

    The ground effect of a scaled model rotor at hover condition was investigated experimentally in a confined environment. Different ground effect scenarios including full, partial, and inclined conditions, compared to out of ground condition, were characterized qualitatively and quantitatively using laser illuminated smoke visualization and Laser Doppler Anemometry measurements. The results indicate that the presence of the ground affects the flow regime near the blade tip by changing the spatial extent and the path of the vortex core. After the impingement of the wake to the ground, highly unsteady and turbulent wake is observed. Both the mean and the root mean square of the induced velocity increase toward the blade tip. In line with this, the spectral power of the dominant frequency in the velocity fluctuations significantly increases toward the blade tip. All these observations are witnessed in all ground effect conditions tested in the present study. Considering the inclined ground effect in particular, it is observed that the mean induced velocities of the high side (mountain) are higher compared to the velocities of the low side (valley) in contrast to the general trend observed in the present study where the ground effect reduces the induced velocity.

  12. Numerical Investigation of Multiple-, Interacting-Scale Variable-Density Ground Water Flow Systems

    Science.gov (United States)

    Cosler, D.; Ibaraki, M.

    2004-12-01

    The goal of our study is to elucidate the nonlinear processes that are important for multiple-, interacting-scale flow and solute transport in subsurface environments. In particular, we are focusing on the influence of small-scale instability development on variable-density ground water flow behavior in large-scale systems. Convective mixing caused by these instabilities may mix the fluids to a greater extent than would be the case with classical, Fickian dispersion. Most current numerical schemes for interpreting field-scale variable-density flow systems do not explicitly account for the complexities caused by small-scale instabilities and treat such processes as "lumped" Fickian dispersive mixing. Such approaches may greatly underestimate the mixing behavior and misrepresent the overall large-scale flow field dynamics. The specific objectives of our study are: (i) to develop an adaptive (spatial and temporal scales) three-dimensional numerical model that is fully capable of simulating field-scale variable-density flow systems with fine resolution (~1 cm); and (ii) to evaluate the importance of scale-dependent process interactions by performing a series of simulations on different problem scales ranging from laboratory experiments to field settings, including an aquifer storage and freshwater recovery (ASR) system similar to those planned for the Florida Everglades and in-situ contaminant remediation systems. We are examining (1) methods to create instabilities in field-scale systems, (2) porous media heterogeneity effects, and (3) the relation between heterogeneity characteristics (e.g., permeability variance and correlation length scales) and the mixing scales that develop for varying degrees of unstable stratification. Applications of our work include the design of new water supply and conservation measures (e.g., ASR systems), assessment of saltwater intrusion problems in coastal aquifers, and the design of in-situ remediation systems for aquifer restoration

  13. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  14. Management of ground water and evolving hydrogeologic studies in New Jersey : a heavily urbanized and industrialized state in the northeastern United States

    Science.gov (United States)

    Leahy, P. Patrick

    1985-01-01

    .S. Geological Survey are to (1) develop an accurate and up-to-date hydrogeologic data base, (2) design and implement a data-collection program and establish a computerized information management system, (3) refine the conceptualization of the ground-water flow system, and (4) define the geochemistry of the aquifer system by conducting a water-quality appraisal. The objectives are accomplished by standard hydrogeologic methods. Information concerning hydrogeologic framework, ground-water levels, water use, hydraulic characteristics, and water quality in the study areas is compiled from all available sources. Additional data needed are collected through well inventories, surface geophysical surveys, water-quality samplings, water-level measurements, and a well-drilling program.Interpretation of the flow system is based on the use of standard analytical techniques and digital flow modeling. Calibrated flow models will provide ground-water managers with a mechanism to develop and test regional water-supply strategies.Definition of the geochemistry of the aquifer system is accomplished through a variety of methods which depend on the problems and available data in the particular study area. The approach includes statistical analysis of water-quality data, reaction-path modeling, and determination of the movement of chemical constituents using analytical and numerical modeling techniques.A combined staff of 25 to 30 professionals and technicians from the New Jersey District office of the U.S. Geological Survey is committed to the three studies. The staff has specialists in geohydrology, numerical modeling, geochemistry, geophysics, and computer science. The findings of these studies will be published in data reports, interpretive reports, instructional manuals and journal articles.

  15. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    Science.gov (United States)

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  16. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  17. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  18. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  19. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  20. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  1. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  2. Path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-08-20

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  3. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Science.gov (United States)

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  4. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  5. Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2015-01-01

    We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.

  6. The effects of flow-path modification on water-quality constituent retention in an urban stormwater detention pond and wetland system, Orlando, Florida

    Science.gov (United States)

    Gain, W.S.

    1996-01-01

    Changes in constituent retention in a wet stormwater-detention pond and wetland system in Orlando, Florida, were evaluated following the 1988 installation of a flow barrier which approximately doubled the flow path and increased detention time in the pond. The pond and wetland were arranged in series so that stormwater first enters the pond and overflows into the wetland before spilling over to the regional stream system. Several principal factors that contribute to constituent retention were examined, including changes in pond-water quality between storms, stormwater quality, and pond-water flushing during storms. A simple, analytical pond-water mixing model was used as the basis for interpreting changes in retention efficiencies caused by pond modification. Retention efficiencies were calculated by a modified event-mean concentration efficiency method using a minimum variance unbiased estimator approach. The results of this study generally support the hypothesis that changes in the geometry of stormwater treatment systems can significantly affect the constituent retention efficiency of the pond and wetland system. However, the results also indicate that these changes in efficiency are caused not only by changes in residence time, but also by changes in stormwater mixing and pond water flushing during storms. Additionally, the use of average efficiencies as indications of treatment effectiveness may fail to account for biases associated with sample distribution and independent physical properties of the system, such as the range and concentrations of constituents in stormwater inflows and stormwater volume. Changes in retention efficiencies varied among chemical constituents and were significantly different in the pond and wetland. Retention efficiency was related to inflow concentration for most constituents. Increased flushing of the pond after modification caused decreases in retention efficiencies for constituents that concentrate in the pond between storms

  7. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  8. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  9. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  10. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  11. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  12. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    Science.gov (United States)

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    -sediment chemistry; geomorphology and its effect on ground-water flow; geophysical studies on depth to ground-water table and depth to bedrock; bedrock fractures and their potential influence on ground-water flow; leaching studies of scars and waste-rock piles; mineralogy and mineral chemistry and their effect on ground-water quality; debris-flow hazards; hydrology and water balance for the Red River Valley; ground-water geochemistry of selected wells undisturbed by mining in the Red River Valley; and quality assurance and quality control of water analyses. Studies aimed specifically at the Straight Creek natural-analog site include electrical surveys; high-resolution seismic survey; age-dating with tritium/helium; water budget; ground-water hydrology and geochemistry; and comparison of mineralogy and lithology to that of the mine site. The highly mineralized and hydrothermally altered volcanic rocks of the Red River Valley contain several percent pyrite in the quartz-sericite-pyrite (QSP) alteration zone, which weather naturally to acid-sulfate surface and ground waters that discharge to the Red River. Weathering of waste-rock piles containing pyrite also contributes acid water that eventually discharges into the Red River. These acid discharges are neutralized by circumneutral-pH, carbonate-buffered surface and ground waters of the Red River. The buffering capacity of the Red River, however, decreases from the town of Red River to the U.S. Geological Survey (USGS) gaging station near Questa. During short, but intense, storm events, the buffering capacity is exceeded and the river becomes acid from the rapid flushing of acidic materials from natural scar areas. The lithology, mineralogy, elevation, and hydrology of the Straight Creek proximal analog site were found to closely approximate those of the mine site with the exception of the mine site?s Sulphur Gulch catchment. Sulphur Gulch contains three subcatchments?upper Sulphur Gulch, Blind Gulch, and Spring Gulc

  14. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  15. Characterization and anion exchange removal of uranium from Hanford ground water

    International Nuclear Information System (INIS)

    Delegard, C.H.; Weiss, R.L.; Kimura, R.T.; Law, A.G.; Routson, R.C.

    1986-01-01

    In February 1985, uranium concentrations increased abruptly to 0.1 kgU/m/sup 3/ in ground waters underlying a retired liquid waste disposal facility in the United States Department of Energy-Richland Operations Hanford Site. Characterization tests showed the uranium was present as an anionic carbonate complex not sorbable by Hanford sediments. The uranium was mobilized by flow from a perched zone of water caused by recent nearby cooling water disposal above an impermeable sediment layer. In a unique demonstration of the concept of ''as low as reasonably achievable,'' efforts were immediately undertaken to minimize the spread of the plume and to reduce the amount of uranium in the ground water. An anion exchange-based uranium removal process flowsheet was rapidly developed and implemented. Operational for six months, the process has treated over 30,000 m/sup 3/ of ground water and collected 94% of the uranium while producing a treated effluent that meets criteria for discharge to the soil column

  16. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    Science.gov (United States)

    Katz, Brian G.; Catches, John S.; Bullen, Thomas D.; Michel, Robert L.

    1998-11-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km 2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/ 86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/ 86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  17. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  18. Atmospheric and radiogenic gases in ground waters from the Stripa granite

    International Nuclear Information System (INIS)

    Andrews, J.N.; Hussain, N.; Youngman, M.J.

    1989-01-01

    Ground waters from depths of 350 m to 1,250 m in the Stripa granite contain dissolved radiogenic He in amounts up to 50,000 times that due to air-saturation. The groundwater He-contents increase with depth and lie close to the expected profile for He loss by aqueous diffusion (D = 0.032 m 2 a -1 ). Measurements on core samples show that the rock has retained about 10% of the possible cumulative radiogenic He and that this component is lost by matrix diffusion (D = 5 x 10 -7 m 2 a -1 ). Diffusive equilibrium between He in fracture fluids and in the adjacent rock matrix is rapidly established for the narrow fracture widths of the flow system. A major loss of stored He by both diffusion and advection along fluid-filled fractures is attributed to the proximity of a major fraction of uranium to the aqueous flow system because of its deposition within an interconnective microfracture system. The crustal flux of He is limited by its diffusion coefficient in the matrix of a granitic crust but may be supplemented by transport due to fluid circulation. The 3 He/ 4 He ratio of the excess He present in the Stripa ground waters, corresponds to that expected for radiogenic He production within the granite. The 40 Ar/ 36 Ar ratio of dissolved Ar shows that radiogenic 40 Ar has been released from the rock matrix, especially for ground waters from greater than 450 m depth. Slow alteration reactions are the most probable cause of this radiogenic 40 Ar release which has occurred in the more saline ground waters. Groundwater recharge temperatures, estimated from their noble gas contents, are about 3 degree C lower than those for modern shallow ground waters in the locality and are related to the stable isotope composition of the groundwater

  19. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  20. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    Science.gov (United States)

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at

  1. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  2. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  3. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  4. Ground water impact assessment report for the 216-B-3 Pond system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

    1995-01-01

    Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts

  5. Visualization of diffusion mixing in a micro-mixer with flow paths fabricated by photolithography

    Science.gov (United States)

    Horiuchi, Toshiyuki; Morizane, Yuta

    2017-09-01

    Mixing processes of two liquids were investigated by visualizing the mixing when they were simultaneously injected in a micro-mixer with lithographically fabricated Y-shape flow paths, and the mixing phenomena was analyzed in detail. To visualize the mixing, flows were observed by an optical microscope, and a clearly detectable chemical reaction was utilized. As the two liquids, a transparent aqueous solution of a strong alkali and a phenolphthalein ethanol solution were used. When they were simultaneously injected in Y-shape flow paths of a micro-mixer, they flowed at first in parallel along the joined path as laminar flows. This is because the Reynolds' number became very small caused by the narrow flow-path widths of 50-100 μm. However, because two liquids were always contacted at the boundary, they were gradually mixed by diffusion, and the color of the mixed parts changed to vivid red. For this reason, it was able to measure the diffusion distance from the flow path center. Because the flow speeds were much faster than the diffusion speeds, the area colored in red did not depend on the time but depended on the distance from the joint point. It was known that the distance from the joint point corresponded to the time for mixing the liquids by the diffusion. It was clarified that the diffusion distance x was proportional to the square root of the diffusion time t or the distance from the joint point. The calculated diffusion coefficient D was (0.87-1.00)×10-9 m2/s.

  6. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  7. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  8. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    Science.gov (United States)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  9. Intercooler flow path for gas turbines: CFD design and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1995-10-01

    The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (BP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path. The thermodynamic analyses of gas turbine cycles with modifications such as intercooling, recuperating, and reheating have shown that intercooling is important to achieving high efficiency gas turbines. The gas turbine industry has considerable interest in adopting intercooling to advanced gas turbines of different capacities. This observation is reinforced by the US Navys Intercooled-Recuperative (ICR) gas turbine development program to power the surface ships. In an intercooler system, the air exiting the LP compressor must be decelerated to provide the necessary residence time in the heat exchanger. The cooler air must subsequently be accelerated towards the inlet of the HP compressor. The circumferential flow nonuniformities inevitably introduced by the heat exchanger, if not isolated, could lead to rotating stall in the compressors, and reduce the overall system performance and efficiency. Also, the pressure losses in the intercooler flow path adversely affect the system efficiency and hence, must be minimized. Thus, implementing intercooling requires fluid dynamically efficient flow path with minimum flow nonuniformities and consequent pressure losses.

  10. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    Science.gov (United States)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  11. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  12. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  13. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  14. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  15. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    Science.gov (United States)

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base

  16. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    conservative tracers such as chloride and/or groundwater age and unsaturated-zone thickness; (4) Correct 14 C ages for possible dilution of radiocarbon by calcite fracture coatings using geochemical reaction models; and (5) Establish mixing relations between waters from different source areas using relatively conservative species such as 2 H and 18 O or chloride and sulfate, and evaluate if inferred flow paths and mixing relations are reasonable based on chemical reactions required to reproduce the observed water chemistry. The analysis presented in this report is appropriate for the intended use described above. This analysis is not directly related to the principal factors, or other factors, for the post-closure safety case, nor is it used directly in calculations or analyses that provide estimates of the effects of potentially disruptive processes and events, as described in AP-3.15Q, Managing Technical Product Inputs

  17. Hydrogeological assessment based on ground water flow modeling around Atbara town

    International Nuclear Information System (INIS)

    Ahmed, S. H. M.

    2010-10-01

    Study area lies in the River Nile state North Central of Sudan between latitudes 17 o 34 - 18 o 00 N and longitudes 33 o 55 - 34 o 43 E. The geological settings of the study area are composed of pre-Cambrian Basement Complex, upper Cretaceous Nubian sandstone formation, Oligocene Hudi Chert, and quaternary superficial deposits in ascending order. Generally there are two main aquifers: shallow or upper aquifer in the alluvial deposits (5 - 37 m thick) and deep or lower aquifer in cretaceous Nubian sand stone (17 - 60 m). The upper aquifer is semi confined, whereas, the lower aquifer is almost confined except in the area around Atbara Town. Hydraulic conductivities of the aquifer varies between 1.89 x 10 -1 to 8.95 x 10 -1 m/min. Most of the water quality in the study area is suitable for domestic, agriculture, and industrial used with the exception of small pockets at Atbara town and some village in West of study area where salinity and contaminations were detected. Generally most of water quality in the study area is fit for human consumption. The ground water flow model of the study area was constricted using 40 column, 50 rows and 3 layers, forming 6000 cells covering the model domain. The model was calibrated using 3D Finite difference visual MODFLOW. The model calibration criteria such as mean absolute error (MAE), root mean square error (RMS) and mass balance error of water into and of out of the system were adjusted to less 1.3, 1.6 m, and 2.5% respectively. The contour maps of the simulated heads produced by visual MODFLOW show fair similarity with the contour map drawn using initial heads which confirm the reliability of Visual MODFLOW application and acceptable model calibration for the problem. As the result of model prediction, the calibration seemed to be more acceptable with average (RMS) of 2.5 m and average absolute mean error (AM) of 1.38 m and average normalized root mean square (NRMS) of (2.02%). Prediction results reflect the increasing of

  18. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  19. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  20. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  1. Characterizing subsurface water flow to artificial drain lines using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.

    2017-12-01

    Over the last several years growers have experienced increasingly wet spring conditions in the Palouse Region located in North Idaho, Eastern Washington and Eastern Oregon. As a result more artificial drain lines are being installed so growers can access their fields earlier in the growing season. Additionally there has been increasing adoption of no-tillage practices among growers in order minimize erosion and runoff in the region. There is a growing body of evidence that suggests long-term no-tillage may lead to the establishment of large macropore networks through increased earthworm activity and the preservation of root channels. These macropore networks, in conjunctions with the presence of artificial drains lines, may create connected preferential flow paths from agricultural fields to receiving streams. This connectivity of flow paths from agricultural fields to receiving water bodies may increase the loading of nutrients and agricultural chemicals as some flow paths may largely bypass soil matrix interaction where materials can be sequestered. Our primary objective for this study was to characterize subsurface flow to two artificial drain lines, one under conventional tillage and the other under no-tillage, using distributed temperature sensing (DTS) technology. During the study (November 2016-April 2017) the near surface soil-water temperature was consistently colder than that of deeper depths. Temperature was thus used as a tracer as snow melt and soil-water moved from the near surface to the drain lines during snowmelt and precipitation events. The spatial and temporal variability of the temperature along the artificial drain line under no-tillage practices was found to be greater than that of the conventional tilled field. It is hypothesized that preferential flow paths are responsible for the increased variability of temperature seen in the drain line under long term no-till management. The temperature along the conventional till drain line showed a

  2. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  3. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  4. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  5. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  6. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  7. Modeling Aspect Controlled Formation of Seasonally Frozen Ground on Montane Hillslopes: a Case Study from Gordon Gulch, Colorado

    Science.gov (United States)

    Rush, M.; Rajaram, H.; Anderson, R. S.; Anderson, S. P.

    2017-12-01

    The Intergovernmental Panel on Climate Change (2013) warns that high-elevation ecosystems are extremely vulnerable to climate change due to short growing seasons, thin soils, sparse vegetation, melting glaciers, and thawing permafrost. Many permafrost-free regions experience seasonally frozen ground. The spatial distribution of frozen soil exerts a strong control on subsurface flow and transport processes by reducing soil permeability and impeding infiltration. Accordingly, evolution of the extent and duration of frozen ground may alter streamflow seasonality, groundwater flow paths, and subsurface storage, presenting a need for coupled thermal-hydrologic models to project hydrologic responses to climate warming in high-elevation regions. To be useful as predictive tools, such models should incorporate the heterogeneity of solar insolation, vegetation, and snowpack dynamics. We present a coupled thermal-hydrologic modeling study against the backdrop of field observations from Gordon Gulch, a seasonally snow-covered montane catchment in the Colorado Front Range in the Boulder Creek Critical Zone Observatory. The field site features two instrumented hillslopes with opposing aspects: the snowpack on the north-facing slope persists throughout much of the winter season, while the snowpack on the south-facing slope is highly ephemeral. We implemented a surface energy balance and snowpack accumulation and ablation model that is coupled to the subsurface flow and transport code PFLOTRAN-ICE to predict the hydrologic consequences of aspect-controlled frozen soil formation during water years 2013-2016. Preliminary model results demonstrate the occurrence of seasonally-frozen ground on the north-facing slope that directs snowmelt to the stream by way of shallow subsurface flow paths. The absence of persistently frozen ground on the south-facing slope allows deeper infiltration of snowmelt recharge. The differences in subsurface flow paths also suggest strong aspect

  8. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  9. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  10. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  11. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  12. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    . The water collects in streams that lose much of their flow into the coarse sediments that fringe the mountains. Part of the water ultimately percolates into the zone of saturation. High evaporation rates, vegetative use, and the presence of caliche and clay at shallow depth in the interstream areas of the valley floor prevent important recharge of the ground-water reservoir from direct rainfall or seepage of water applied for irrigation. The total recharge into the ground-water reservoir of the Douglas basin was about 20,000 acre-feet in 1951. Ground water is discharged from the basin by evapotranspiration, by effluent seepage into Whitewater Draw and underflow out of the basin, and by pumping. In 1951, the total amount of ground water discharged was about 50,000 acre-feet, of which more than 41,000 acre-feet was pumped from wells. Ground water used in excess of recharge is withdrawn from storage, causing a decline in the water table. Maximum declines have occurred in the heavily pumped Elfrida area, where a decline of more than 11 feet occurred in the 5-

  13. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  14. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Kroitoru, L.; Ronen, D.; Magaritz, M.

    1992-01-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient (-0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient (-0.10) and a 0. 83-meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone

  15. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  16. SFR inverse modelling Part 2. Uncertainty factors of predicted flow in deposition tunnels and uncertainty in distribution of flow paths from deposition tunnels

    International Nuclear Information System (INIS)

    Holmen, Johan

    2007-10-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is operating the SFR repository for low- and intermediate-level nuclear waste. An update of the safety analysis of SFR was carried out by SKB as the SAFE project (Safety Assessment of Final Disposal of Operational Radioactive Waste). The aim of the project was to update the safety analysis and to produce a safety report. The safety report has been submitted to the Swedish authorities. This study is a continuation of the SAFE project, and concerns the hydrogeological modelling of the SFR repository, which was carried out as part of the SAFE project, it describes the uncertainty in the tunnel flow and distributions of flow paths from the storage tunnels. Uncertainty factors are produced for two different flow situations, corresponding to 2,000 AD (the sea covers the repository) and 4,000 AD (the sea has retreated form the repository area). Uncertainty factors are produced for the different deposition tunnels. The uncertainty factors are discussed in Chapter 2 and two lists (matrix) of uncertainty factors have been delivered as a part of this study. Flow paths are produced for two different flow situations, corresponding to 2,000 AD (the sea covers the repository) and 5,000 AD (the sea has retreated form the repository area). Flow paths from the different deposition tunnels have been simulated, considering the above discussed base case and the 60 realisation that passed all tests of this base case. The flow paths are presented and discussed in Chapter 3 and files presenting the results of the flow path analyses have been delivered as part of this study. The uncertainty factors (see Chapter 2) are not independent from the flow path data (see Chapter 3). When stochastic calculations are performed by use of a transport model and the data presented in this study is used as input to such calculations, the corresponding uncertainty factors and flow path data should be used. This study also includes a brief discussion of

  17. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, Vitro Processing Site. Revision 0

    International Nuclear Information System (INIS)

    1996-03-01

    Ground water elevations of the shallow unconfined aquifer have been monitored at the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing site, Salt Lake City, Utah, for the purposes of characterizing ground water flow conditions and evaluating the effects of irrigation of the golf driving range. Data collected, to date, show that the water table reached its highest level for the year during March and April 1995. From May through July 1995, the water table elevations decreased in most monitor wells due to less precipitation and higher evapotranspiration. Review and evaluation of collected data suggest that irrigation of the golf driving range will have negligible effects on water levels and ground water flow patterns if rates of irrigation do not significantly exceed future rates of evapotranspiration

  18. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  19. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  20. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  1. Time-optimal path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-01-06

    An ensemble-based approach is developed to conduct time-optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where a set deterministic predictions is used to model and quantify uncertainty in the predictions. In the operational setting, much about dynamics, topography and forcing of the ocean environment is uncertain, and as a result a single path produced by a model simulation has limited utility. To overcome this limitation, we rely on a finitesize ensemble of deterministic forecasts to quantify the impact of variability in the dynamics. The uncertainty of flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each the resulting realizations of the uncertain current field, we predict the optimal path by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of sampling strategy, and develop insight into extensions dealing with regional or general circulation models. In particular, the ensemble method enables us to perform a statistical analysis of travel times, and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  2. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  3. Geohydrology, water quality, and simulation of ground-water flow in the vicinity of a former waste-oil refinery near Westville, Indiana, 1997-2000

    Science.gov (United States)

    Duwelius, Richard F.; Yeskis, Douglas J.; Wilson, John T.; Robinson, Bret A.

    2002-01-01

    Geohydrologic and water-quality data collected during 1997 through 2000 in the vicinity of a former waste-oil refinery near Westville, Indiana, define a plume of 1,4-dioxane in ground water that extends to the southwest approximately 0.8 miles from the refinery site. Concentrations of 1,4-dioxane in the plume ranged from 3 to 31,000 micrograms per liter. Ground water containing 1,4-dioxane is discharged to Crumpacker Ditch, approximately one-half mile west of the refinery site. Concentrations of 1,4-dioxane detected in surface water ranged from 8 to 140 micrograms per liter; 1,4-dioxane also is transported in ground water beneath the ditch.

  4. Report of the panel on evaluation of ground-water flow in fractures at the Palo Duro Basin, Texas: Unanalyzed data: Technical report

    International Nuclear Information System (INIS)

    1988-01-01

    A peer review group of hydrologists assessed the importance and availability of data on fracture-controlled ground-water flow at the Palo Duro Basin sites in the Permian Basin in Texas. After hearing presentations by US Department of Energy staff and consultants, and reviewing existing literature, they formed a conceptual model of basin flow that is downward across the salt facies and downdip in permeable formation in the lower hydrostratigraphic unit. Flow volumes and rates are very low. The panel examined several possible fracture-flow scenarios and concluded that flow within the salt section is probably porous-media-dominated with some fracture-flow influence in brittle zones. Fracture flow in the salt itself is rejected as a possibility based on current evidence. However, the panel recommended that fracture flow in the system should be included as a low-probability variable in any hydrogeologic modeling. They also concluded that many more data on lineament features and subsurface structures are needed to accurately characterize the system and to refine the modeling effort. 9 refs., 2 figs

  5. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    Science.gov (United States)

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  6. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  7. Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies

    Directory of Open Access Journals (Sweden)

    Michael K. Lindell

    2015-01-01

    Full Text Available This study extends the Protective Action Decision Model, developed to address disaster warning responses in the context of natural hazards, to “boil water” advisories. The study examined 110 Boston residents' and 203 Texas students' expectations of getting sick through different exposure paths for contact with contaminated water. In addition, the study assessed respondents' actual implementation (for residents or behavioral expectations (for students of three different protective actions – bottled water, boiled water, and personally chlorinated water – as well as their demographic characteristics and previous experience with water contamination. The results indicate that people distinguish among the exposure paths, but the differences are small (one-third to one-half of the response scale. Nonetheless, the perceived risk from the exposure paths helps to explain why people are expected to consume (or actually consumed bottled water rather than boiled or personally chlorinated water. Overall, these results indicate that local authorities should take care to communicate the relative risks of different exposure paths and should expect that people will respond to a boil water order primarily by consuming bottled water. Thus, they should make special efforts to increase supplies of bottled water in their communities during water contamination emergencies.

  8. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  9. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  10. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  11. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  12. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  13. Modeling heading and path perception from optic flow in the case of independently moving objects

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  14. Modeling Heading and Path Perception from Optic Flow in the Case of Independently Moving Objects

    Directory of Open Access Journals (Sweden)

    Florian eRaudies

    2013-04-01

    Full Text Available Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMO in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion / deletion, expansion / contraction, acceleration / deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans’ heading and path perception robust in the presence of such IMOs.

  15. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  16. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  17. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details

    Science.gov (United States)

    Torak, L.J.

    1993-01-01

    A MODular Finite-Element, digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water-flow. The modular structure of MODFE places the computationally independent tasks that are performed routinely by digital-computer programs simulating ground-water flow into separate subroutines, which are executed from the main program by control statements. Each subroutine consists of complete sets of computations, or modules, which are identified by comment statements, and can be modified by the user without affecting unrelated computations elsewhere in the program. Simulation capabilities can be added or modified by either adding or modifying subroutines that perform specific computational tasks, and the modular-program structure allows the user to create versions of MODFE that contain only the simulation capabilities that pertain to the ground-water problem of interest. MODFE is written in a Fortran programming language that makes it virtually device independent and compatible with desk-top personal computers and large mainframes. MODFE uses computer storage and execution time efficiently by taking advantage of symmetry and sparseness within the coefficient matrices of the finite-element equations. Parts of the matrix coefficients are computed and stored as single-subscripted variables, which are assembled into a complete coefficient just prior to solution. Computer storage is reused during simulation to decrease storage requirements. Descriptions of subroutines that execute the computational steps of the modular-program structure are given in tables that cross reference the subroutines with particular versions of MODFE. Programming details of linear and nonlinear hydrologic terms are provided. Structure diagrams for the main programs show the order in which subroutines are executed for each version and illustrate some of the linear and nonlinear versions of MODFE that are possible. Computational aspects of

  18. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  19. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Giovanni Francesco Santonastaso

    2018-01-01

    Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.

  20. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  1. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  2. Streambed infiltration and ground-water flow from the trout creek drainage, an intermittent tributary to the Humboldt River, north-central Nevada: Chapter K in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground water is abundant in many alluvial basins of the Basin and Range Physiographic Province of the western United States. Water enters these basins by infiltration along intermittent and ephemeral channels, which originate in the mountainous regions before crossing alluvial fans and piedmont alluvial plains. Water also enters the basins as subsurface ground-water flow directly from the mountains, where infiltrated precipitation recharges water-bearing rocks and sediments at these higher elevations. Trout Creek, a typical intermittent stream in the Middle Humboldt River Basin in north-central Nevada, was chosen to develop methods of estimating and characterizing streambed infiltration and ground-water recharge in mountainous terrains. Trout Creek has a drainage area of about 4.8 × 107 square meters. Stream gradients range from more than 1 × 10–1 meter per meter in the mountains to 5 × 10–3 meter per meter at the foot of the piedmont alluvial plain. Trout Creek is perennial in short reaches upstream of a northeast-southwest trending normal fault, where perennial springs discharge to the channel. Downstream from the fault, the water table drops below the base of the channel and the stream becomes intermittent.Snowmelt generates streamflow during March and April, when streamflow extends onto the piedmont alluvial plain for several weeks in most years. Rates of streambed infiltration become highest in the lowest reaches, at the foot of the piedmont alluvial plain. The marked increases in infiltration are attributed to increases in streambed permeability together with decreases in channel-bed armoring, the latter which increases the effective area of the channel. Large quartzite cobbles cover the streambed in the upper reaches of the stream and are absent in the lowest reach. Such changes in channel deposits are common where alluvial fans join piedmont alluvial plains. Poorly sorted coarse and fine sediments are deposited near the head of the fan, while

  3. Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment

    Directory of Open Access Journals (Sweden)

    P. Rodgers

    2005-01-01

    Full Text Available δ18O measurements in precipitation and stream waters were used to investigate hydrological flow paths and residence times at nested spatial scales in the mesoscale (233 km2 River Feugh catchment in the northeast of Scotland over the 2001-2002 hydrological year. Precipitation δ18O exhibited strong seasonal variation, which although significantly damped within the catchment, was reflected in stream water at six sampling sites. This allowed δ18O variations to be used to infer the relative influence of soil-derived storm flows with a seasonally variable isotopic signature, and groundwater of apparently more constant isotopic composition. Periodic regression analysis was then used to examine the sub-catchment difference using an exponential flow model to provide indicative estimates of mean stream water residence times, which varied between approximately 3 and 14 months. This showed that the effects of increasing scale on estimated mean stream water residence time was minimal beyond that of the smallest (ca. 1 km2 headwater catchment scale. Instead, the interaction of catchment soil cover and topography appeared to be the dominant controlling influence. Where sub-catchments had extensive peat coverage, responsive hydrological pathways produced seasonally variable δ18O signatures in runoff with short mean residence times (ca. 3 months. In contrast, areas dominated by steeper slopes, more freely draining soils and larger groundwater storage in shallow valley-bottom aquifers, deeper flow paths allow for more effective mixing and damping of δ18O indicating longer residence times (>12 months. These insights from δ18O measurements extend the hydrological understanding of the Feugh catchment gained from previous geochemical tracer studies, and demonstrate the utility of isotope tracers in investigating the interaction of hydrological processes and catchment characteristics at larger spatial scales.

  4. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  5. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  6. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  7. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    Science.gov (United States)

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for

  8. Ground-water flow in low permeability environments

    Science.gov (United States)

    Neuzil, Christopher E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively “tighter” media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic

  9. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  10. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  11. Measurement of ground-water storage change and specific yield using the temporal-gravity method near Rillito Creek, Tucson, Arizona

    Science.gov (United States)

    Pool, Donald R.; Schmidt, Werner

    1997-01-01

    The temporal-gravity method was used to estimate ground-water storage change and specific -yield values at wells near Rillito Creek, Tucson, Arizona, between early December 1992 and early January 1994. The method applies Newton's Law of Gravitation to measure changes in the local gravitational field of the Earth that are caused by changes in the mass and volume of ground water. Gravity at 50 stations in a 6-square-mile area was measured repeatedly relative to gravity at two bedrock stations. Ephemeral recharge through streamflow infiltration during the winter of 1992-93 resulted in water-level rises and gravity increases near Rillito Creek as the volume of ground water in storage increased. Water levels in wells rose as much as 30 feet, and gravity increased as much as 90 microgals. Water levels declined and gravity decreased near the stream after the last major winter flow but continued to rise and increase, respectively, in downgradient areas. Water levels and gravity relative to bedrock were measured at 10 wells. Good linear correlations between water levels and gravity values at five wells nearest the stream allowed for the estimation of specific-yield values for corresponding stratigraphic units assuming the mass change occurred in an infinite horizonal slab of uniform thickness. Specific-yield values for the stream-channel deposits at three wells ranged from 0.15 to 0.34, and correlation coefficients ranged from 0.81 to 0.99. Specific-yield values for the Fort Lowell Formation at three wells ranged from 0.07 to 0.18, and correlation coefficients ranged from 0.82 to 0.93. Specific-yield values were not calculated for the five wells farthest from the stream because of insufficient water-level and gravity change or poor correlations between water level and gravity. Poor correlations between water levels and gravity resulted from ground-water storage change in perched aquifers and in the unsaturated zone near ephemeral streams. Seasonal distributions of ground-water

  12. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  13. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  14. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  15. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  16. Flow in fissured porous media

    International Nuclear Information System (INIS)

    Stichel, Sabine

    2014-01-01

    The flow simulation in fissured porous media is of importance for hydro-geological applications like ground water contamination in the neighborhood of waste disposal sites, radioactive waste repositories, fossil fuel mining or underground CO2 storage facilities. The permeability within the fissures - that are preferred transport paths - could influence the flow profile. The anisotropic geometry and the excursive parameter changes produce enormous challenges to numerical methods. A low-dimensional approach is used to model then processes within the fissures, acceptable results were reached. Based on the properties of the fissure and flow parameters a criterion was defined that allows to judge whether the application of the low-dimensional approach is sufficient. A dimension-adapting approach is presented that allow the change tp a full-dimensional model according to the criterion.

  17. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  18. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  19. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  20. Water flow experiment using the PIV technique and the thermal hydraulic analysis on the cross-flow type mercury target model

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro

    2001-01-01

    In this study the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. The average water flow velocity field in the target mock-up model, which was fabricated with plexiglass, was measured at room temperature using the PIV (Particle Image Velocimetry) technique. The water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in the former part of the proton beam path where the heat load by the spallation reaction is large, and the analytical result of the water flow velocity field showed good correspondence to the experimental result in the case of the Reynolds number of more than 4.83 x 10 5 at the model inlet. With these results, the effectiveness of the cross-flow type mercury target structure and the present analysis code system was demonstrated. Then the mercury flow field and the temperature distribution in the target container were analyzed assuming the proton beam energy and power of 3 GeV and 5 MW. The analytical result showed that the cross-flow field of mercury, which is similar to the water flow field, could also be attained. (author)

  1. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  2. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  3. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  4. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    International Nuclear Information System (INIS)

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  5. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  6. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  7. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  8. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  9. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  10. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  11. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  12. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    Science.gov (United States)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also

  13. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  14. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  15. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  16. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  17. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  18. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  19. Sloshing of water in annular pressure-suppression pool of boiling water reactors under earthquake ground motions

    International Nuclear Information System (INIS)

    Aslam, M.; Godden, W.G.; Scalise, D.T.

    1979-10-01

    This report presents an analytical investigation of the sloshing response of water in annular-circular as well as simple-circular tanks under horizontal earthquake ground motions, and the results are verified with tests. This study was motivated because of the use of annular tanks for pressure-suppression pools in Boiling Water Reactors. Such a pressure-suppression pool would typically have 80 ft and 120 ft inside and outside diameters and a water depth of 20 ft. The analysis was based upon potential flow theory and a computer program was written to obtain time-history plots of sloshing displacements of water and the dynamic pressures. Tests were carried out on 1/80th and 1/15th scale models under sinusoidal as well as simulated earthquake ground motions. Tests and analytical results regarding the natural frequencies, surface water displacements, and dynamic pressures were compared and a good agreement was found for relatively small displacements. The computer program gave satisfactory results as long as the maximum water surface displacements were less than 30 in., which is roughly the value obtained under full intensity of El Centro earthquake

  20. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  1. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  2. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  3. Assessment of trace ground-water contaminants release from south Texas in-situ uranium solution-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Humenick, M.J.

    1981-01-01

    The future of uranium solution mining in south Texas depends heavily on the industry's ability to restore production zone ground water to acceptable standards. This study investigated the extent of trace contaminant solubilization during mining and subsequent restoration attempts, first through a literature search centered on uranium control mechanisms, and then by laboratory experiments simulating the mining process. The literature search indicated the complexity of the situation. The number of possible interactions between indigenous elements and materials pointed on the site specificity of the problem. The column studies evaluated three different production area ores. Uranium, molybdenum, arsenic, vanadium, and selenium were analyzed in column effluents. After simulated mining operations were completed, uranium was found to be the most persistent trace element. However, subsequent ground water flushing of the columns could restore in-situ water to EPA recommended drinking water concentrations. Limited data indicated that ground water flowing through mined areas may solubilize molybdenum present in down gradient areas adjacent to the production zone due to increased oxidation potential of ground water if adequate restoration procedures are not followed.

  4. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  5. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)

  6. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)

    Science.gov (United States)

    Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing

    2003-01-01

    SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.

  7. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  8. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  9. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  10. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  11. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  12. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  13. Determination of velocity and flow direction of ground water by using nuclear techniques

    International Nuclear Information System (INIS)

    Santos Ferreira, L. dos.

    1976-06-01

    The dynamics of water in an aquifer with the purpose of determining the filtration velocity and the direction of groundwater flow with radioactive tracers was studied. Field equipment for the purposes of the study was built in the Laboratory of Tracers in Hydrology in collaboration with the Institute of Nuclear Engineering (IEN/NUCLEBRAS). The equipment was designed to minimize the possible vertical flows, loss and molecular diffusion of the tracer out of the studied region. The performance of the nuclear detectors and the constructional details of the field equipament were examined. The selection of the radioactive tracers was made taking into account its availibility and radiation facilities, cost of the inactive material and their physical and chemical properties. The tracers used were 82 Br and 198 Au. The results are discussed with the help of auxiliary informations such as plots of water levels in time and space, profiles and grain analysis. In order to obtain a physical explanation of the results, a qualitative model of the flow in the aquifer is also presented. (Author) [pt

  14. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    Science.gov (United States)

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  15. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite

  16. Hydrochemical and isotopic study of the Botucatu aquifer ground waters in Sao Paulo State

    International Nuclear Information System (INIS)

    Silva, R.B.G. da.

    1983-01-01

    The process controlling chemical composition of ground water,its origin and apparent age as well as, the natural flow rate of the water in Botucatu aquifer in state of Sao Paulo, Brazil, have been investigated using hydrochemical and environmental isotopic ( 18 O, 2 H, 13 C, 14 C) Technics. The main recharge process is assumed to be the infiltration of rain water in the aquifer outcrop area. The progressive confining conditions with the increasing depth of the top of the aquifer layer makes the ground water temperature slowly greater. The recent magnesium and sodium bicarbonated waters changes first to sodium bicarbonated and then to sodium chloride-sulfated waters which are oldest found out in the research area(around 30.000 years ago). The mean Darcy permeability estimated on basis of 14 C and hydraulic gradient data is 2.6x10 -5 m/s. 9 maps (author) [pt

  17. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  18. A unique circular path of moving single bubble sonoluminescence in water

    International Nuclear Information System (INIS)

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa; Rezaee, Nastaran; Nikzad, Lida

    2011-01-01

    Based on a quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated. By using a complete form of the hydrodynamic force, a unique circular path for the m-SBSL in water is obtained. The effect of the ambient pressure variation on the bubble trajectory is also investigated. It is concluded that as the ambient pressure increases, the bubble moves along a circular path with a larger radius and all bubble parameters, such as gas pressure, interior temperature and light intensity, increase. A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide. With fluid viscosity increasing, the circular path changes into an elliptic form and the light intensity increases. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  20. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    Science.gov (United States)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  1. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site

  4. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  5. Ground-Water Quality Data in the San Fernando-San Gabriel Study Unit, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 460 square mile San Fernando-San Gabriel study unit (SFSG) was investigated between May and July 2005 as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The San Fernando-San Gabriel study was designed to provide a spatially unbiased assessment of raw ground-water quality within SFSG, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 52 wells in Los Angeles County. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seventeen wells were selected to aid in the evaluation of specific water-quality issues or changes in water chemistry along a historic ground-water flow path (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane], naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately one-fifth (11 of 52) of the wells, and the results for these

  6. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  7. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  8. Stability of Intelligent Transportation Network Dynamics: A Daily Path Flow Adjustment considering Travel Time Differentiation

    Directory of Open Access Journals (Sweden)

    Ming-Chorng Hwang

    2015-01-01

    Full Text Available A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i travel time induced path flow dynamics (PFDTT; (ii demand induced path flow dynamics (PFDD; and (iii predicted travel time dynamics for an origin-destination (OD pair (PTTDOD. PFDTT describes the collective results of user’s daily route selection by pairwise comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability theorem to show the asymptotic behavior of the aimed system. The information of network flow dynamics plays a key role in traffic control policy-making. The evaluation of ITS-based strategies will not be reasonable without a well-established modeling of network flow evolutions.

  9. Annotated bibliography on artificial recharge of ground water, 1955-67

    Science.gov (United States)

    Signor, Donald C.; Growitz, Douglas J.; Kam, William

    1970-01-01

    Artificial ground-water recharge has become more important as water use by agriculture, industry, and municipalities increases. Water management agencies are increasingly interested in potential use of recharge for pollution abatement, waste-water disposal, and re-use and reclamation of locally available supplies. Research projects and theoretical analyses of operational recharge systems show increased scientific emphasis on the practice. Overall ground-water basin management systems generally now contain considerations of artificial recharge, whether by direct or indirect methods. Artificial ground-water recharge is a means of conserving surface runoff for future use in places where it would otherwise be lost, of protecting ground-water basins from salt-water encroachment along coastal areas, and of storing and distributing imported water. The biblio-graphy emphasizes technology; however, annotations of articles on waste-water reclamation, ground-water management and ground-water basin management are included. Subjects closely related to artificial recharge, including colloidal flow through porous media, field or laboratory instrumentation, and waste disposal by deep well injection are included where they specifically relate to potential recharge problems. Where almost the same material has been published in several journals, all references are included on the assumption that some publications may be more readily available to interested persons than others. Other publications, especially those of foreign literature, provided abstracts that were used freely as time limitations precluded obtaining and annotating all materials. Abstracts taken from published sources are noted. These are: "Abstracts of North American Geology," U.S. Department of the Interior, Geological Survey; "Abstracts of Recent Published Material on Foil and Water Conservation," ARS-41 series, Agricultural F.esearch Service, U.S. Department of Agriculture; "Water and1 Water

  10. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  11. Analytic game—theoretic approach to ground-water extraction

    Science.gov (United States)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  12. A high performance magnetorheological valve with a meandering flow path

    International Nuclear Information System (INIS)

    Imaduddin, Fitrian; Amri Mazlan, Saiful; Azizi Abdul Rahman, Mohd; Zamzuri, Hairi; Ubaidillah; Ichwan, Burhanuddin

    2014-01-01

    The huge developments in the field of magnetorheological (MR) fluid-based devices will have a great influence on the future of mechatronic applications due to the ease of interfacing between electronic controls and the mechanical components that they provide. Among various MR fluid-based devices, an MR valve would be particularly significant for the development of other devices, if it could be successfully achieved. One of the most challenging obstacles to MR valve development is the difficulty of achieving device miniaturization while, at the same time, improving the achievable performance. This study demonstrates a novel design for an MR valve, using the meandering flow path approach in order to increase the effective area so that the MR fluid can be regulated within a small-sized valve. The meandering flow path is formed by combining multiple annular, radial and orifice flow channels. In order to analyze the valve performance, a mathematical model of the proposed MR valve is derived and combined with numerical simulation using the finite element method, with the intention of predicting the achievable pressure drop that can be generated by the valve. The predicted MR valve performances are then experimentally evaluated using an oscillation-disturbed bypass hydraulic cylinder. The simulation results show that the proposed MR valve design could yield substantial pressure drop improvement, which is confirmed by the experiment

  13. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  14. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    International Nuclear Information System (INIS)

    1995-04-01

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion

  15. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  16. Stable isotope study of ground water recharge and movement in the Shogawa Fan, Toyama

    International Nuclear Information System (INIS)

    Mizutani, Yoshihiko; Oda, Matsuhisa

    1983-01-01

    Deuterium and oxygen-18 measurements of ground and river waters of the Shogawa Fan, Toyama, have been used to identify sources of water in aquifers in the Fan. A significant difference exists in deltaD and delta 18 O values between two major rivers flowing onto the Fan. On the basis of this difference, it is indicated that aquifers in the eastern half of the Fan are recharged from the Sho River and those in the western half of the Fan are from the Oyabe River. Chloride measurements of the waters support this identification of water sources. Contributions of other water sources to the aquifers are also indicated. The flow rate of infiltration from the Sho River is estimated to be 10-13 m/day in the confined aquifers in the northern part of the Fan. (author)

  17. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The

  18. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  19. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  20. Ground water in the Piedmont upland of central Maryland

    Science.gov (United States)

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  1. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  2. Thermally determining flow and/or heat load distribution in parallel paths

    Science.gov (United States)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  3. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  4. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  5. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  6. Eyes On the Ground: Path Forward Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brost, Randolph; Little, Charles Q.; peter-stein, natacha; Wade, James Rokwel

    2018-03-01

    A previous report assesses our progress to date on the Eyes On the Ground project, and reviews lessons learned [1]. In this report, we address the implications of those lessons in defining the most productive path forward for the remainder of the project. We propose two main concepts: Interactive Diagnosis and Model-Driven Assistance. Among these, the Model-Driven Assistance concept appears the most promising. The Model-Driven Assistance concept is based on an approximate but useful model of a facility, which provides a unified representation for storing, viewing, and analyzing data that is known about the facility. This representation provides value to both inspectors and IAEA headquarters, and facilitates communication between the two. The concept further includes a lightweight, portable field tool to aid the inspector in executing a variety of inspection tasks, including capture of images and 3-d scan data. We develop a detailed description of this concept, including its system components, functionality, and example use cases. The envisioned tool would provide value by reducing inspector cognitive load, streamlining inspection tasks, and facilitating communication between the inspector and teams at IAEA headquarters. We conclude by enumerating the top implementation priorities to pursue in the remaining limited time of the project. Approved for public release; further dissemination unlimited.

  7. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site

  10. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  11. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  12. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  13. 226Ra and 228Ra in ground water of the Cambrian-Ordovician Aquifer System in northern Illinois

    International Nuclear Information System (INIS)

    Gilkeson, R.H.; Holtzman, R.B.

    1982-01-01

    Over a large region of Illinois, ground water of the Cambrian-Ordovician Aquifer System exceeds the US EPA drinking water standard of 5 pCi/L for the combined concentration of 226 Ra and 228 Ra. 226 Ra concentrations range from 226 Ra is the geochemistry of uranium in the ground-water flow system, while the 228 Ra activity in ground water which ranges from 232 Th-bearing minerals in the aquifer strata. The comparison of recent analyses to historical data gathered over the last 20 years indicates that, with few exceptions, 226 Ra and 228 Ra activities in ground water have remained constant. The combined concentrations of the two nuclides in ground water of the aquifer system ranged from 226 Ra concentrations were high (greater than or equal to 10 pCi/L), those of 228 Ra were low (less than or equal to 2 pCi/L), but, with few exceptions, in regions where 228 Ra concentrations were high, those of 226 Ra were also high. The range of values raises questions concerning the validity of the US EPA regulation which requires analysis for 228 Ra only when the concentration of 226 Ra exceeds 3.0 pCi/L

  14. Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments

    NARCIS (Netherlands)

    Krzeminska, D.M.; Bogaard, T.A.; Debieche, T.H.; Cervi, F.; Marc, V.; Malet, J.P.

    2014-01-01

    The unsaturated zone largely controls groundwater recharge by buffering precipitation while at the same time providing preferential flow paths for infiltration. The importance of preferential flow on landslide hydrology is recognised in the literature; however, its monitoring and quantification

  15. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  16. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  17. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  18. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  19. Bridging the Gap: The 'Soft Path' for Improving Resilience and Adaptability of Water Systems (Invited)

    Science.gov (United States)

    Gleick, P. H.

    2010-12-01

    The failure of traditional water management systems in the 20th century -- what I call the "hard path for water" -- is evident in several ways, including the persistent inability to meet basic human needs for safe water and adequate sanitation for vast populations, ongoing and accelerating aquatic ecosystem collapses , and growing political disputes over water allocation, management, and use, even in regions where substantial investment in water has been made. Progress in resolving these problems, especially in the face of unavoidable climate changes, growing populations, and constrained financial systems, will require bridging hydrologic and social sciences in new ways. Integrating social and cultural knowledge with new economic and technological tools and classical hydrologic and climatological sciences can produce a new “soft path for water” that offers the opportunity to move toward sustainable water systems. This talk will define the soft path for water and offer examples of innovative steps already being taken along that path in the western United States, South Africa, India, and elsewhere.

  20. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  1. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  2. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  3. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    Science.gov (United States)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path

  4. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  5. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  6. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  7. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    fostered new types of recharge assessments. Chemical and isotopic techniques include an increasing variety of environmental tracers that are useful and robust. Physically based techniques include the use of heat as a tracer and computationally intensive geophysical imaging tools for characterizing hydrologic conditions in the unsaturated zone. Modeling-based techniques include spatially distributed water-budget computations using high-resolution remotely sensed and ground-based geographic data. Application of these techniques to arid and semiarid settings in the southwestern United States reveals distinct patterns of recharge corresponding to geologic setting, climatic and vegetative history, and land use. Analysis of recharge patterns shows that large expanses of alluvial basin floors are drying out under current climatic conditions, with little to no recharge to underlying ground water. Ground-water recharge occurs mainly beneath upland catchments in which thin soils overlie permeable bedrock, ephemeral channels in which flow may average only several hours per year, and active agricultural areas. The chapters in this professional paper represent a coordinated attempt to develop a better understanding of one of the Nation's most critical yet difficult-to-quantify renewable resources.

  8. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  9. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-01-01

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute

  10. Natural isotope technique for the exploration and exploitation of ground water

    International Nuclear Information System (INIS)

    Zainal Abidin; Hudi Hastowo; Aang Hanafiah

    2007-01-01

    In line with the condition of climate and hydrology, Indonesia has a fast amount of aquifers which are sources of ground water. In several areas large number of springs occurred with small to large debits which is a sign of ground water potential. Ground water is a potential reservoir to be use at maximum for several purposes such as drinking water, industry and tourism. Large cities such as Jakarta, Bandung and others depend on ground water for their industries and hotels. The exploitation of ground water use has to be controlled and monitoring of a management system have to be done. Research carried out only on the exploitation of geophysics and hydrology showed that the amount of ground water reservoirs is not enough to be used when it comes to justification to explore it. Other parameters are still be needed which are the origins and dating of the ground water, these last two factors mentioned have to be taken into consideration in the system of conversion and balance of water. An alternative technology to determine the two factors mentioned in a short time is the natural isotope technique of 18 O, 2 H and 14 C. This technique is used to determine the origin of water, and isotope 14 C is carried out to determine the age of ground water. Isotopes 18 H and 2 H are stable isotopes in the form of water and is integrated in the hydrological cycle. Their specific concentrations in rain water at several elevations are used as fingerprints to locate the area of ground water supplement and its origin. Isotope 14 C is a natural radioactive isotope with a half-life of 5.730 years and is found in the hydrology cycle and enters the ground water system through CO 2 gas which is dissolved in water. 14 C isotope could determine the age of ground water and is also able to indicate the potential/amount of ground water. Studies of exploration and exploration monitoring of ground water should be an integrated study by geohydrology, geophysics and isotope and could be a solution of

  11. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    Science.gov (United States)

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  12. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  13. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  14. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  15. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  16. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  17. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  18. Ground water pollution by roof runoff infiltration evidenced with multi-tracer experiments.

    Science.gov (United States)

    Ammann, Adrian A; Hoehn, Eduard; Koch, Sabine

    2003-03-01

    The infiltration of urban roof runoff into well permeable subsurface material may have adverse effects on the ground water quality and endanger drinking water resources. Precipitation water from three different roofs of an industrial complex was channelled to a pit and infiltrated into a perialpine glaciofluvial gravel-and-sand aquifer. A shaft was constructed at the bottom of the pit and equipped with an array of TDR probes, lysimeters and suction cups that allowed measuring and sampling soil water at different depths. A fast infiltration flow was observed during natural rainfall events and during artificial infiltration experiments. For a better understanding of the behaviour of contaminants, experiments were conducted with cocktails of compounds of different reactivity (ammonium, strontium, atratone) and of non-reactive tracers (uranine, bromide, naphthionate), which represent different classes of pollutants. The experiment identified cation exchange reactions influencing the composition of the infiltrating water. These processes occurred under preferential flow conditions in macropores of the material. Measuring concentration changes under the controlled inflow of tracer experiments, the pollution potential was found to be high. Non-reactive tracers exhibited fast breakthrough and little sorption.

  19. Evaluation of the matrix exponential for use in ground-water-flow and solute-transport simulations; theoretical framework

    Science.gov (United States)

    Umari, A.M.; Gorelick, S.M.

    1986-01-01

    It is possible to obtain analytic solutions to the groundwater flow and solute transport equations if space variables are discretized but time is left continuous. From these solutions, hydraulic head and concentration fields for any future time can be obtained without ' marching ' through intermediate time steps. This analytical approach involves matrix exponentiation and is referred to as the Matrix Exponential Time Advancement (META) method. Two algorithms are presented for the META method, one for symmetric and the other for non-symmetric exponent matrices. A numerical accuracy indicator, referred to as the matrix condition number, was defined and used to determine the maximum number of significant figures that may be lost in the META method computations. The relative computational and storage requirements of the META method with respect to the time marching method increase with the number of nodes in the discretized problem. The potential greater accuracy of the META method and the associated greater reliability through use of the matrix condition number have to be weighed against this increased relative computational and storage requirements of this approach as the number of nodes becomes large. For a particular number of nodes, the META method may be computationally more efficient than the time-marching method, depending on the size of time steps used in the latter. A numerical example illustrates application of the META method to a sample ground-water-flow problem. (Author 's abstract)

  20. Simplified estimation technique for organic contaminant transport in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Piver, W T; Lindstrom, F T

    1984-05-01

    The analytical solution for one-dimensional dispersive-advective transport of a single solute in a saturated soil accompanied by adsorption onto soil surfaces and first-order reaction rate kinetics for degradation can be used to evaluate the suitability of potential sites for burial of organic chemicals. The technique can be used to the greatest advantage with organic chemicals that are present in ground waters in small amounts. The steady-state solution provides a rapid method for chemical landfill site evaluation because it contains the important variables that describe interactions between hydrodynamics and chemical transformation. With this solution, solute concentration, at a specified distance from the landfill site, is a function of the initial concentration and two dimensionless groups. In the first group, the relative weights of advective and dispersive variables are compared, and in the second group the relative weights of hydrodynamic and degradation variables are compared. The ratio of hydrodynamic to degradation variables can be rearranged and written as (a/sub L lambda)/(q/epsilon), where a/sub L/ is the dispersivity of the soil, lambda is the reaction rate constant, q is ground water flow velocity, and epsilon is the soil porosity. When this term has a value less than 0.01, the degradation process is occurring at such a slow rate relative to the hydrodynamics that it can be neglected. Under these conditions the site is unsuitable because the chemicals are unreactive, and concentrations in ground waters will change very slowly with distance away from the landfill site.

  1. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  2. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  3. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual

  4. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  5. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  6. Investigation of Submarine Groundwater Discharge and Preferential Groundwater Flow-paths in a Coastal Karst Area using towed Marine and Terrestrial Electrical Resistivity

    Science.gov (United States)

    O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.

    2012-12-01

    Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities

  7. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  8. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  9. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Science.gov (United States)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  10. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  11. Quality of water in an inactive uranium mine and its effects on the quality of water in Blue Creek, Stevens County, Washington, 1984-85. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sumioka, S.S.

    1991-01-01

    The purpose of the report is to present the results of a study done to determine (1) the monthly and annual water budgets and probable variation in runoff for the drainage basin in which the mine is located; (2) if precipitation is the source of low pH water found in pit 3 and the retention pond; (3) the quality of water in pits 3 and 4, the retention pond, streamflow from the basin, Blue Creek upstream and downstream of the point the drainage enters, and near the mouth of Blue Creek; (4) the quality of ground water discharged from the basin into Blue Creek; and (5) the daily mean values of discharge, water temperature, specific conductance, and pH for mine drainage from the basin, Blue Creek upstream and downstream of the mine drainage, and near the mouth of Blue Creek. The report also describes a potential water-quality monitoring program that would allow the determination of annual loads of selected chemical constituents entering Blue Creek from the mine basin and information about the type of ground-water tracers and procedures needed to examine flow paths near the retention pond

  12. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  13. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  14. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  15. Computing LS factor by runoff paths on TIN

    Science.gov (United States)

    Kavka, Petr; Krasa, Josef; Bek, Stanislav

    2013-04-01

    The article shows results of topographic factor (the LS factor in USLE) derivation enhancement focused on detailed Airborne Laser Scanning (ALS) based DEMs. It describes a flow paths generation technique using triangulated irregular network (TIN) for terrain morphology description, which is not yet established in soil loss computations. This technique was compared with other procedures of flow direction and flow paths generation based on commonly used raster model (DEM). These overland flow characteristics together with therefrom derived flow accumulation are significant inputs for many scientific models. Particularly they are used in all USLE-based soil erosion models, from which USLE2D, RUSLE3D, Watem/Sedem or USPED can be named as the most acknowledged. Flow routing characteristics are also essential parameters in physically based hydrological and soil erosion models like HEC-HMS, Wepp, Erosion3D, LISEM, SMODERP, etc. Mentioned models are based on regular raster grids, where the identification of runoff direction is problematic. The most common method is Steepest descent (one directional flow), which corresponds well with the concentration of surface runoff into concentrated flow. The Steepest descent algorithm for the flow routing doesn't provide satisfying results, it often creates parallel and narrow flow lines while not respecting real morphological conditions. To overcome this problem, other methods (such as Flux Decomposition, Multiple flow, Deterministic Infinity algorithm etc.) separate the outflow into several components. This approach leads to unrealistic diffusion propagation of the runoff and makes it impossible to be used for simulation of dominant morphological features, such as artificial rills, hedges, sediment traps etc. The modern methods of mapping ground elevations, especially ALS, provide very detailed models even for large river basins, including morphological details. New algorithms for derivation a runoff direction have been developed as

  16. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley Caldera, Mono County, California, USA

    International Nuclear Information System (INIS)

    Farrar, C.D.; Lyster, D.L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. This paper reports that early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by ground-water or geothermal development

  17. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  18. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater......Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting...

  19. Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal)

    International Nuclear Information System (INIS)

    Marques, J.M.; Carreira, P.M.; Goff, F.; Eggenkamp, H.G.M.; Antunes da Silva, M.

    2012-01-01

    Strontium isotopes and other geochemical signatures are used to determine the relationships between CO 2 -rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87 Sr/ 86 Sr isotopic ratios between 0.716713 and 0.728035. 87 Sr/ 86 Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO 2 -rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87 Sr/ 86 Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO 2 -rich thermal and mineral waters and the granitic rocks. The mean 87 Sr/ 86 Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.

  20. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  1. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  2. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  3. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    The effects of highway-deicer application on ground-water quality were studied at a site in northwestern Indiana using a variety of geochemical indicators. Site characteristics such as high snowfall rates; large quantities of applied deicers; presence of a high-traffic highway; a homogeneous, permeable, and unconfined aquifer; a shallow water table; a known ground-water-flow direction; and minimal potential for other sources of chloride and sodium to complicate source interpretation were used to select a study area where ground water was likely to be affected by deicer application. Forty-three monitoring wells were installed in an unconfined sand aquifer (the Calumet aquifer) near Beverly Shores in northwestern Indiana. Wells were installed along two transects that approximately paralleled groundwater flow in the Calumet aquifer and crossed US?12. US?12 is a highway that receives Indiana?s highest level of maintenance to maintain safe driving conditions. Ground-water quality and water-level data were collected from the monitoring wells, and precipitation and salt-application data were compiled from 1994 through 1997. The water-quality data indicated that chloride was the most easily traced indicator of highway deicers in ground water. Concentration ratios of chloride to iodide and chloride to bromide and Stiff diagrams of major element concentrations indicated that the principal source of chloride and sodium in ground water from the uppermost one-third to one-half of the Calumet relative electromagnetic conductivity defined a distinct plume of deicer-affected water in the uppermost 8 feet of aquifer at about 9 feet horizontally from the paved roadway edge and a zone of higher conductivity than background in the lower one-third of the aquifer. Chloride and sodium in the deep parts of the aquifer originated from natural sources. Chloride and sodium from highway deicers were present in the aquifer throughout the year. The highest concentrations of chloride and sodium

  4. Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...

  5. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  6. Ground-water, surface-water, and water-chemistry data, Black Mesa Area, northeastern Arizona: 2000-2001, and performance and sensitivity of the 1988 USGS numerical model of the N aquifer

    Science.gov (United States)

    Thomas, Blakemore E.

    2002-01-01

    from July 1976 to 2000 at Moenkopi Wash, July 1996 to 2000 at Laguna Creek, June 1993 to 2000 at Dinnebito Wash, and April 1994 to 2000 at Polacca Wash. Median flows for November, December, January, and February of each water year were used as an index of ground-water discharge to those streams. There is no significant trend in the median winter flows for Moenkopi Wash from 1977 to 2000. The records for the other three streams are too short for a statistical analysis of trends. The median winter flows for Dinnebito Wash and Polacca Wash, however, appear to have decreased during the last 6 years. There is no apparent trend in the median winter flows for Laguna Creek since 1997. In 2001, water samples were collected from 12 wells and 4 springs and analyzed for selected chemical constituents. Dissolved-solids concentrations ranged from 102 to 628 milligrams per liter. Water samples from 9 of the wells and from the 4 springs had less than 350 milligrams per liter of dissolved solids. Water-chemistry data with sufficient years of record for a statistical analysis of trends over time are available from 7 wells and 4 springs. From about the mid-1980s or early 1990s to 2001 there are no significant trends in the concentrations of dissolved solids, chloride, and sulfate in water samples from 6 of the 7 wells. The concentration of one tested constituent (dissolved solids) in samples from Rocky Ridge PM3 significantly increased from 1990 to 2001. From the late 1980s to 2001, there are no significant trends in the concentrations of dissolved solids, chloride, and sulfate in water samples from Burro Spring, the unnamed spring near Dennehotso, and Pasture Canyon Spring. From 1987 to 2001, concentrations of chloride and sulfate significantly increased in water samples from Moenkopi School Spring and concentrations of dissolved solids did not significantly change. The performance and sensitivity of the 1988

  7. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  8. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  9. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  10. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  11. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  12. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  13. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  14. Ground water quality evaluation in Beed city, Maharashtra, India ...

    African Journals Online (AJOL)

    A survey was undertaken to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical and bacteriological parameters into consideration. The present investigation is aimed to calculate Water Quality Index (WQI) of ground water and to assess the impact of pollutants due to agriculture ...

  15. Spread of harmful radioactive materials into running water - Possible consequences on emergency protection measures: Results of the four work packages; Radiologische Schadstoffausbreitung in Fliessgewässer- Mögliche Auswirkungen auf den Notfallschutz: Ergebnisse der vier Arbeitspakete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-15

    When an extreme event in a Swiss nuclear power plant occurs, the release of radioactive materials could contaminate the drinking water supply through ground water, the river Aare or the river Rhine. To avoid such an accident, protection measures have to be taken in time, in order to stop drinking water treatment facilities downstream from the source of radioactivity release. The Swiss Federal Nuclear Safety Inspectorate (ENSI) reviewed the current situation as far as their efficiency for emergency protection of drinking water supplies is concerned. Current legal requirements and measures provide protection for the population and the environment against an uncontrolled release of radioactive materials into ground water and flowing waters. However, some points have to be checked more deeply. The present report describes the results of this analysis. The release of radioactive material into ground water or flowing waters could occur as a result of earthquakes or flooding. Even for accidents exceeding design considerations with core meltdown, large contaminations of ground and flowing water are not to be expected thanks to the stability of the reactor buildings. Because of the varying ground water situations and the stability of the reactor buildings at Swiss nuclear power plants, a situation similar to the one that occurred during the Fukushima accident, where ground water continually entered into the reactor containment causing large contamination of the water, cannot take place. The examination of communication paths showed that the paths are established between the nuclear power plants, the participating federal offices and the cantons. The criteria for the setting off of alarms and immediate measures to be taken in cases where radioactive materials in the Aare or the Rhine are recorded were examined. Downstream of the nuclear power plants, five new sodium-iodide detectors were installed in order to continuously monitor the dose rate and the activity of gamma

  16. Testing the role of meander cutoff in promoting gene flow across a riverine barrier in ground skinks (Scincella lateralis.

    Directory of Open Access Journals (Sweden)

    Nathan D Jackson

    Full Text Available Despite considerable attention, the long-term impact of rivers on species diversification remains uncertain. Meander loop cutoff (MLC is one river phenomenon that may compromise a river's diversifying effects by passively transferring organisms from one side of the river to the other. However, the ability of MLC to promote gene flow across rivers has not been demonstrated empirically. Here, we test several predictions of MLC-mediated gene flow in populations of North American ground skinks (Scincella lateralis separated by a well-established riverine barrier, the Mississippi River: 1 individuals collected from within meander cutoffs should be more closely related to individuals across the river than on the same side, 2 individuals within meander cutoffs should contain more immigrants than individuals away from meander cutoffs, 3 immigration rates estimated across the river should be highest in the direction of the cutoff event, and 4 the distribution of alleles native to one side of the river should be better predicted by the historical rather than current path of the river. To test these predictions we sampled 13 microsatellite loci and mitochondrial DNA from ground skinks collected near three ancient meander loops. These predictions were generally supported by genetic data, although support was stronger for mtDNA than for microsatellite data. Partial support for genetic divergence of samples within ancient meander loops also provides evidence for the MLC hypothesis. Although a role for MLC-mediated gene flow was supported here for ground skinks, the transient nature of river channels and morphologies may limit the long-term importance of MLC in stemming population divergence across major rivers.

  17. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data

    Directory of Open Access Journals (Sweden)

    U. Mallast

    2011-08-01

    Full Text Available In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine, the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.

  18. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  19. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  20. Identification of potential groundwater flow paths using geological and geophysical data

    International Nuclear Information System (INIS)

    Pohlmann, K.; Andricevic, R.

    1994-09-01

    This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport