WorldWideScience

Sample records for ground-water discharge areas

  1. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  2. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  3. Thermal ground-water discharge and associated convective heat flux, Bruneau-Grand View area, southwest Idaho

    Science.gov (United States)

    Young, H.W.; Lewis, R.E.; Backsen, R.L.

    1979-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho. The area has a rural population dependent on ground-water irrigation. Temperature of the ground water ranges from 15 C to more than 80 C. Ground water for irrigation is obtained from flowing and pumped wells. Discharge of thermal ground water from 104 irrigation wells and from 5 hot springs in 1978 was about 50,500 acre-feet. Convective heat flux from the geothermal system associated with this discharge was 4.97 x 10 to the 7th power calories per second. (Woodard-USGS)

  4. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  5. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  6. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, J.B. [Geological Survey, Denver, CO (United States); Kroitoru, L. [Roy F. Weston, Inc., Washington, DC (United States); Ronen, D. [Weizmann Inst. of Science, Rehovot (Israel)]|[Hydrological Service, Jerusalem (Israel); Magaritz, M. [Weizmann Inst. of Science, Rehovot (Israel)

    1992-10-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient ({minus}0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient ({minus}0.10) and a 0. 83{minus}meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone.

  7. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  8. Guidance on the use of passive-vapor-diffusion samplers to detect volatile organic compounds in ground-water-discharge areas, and example applications in New England

    Science.gov (United States)

    Church, Peter E.; Vroblesky, Don A.; Lyford, Forest P.

    2002-01-01

    Polyethylene-membrane passive-vapor-diffusion samplers, or PVD samplers, have been shown to be an effective and economical reconnaissance tool for detecting and identifying volatile organic compounds (VOCs) in bottom sediments of surface-water bodies in areas of ground-water discharge. The PVD samplers consist of an empty glass vial enclosed in two layers of polyethylene membrane tubing. When samplers are placed in contaminated sediments, the air in the vial equilibrates with VOCs in pore water. Analysis of the vapor indicates the presence or absence of VOCs and the likely magnitude of concentrations in pore water.

  9. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    Science.gov (United States)

    2003-09-01

    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  10. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  11. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  12. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu ... of the ground water distribution of the settlements around cement factories in ... The concentrations of lead and cadmium are above the World Health ...

  13. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  14. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  15. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  16. Ground water discharge and the related nutrient and trace metal fluxes into Quincy Bay, Massachusetts

    Science.gov (United States)

    Poppe, L.J.; Moffett, A.M.

    1993-01-01

    Measurement of the rate and direction of ground water flow beneath Wollaston Beach, Quincy, Massachusetts by use of a heat-pulsing flowmeter shows a mean velocity in the bulk sediment of 40 cm d-1. The estimated total discharge of ground water into Quincy Bay during October 1990 was 1324-2177 m3 d-1, a relatively low ground Water discharge rate. The tides have only a moderate effect on the rate and direction of this flow. Other important controls on the rate and volume of ground water flow are the limited thickness, geographic extent, and permeability of the aquifer. Comparisons of published streamflow data and estimates of ground water discharge indicate that ground water makes up between 7.4-12.1% of the gaged freshwater input into Quincy Bay. The data from this study suggest the ground water discharge is a less important recharge component to Quincy Bay than predicted by National Urban Runoff Program (NURP) models. The high nitrate and low nitrite and ammonia concentrations in the ground water at the backshore we]l sites and low nitrate and high nitrite and ammonia concentrations in the water flowing from the foreshore suggests that denitrification is active in the sediments. The low ground water flow rates and low nitrate concentrations in the foreshore samples suggest that little or no nitrate is surviving the denitrification process to affect the planktonic community. Similarly, oxidizing conditions in the aquifer and low trace metal concentrations in the ground water samples suggest that the metals may be precipitating and binding to sedimentary phases before impacting the bay.

  17. Draft Technical Protocol for Characterizing Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    Science.gov (United States)

    2006-01-01

    others, 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map seeps and springs next to a lake and in wetlands in...Minnesota (Rosenberry, 2000). Marsh marigold preferentially grows in ground-water discharge areas across the upper Midwest states and south central

  18. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  19. Depth to ground water contours of hydrographic area 153, Diamond Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of depth to ground water contours for hydrographic-area (HA) 153, Diamond Valley, Nevada. These data represent static ground-water levels...

  20. Status of ground water in the 1100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent.

  1. Monitoring the removal of phosphate from ground water discharging through a pond-bottom permeable reactive barrier

    Science.gov (United States)

    McCobb, T.D.; LeBlanc, D.R.; Massey, A.J.

    2009-01-01

    Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO 4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%. ?? 2009 National Ground Water Association.

  2. Ground-water geology of the Bruneau-Grand View area, Owyhee County, Idaho

    Science.gov (United States)

    Littleton, Robert Thomas; Crosthwaite, E.G.

    1957-01-01

    water does not exceed about 2,700 feet above mean sea level. In some areas, where the land surface is below that altitude, the artesian system discharges water through springs and seeps and locally causes waterlogging and development of alkali soil. In chemical quality much of the water is unsuitable for irrigation and domestic use. The water contains a relatively moderate amount of dissolved solids, but the percent sodium and the concentration of fluoride are excessive for some uses. The quality of the water for irrigation ranges from excellent in the southern part of the artesian system to unsuitable in the northern part. All the artesian ground water that was sampled contained excessive amounts of fluoride. There is a substantial supply of undeveloped artesian water in the area, but

  3. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  4. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  5. Ground-water supplies of the Ypsilanti area, Michigan

    Science.gov (United States)

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  6. PRO-GRADE: GIS toolkits for ground water recharge and discharge estimation.

    Science.gov (United States)

    Lin, Yu-Feng; Wang, Jihua; Valocchi, Albert J

    2009-01-01

    PRO-GRADE is an ESRI ArcGIS 9.2 plug-in package that consists of two separate toolkits: (1) the pattern recognition organizer for geographic information system (PRO-GIS) and (2) the ground water recharge and discharge estimator for GIS (GRADE-GIS). PRO-GIS is a collection of several existing image-processing algorithms into one user interface to offer the flexibility to extract spatial patterns according to the user's needs. GRADE-GIS is a ground water recharge and discharge estimation interface using a mass balance method that requires only hydraulic conductivity, water table, and bedrock elevation data for simulating two-dimensional steady-state unconfined aquifers. PRO-GRADE was developed to assist ongoing assessments of the water resources in Illinois and Wisconsin, and is being used to assist several ground water resource studies in several locations in the United States. The advantage of using PRO-GRADE is to enable fast production of initial recharge and discharge maps that can be further enhanced by using a follow-up ground water flow model with parameter estimation codes. PRO-GRADE leverages ArcGIS to provide a computer-assisted framework to support expert judgment in order to efficiently select alternative recharge and discharge maps that can be used as (1) guidelines for field study planning and decision making; (2) initial conditions for numerical simulation; and (3) screening for alternative model selection and prediction/parameter uncertainty evaluation. In addition, PRO-GRADE allows for more easy and rapid correlation of those maps with other hydrologically relevant geospatial data.

  7. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  8. Geology and ground-water resources in the Zebulon area, Georgia

    Science.gov (United States)

    Chapman, M.J.; Milby, B.J.; Peck, M.F.

    1993-01-01

    The current (1991) surface-water source of drinking-water supply for the city of Zebulon, Pike County, Georgia, no longer provides an adequate water supply and periodically does not meet water-quality standards. The hydrogeology of crystalline rocks in the Zebulon area was evaluated to assess the potential of ground-water resources as a supplemental or alternative source of water to present surface-water supplies. As part of the ground-water resource evaluation, well location and construction data were compiled, a geologic map was constructed, and ground water was sampled and analyzed. Three mappable geologic units delineated during this study provide a basic understanding of hydrogeologic settings in the Zebulon area. Rock types include a variety of aluminosilicate schists, granitic rocks, amphibolites/honblende gneisses, and gondites. Several geologic features that may enhance ground-water availability were identified in the study area. These features include contacts between contrasting rock types, where a high degree of differential weathering has occurred, and well-developed structural features, such as foliation and jointing are present. High-yielding wells (greater than 25 gallons per minute) and low-yielding wells (less than one gallon per minute) were located in all three geologic units in a variety of topographic settings. Well yields range from less than one gallon per minute to 250 gallons per minute. The variable total depths and wide ranges of casing depths of the high-yielding wells are indicative of variations in depths to water-bearing zones and regolith thicknesses, respectively. The depth of water-bearing zones is highly variable, even on a local scale. Analyses of ground-water samples indicate that the distribution of iron concentration is as variable as well yield in the study area and does not seem to be related to a particular rock type. Iron concentrations in ground-water samples ranged from 0.02 to 5.3 milligrams per liter. Both iron

  9. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    Science.gov (United States)

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of

  10. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    Science.gov (United States)

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  11. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah

    Science.gov (United States)

    Sumsion, C.T.

    1979-01-01

    The Wasatch Plateau-Book Cliffs area in east-central Utah consists of about 8,000 square miles within the upper Colorado River drainage system. Coal production in the area is expected to increase from 8 million tons to as much as 30 million tons annually within the next 10 years. Most sources of water supply will be subjected to possible contamination and increased demands by coal-related municipal and industrial growth in the area. The report presents a compilation of coal-related ground-water data from many unpublished sources for the use of local and regional water planners and users. The report includes generalized stratigraphic sections and hydrologic characteristics of rocks in the Wasatch Plateau-Book Cliffs area , records of selected test holes and water wells, logs of selected test holes and water wells, water levels in selected wells, records of selected springs, records of ground-water discharge from selected mines, and chemical analyses of water from selected test holes, water wells, springs, and mines. (Kosco-USGS)

  12. Ground-water hydrology of Ogden Valley and surrounding area, eastern Weber County, UT, and simulation of ground-water flow in the Valley-fill aquifer system

    Science.gov (United States)

    Avery, Charles

    1994-01-01

    The ground-water resources in Ogden Valley, eastern Weber County, Utah, were the subject of a study to provide a better understanding of the hydrologic system in the valley and to estimate the hydrologic effects of future ground-water development. The study area included the drainage basin of the Ogden River upstream from Pineview Reservoir dam and the drainage basin of Wheeler Creek. Ogden Valley and the surrounding area are underlain by rocks that range in age from Precambrian to Quaternary.The consolidated rocks that transmit and yield the most water in the area surrounding Ogden Valley are the Paleozoic carbonate rocks and the Wasatch Formation of Tertiary age. Much of the recharge to the consolidated rocks is from snowmelt that infiltrates the Wasatch Formation, which underlies a large part of the study area. Discharge from the consolidated rocks is by streams, evapotranspiration, springs, subsurface outflow, and pumping from wells. Water in the consolidated rocks is a calcium bicarbonate type and has a dissolved-solids concentration of less than 250 milligrams per liter.

  13. Simulation of the ground-water-flow system in the Kalamazoo County area, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Blumer, Stephen P.; Weaver, T.L.; Jean, Julie

    2004-01-01

    A ground-water-flow model was developed to investigate the ground-water resources of Kalamazoo County. Ground water is widely used as a source of water for drinking and industry in Kalamazoo County and the surrounding area. Additionally, lakes and streams are valued for their recreational and aesthetic uses. Stresses on the ground-water system, both natural and human-induced, have raised concerns about the long-term availability of ground water for people to use and for replenishment of lakes and streams. Potential changes in these stresses, including withdrawals and recharge, were simulated using a ground-water-flow model. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in seasonal and monthly time scales and storage within the system was included). Steady-state simulations were used to investigate the long-term effects on water levels and streamflow of a reduction in recharge or an increase in pumping to projected 2010 withdrawal rates, withdrawal and application of water for irrigation, and a reduction in recharge in urban areas caused by impervious surfaces. Transient simulations were used to investigate changes in withdrawals to match seasonal and monthly patterns under various recharge conditions, and the potential effects of the use of water for irrigation over the summer months. With a reduction in recharge, simulated water levels declined over most of the model area in Kalamazoo County; with an increase in pumping, water levels declined primarily near pumping centers. Because withdrawals by wells intercept water that would have discharged possibly to a stream or lake, model simulations indicated that streamflow was reduced with increased withdrawals. With withdrawal and consumption of water for irrigation, simulated water levels declined. Assuming a reduction in recharge due to urbanization, water levels declined and flow to

  14. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    Science.gov (United States)

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  15. A digital procedure for ground water recharge and discharge pattern recognition and rate estimation.

    Science.gov (United States)

    Lin, Yu-Feng; Anderson, Mary P

    2003-01-01

    A digital procedure to estimate recharge/discharge rates that requires relatively short preparation time and uses readily available data was applied to a setting in central Wisconsin. The method requires only measurements of the water table, fluxes such as stream baseflows, bottom of the system, and hydraulic conductivity to delineate approximate recharge/discharge zones and to estimate rates. The method uses interpolation of the water table surface, recharge/discharge mapping, pattern recognition, and a parameter estimation model. The surface interpolator used is based on the theory of radial basis functions with thin-plate splines. The recharge/discharge mapping is based on a mass-balance calculation performed using MODFLOW. The results of the recharge/discharge mapping are critically dependent on the accuracy of the water table interpolation and the accuracy and number of water table measurements. The recharge pattern recognition is performed with the help of a graphical user interface (GUI) program based on several algorithms used in image processing. Pattern recognition is needed to identify the recharge/discharge zonations and zone the results of the mapping method. The parameter estimation program UCODE calculates the parameter values that provide a best fit between simulated heads and flows and calibration head-and-flow targets. A model of the Buena Vista Ground Water Basin in the Central Sand Plains of Wisconsin is used to demonstrate the procedure.

  16. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  17. Ground-water data for the Riley and Andrews Resource Areas, southeastern Oregon

    Science.gov (United States)

    Townley, Paul J.; Soja, Constance M.; Sidle, W.C.

    1980-01-01

    Appraisals of the resources of selected management areas in eastern Oregon are being made by the U.S. Bureau of Land Mangement. To provide needed hydrologic information, the Bureau of Land Management requested the U.S. Geological Survey to inventory ground-water data for the Riley and Andrews Resource Areas. The inventory included field location of selected wells and springs; measurement of ground-water levels, temperatures, specific conductance, and pH; and the collection of ground-water samples from selected sources to determine dissolved chemical constituents.

  18. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  19. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  20. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  1. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    ground water of salt at the top of the Salado Formation and of anhydrite within the Rustler Formation has removed thick sections of these rocks. A subsequent lowering of the land surface and differential collapse of the Rustler has formed many sinkholes and has created a karst topography over much of the western part of the area. Ground water is obtained from rocks of Permian, Triassic, Tertiary, and Quaternary age in the general region. However, the only aquifer at the Gnome site is the Culebra Dolomite Member of the Rustler Formation of Permian age. The aquifer is about 500 feet beneath the surface at the site and is about 30 feet thick. An aquifer, immediately above the top of the salt, contains a brine solution in Nash Draw, a few miles west of the Gnome site. This aquifer discharges into the Pecos River and is a major source of contamination of the river water. No potable water is known to be present in the area below the top of the salt of the Salado Formation. The ground water in the area is generally under artesian pressure. The general direction of ground-water movement is toward the Pecos River both east and west of the river. At the Gnome site the artesian head of the water in the Culebra Dolomite Member is about 7.5 feet. The water moves westward through the aquifer at a rate of about ? foot per day. The most widespread utilization of ground water east of the river is for stock use. Irrigation usage west of the Pecos River accounts for the largest withdrawal of water. Wells range in depth from a few tens of feet to nearly 800 feet. Water levels range from a few feet to about 500 feet below the surface. A test well at the Gnome site drawing water from the Culebra Dolomite Member was pumped at a rate of 100 gpm (gallons per minute); however, most wells east of the river yield only a few gpm. Irrigation wells west of the river yield as much as 3,500 gpm. Most of the water in the area is highly mineralized and is suitable only for use by livest

  2. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  3. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  4. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  5. An appraisal of ground water for irrigation in the Appleton area, west-central Minnesota

    Science.gov (United States)

    Larson, Steven P.

    1976-01-01

    Supplemental irrigation of well-drained sandy soils has prompted an evaluation of ground water in the Appleton area. Glacial drift aquifers are the largest source of ground water. The surficial outwash sand and gravel is the most readily available and the most areally extensive drift aquifer, and it underlies much of the sandy soil area. Saturated thickness of the outwash is more than 80 feet (24 m) in places, and potential well yields may exceed 1,200 gal/min (76 1/s) in some areas. In about 17 percent of the area, yields of more than 300 gal/min (19 1/s) are obtainable.

  6. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  7. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    ... in the residential areas of Ewekoro and Shagamu due to cement production. ... as well as potentially toxic metals such as copper, lead, zinc, iron and cadmium. ... It was also observed that the levels of sulphate was higher that the WHO ...

  8. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  9. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  10. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  11. Ground water quality evaluation near mining area and development of heavy metal pollution index

    Science.gov (United States)

    Prasad, Bably; Kumari, Puja; Bano, Shamima; Kumari, Shweta

    2014-03-01

    Opencast as well as underground coal mining are likely to disturb the underground water table in terms of quantity as well as quality. Added to this is the problem of leachates from the large number of industrial waste and overburden dumps that are in abundance in mining areas, reaching the ground water and adversely affecting its quality. Enhancement of heavy metals contamination of the ground water is one eventuality. In the present work, concentrations of 7 heavy metals have been evaluated at 20 important ground water sampling stations at Dhanbad township situated very near to Jharia coalfields. The concentration of heavy metals in general was found to be below the permissible levels although concentration of iron and manganese was found above the permissible limits at a few stations. These data have been used for the calculation of heavy metal pollution index (HPI). The HPI of ground water in total was found to be 6.8860 which is far below the critical index limit of 100 pointing to the fact that the ground water is not polluted with respect to heavy metals in spite of the prolific growth of mining and allied industrial activities near the town.

  12. Ground-water resources of the Bengasi area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Doyel, William Watson; Maguire, Frank J.

    1964-01-01

    The Benpsi area of Libya, in the northwestern part of the Province of Cyrenaica (Wilayat Barqah), is semiarid, and available ground-water supplies in the area are relatively small. Potable ground water from known sources is reserved for the present and future needs of the city, and no surface-water supplies are available in the area. This investigation to evaluate known, as well as potential, water supplies in the area was undertaken as part of a larger program of ground-water investigations in Libya under the auspices of the U. S. Operations Mission to Libya and the Government of Libya. A ground-water reservoir underlies the Bengasi area, in which the water occurs in solution channels, cavities, and other openings in Miocene limestone. The reservoir is recharged directly by rainfall on the area and by infiltration from ephemeral streams (wadis) rising in Al Jabal al Akhar to the east. In the Baninah and Al Fuwayhit areas the ground-water reservoir yields water of fair quality and in sufficient quantity for the current (1959) needs. of the Bengasi city supply. The test-drilling program in the area south and southeast of Bengasi indicates that water in sufficient quantity for additional public supply probably can be obtained in some localities from wells. The water, however, is moderately to highly mineralized and would require treatment or demineralization before it could be used for additional public supply. Much of the water could be used directly for irrigation, but careful attention would have to be given to cultivation, drainage, and cropping practices. The hazard of saltwater encroachment also exists if large-scale withdrawals are undertaken in the coastal zones.

  13. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  14. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  15. Ground-water resources of the Yucca Valley-Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Lewis, R.E.

    1972-01-01

    The southeastern part of the Mojave Water Agency area included in this report comprises about 600 square miles. Recharge into the area is almost exclusively from precipitation in the San Bernardino and Little San Bernardino Mountains. About 500 acre-feet per year of recharge enters the western part of the area as underflow through Pipes Wash. Little direct recharge occurs as a result of precipitation directly on the unconsolidated deposits. Presently about 11,000 persons reside in the area and current gross pumpage is about 1,600 acre-feet annually. By the year 2000 the population is estimated to be 62,000 and annual gross pumpage is expected to be nearly 11,000 acre-feet. Although over 1,200,000 acre-feet of ground water are presently in storage, most of the population is centered in the southern part of the area around the towns of Yucca Valley and Joshua Tree. About 70 percent of the population resides in the vicinity of Yucca Valley and is supplied by ground water pumped from the Warren Valley basin. Of the 96,000 acre-feet of ground water in storage in that basin in 1969, about 80,000 acre-feet will be necessary to sustain projected growth there until 2000. Assuming negligible recharge and only about 50 percent recovery of the ground water in storage, if imported water from northern California is not available before about 1990, additional local supplies will have to be developed, possibly in the adjacent Pipes subbasin to the north. Ground water in the southern part of the study area generally contains less than 250 mg/l (milligrams per liter) dissolved solids and 1.0 mg/l fluoride. A general degradation of ground-water quality occurs northward toward the dry lakes where the concentrations of dissolved solids and fluoride approach 2,000 and 5.0 mg/l, respectively. In Reche subbasin some isolated occurrences of fluoride exceeding 1.5 mg/l were noted. The chemical character of ground water in Johnson Valley and Morongo Valley basins differs from well to well

  16. Ground-water-quality data for Albany and surrounding areas, Southwest Georgia, 1951-99

    Science.gov (United States)

    Warner, Debbie; Easoz, Jamie A.; Priest, Sherlyn

    2002-01-01

    This report presents ground-water-quality data from the surficial, Upper Floridan, Claiborne, Clayton, and Upper Cretaceous aquifers in the Albany and surrounding areas of southwest Georgia. Water-quality data from about 186 wells in Baker, Calhoun, Dougherty, Lee, Mitchell, Terrell, and Worth Counties are presented for the period from 1951 through 1999. The data include field water-quality parameters collected during 1951-99, volatile and semi-volatile organic compounds collected during 1981-97, inorganic compounds collected during 1951-99, trace metals collected during 1964-99, radiochemicals collected during 1993-95, herbicides and insecticides collected during 1980-97, and recovery data for laboratory surrogate compounds (used for quality control and quality assurance for organic samples) collected during 1993-97. Ground-water quality data are presented in tables by data type and arranged by well number. Illustrations in this report contain information about study area location, well location, stratigraphy, and formation water-bearing properties. Ground-water-quality data are presented in text files and in a data base that includes geographic and tabular data. Data presented in this report provide a base with which to better define and interpret the quality of ground water in Albany, Ga., and surrounding areas. Although some of these data may have been published in previous reports associated with water-resources investigations, water-quality data are compiled as a useful resource.

  17. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  18. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  19. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    Science.gov (United States)

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  20. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  1. Ground-Water Conditions and Studies in the Brunswick-Glynn County Area, Georgia, 2007

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2008-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited the development of the ground-water supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water-resources program with the City of Brunswick to monitor and assess the effect of ground-water development on saltwater contamination of the Floridan aquifer system. The potential development of alternative sources of water in the Brunswick and surficial aquifer systems also is an important consideration in coastal areas. During calendar year 2007, the cooperative water-resources monitoring program included continuous water-level recording of 13 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 22 wells to map the potentiometric surface of the Upper Floridan aquifer during July and August 2007; and collecting and analyzing water samples from 76 wells to map chloride concentrations in the Upper Floridan aquifer during July and August 2007. In addition, work was initiated to refine an existing ground-water flow model for evaluation of water-management scenarios.

  2. Water Use, Ground-Water Recharge and Availability, and Quality of Water in the Greenwich Area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    Science.gov (United States)

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water-flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse-grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate

  3. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  4. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  5. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    Science.gov (United States)

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  6. Geology and ground-water conditions in the Wilmington-Reading area, Massachusetts

    Science.gov (United States)

    Baker, John Augustus; Healy, H.G.; Hackett, O.M.

    1964-01-01

    The Wilmington-Reading area, as defined for this report, contains the headwaters of the Ipswich River in northeastern Massachusetts. Since World War II the growth of communities in this area and the change in character of some of them from rural to suburban have created new water problems and intensified old ones. The purpose of this report on ground-water conditions is to provide information that will aid in understanding and resolving some of these problems. The regional climate, which is humid and temperate, assures the area an ample natural supply of water. At the current stage of water-resources development a large surplus of water drains from the area by way of the Ipswich River during late autumn, winter, and spring each year and is unavailable for use during summer and early autumn, when during some years there is a general water deficiency. Ground water occurs both in bedrock and in the overlying deposits of glacial drift. The bedrock is a source of small but generally reliable supplies of water throughout the area. Glacial till also is a source of small supplies of water, but wells in till often fail to meet modern demands. Stratified glacial drift, including ice-contact deposits and outwash, yields small to large supplies of water. Stratified glacial drift forms the principal ground-water reservoir. It partly fills a system of preglacial valleys corresponding roughly to the valleys of the present Ipswich River system and is more than 100 feet thick at places. The ice-contact deposits generally are more permeable than the outwash deposits. Ground water occurs basically under water-table conditions. Recharge in the Wilmington-Reading area is derived principally from precipitation on outcrop areas of ice-contact deposits and outwash during late autumn, winter. and spring. It is estimated that the net annual recharge averages about 10 inches and generally ranges from 5 inches during unusually dry years to 15 inches during unusually wet years. Ground water

  7. Ground-water conditions in the Milwaukee-Waukesha area, Wisconsin

    Science.gov (United States)

    Foley, Frank Clingan; Walton, W.C.; Drescher, W.J.

    1953-01-01

    Three major aquifers underlie the Milwaukee-Waukesha area: sandstones of Cambrian and Ordovician age, Niagara dolomite of Silurian age, and sand and gravel deposits of Pleistocene age. The Maquoketa shale of Ordovician age acts as a more or less effective seal between the Pleistocene deposits and Niagara dolomite above and the sandstone aquifer below. Crystalline rocks of pre-Cambrian age form an impermeable basement complex below the Paleozoic sedimentary rocks. The Paleozoic strata dip east at 25 to 30 feet to the mile. There is no evidence that any of the faults and folds known or surmised to be present acts as a barrier to the movement of ground water.

  8. Ground-water hydrology of the Lower Milliken-Sarco-Tulucay Creeks area, Napa County, California

    Science.gov (United States)

    Johnson, Michael J.

    1977-01-01

    The Sonoma Volcanics are the principal water-bearing materials in the lower Milliken-Sarco-Tulucay Creeks area, which occupies about 15 square miles (39 square kilometers) in and east of Napa, Calif. The distribution and composition of these volcanic units are highly variable and complex. Within the Sonoma Volcanics the tuffs constitute the best ground-water reservoir. They are principally pumicitic ash-flow tuffs, partly welded and moderately permeable. These tuffs extend to a depth exceeding 500 feet (150 meters), and are irregularly interbedded with clay, igneous flows, and other volcanically derived material of very low permeability which locally confine the tuffs. Recharge and movement of ground water within these tuffs are affected by the highly variable character of this rock sequence, by adjacent formations, and by tectonic features such as the Cup and Saucer ridge and the Soda Creek fault. The lithology of the area limits specific yields to about 4 percent (unconfined conditions). Specific capacities of wells average less than 3 gallons per minute per foot of drawdown (0.6 liter per second per meter) except in the most permeable areas.

  9. Ground-water appraisal of the Fishkill-Beacon area, Dutchess County, New York

    Science.gov (United States)

    Snavely, Deborah S.

    1980-01-01

    The most productive aquifers in the Fishkill-Beacon area, Dutchess County, N.Y., are the sand and gravel beds in the northeast corner of the area and along the valleys of Fishkill and Clove Creeks. The average yield of these aquifers to wells is 190 gal/min (gallons per minute). The most productive bedrock aquifer is limestone, which yields an average of about 150 gal/min. Shale and granite each yield an average of less than 35 gal/min. About 4 billion gallons of available ground water is estimated to be in storage in the sand and gravel aquifers in the area. The area withdraws an average of 3.3 Mgal/d (million gallons per day) of water in June, July, and August and 2 Mgal/d during the remainder of the year. (USGS)

  10. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2002-03-12

    Gravity investigations of the Death Valley ground-water model area are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwestern Nevada and parts of California. The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W. An isostatic gravity map of the Death Valley ground-water model was prepared from over 40,000 gravity stations, most of which are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997). The map also includes gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1998; Morin and Blakely, 1999). A subset of these gravity data in the Nevada Test Site and vicinity were described in detail by Harris and others (1989) who included information on gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and digital and paper lists of principal facts. For display purposes only, gravity data within Yucca Flat were thinned by a factor of 10. The digital gravity data set was gridded at an interval of 400 m using a computer program (Webring, 1981) based on a minimum curvature algorithm by Briggs (1974). The resulting grid was then interpolated to a 200-m grid to minimize pixel size, and then it was color contoured.

  11. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  12. Ground water in the Sirte area, Tripolitania, United Kingdom of Libya

    Science.gov (United States)

    Ogilbee, William

    1964-01-01

    The present study of the ground-water conditions in the Sirte area was made during December 1961 and March-April 1962 at the request of officials of the Government of Libya. Particular attention was given to the potential of the fresh-water aquifer near Qasr Bu Itadi as a source of water for Sirte. The Sirte area lies on the southern coast of the Mediterranean Sea about 450 kilometers east-southeast of Tripoli, cocapital of Libya. Although the area receives some winter precipitation, the climate is arid. The surface rocks of the area are chiefly Miocene limestone containing marl, clay, and some sandstone, though Quaternary deposits occur along the wadis and mantle the Miocene rocks in the coastal plain. Fresh ground water occurs locally in Recent sand dunes near Zaafran and in Miocene limestone near Qasr Bu Hadi, south of a probable fault. Elsewhere in the Sirte area, ground water occurs generally in Tertiary rocks but contains 3,000 or more parts per million of dissolved solids. To establish the hydraulic characteristics of the fresh-water aquifer in the Qasr Bu Itadi area, two test wells were drilled and a controlled pumping test was made. The coefficient of transmissibility was found to be about 25,000 gallons per day per foot (13.68 cubic meters per hour per meter), and the coefficient of storage, about 0.00055. The pumping test also established the presence of two barrier-type hydraulic boundaries for the aquifer, one about 250 meters westward and another about 535 meters northward from well 9a. The first boundary is probably the small anticline on which stands the fort of Qasr Bu Itadi; the second boundary is probably a northwest trending fault. Using the transmissibility and storage coefficients derived from the pumping test, the writer concludes that (1) the total draft from the fresh-water aquifer should not exceed 13.5 cubic meters per hour and (2) production wells should be at least 3 kilometers south of well 9a.

  13. Ground-water reconnaissance of the Sailor Creek area, Owyhee, Elmore, and Twin Falls Counties, Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1962-01-01

    This reports evaluates the ground-water resources of about 1,000 square miles in the semiarid uplands south of the Snake River between Bruneau River and Salmon Falls Creek. The outcropping rocks are the Idavada Volcanics of Pliocene age, and the Idaho Group of Pliocene and Plieistocene age, consisting of the Banbury Basalt of middle Pliocene age and overlying predominantly sedimentary deposits of middle Pliocene through middle Pleistocene age. These rocks dip gently northward. The volcanic rocks are the best aquifers, but the yield of water from the sedimentary deposits is adequate for domestic and stock use. About 6,000 acre-feet of water is withdrawn annually from the Idavada Volcanics by 9 irrigation wells to irrigate about 3,000 acres. Only a few tends of acre-feet of water withdrawn from the other formations. The regional dip of the rocks induces weak artesian conditions in the volcanic rocks and somewhat higher artesian head in the sedimentary rocks. Estimated depth to water ranges from less than 250 feet to more than 750 feet, as shown in an accompanying map. The eastern part of the area appears to be more favorable for the development of ground water for irrigation than the western part because of better aquifers at shallower depth.

  14. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  15. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  16. Preliminary report on geology and ground water of the Pajaro Valley area, Santa Cruz and Monterey counties, California

    Science.gov (United States)

    Muir, K.S.

    1972-01-01

    The Pajaro Valley area, California, covering about 120 square miles, extends from the southern part of Santa Cruz County to several miles south of the county line into Monterey County. It borders the Pacific Ocean on the west and the Santa Cruz Mountains on the east. The city of Watsonville is the largest center of population. Deposits that range in age from Pliocene to Holocene make up the ground-water reservoir. These include, from oldest to youngest, the Purisima Formation, Aromas Red Sands of Allen (1946), terrace deposits, alluvium, and dune sand. These deposits underlie an area of about 80 square miles and have a maximum thickness of about 4,000 feet. The alluvium yields most of the water pumped from wells in the area. Pre-Pliocene rocks underlie and form the boundaries of the ground-water reservoir. These rocks contain ground water in fractures and in sandstone beds. However, they are not an important source of ground water. There is close continuity between the geology of the Pajaro Valley area and that of the Soquel-Aptos area, which is contiguous on the north. Ground water in the Pajaro Valley area is derived from three sources: (1) Precipitation within the Pajaro Valley area that reaches the ground-water body by direct infiltration or by seepage from streams, (2) seepage from the Pajaro River as it crosses the Pajaro Valley carrying runoff which originates upstream from the valley, and (3) precipitation in the Soquel-Aptos area that infiltrates and then moves southeastward at depth into the Pajaro Valley area. Ground water in most wells in the Pajaro Valley area occurs under confined (artesian) conditions; the only exception is ground water in the upper, near-surface part of the alluvium and that in the dune sand. It moves south from the north part of the area and southwest away from the San Andreas fault toward and out under Monterey Bay. In the south part of the area, ground-water movement is almost due west. The San Andreas fault probably is the only

  17. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    Science.gov (United States)

    Dickinson, Jesse E.; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    is nearly the same as the previous conceptual hydrogeologic model definition (Olmsted and others, 1973), except for a minor westward extension from the city of Yuma. Clay B is extended to the southerly international boundary and increased in areal extent by about two-thirds of the original extent (Olmsted and others, 1973). The other hydrogeologic units generally are the same as in the previous conceptual hydrogeologic model. Before development, the Colorado and Gila Rivers were the sources of nearly all the ground water in the Yuma area through direct infiltration of water from river channels and annual overbank flooding. After construction of upstream reservoirs and clearing and irrigation of the floodplains, the rivers now act as drains for the ground water. Ground-water levels in most of the Yuma area are higher now than they were in predevelopment time. A general gradient of ground-water flow toward the natural discharge area south of the Yuma area still exists, but many other changes in flow are evident. Ground water in Yuma Valley once flowed away from the Colorado River, but now has a component of flow towards the river and Mexicali Valley. A ground-water mound has formed under Yuma Mesa from long-term surface-water irrigation; about 600,000 to 800,000 acre-ft of water are stored in the mound. Ground-water withdrawals adjacent to the southerly international boundary have resulted in water-level declines in that area. The reviewed and documented water budget includes the following components: (1) recharge in irrigated areas, (2) evapotranspiration by irrigated crops and phreatophytes, (3) ground-water return flow to the Colorado River, and (4) ground-water withdrawals (including those in Mexicali Valley). Recharge components were calculated by subtracting the amount of water used by crops from the amount of water delivered. Evapotranspiration rates were calculated on the basis of established methods, thus were appropriate for input to the ground-wate

  18. Well-response model of the confined area, Bunker Hill ground-water basin, San Bernardino County, California

    Science.gov (United States)

    Durbin, Timothy J.; Morgan, Charles O.

    1978-01-01

    The Bunker Hill ground-water basin, in the vicinity of San Bernardino, Calif., is being artificially recharged with imported water. Current and future artificial recharge of the basin may cause the potentiometric surface in an area of confined ground water to rise above land surface and water to flow from uncapped and unplugged wells. This could cause damage to structures where the soil becomes waterlogged and where buried wells begin to flow beneath the structures. A well-response model was used to generate a series of water-level hydrographs representing the response of the ground-water basin to six possible combinations of conditions for each well; one pumping rate, two artificial-recharge rate, and three natural-recharge rates. Inflow to the ground-water basin exceeds outflow for all tested combinations. According to model predictions, the accumulation of stored ground water resulting from the excess of inflow is sufficient to cause the water level in the selected wells to rise above land surface for all but one of the combinations of conditions tested. Water levels in wells are predicted to rise above the land surface as early as 1981 for the combination with the greatest excess of inflow. (Woodard-USGS)

  19. Ground-Water Quality in the Vicinity of Coal-Refuse Areas Reclaimed with Biosolids in Fulton County, Illinois

    Science.gov (United States)

    Morrow, William S.

    2007-01-01

    The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.

  20. ENERGY AND ENVIRONMENTAL ANALYSIS OF AN OPEN-LOOP GROUND-WATER HEAT PUMP SYSTEM IN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    Giorgia Baccino

    2010-01-01

    Full Text Available In this paper a multidisciplinary methodology for analyzing the opportunities for exploitation of open-loop groundwater heat pump is proposed. The approach starts from a model for calculation of a time profile of thermal requirements (heat and domestic hot water. This curve is then coupled with a model of the control system in order to determine the heat pump operation, which includes its energy performances (primary energy consumption as well as profiles of water discharge to the aquifer in terms of mass flow rate and temperature. Then the thermo-fluid dynamics of the aquifer is performed in order to determine the system impact on the environment as on possible other systems. The application to a case study in the Piedmont region, in Italy, is proposed. Energy analysis of the system shows that ground-water heat pumps constitute an interesting option in areas with small housing density, where there is not district heating. In comparison with typical heating/cooling systems, environmental benefits are related with reduction in global emissions. These benefits may be significantly enhanced using renewables as the primary energy source to produce electricity. The analysis also shows that possible issues related with the extension of the subsurface thermal plume may arise in the case of massive utilization of this technology.

  1. Ground-water resources in the lower Milliken--Sarco--Tulucay Creeks area, southeastern Napa County, California, 2000-2002

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.

    2003-01-01

    Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years. The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells. The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made. Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water

  2. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  3. Hydrogeology and analysis of ground-water withdrawal in the Mendenhall-D'Lo area, Simpson County, Mississippi

    Science.gov (United States)

    Strom, E.W.; Oakley, W.T.

    1995-01-01

    The cities of Mendenhall and D'Lo, located in Simpson County, rely on ground water for their public supply and industrial needs. Most of the ground water comes from an aquifer of Miocene age. A study began in 1991 to describe the hydrogeology, analyze effects of ground-water withdrawal by making a drawdown map, and estimate the effects increased ground-water withdrawal might have on water levels in the Miocene age aquifer in the Mendenhall-D'Lo area. The most significant withdrawals of ground water in the study area are from 10 wells screened in the lower sand of the Catahoula Formation of Miocene age. Analysis of the effect of withdrawals from the 10 wells was made using the Theis non- equilibrium equation and applying the principle of superposition. Analysis of 1994 conditions was based on the pumpage history and aquifer properties deter- mined for each well. The drawdown surface resulting from the analysis indicates three general cones of depression. One cone is in the northwestern D'Lo area, one in the south-central Mendenhall area, and one about 1-1/2 miles east of Mendenhall. Calculated drawdown ranges from 21 to 47 feet. Potential drawdown-surface maps were made for 10 years and 20 years beyond 1994 using a constant pumpage. The map made for 10 years beyond 1994 indicates an average total increase in drawdown of about 5.3 feet. The map made for 20 years beyond 1994 indicates an average total increase in drawdown of about 7.3 feet.

  4. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  5. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  6. A strategy for delineating the area of ground-water contribution to wells completed in fractured bedrock aquifers in Pennsylvania

    Science.gov (United States)

    Risser, D.W.; Barton, G.J.

    1995-01-01

    Delineating a contributing area to a well completed in a fractured bedrock aquifer in Pennsylvania is difficult because the hydrogeologic characteristics of fractured rocks are extremely complex. Because of this complexity, a single method or technique to delineate a contributing area will not be applicable for all wells completed in fractured-bedrock aquifers. Therefore, a strategy for refining the understanding of boundary conditions and major heterogeneities that control ground-water flow and sources of water to a supply well is suggested. The strategy is based on developing and refining a conceptual model for the sources of water to the well. Specifically, the strategy begins with an initial conceptual model of the ground-water-flow system, then requires the collection of hydrogeologic information to refine the conceptual model in a stepwise manner from one or more of sic categories: (1) hydrogeologic mapping, (2) water-level and streamflow measurements, (3) geochemistry, (4) geophysics and borehole flowmetering, (5) aquifer testing, and (6) tracer testing. During the refinement process, the applicability of treating the fratured-rock aquifer as a hydrologic continuum is evaluated, and the contributing area is delineated. Choice of the method used to delineate the contributing area is less important than insuring that the method is consistent with the refined conceptual model. By use of such a strategy, the improved understanding of the ground-water-flow system will lead to a technically defensible delineation of the contributing area.

  7. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  8. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public

  9. Effect of Niagara power project on ground-water flow in the upper part of the Lockport Dolomite, Niagara Falls area, New York

    Science.gov (United States)

    Miller, Todd S.; Kappel, W.M.

    1987-01-01

    The Niagara River Power Project near Niagara Falls, N.Y., has created recharge and discharge areas that have modified the direction of groundwater flow east and northeast of the falls. Before construction of the power project in 1962, the configuration of the potentiometric surface in the upper part of the Silurian Lockport Dolomite generally paralleled the buried upper surface of the bedrock. Ground water in the central and east parts of the city of Niagara Falls flowed south and southwestward toward the upper Niagara River (above the falls), and ground water in the western part flowed westward into Niagara River gorge. The power project consists of two hydroelectric powerplants separated by a forebay canal that receives water from the upper Niagara River through two 4-mi-long, parallel, buried conduits. During periods of nonpeak power demand, some water in the forebay canal is pumped to a storage reservoir for later release to generate electricity during peak-demand periods. Since the power project began operation in 1962, groundwater within 0.5 mi of the buried conduits has seeped into the drain system that surrounds the conduits, then flows both south from the forebay canal and north from the Niagara River toward the Falls Street tunnel--a former sewer that crosses the conduits 0.65 mi north of the upper Niagara River. Approximately 6 million gallons of ground water a day leaks into the Falls Street tunnel, which carries it 2.3 mi westward to the Niagara River gorge below the falls. Daily water-level fluctuations in the forebay canal affect water levels in the drain system that surrounds the conduits, and this , in turn, affects the potentiometric surface in the Lockport Dolomite within 0.5 mi of the conduits. The drains transmit changes in pressure head near the forebay canal southward at least as far as the Falls Street tunnel area and possibly to the upper Niagara River. Some water in the pumped-storage reservoir recharges ground water in the Lockport

  10. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    Science.gov (United States)

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined

  11. Geohydrology and distribution of volatile organic compounds in ground water in the Casey Village area, Bucks County, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.

    1998-01-01

    Casey Village and the adjoining part of the U.S. Naval Air Warfare Center (NAWC) are underlain by the Late Triassic-age Stockton Formation, which consists of a dipping series of siltstones and sandstones. The direction of vertical ground-water gradients in the Stockton Formation varies among well locations and sometimes with time. Vertical gradients can be substantial; the difference in water levels at one well pair (two wells screened at different depths) was 7.1 ft (feet) over a 32-ft vertical section of the aquifer. Potentiometric-surface maps show a groundwater divide that bisects the Casey Village area. For wells screened between 18 and 64 ft below land surface (bls), the general ground-water gradient is to the east and northeast on the east side of the divide and to the south and southwest on the west side of the divide. For wells screened between 48 and 106 ft bls, the general ground-water gradient is to the northeast on the east side of the divide and to the southwest and northwest on the west side of the divide. An aquifer test at one well in Casey Village caused drawdown in wells on the opposite side of the ground-water divide on the NAWC and shifted the ground-water divide in the deeper potentiometric surface to the west. Drawdowns formed an elliptical pattern, which indicates anisotropy; however, anisotropy is not aligned with strike or dip. Hydraulic stress caused by pumping crosses stratigraphic boundaries. Between 1993 and 1996, the trichloroethylene (TCE) concentration in water samples collected from wells in Casey Village decreased. The highest concentration of TCE measured in water from one well decreased from 1,200 mg/L (micrograms per liter) in 1993 when domestic wells were pumped in Casey Village to 140 mg/L in 1996, 3 years after the installation of public water and the cessation of domestic pumping. This suggests that pumping of domestic wells may have contributed to TCE migration. Between 1993 and 1996, the tetrachloroethylene (PCE

  12. Records of wells and springs, water levels, and chemical quality of ground water in the East Portland area, Oregon

    Science.gov (United States)

    Foxworthy, B.L.; Hogenson, G.M.; Hampton, E.R.

    1964-01-01

    Data are presented on more than 300 wells, including many new ones whose records will not be a part of a forthcoming interpretative report on the occurrence of ground water in this area. A brief description of the geomorphic features is given, and the characteristics of the rock units are summarized in a table. Principal aquifers are beds of loose sand and gravel in the early Pliocene Troutdale Formation, late Pleistocene fluviolacustrine deposits, and Recent alluvium. Locally, Columbia River Basalt (Miocene) and the Boring Lava (late Pliocene to Pleistocene) yield substantial amounts of wate.. In addition to well records there are 124 driller's logs and a table of chemical analyses of the ground water.

  13. Ground-water in the Teresina-Campo Maior area, Piaui, Brazil

    Science.gov (United States)

    Rodis, Harry G.; Suszczynski, Edison F.

    1972-01-01

    The Teresina-Campo Maior area lies in a presently developing farming and grazing region near the margin of drought-prone northeast Brazil where irrigated farming offers the best potential for economic development. The area comprises 9,700 square kilometers largely of catinga-covered tabular uplands which are drained by the perennial Rio Parnatba. The climate is hot and humid most of the year but with distinct wet and dry seasons. Temperature extremes range from 20?C to 39?C and the annum rainfall averages 1,200 millimeters. The area's ground-water reservoir is contained chiefly in sandstone aquifers of six westward-dipping sedimentary rock formations, all part of the Maranhao sedimentary basin. The youngest of these formations, namely the Piaut (Pennsylvarian), Poti (Mississippian), Longa (Upper Devonian), and Cabecas (Middle Devoniar), contain the principal aquifers. Precipitation is the primary source of recharge to these aquifers and is more than sufficient to replenish current withdrawals from wells. Underlying the principal aquifers are the untapped Pimenteiras and Serra Grande Formations (both Lower Devonian) which in areas adjacent to the report area are moderately good to excellent water producers. These aquifers are recharged principally by lateral inflow from the east. Water also occurs in the alluvial deposits (Quaternary) underlying the flood plain of the Rio Parnatba but recurrent and uncontrolled flooding at present (1966) precludes their development. Of little economic importance, because they lie above the zone of saturation, are the thin erosional remnants of the Pastos Bons (Upper Triassic), Matuca, and Pedra de Fogo (both Permian) Formations. There are in the report area about 200 drilled wells most of which are pumped with power-driven engines. The wells range from 40 to 500 meters deep but most do not exceed 150 meters, and practically all are completed open hole. Yields range from 500 liters per day for 6-inch-diameter domestic wells to 240

  14. Heavy Metals Pollution of Ground Water in Urban and Sub-Urban Areas of Makurdi Metropolis – Nigeria

    OpenAIRE

    *I. I. Mile; 1J. I. Amonum; 2N. L. Sambe

    2013-01-01

    This study examines heavy metals pollution of ground water in the residential sector of Makurdi urban area and Yaikyô settlement – a peri-urban area of Makurdi metropolis. Water samples from fifteen (15) wells in Makurdi urban area and fifteen (15) wells in Yaikyô settlement were analysed for chromium (Cr), Cadmium (cd), Iron (Fe), and Copper (Cu). Atomic Absorption Spectrometer (AAS) method was used for water sample analysis. This was done in the peak of rainy season, in the month of Septemb...

  15. Local point sources that affect ground-water quality in the East Meadow area, Long Island, New York

    Science.gov (United States)

    Heisig, Paul M.

    1994-01-01

    The extent and chemical characteristics of ground water affected by three local point sources--a stormwater basin, uncovered road-salt-storage piles, and an abandoned sewage-treatment plant--were delineated during a 3-year study of the chemical characteristics and migration of a body of reclaimed wastewater that was applied to the watertable aquifer during recharge experiments from October 1982 through January 1984 in East Meadow. The timing, magnitude, and chemical quality of recharge from these point sources is highly variable, and all sources have the potential to skew determinations of the quality of ambient ground-water and of the reclaimed-wastewater plume if they are not taken into account. Ground water affected by recharge from the stormwater basin is characterized by low concentrations of nitrate + nitrite (less than 5 mg/L [milligrams per liter] as N) and sulfate (less than 40 mg/L) and is almost entirely within the upper glacial aquifer. The plume derived from road-salt piles is narrow, has high concentrations of chloride (greater than 50 mg/L) and sodium (greater than 75 mg/L), and also is limited to the upper glacial aquifer. The sodium, in high concentrations, could react with aquifer material and exchange for sorbed cations such as calcium, potassium, and magnesium. Water affected by secondary-treated sewage from the abandoned treatment plant extends 152 feet below land surface into the upper part of the Magothy aquifer and longitudinally beyond the southern edge of the study area, 7,750 feet south of the recharge site. Ground water affected by secondary-treated sewage within the study area typically contains elevated concentrations of reactive chemical constituents, such as potassium and ammonium, and low concentrations of dissolved oxygen. Conservative or minimally reactive constituents such as chloride and sodium have been transported out of the study area in the upper glacial aquifer and the intermediate (transitional) zone but remain in the less

  16. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    Science.gov (United States)

    Snyder, Daniel T.

    2008-01-01

    springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc

  17. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  18. Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho: an initial assessment

    Science.gov (United States)

    Burnham, W.L.; Harder, A.H.; Dion, N.P.

    1969-01-01

    Five areas within the Bear River drainage of southeastern Idaho offer potential for further development of ground water--the valley north of Bear Lake, north of Soda Springs, Gem Valley, Cache Valley in Idaho, and Malad Valley in Idaho. Saturated deposits north of Bear Lake are too fine-textured to yield large quantities to wells; the areas north of Soda Springs and in Gem Valley would provide large yields, but at the expense of current beneficial discharge. Northern Cache Valley has small areas of high yield in the northwestern part, but total annual yield would be only about 20,000 acre-feet and seasonal water-level fluctuation would be large. Malad Valley contains a large aquifer system within valley fill underlying about 75 square miles. The aquifer system is several hundred feet thick, and contains about 1.8 million acre-feet of water in storage in the top 300 feet of saturated thickness. Average annual recharge to the valley-fill aquifer is about 64,000 acre-feet. Lowering of the water level 100 feet uniformly over the valley area would theoretically yield about 300,000 acre-feet from storage and salvage a present-day large nonbeneficial discharge. Sufficient water to irrigate all lands in a planned project near Samaria could be pumped with a maximum 200-foot pumping lift and then delivered by gravity flow. Such pumping would cause water-level lowering of a few feet to a few tens of feet in present artesian areas, and would cause many present-day artesian wells to cease flowing at land surface. Chemical-quality problems in Malad Valley seem not to be sufficient to prohibit development and use of the ground-water resource.

  19. Nitrate source indicators in ground water of the Scimitar Subdivision, Peters Creek area, Anchorage, Alaska

    Science.gov (United States)

    Wang, Bronwen; Strelakos, Pat M.; Jokela, Brett

    2000-01-01

    A combination of aqueous chemistry, isotopic measurement, and in situ tracers were used to study the possible nitrate sources, the factors contributing to the spatial distribution of nitrate, and possible septic system influence in the ground water in the Scimitar Subdivision, Municipality of Anchorage, Alaska. Two water types were distinguished on the basis of the major ion chemistry: (1) a calcium sodium carbonate water, which was associated with isotopically heavier boron and with chlorofluorocarbons (CFC's) that were in the range expected from equilibration with the atmosphere (group A water) and (2) a calcium magnesium carbonate water, which was associated with elevated nitrate, chloride, and magnesium concentrations, generally isotopically lighter boron, and CFC's concentrations that were generally in excess of that expected from equilibration with the atmosphere (group B water). Water from wells in group B had nitrate concentrations that were greater than 3 milligrams per liter, whereas those in group A had nitrate concentrations of 0.2 milligram per liter or less. Nitrate does not appear to be undergoing extensive transformation in the ground-water system and behaves as a conservative ion. The major ion chemistry trends and the presence of CFC's in excess of an atmospheric source for group B wells are consistent with waste-water influences. The spatial distribution of the nitrate among wells is likely due to the magnitude of this influence on any given well. Using an expanded data set composed of 16 wells sampled only for nitrate concentration, a significant difference in the static water level relative to bedrock was found. Well water samples with less than 1 milligram per liter nitrate had static water levels within the bedrock, whereas those samples with greater than 1 milligram per liter nitrate had static water levels near or above the top of the bedrock. This observation would be consistent with a conceptual model of a low-nitrate fractured bedrock

  20. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  1. Ground-water quality and vulnerability to contamination in selected agricultural areas of southeastern Michigan, northwestern Ohio, and northeastern Indiana

    Science.gov (United States)

    Thomas, Mary Ann

    2000-01-01

    Ground-water quality was assessed in the northeastern part of the Corn Belt, where tile-drained row crops are underlain by fractured glacial till. Data were collected from 30 shallow monitor wells and 18 co-located domestic wells as part of the U.S. Geological Survey?s National Water-Quality Assessment in the Lake Erie-Lake St. Clair Basin. Pesticides or pesticide degradates were detected in 41 percent of the monitor wells and 6 percent of the domestic wells. The pesticides detected closely correspond to those most heavily applied?herbicides used on corn and soybeans. Pesticide degradates were detected three times more frequently, and at higher concentrations, than were parent compounds. No pesticide concentration exceeded a USEPA Maximum Contaminant Level (MCL), but MCL?s have not been established for 9 of the 11 compounds detected. Thirty-seven percent of monitor-well samples had nitrate concentrations indicative of human influences such as fertilizer, manure or septic systems. Nitrate was the only chemical constituent detected at a concentration greater than an MCL. The MCL was exceeded in 7 percent of samples from monitor wells which were too shallow to be used as a source of drinking water. Pesticide and nitrate concentrations in the study area are low relative to other agricultural areas of the Nation. Several authors have suggested that ground water in parts of the Upper Mid-west is minimally contaminated because it is protected by the surficial glacial till or tile drains. These ideas are examined in light of the relations between concentration, well depth, and ground-water age in the study area. Most of the shallow ground water is hydraulically connected to the land surface, based on the observations that 83 percent of waters from monitor wells were recharged after 1953, and 57 percent contained a pesticide or an elevated nitrate concentration. Fractures or sand-and-gravel stringers within the till are the probable pathways. In some areas, deeper parts of

  2. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  3. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    Science.gov (United States)

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  4. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  5. Statistical Analysis of Ground Water Quality in Rural Areas of Uttar Pradesh City, India

    Directory of Open Access Journals (Sweden)

    Smita Sood

    2016-04-01

    Full Text Available The importance of groundwater for the existence of human society cannot be exaggerated. Groundwater is the major source of water in both rural and urban India.Duringlast decade, it was observed that ground water get polluted drastically and hence, resulted into many water borne diseases which is a cause of many health hazards. In this paper an attempt has been made to test groundwater quality of different villages of Uttar Pradesh, India on the basis of thirteen parameters like pH, total dissolved solids, conductivity, total hardness, biological oxygen demand etc. The results obtained were compared with the BIS (IS 10500:1991 Permissible Standards for drinking water. Normal Distribution analysis was applied to describe various characteristics of the samples collected and Correlation Analysiswas done on the samples which measured the strength of association between twowaterparameters.On the basis of results obtained from analytical and statistical analysis, it was revealed that all the water sources chosen for study are not suitable for the utilization of water.

  6. Water-quality and ground-water-level trends, 1990-99, and data collected from 1995 through 1999, East Mountain area, Bernalillo County, central New Mexico

    Science.gov (United States)

    Rankin, D.R.

    2000-01-01

    Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.

  7. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  8. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  9. Ground water flow analysis of a mid-Atlantic outer coastal plain watershed, Virginia, U.S.A.

    Science.gov (United States)

    Robinson, Michael A; Reay, William G

    2002-01-01

    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.

  10. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Klauk, R.H.; Budding, K.E.

    1984-07-01

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  11. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    Science.gov (United States)

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  12. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  13. Ground-Water Resource Assessment in the Rio Grande de Manati Alluvial Plain, Rio Arriba Saliente Area, Puerto Rico

    Science.gov (United States)

    Torres-Gonzalez, Sigfredo; Gómez-Gómez, Fernando; Warne, Andrew G.

    2002-01-01

    The alluvial aquifer within a 160-acre area of the Rio Grande de Manati alluvial plain was investigated to evaluate its potential as a water-supply source for the Barrios Rio Arriba Saliente and Pugnado Afuera, municipio of Manati, Puerto Rico. Analysis of well boring samples and the results of electric resistivity surveys indicate that the average thickness of the unconsolidated alluvial deposits in the study area is about 100 to 110 feet. The alluvium is a mixture of sand and gravel, which generally has a porosity of 0.2 to 0.35. Short-duration pump tests in small-diameter piezometers indicate that the alluvial aquifer has a hydraulic conductivity of about 200 feet per day and a transmissivity of about 7,900 feet squared per day. Analyses of water levels in piezometers, combined with stage measurements at a series of surveyed reference points along the Rio Grande de Manati channel, indicate that the water-table gradient in the alluvial aquifer is about 0.001, and that ground-water flow is generally from south to north, in the general direction of river flow. The water-table data indicate that the Rio Grande de Manati is the principal source of ground-water recharge to the alluvial aquifer in the study area. Because base flow for the Rio Grande de Manati is usually greater than 44 cubic feet per second, a continuous withdrawal rate of 0.5 to 1.0 cubic foot per second (225 to 450 gallons per minute) from a production well is possible. Chemical analysis of a ground-water sample indicates that the alluvial aquifer water meets U.S. Environmental Protection Agency secondary standards for selected constituents. Bacteriological analysis of ground-water samples indicates that the ground water contains little or no fecal coliform or fecal streptococcus bacteria. Although long-term data from upstream of the study area indicate high levels of fecal coliform and fecal streptococcus prior to 1996, bacteriological analyses of Rio Grande de Manati water samples obtained during

  14. Hydrogeology and ground-water quality of Lannon-Sussex area, Northeastern Waukesha County, Wisconsin

    Science.gov (United States)

    Cotter, R.D.

    1986-01-01

    The Silurian dolomite aquifer in the Lannon-Sussex area of southeastern Wisconsin is overlain by glacial deposits, but is within 8 ft of the land surface over 15% of the study area. The proximity of the dolomite aquifer to the land surface makes it susceptible to contamination from man 's activities. Water from the aquifer was analyzed and several characteristics were monitored in a 30-sq-mi area of Waukesha County, including: water temperature, calcium, magnesium, potassium, strontium, alkalinity, chlorides, fluorides, sulfates, nitrites, nitrates, nitrogen, iron, manganese, hardness, and pH.

  15. Determination of fluoride source in ground water using petrographic studies in Dashtestan area, south of Iran

    Science.gov (United States)

    Battaleb-Looie, Sedigheh; Moore, Farid, ,, Dr.

    2010-05-01

    The groundwater occurs in Dashtestan area, contains a high level of fluoride. Since groundwater is vastly used for drinking and irrigation purposes, the local residents are at high risk of fluoride toxicity, as already evidenced by the occurrence of dental Fluorosis in many residents. 35 surface and groundwater samples were collected in September, 2009. The results show that in 23 samples the fluoride concentration is above the permissible level (1.5ppm). Petrographic study of lithological units in the catchment area indicates that mica minerals are the most probable source of fluoride content in the study area.

  16. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  17. Pesticides in ground water in selected agricultural land-use areas and hydrogeologic settings in Pennsylvania, 2003-07

    Science.gov (United States)

    Loper, Connie A.; Breen, Kevin J.; Zimmerman, Tammy M.; Clune, John W.

    2009-01-01

    This report was prepared by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Agriculture (PDA) as part of the Pennsylvania Pesticides and Ground Water Strategy (PPGWS). Monitoring data and extensive quality-assurance data on the occurrence of pesticides in ground water during 2003–07 are presented and evaluated; decreases in the land area used for agriculture and corresponding changes in the use of pesticides also are documented. In the Pennsylvania ground waters assessed since 2003, concentrations of pesticides did not exceed any maximum contaminant or health advisory levels established by the U.S. Environmental Protection Agency; PPGWS actions are invoked by the PDA at fractions of these levels and were needed only in areas designated by the PDA for special ground-water protection. Previous investigations through 1998 of pesticides in Pennsylvania ground water identified land use, as a surrogate for pesticide use, and rock type of the aquifer combined with physiography as key hydrogeologic setting variables for understanding aquifer vulnerability to contamination and the common occurrence of atrazine and metolachlor in ground water. Of 20 major hydrogeologic settings in a framework established in 1999 for pesticide monitoring in Pennsylvania, 9 were identified as priorities for data collection in order to change the monitoring status from "inadequate" to "adequate" for the PPGWS. Agricultural and forested land-use areas are decreasing because of urban and suburban growth. In the nine hydrogeologic settings evaluated using 1992 and 2001 data, decreases of up to 12 percent for agricultural land and 10 percent for forested land corresponded to increases of up to 11 percent for urban land. Changes in agricultural pesticide use were computed from crop data. For example, from 1996 to 2004–05, atrazine use declined by about 15 percent to 1,314,000 lb/yr (pounds per year) and metolachlor use increased by about 20 percent to 895

  18. Water resources of the Milford area, Utah, with emphasis on ground water

    Science.gov (United States)

    Mower, R.W.; Cordova, R.M.

    1974-01-01

    The investigation of the water resources of the Milford area was made as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The primary purpose of this report is to provide basic hydrologic information needed for the effective administration and adjudication of water rights in the valley.

  19. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    Science.gov (United States)

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface

  20. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  1. Ground-water resources of the Laura area, Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Hamlin, S.N.; Anthony, S.S.

    1987-01-01

    The water system that supplies the heavily populated Dalap-Uliga-Darrit (DUD) area of Majuro atoll, Marshall Island, relies almost entirely upon airstrip catchment of rain water. Droughts cause severe water supply problems and water rationing is required, even during periods of normal rainfall. The Laura area contains a substantial lens of fresh groundwater that could be developed for export to the DUD area 30 mi to the east. Study of the groundwater resource at Laura involved a survey of existing wells, installation of monitoring wells and test holes, compilation of continuous records of rainfall and water level fluctuations, and collection of water quality data. Test hole data permitted the definition of three geohydrologic units which correlate well with similar units in Bikini and Enewetak atolls. The units consist of two layers of unconsolidated reef and lagoon sediments resting on a dense, highly permeable limestone. The potable water zone, or freshwater nucleus, of the lens is contained mostly within the unconsolidated layers, which are much less permeable than the basal limestone. Recharge to the Laura freshwater lens is estimated to be 1.8 mil gal/day, based on an average annual rainfall of 140 in. Sustainable yield is estimated to be about 400,000 gal/day. Shallow skimming wells or infiltration galleries similar to those used on Kwajalein atoll would be appropriate to develop the freshwater lens. The impact of development on the lens can be determined by monitoring the salinity in developed water and in a network of monitor wells. (Author 's abstract)

  2. Hydrogeochemical attributes and ground water quality of Ngbo Community in Ohaukwu Area Council, Ebonyi State, Nigeria

    Directory of Open Access Journals (Sweden)

    Omaka Ndukaku Omaka

    2015-01-01

    Full Text Available This study evaluated the hydrogeochemical attributes and quality of groundwater resources in Ngbo, Ohaukwu Area Council of Ebonyi State, Nigeria in order to determine whether boreholes in the area were suitable for potable uses. Eleven groundwater samples were collected from hand-dug boreholes between February and March, 2013. The physiochemical parameters of the samples were then analyzed to determine electrical conductivity, total dissolved solids, total alkalinity, major cations and anions, and trace metals. The quality of these characteristics was evaluated by comparing them to the Nigerian Institute of Standards, the Bureau of Indian Standards and the World Health Organization standards for drinking water quality. Mass abundance of the major ions was in the order of Mg2+ > Ca2+ for cations, Cl- > SO4 2 - > NO3 - > PO4 3 - for anions and Fe > As > Mn > Cu > Zn > Cr > Ni > Pb > Cd for trace metals. Correlation analysis revealed both positive and negative correlations among the parameters. Also, one-way ANOVA tests revealed that no significant differences existed between physiochemical parameters (F = 1.004 < Fcrit =1.977, major cations and anions (F =0.547 < Fcrit =2.008 and trace metals (F = 0.772 < Fcrit = 1.940 regardless of the sampling location. Groundwater in the area was generally hard, alkaline and highly mineralized, making it unsuitable for drinking in some places due to high total hardness and TDS; but it was generally suitable for irrigation purposes. It is recommended that boreholes be flushed regularly to aid in the removal of mineralized deposits, and that regular hydrogeochemical studies be conducted in order to detect future deterioration of water quality

  3. Ground water hydrochemical characteristics:seawater intruded area in eastern and southern coast of Laizhou Bay

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Eastern and southern coastal zones of Laizhou Bay are the mostrepresentative seawater intruded areas in the world, with two intrusion sources of contemporary seawater and paleobrine. In order to reveal the complicated hydrochemical changing process and the mechanism of fresh groundwater being polluted by saltwater, we conducted long-term observation and hydroehemical analysis at four observing sections of typical salt-fresh water transitional zone. The study indicates that seawater and brine intrusion processes have different hydrochemical features, and that ion exchange and adsorption actions between water and aquifer produce great influence on the intrusion.

  4. PHYSICO-CHEMICAL ANALYSIS OF SELECTED GROUND WATER SAMPLES OF RURAL AREAS OF JAIPUR, RAJASTHAN

    Directory of Open Access Journals (Sweden)

    Priyanka Dhingra

    2014-12-01

    Full Text Available The aim of present study was to assess the status of the groundwater in rural areas of Jaipur city. People on globe are under tremendous threat due to undesired changes in the physical, chemical and biological characteristics of air, water and soil. Due to increased population, urbanization, industrialization, use of fertilizers water is highly polluted with different harmful contaminants Natural water resources are being contaminated due to weathering of rocks and leaching of soil, mining processing etc. It is necessary that quality of drinking water should be checked at regular time interval to prevent various water born diseases. In present analysis physico-chemical parameter of drinking water viz. pH, hardness, TDS, residual chlorine, dissolved oxygen, electrical conductivity, Free CO2 have been analyzed. Drinking water quality of 8 villages of Amber District Jaipur, Rajasthan was analyzed to identify the nature and quality of water. The drinking water samples were collected in clean polythene one liter cans and subjected for analysis in laboratory. The main objective of the present paper is to aware people of concerned area about the water quality and concerned health hazards.

  5. Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana

    Science.gov (United States)

    Rapp, T.R.

    1994-01-01

    Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in

  6. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  7. Simulative models for the analysis of ground-water flow in Vekol Valley, the Waterman Wash area, and the Bosque area, Maricopa and Pina counties, Arizona

    Science.gov (United States)

    Matlock, D.T.

    1981-01-01

    Simulative ground-water flow models for Vekol Valley, the Waterman Wash area, and the Bosque area were developed for use in evaluating alternatives for developing a ground-water supply for the Ak-Chin Indian Community. The hydraulic properties of the basin-fill deposits used in the models were estimated primarily from aquifer tests made by the U.S. Geological Survey. Annual recharge to Vekol Valley and the Waterman Wash area is negligible in comparison to the quantity of water in storage and the quantity proposed to be pumped. The models are based on a three-dimensional, block-centered, finite-difference scheme. The Vekol Valley model was calibrated for steady-state onditions, and the Waterman Wash area model was calibrated for steady-state and transient conditions. The sensitivity of calibrated heads to changes in transmissivity was also investigated. An uncalibrated storage-depletion model was developed for the Bosque area. Simulated water levels for steady-state conditions average within 5 feet of measured values for Vekoi Valley and within 6 feet for the Waterman Wash area. Simulated water levels for transient conditions in the Waterman Wash area average within 8 feet of measured values for 15 years of analysis and within 15 feet for 24 years. Water-level declines simulated by the Waterman Wash area model average within 17 feet of those measured during the 24-year period, 1951-75.

  8. Heavy Metals Pollution of Ground Water in Urban and Sub-Urban Areas of Makurdi Metropolis – Nigeria

    Directory of Open Access Journals (Sweden)

    *I. I. Mile

    2013-06-01

    Full Text Available This study examines heavy metals pollution of ground water in the residential sector of Makurdi urban area and Yaikyô settlement – a peri-urban area of Makurdi metropolis. Water samples from fifteen (15 wells in Makurdi urban area and fifteen (15 wells in Yaikyô settlement were analysed for chromium (Cr, Cadmium (cd, Iron (Fe, and Copper (Cu. Atomic Absorption Spectrometer (AAS method was used for water sample analysis. This was done in the peak of rainy season, in the month of September, 2012. The results of the analysis show that 100% of wells in Makurdi urban area had chromium levels above WHO guide limit for drinking water, while Yaikyô, a sub-urban area of Makurdi, had only 35.5% of wells with chromium levels above WHO standards. Ten out of fifteen wells representing 67% displayed cadmium levels above WHO limits in Makurdi urban area, while eleven out of fifteen wells (85% displayed cadmium levels above WHO limits in Yaikyô. Twelve out of fifteen wells representing 80% displayed iron levels above WHO guide limits in Makurdi, while thirteen out of fifteen wells representing 90%, showed iron levels above WHO guide limit in Yaikyô. All wells representing 100% displayed copper levels below WHO guide limit in both areas. High concentrations of heavy metals in drinking water are undesirable, toxic, hazardous, and affects portability of water. Source of metals in these wells is attributed to soil mineralogy, use of agro- chemicals on farms and other land use activities. All land use activities capable of polluting water should be properly controlled. Water from these wells may be used for other domestic purposes other than drinking. Boiling of water from these wells should be encouraged to reduce the risk of contracting illness.

  9. Ground-water data for the Suck Creek area of Walden Ridge, southern Cumberland Plateau, Marion County, Tennessee

    Science.gov (United States)

    Hanchar, D.W.

    1995-01-01

    An investigation was made of the ground-water resources of the Suck Creek area, Marion County, Tennessee, 1990-91. Suck Creek is located on the Walden Ridge section of the Cumberland Plateau, and is about 16 miles northwest of Chattanooga. Eight wells were drilled into bedrock of Pennsylvania age. Drilling sites were chosen at or near fracture traces. Yields of the eight wells ranged from less than 1 to as much as 80 gallons of water per minute. Three wells had yields of 50 gallons per minute or more; two of these had estimated yields of 75 to 80 gallons per minute. These three wells produced water from a well- developed fracture within the Sewanee Conglomerate. Specific capacities for these three wells were 1.1, 1.3, 2.2 gallons per minute per foot of drawdown. Samples of water from six test wells and three domestic wells were analyzed for major inorganic constituents, nurients, major metals, trace elements, and bacteria. In addition, water samples from two of the test wells were analyzed for volatile organic compounds and scanned for the presence of semi-volatile organic compounds. Iron exceeded 300 micrograms per liter in five of the nine samples, and manganese exceeded 50 micrograms per liter in seven of the nine water samples. Toluene, a volatile organic compound, was detected in a concentration slightly above the reporting level; no other volatile organic compounds were detected.

  10. Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.; Schneider, D.; Atkinson, W.D.; Gallagher, R.A.

    2006-01-01

    Water samples were collected from domestic wells at an unsewered residential area in Gloucester County, New Jersey where mercury (Hg) concentrations in well water were known to exceed the USEPA maximum contaminant level (MCL) of 2000 ng/L. This residential area (the CSL site) is representative of more than 70 such areas in southern New Jersey where about 600 domestic wells, sampled previously by State and county agencies, yielded water containing Hg at concentrations that exceed the MCL. Recent studies indicate that background concentrations of Hg in water from this unconfined sand and gravel aquifer system are sampling was conducted at the CSL site in order to better understand sources of Hg and potential Hg transport mechanisms in the areas with Hg-contaminated ground water. At the CSL site, concentrations of Hg were substantially lower (although still exceeding the MCL in some cases) in filtered water samples than in the unfiltered water samples collected previously from the same wells. Surfactants and elevated concentrations of sodium, chloride, nitrate, ammonium, and phosphate in water from domestic and observation wells indicated septic-system effects on water quality; detections of sulfide indicated localized reducing conditions. Hg concentrations in septage and leach-field effluent sampled at several other households in the region were low relative to the contaminant-level Hg concentrations in water from domestic wells. Relations of Hg concentrations in leach-field effluent to iron concentrations indicate that reductive dissolution of iron hydroxides in soils may release Hg to the percolating effluent. ?? 2005 Elsevier B.V. All rights reserved.

  11. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  12. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    Science.gov (United States)

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the

  13. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    Science.gov (United States)

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  14. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  15. Comparison of Ground Water Bacterial Cell Sizes from the Agricultural,Domestic and Industrial Areas of Mysore District,Karnataka State,India

    Institute of Scientific and Technical Information of China (English)

    Wadie Ahmed Mokbel; Sadanand M Yamakanamardi

    2008-01-01

    A two-year study on temporal variations in the ground water heterotrophic bacterial cell sizes of free living bacteria(FLB)and particle bound bacteria(PBB)from the agricultural,domestic and industrial areas was carried out from Februar y2005 to January 2007.The overall mean cell length of FLB and PBB was similar in all the ground water studied.However,the season wise grouped data revealed significant seasonal changes in cell length of FLB and PBB,as smaller bacteria were noticed during rainy season in the ground water in agricultural area in both the years,and only in the second year of study in domestic and industrial areas.Generally,it was noticed that there were summer maximum and rainy minimum values of the cell length of PBB in the ground water in agricultural,domestic and industrial areas in the second year of study.The Pearson's correlations showed the presence of 8(in agricultural area),5(in domestic)and 3(in industrial) significant correlations with environmental(Physico-chemical)parameters,respectively.The regression analysis revealed that as much as 12%of variation in the mean length of FL Bwas due to NO3(+)in agricultural area and 9%due to total solids(+)indomestic area.However,the 8% variation in bacterial cell size of FLB was due to Mg(+)in industrial area.Whereas,13%variation in mean length of PBB was due to S04(+)in agncultural area and 10%due to total anions of strong acid(TASA)(+)in domestic area.Furthermore,10% of variation Was due to PO4(+)in industrial area.Thus,the statistical analysis revealed that several environmental variables were potentially responsible for some of the temporal variations in aquatic heterotrophic bacterial cell size,suggesting probably the stressed environment in these ecosystems.

  16. Ground-water quality and discharge to Chincoteague and Sinepuxent Bays adjacent to Assateague Island National Seashore, Maryland

    Science.gov (United States)

    Dillow, Jonathan J.A.; Banks, William S.L.; Smigaj, Michael J.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage

  17. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    London Leslie

    2003-03-01

    Full Text Available Abstract Background In South Africa there is little data on environmental pollution of rural water sources by agrochemicals. Methods This study investigated pesticide contamination of ground and surface water in three intensive agricultural areas in the Western Cape: the Hex River Valley, Grabouw and Piketberg. Monitoring for endosulfan and chlorpyrifos at low levels was conducted as well as screening for other pesticides. Results The quantification limit for endosulfan was 0.1 μg/L. Endosulfan was found to be widespread in ground water, surface water and drinking water. The contamination was mostly at low levels, but regularly exceeded the European Drinking Water Standard of 0.1 μg/L. The two most contaminated sites were a sub-surface drain in the Hex River Valley and a dam in Grabouw, with 0.83 ± 1.0 μg/L (n = 21 and 3.16 ± 3.5 μg/L (n = 13 average endosulfan levels respectively. Other pesticides including chlorpyrifos, azinphos-methyl, fenarimol, iprodione, deltamethrin, penconazole and prothiofos were detected. Endosulfan was most frequently detected in Grabouw (69% followed by Hex River (46% and Piketberg (39%. Detections were more frequent in surface water (47% than in groundwater (32% and coincided with irrigation, and to a lesser extent, to spraying and trigger rains. Total dietary endosulfan intake calculated from levels found in drinking water did not exceed the Joint WHO/FAO Meeting on Pesticide Residues (JMPR criteria. Conclusion The study has shown the need for monitoring of pesticide contamination in surface and groundwater, and the development of drinking water quality standards for specific pesticides in South Africa.

  18. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  19. Irrigation Area Ground Water Balance Analysis%塔河灌区地下水均衡分析

    Institute of Scientific and Technical Information of China (English)

    吐尔洪·艾力

    2015-01-01

    水资源是西部地区战略性经济资源,加强水资源管理、实现水资源可持续性是西部地区的战略目标. 近年来,我国干旱天气频繁,西北地区水资源极度匮乏,加之水资源利用效率较低,严重阻碍了当地农业经济的发展. 灌区是塔里木河流域经济发展的重要部分,也是区域环境保护的重要依靠. 地下水是水资源的重要组成部分,由于当地缺乏科学的地下水开采规划,导致地下水过度开发,甚至出现了一系列恶劣的环境问题. 因此,对灌区地下水进行均衡分析,并计算地下水补给量和排泄量具有重要意义. 通过对灌区地下水进行科学计算,并进行了供需水量平衡分析. 分析表明,塔河灌区地下水处于负均衡状态.%Water resource is the strategic economic resources , strengthen the management of water resources and realize the sustainability of water resources is the strategic target in the western region . Dry weather frequently in our country in recent years , there was a terrible shortage of water resources in northwest China , combined with the water resource utilization efficiency is low , seriously hindered the development of local agricultural economy .Irrigation area is an important part of the tarim river basin economic development , is also important to rely on the regional environmental protection . Groundwater is an important part of water resources , because of the lack of scientific planning of groundwater exploitation , groundwater overexploitation , and even appeared in a series of severe envi-ronmental problems.So on irrigation area ground water balance analysis and calculation of groundwa-ter recharge and excretion is of great significance .Through the study of the scientific computing of groundwater in the irrigation district , and analyzed the water balance between supply and demand , it is concluded that Tahe irrigation area of groundwater in a state of negative balance .

  20. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  1. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; shallow ground-water quality of a land-use area in the San Luis Valley, south-central Colorado, 1993

    Science.gov (United States)

    Anderholm, S.K.

    1996-01-01

    This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the

  2. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in an agricultural area of Sherburne County, Minnesota, 1998

    Science.gov (United States)

    Ruhl, James F.; Fong, Alison L.; Hanson, Paul E.; Andrews, William J.

    2000-01-01

    The quality of shallow ground water in a 75-mi2 agricultural area of the Anoka Sand Plain aquifer in central Minnesota is described as part of the National Water Quality Assessment (NAWQA) Program - a national-scale assessment of the quality of water resources within large study units in various hydrologic settings. Data were collected during 1998 from 29 wells completed in the aquifer, which predominantly consists of surficial glacial sand and gravel sediments.

  3. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  4. Visualization and Time-Series Analysis of Ground-Water Data for C-Area, Savannah River Site, South Carolina, 1984-2004

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Chapelle, Francis H.; Lowery, Mark A.; Mundry, Uwe H.

    2007-01-01

    In 2004, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, initiated a study of historical ground-water data of C-Area on the Savannah River Site in South Carolina. The soils and ground water at C-Area are contaminated with high concentrations of trichloroethylene and lesser amounts of tetrachloroethylene. The objectives of the investigation were (1) to analyze the historical data to determine if data-mining techniques could be applied to the historical database to ascertain whether natural attenuation of recalcitrant contaminants, such as volatile organic compounds, is occurring and (2) to determine whether inferential (surrogate) analytes could be used for more cost-effective monitoring. Twenty-one years of data (1984-2004) were collected from 396 wells in the study area and converted from record data to time-series data for analysis. A Ground-Water Data Viewer was developed to allow users to spatially and temporally visualize the analyte data. Overall, because the data were temporally and spatially sparse, data analysis was limited to only qualitative descriptions.

  5. Evaluation of primitive ground water supplies as a risk factor for the development of major waterborne zoonosis in Egyptian children living in rural areas.

    Science.gov (United States)

    Elfadaly, Hassan A; Hassanain, Nawal A; Hassanain, Mohey A; Barakat, Ashraf M; Shaapan, Raafat M

    2017-08-23

    Endemic waterborne zoonosis frequently occurs in both developed and less developed countries. Thus, bio-surveillance of waterborne zoonosis is a "necessity" for the implementation of effective preventive public health measures in Egyptian rural areas. The primitive individual water supplies created by the rural agriculture population, primarily from ground water, usually maximize the customers' exposure to impurity pathogens via diffused humans and animal excreta or wastages. The current study aimed to evaluate the frequency of zoonotic pathogens within the infiltrated untreated ground water supplies with an assessment of the impact of such biohazards on children living in the studied Egyptian rural areas. A total of 796 stool samples were collected from children under 10 years of age from the Abulnomorous (401) and Shabramant (395) villages in Giza, Egypt, and two hundred forty five ground water samples were collected from various individual home water supplies (ground pumps) within two rural Egyptian localities, namely, the Abulnomorous (128) and Shabramant (117) villages. All the samples were examined for the identification of bacterial, fungal and parasitic zoonosis. The isolation of Campylobacter jejuni, Escherichia coli, Salmonella typhi and Shigella spp. was documented in the following frequencies in the water and stool samples of symptomatic children (11.4% and 5.2%), (6.9% and 2.9%), (13.9% and 6.4%) and (4.5% and 2.3%), respectively. Candida albicans and Cryptococcus neoformans were detected in the examined water and morbid stool samples at (7.8% and 2.9%) and (1.6% and 0%), respectively. Additionally, the existence of parasites, including Entamoeba histolytica (5.7% and 4%), Giardia lamblia (9% and 1.7%) and Cryptosporidium oocysts (15.1% and 3.5%), was determined. Regarding Toxoplasma gondii, sporulated oocysts were detected in the ground water (2.9%). The prevalence of diarrhea among the examined children in Abulnomorous was higher (24.7%) than those

  6. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  7. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  8. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  9. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  10. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  11. Flow pattern and related chemical quality of ground water in the "500-foot" sand in the Memphis area, Tennessee

    Science.gov (United States)

    Bell, Edwin Allen; Nyman, Dale J.

    1968-01-01

    The '500-foot' sand is the major source of water supply for the Memphis area. Thick layers of impervious clay above and below the sand confine the water in the aquifer under artesian pressure and also protect the aquifer from contamination. Recharge from rainfall enters the '500-foot' sand in the outcrop, or intake area south and east of Memphis. Recharge from other aquifers enters the sand wherever the confining beds are breached or absent. Some of the recharge that enters the '500-foot' sand in eastern Arkansas moves down the gradients created by pumping in the Memphis area. All discharge from the '500-foot' sand in the Memphis area results from well pumping. Since 1886 continuous withdrawals at gradually increasing rates of pumping have lowered water levels and altered hydraulic gradients in the area. These withdrawals have resulted in changes in direction and velocity of movement of water through the '500-foot' sand. Water in the sand in the southeaster n part of the Memphis area normally moves from the (outcrop area east and south of Memphis northwestward toward points of withdrawal. In the northwestern part of the area, water moves southeastward toward points of withdrawal. A flow-net analysis of the aquifer shows that the rate of water movement through the '500-foot' sand in 1964, toward the major cones of depression in the Memphis area, was about 350 feet per year, or 1 mile in 15 years. A flow-net analysis projected for the year 1975 indicates the rate will increase by about 20 percent in the 12-year period 1964-75. Water in the '500-foot' sand in the Memphis area is generally a calcium magnesium sodium bicarbonate type. It is soft, low in dissolved solids, high in concentrations of iron and carbon dioxide, and slightly to moderately corrosive. The softest and least mineralized water occurs in the southeastern part of the area, and the water becomes slightly harder and more mineralized as it moves downdip toward Memphis. The hardest and most mineralized

  12. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    streams is also well simulated throughout the model. Ground-water discharge to streams in the area of the confluence of the Deschutes, Crooked, and Metolius Rivers is closely matched. The model was also calibrated to transient conditions from 1978 to 1997 using traditional trial-and-error methods. Climatic cycles during this period provided an excellent regional hydrologic signal for calibration. Climate-driven water-level fluctuations are simulated with reasonable accuracy over most of the model area. The timing and magnitude of simulated water-level fluctuations caused by annual pulses of recharge from precipitation match those observed reasonably well, given the limitations of the time discretization in the model. Water-level fluctuations caused by annual canal leakage are simulated very well over most of the area where such fluctuations occur. The transient model also simulates the volumetric distribution and temporal variations in ground-water discharge reasonably well. The match between simulated and measured volume of and variations in ground-water discharge is, however, somewhat dependent on geographic scale. The rates of and variations in ground-water discharge are matched best at regional scales. Example simulations were made to demonstrate the utility of the model for evaluating the effects of ground-water pumping or canal lining. Pumping simulations show that pumped water comes largely from aquifer storage when pumping begins, but as the water table stabilizes, the pumping increasingly diminishes the discharge to streams and, hence, streamflow. The time it takes for pumping to affect streamflow varies spatially depending, in general, on the location of pumping relative to the discharge areas. Canal-lining simulations show similar effects.

  13. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    Science.gov (United States)

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  14. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  15. Interaction of ground water with the Rock River near Byron, Illinois

    Science.gov (United States)

    Avery, C.F.

    1994-01-01

    Ground-water discharge to the Rock River in the study area, estimated by three independent methods, ranged from 16,300 to 30,900 cubic feet per day; the low value, determined by the use of the modified Darcy equation, is an estimate only of ground-water discharge from the southern side of the Rock River. The vertical distribution of trichloroethene (TCE) in ground water was determined at a test hole along the estimated centerline of the contaminant plume and as close to the river as property access would allow. The maximum concentrations of TCE of 3 micro- grams per liter were found at depths of 59 and 64 feet. The contaminant was dispersed across a verti- cal interval of about 75 feet at depths of 19 and 94 feet. All of the TCE in ground water discharges to the Rock River because no TCE was detected below a depth of 109 feet, and increasing vertical head gradients with depth indicate ground-water flow from a depth of 119 feet is to the river. The maximum possible discharge of TCE is estimated to be about 1.7 grams per day. A finite-difference numerical model was used to simulate ground-water flow along a vertical section through the ground-water system from the Byron Superfund site to the Rock River. Results of the ground-water flow simulation indicate that, if underflow in the St. Peter aquifer occurs beneath the Rock River, it would be water that was present at depth in the flow system at the Byron Superfund site rather than contaminated water that had recharged the system in the vicinity of the Byron Superfund site. (USGS)

  16. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  17. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to

  18. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  19. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  20. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  1. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas : shallow ground-water quality and land use in the Albuquerque area, central New Mexico, 1993

    Science.gov (United States)

    Anderholm, Scott K.

    1997-01-01

    This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese

  2. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  3. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  4. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  5. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    Science.gov (United States)

    Groschen, George E.

    1994-01-01

    The Hueco bolson aquifer is being pumped at increasing rates to supply water for El Paso, Texas, and Ciudad Juarez, Mexico. Water-use projections for 1984-2000 indicate that the upward trend in pumping rates probably will continue, which will put an increasing burden on the limited freshwater resources of the aquifer. Near El Paso, saline water in the Rio Grande alluvium overlies freshwater in bolson deposits. Withdrawal of ground water has created a large cone of depression in the water table that is centered approximately under the El Paso-Ciudad Juarez urban area. The maximum depth of this cone in January 1984 was about 140 feet below the pre-development (before 1903) water table.

  6. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  7. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  8. Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.; Leenhouts, James M.

    2008-01-01

    In the context of ground-water resources, “capture” or “streamflow depletion” refers to withdrawal-induced changes in inflow to or outflow from an aquifer. These concepts are helpful in understanding the effects of long-term development of ground-water resources. For the Upper San Pedro Basin in Arizona, USA and Sonora, Mexico, a recently developed ground-water flow model is available to help quantify capture of water from the river and riparian system. A common method of analysis is to compute curves of capture and aquifer-storage change for a range of time at select points of interest. This study, however, presents results of a method to show spatial distributions of total change in inflow and outflow from withdrawal or injection for select times of interest. The mapped areal distributions show the effect of a single well in terms of the ratio of the change in boundary flow rate to rate of withdrawal or injection by the well. To the extent that the system responds linearly to ground-water withdrawal or injection, fractional responses in the mapped distributions can be used to quantify response for any withdrawal or injection rate. Capture distributions calculated using the Upper San Pedro model include response to (1) withdrawal in the lower basin-fill aquifer for times of 10 and 50 years following the initiation of pumping from predevelopment conditions and (2) artificial recharge to the water table in the area underlain by the lower basin-fill aquifer after 10 and 50 years. The mapped distributions show that response to withdrawals and injections is greatest near the river/riparian system. Presence of clay layers in the vertical interval between withdrawal locations and the river/riparian system, however, can delay the response.

  9. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at

  10. Thermal use of ground water; Thermische Grundwassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Cathomen, N.; Stauffer, F.; Kinzelbach, W.; Osterkorn, F.

    2002-07-01

    This article discusses possible regional changes in ground water temperature caused by thermal use of the ground water in heat pump installations and by the infiltration of cooling water. The article reports on investigations made into the influence of ground water usage in the community of Altach in the Rhine Valley in Austria. The procedures used and the geology of the area investigated are described and the results of the measurements that were made are presented. The mathematical modelling of regional long-term heat transport is presented. The results of simulations are compared with long-term temperature measurements. The use of the results as a basis for the assessment of permissible thermal use of ground water is discussed.

  11. Vulnerability of ground water to contamination, northern Bexar County, Texas

    Science.gov (United States)

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  12. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    Science.gov (United States)

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  13. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  14. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  15. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  16. Simulated effects of projected withdrawals from the Wenonah-Mount Laurel Aquifer on ground-water levels in the Camden, New Jersey, area and vicinity

    Science.gov (United States)

    Navoy, A.S.

    1994-01-01

    The Wenonah-Mount Laurel aquifer is being considered as a potential source of future water supply for the Camden, New Jersey, area. The deeper Potomac- Raritan-Magothy aquifer system is currently the major major source of water supply for the area, but its use may be curtailed or reduced by 35 percent of 1983 withdrawals through its designation by the New Jersey Department of Environmental Protection and Energy as "Water Supply Critical Area#2." Withdrawals from the Wenonah-Mount Laurel aquifer currently (1989) total about 7 million gallons per day. The anticipated use of this aquifer by communities with access to it, as an alternative supply, could increase to more than 14 million gallons per day by 2020. If the communities of Clayton and Glassboro decrease their withdrawals from the Potomac-Raritan-Magothy aquifer system by 50 percent or cease them entirely because of their proximity to saline water, the use of Wenonah-Mount Laurel aquifer could increase to greater than 15 million gallons per day by 2020. Simulation of the ground-water system indicates that the projected increase in withdrawals will cause cones of depression in the potentiometric surface of the Wenonah-Mount Laurel aquifer in the Camden metro- politan area by 2020 that extend to depths ranging from 10 feet above sea level to 60 feet below sea level. This represents a secline of about 40 to 100 feet thr 1990 conditions. Withdrawals in northeastern Burlington County will cause a large cone of depression that, by 2020, will extend to depths of about 220 feet below sea level, represent- ing a decline of about 140 feet from 1990 conditions. Simulation results indicate that water levels in the Wenonah-Mount Laurel aquifer near the Salem Nuclear Power Plant are somewhat insensitive to withdrawals elsewhere in the aquifer. In some areas, especially in Burlington County, the cones of depression have developed in proximity to the aquifer-outcrop area and could induce infiltration from streams crossing the

  17. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  18. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  19. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    Science.gov (United States)

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  20. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  1. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  2. Geology and ground-water resources of Washington County, Colorado

    Science.gov (United States)

    McGovern, Harold E.

    1964-01-01

    to the thickness of saturated material. Development of ground water for irrigation has been generally restricted to the South Platte, Arikaree, and Beaver valleys. There were 134 irrigation wells, 3 industrial wells, and 10 municipal wells in the county in 1959. The annual ground-water pumpage from Washington County is estimated to be 18,000 acre-ft; about 10,000 acre-ft is from the High Plains ground-water province. Although some ground water enters the county as underflow, most of the recharge to ground-water reservoirs is from precipitation on the land surface. Recharge to the Ogallala Formation in the county is assumed to be approximately equal to the natural discharge from the county by underflow because ground-water withdrawals are from storage, and no other significant amount of natural discharge is apparent. Undertow in the Ogallala was calculated to be 83,000 acre-ft per year and the rate of recharge from precipitation to be about 0.95 inch per year. Neither recharge nor discharge was calculated for that part of the county in the South Platte River basin. All ground water in Washington County has a high proportion of carbonate and is classed as hard to very hard. The sodium-adsorption-ratio for all samples analyzed was below the limit recommended for irrigation water. All the water from the Ogallala Formation and most of the water from the Chadron Formation is suitable for domestic use. Some water from the alluvial deposits overlying the Pierre Shale was exceptionally high in calcium, magnesium, and sodium sulfates. Ground water has been heavily developed for irrigation in the South Platte valley and in some parts of the Beaver and Arikaree valleys. Some additional areas, however, could be developed in the latter two valleys. Large quantities of ground water in the Ogallala Formation are available for future development. The quantity of water in storage in the High Plains ground-water province in Washington County is about 6.5 million acre-f

  3. Ground-water surveillance at the Hanford Site for CY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  4. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  5. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  6. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  7. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  8. Ground-water and precipitation data for South Carolina, 1990

    Science.gov (United States)

    Conrads, Paul A.; Jones, Kathy H.; Stringfield, Whitney J.

    1994-01-01

    Continuous water-level data collected from 53 wells in South Carolina during 1990 provide the basic data for this report. Hydrographs are presented for selected wells to illustrate the effects that changes in ground-water recharge and artificial ground-water discharge have had on the ground-water reservoirs in the State. Daily mean water levels are listed in tables. Monthly mean water levels for 1990 and for the entire period of record at each monitoring well are depicted in hydrographs. Also included are precipitation records from ten National Weather Service stations in South Carolina.

  9. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  10. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  11. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  12. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  13. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  14. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  15. Considerations for Use of the Rora Program to Estimate Ground-Water Recharge From Streamflow Records

    Science.gov (United States)

    2000-01-01

    inch per year (in/yr) 25.4 millimeter per year foot (ft) 0.3048 meter square mile (mi2) 2.590 square kilometer cubic foot per second (ft3...designates those parts of the record that represent ground-water discharge. In extremely flat areas, the time period of surface runoff may not be...by several hydrologists (Gerhart, 1986; Hall and Risser , 1993; Meinzer and Stearns, 1929; Rasmussen and Andreasen, 1959). To isolate the rise caused

  16. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  17. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  18. Ground Water SPA

    Data.gov (United States)

    Vermont Center for Geographic Information — Groundwater SPA. This GIS layer consists of the geographic location of the Source Protection Areas for active and inactive Public Community and Non-Transient...

  19. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  20. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  1. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    Science.gov (United States)

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally

  2. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    Science.gov (United States)

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  3. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    Science.gov (United States)

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    as much as 479 feet below land surface. Well yields ranged from about 3 to 50 gallons per minute. The connection of fracture zones at depth was demonstrated in three bedrock wells during a 48-hour aquifer test, and drawdown curves were similar for all three wells. General findings of this study help characterize ground-water flow in the Piedmont and Mountains ground-water systems. Ground-water flow generally is from high to low topographic settings. Ground-water flow discharges toward a surface-water boundary (Lake Norman), and vertical hydraulic gradients generally are downward in recharge areas and upward in discharge areas. Dominant water types are calcium-bicarbonate and are similar in all three zones (regolith, transition zone, and bedrock) of the ground-water system. Results of continuous ground-water-quality monitoring indicate that ground-water recharge may occur seasonally over a period of several months or after heavy rainfall periods over a shorter period of a few to several weeks.

  4. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    Science.gov (United States)

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local

  5. Dynamic factor analysis for estimating ground water arsenic trends.

    Science.gov (United States)

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  6. 焦作矿区地下水中氢氧同位素分析%The analysis of hydrogen and oxygen isotopes in the ground water of Jiaozuo mine area

    Institute of Scientific and Technical Information of China (English)

    黄平华; 陈建生; 宁超

    2012-01-01

    为确定焦作矿区地下水来源,系统采取并测定了各种水体(泉水、地表水、第四系水、砂岩水、太灰水和奥灰水)的氢氧同位素(δ18O,δ2H,3H)和常规水化学离子,得到了矿区浅层孔隙水和深层裂隙水δD-δ18O组成关系,对比分析地下水、地表水和泉水的δ18O,δ2H,3H及Cl-,TDS特征。结果表明:矿区深层地下水主要接受山区岩溶水的侧向补给,补给高程及区域为海拔400~800 m的碳酸盐岩裸露区;当地降水为浅层地下水的主要补给来源;西部矿区地下水的70%来源于丹河水的泄漏;煤矿区地下水D漂移特征明显,形成机理是地下水与烃基和H2S交换作用的结果。%To ascertain the sources of the ground water in the Jiaozuo mine area,measured the conventional water chemical ions and environment isotopes(δ18O,δ2H,3H) of various bodies of water(including spring water,surface water,Quaternary water,sandstone water,limestone water in Taiyuan formation outburst,Ordovician limestone water),obtained the component relationship of δD-δ18O in the shallow pore water and deep fissure water.By contrast with δ18O,δ2H,3H and Cl-,TDS in the groundwater and suface water as well as spring water,the study came to a conclusion:the deep ground water in the mine area mainly receives the lateral recharge from the karst water in bare carbonate rock area at altitude of 400~800 m,while the shallow ground water mainly takes the local rainfall as its recharge source,and 70% of the ground water in the west mine district comes from the leakage of Dan River.The D drift feature of the ground water in the mine area is clearly obvious,which is the result of exchange interaction among the ground water,alkyl and H2S.

  7. Ground-water surveillance at the Hanford Site for CY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility.

  8. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  9. Geology and ground-water resources of Wichita and Greeley Counties, Kansas

    Science.gov (United States)

    Prescott, G.C.; Branch, J.R.; Wilson, W.W.

    1954-01-01

    This report describes the geography, geology, and ground-water resources of Wichita and Greeley counties in western Kansas. The area consists of a flat to gently rolling plain, which slopes eastward [at] about 15 feet per mile. A short reach of Ladder Creek (Beaver) is the only perennially flowing stream in the two counties. Ephemeral streams, which flow only during and after heavy rains, are White Woman and Sand Creeks and the western reach of Ladder Creek. The climate is semiarid, the normal annual precipitation being about 17 inches in Wichita County and 16 inches in Greeley County. Agriculture is the principal occupation in the area, and wheat is the most important crop. A considerable area is irrigated; sugar beets and sorghums are the principal irrigated crops.The outcropping rocks range in age from late Cretaceous to Recent; the Smoky Hill chalk member of the Niobrara formation, which is exposed along White Woman Creek in western Greeley County, is the oldest. The Niobrara is almost everywhere overlain by the Ogallala formation of Pliocene age. Generally the Ogallala is overlain by windblown silt of the Pleistocene Sanborn formation, but in places it is exposed along streams. The most recent deposits are dune sand and the alluvium along the streams. The Dakota formation, which is an important aquifer in parts of Kansas, is 300 to 450 feet beneath the Niobrara formation.The ground water that is available to wells in Wichita and Greeley counties is derived entirely from precipitation in the area or in areas immediately west and north. Ground water moves in a generally easterly direction with a gradient that varies inversely with the permeability of the water-bearing beds. The ground-water reservoir is recharged principally by precipitation within the area or within adjacent areas, Ground-water discharge takes place principally by pumping from wells, subsurface outflow, and evaporation and transpiration. Most of the domestic, stock, public, and irrigation

  10. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Faja Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    residence times. In the Mosteiros Basin, measured well and spring discharge is about 220,000 cubic meters per year. For the Ribeira Paul Basin, measured well discharge, spring discharge, and ground-water seepage to springs is about 1,600,000 cubic meters per year. Ribeira Faj? Basin is the driest of the three basins with a precipitation rate of about half that of the other two basins. The only measurable ground-water discharge from this basin is from Galleria Faj?, estimated to be about 150,000 cubic meters per year. Measured discharge for all three basins does not include submarine outflow or agricultural/phreatophyte consumptive use (Paul Basin, only) and is assumed to be less than total ground-water discharge. Ground-water ages indicate that recharge to wells and springs occurred from more than 50 years ago at some locations to within the past decade at other sites. Ground water in Paul is younger than that in the other two basins, indicating that recharge generally occurred within the past 50 years. Ground water at all the dateable sites using tritium/helium in both the Mosteiros and Ribeira Faj? Basins show that recharge occurred more than 50 years before the sampling dates. Ground-water tritium/helium age dating was not possible at some sites in Mosteiros and Ribeira Faj? Basins because of the presence of helium in the aquifer derived from the mantle or aquifer matrix. However, this helium was useful for accurate age dating of the unaffected ground-water sites. Dissolved gases indicate that most ground-water recharge occurs at mid and high altitudes within all three basins; calculated recharge altitudes ranged from 700 to more than 2,000 meters. In the Mosteiros and Ribeira Faj? Basins, recharge altitudes are much higher than the wells and springs. This suggests that it may take many years for artificial recharge to result in a beneficial impact on the aquifer in areas where the agricultural projects are implemented. Recharge altitudes in Paul Basin

  11. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  12. Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water.

    Science.gov (United States)

    Fries, Elke; Püttmann, Wilhelm

    2004-02-05

    The behavior of anthropogenic polar organic compounds in ground water during infiltration of river water to ground water was studied at the Oderbruch area on the eastern border of Germany. Additionally, waste water sewage treatment works (STWs) discharging their treated waste water into the Oder River and rain water precipitation from the Oderbruch area were investigated. The study was carried out from March 2000 to July 2001 to investigate seasonal variations of the target analytes. Samples were collected from four sites along the Oder River, from 24 ground water monitoring wells located close to the Oder, from one rain water collection station, from two roof runoffs, and from four STWs upstream of the Oderbruch. Results of the investigations of the antioxidant 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and its degradation product 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO) are presented. BHT and BHT-CHO were detected in all samples of the Oder River with mean concentrations of 178 and 102 ngl(-1), respectively. BHT and BHT-CHO were also detected in effluent waste water samples from municipal STWs at mean concentrations of 132 and 70 ngl(-1), respectively. Both compounds are discharged into river water directly via treated waste water. In the rain water sample, 308 ngl(-1) of BHT and 155 ngl(-1) of BHT-CHO were measured. Both compounds were detected in roof runoff with mean concentrations of 92 ngl(-1) for BHT and 138 ngl(-1) for BHT-CHO. The median values of BHT and BHT-CHO in ground water samples were 132 and 84 ngl(-1), respectively. The chemical composition of ground water from parts of the aquifer located less than 4.5 m distant from the river are greatly influenced by bank filtration. However, wet deposition followed by seepage of rain water into the aquifer is also a source of BHT and BHT-CHO in ground water.

  13. Preliminary delineation of salty ground water in the northern Atlantic Coastal Plain

    Science.gov (United States)

    Meisler, Harold

    1980-01-01

    Salty ground water underlies freshwater in the eastern part of the northern Atlantic Coastal Plain. The transition zone between freshwater and saltwater is represented in this report by a series of maps showing the depths to chloride concentrations of 250, 1,000, 10,000, and 18,000 milligrams per liter. The maps are based on chloride concentrations obtained from self-potential logs as well as from water-quality analyses. Depths to the designated chloride concentrations generally increase inland from the coast except in New Jersey where they are greatest along the coast and in North Carolina where depths to the 10,000 and 18,000 milligrams per liter concentrations are greatest beneath Pamlico Sound. The transition zone between 250 and 18,000 milligrams per liter of chloride is generally 1,500 to 2,300 feet thick except in part of North Carolina, where it is less than 1,000 feet. Depths to 250 and 1,000 milligrams per liter of chloride are probably controlled by the natural flow pattern of fresh ground water. Areas where these concentrations are relatively shallow generally coincide with areas of natural ground-water discharge. Depths to 10,000 and 18,000 milligrams per liter of chloride, and the occurrence offshore of ground water that is fresher than seawater, is attributed to long-term hydrologic conditions during which sea level fluctuations of a few hundred feet recurred several times. The origin of ground water that is saltier than seawater is attributed to the leaching of evaporitic strata beneath the Continental Shelf and Slope followed by westward movement of the brines during periods of sea-level rise.

  14. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  15. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    -sediment chemistry; geomorphology and its effect on ground-water flow; geophysical studies on depth to ground-water table and depth to bedrock; bedrock fractures and their potential influence on ground-water flow; leaching studies of scars and waste-rock piles; mineralogy and mineral chemistry and their effect on ground-water quality; debris-flow hazards; hydrology and water balance for the Red River Valley; ground-water geochemistry of selected wells undisturbed by mining in the Red River Valley; and quality assurance and quality control of water analyses. Studies aimed specifically at the Straight Creek natural-analog site include electrical surveys; high-resolution seismic survey; age-dating with tritium/helium; water budget; ground-water hydrology and geochemistry; and comparison of mineralogy and lithology to that of the mine site. The highly mineralized and hydrothermally altered volcanic rocks of the Red River Valley contain several percent pyrite in the quartz-sericite-pyrite (QSP) alteration zone, which weather naturally to acid-sulfate surface and ground waters that discharge to the Red River. Weathering of waste-rock piles containing pyrite also contributes acid water that eventually discharges into the Red River. These acid discharges are neutralized by circumneutral-pH, carbonate-buffered surface and ground waters of the Red River. The buffering capacity of the Red River, however, decreases from the town of Red River to the U.S. Geological Survey (USGS) gaging station near Questa. During short, but intense, storm events, the buffering capacity is exceeded and the river becomes acid from the rapid flushing of acidic materials from natural scar areas. The lithology, mineralogy, elevation, and hydrology of the Straight Creek proximal analog site were found to closely approximate those of the mine site with the exception of the mine site?s Sulphur Gulch catchment. Sulphur Gulch contains three subcatchments?upper Sulphur Gulch, Blind Gulch, and Spring Gulc

  16. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  17. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    . The water collects in streams that lose much of their flow into the coarse sediments that fringe the mountains. Part of the water ultimately percolates into the zone of saturation. High evaporation rates, vegetative use, and the presence of caliche and clay at shallow depth in the interstream areas of the valley floor prevent important recharge of the ground-water reservoir from direct rainfall or seepage of water applied for irrigation. The total recharge into the ground-water reservoir of the Douglas basin was about 20,000 acre-feet in 1951. Ground water is discharged from the basin by evapotranspiration, by effluent seepage into Whitewater Draw and underflow out of the basin, and by pumping. In 1951, the total amount of ground water discharged was about 50,000 acre-feet, of which more than 41,000 acre-feet was pumped from wells. Ground water used in excess of recharge is withdrawn from storage, causing a decline in the water table. Maximum declines have occurred in the heavily pumped Elfrida area, where a decline of more than 11 feet occurred in the 5-

  18. Contamination of Ground Water Due To Landfill Leachate

    Directory of Open Access Journals (Sweden)

    M. V. S. Raju

    2012-12-01

    Full Text Available The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations to measure the depth and characteristics of solid waste. Four sampling wells were made for the collection of ground water samples and they were analyzed for various parameters. All parameters were measured based on Standard methods. It is found that the ground water is contaminated due leachates of Landfill to the large extent and is not suitable for Drinking, Domestic and Irrigation purposes.

  19. Apparent chlorofluorocarbon age of ground water of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George E.; Brockman, Allen R.

    2001-01-01

    Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997.Nitrogen-argon recharge temperatures range from 5.9°C to 17.3°C with a median temperature of 10.9°C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface.The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum

  20. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  1. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  2. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  3. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  4. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  5. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  6. RADIOLOGICAL STATUS OF THE GROUND-WATER BENEATH THE HANFORD PROJECT JANUARY-DECEMBER 1978

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, PA

    1979-04-01

    This report is one of a series prepared annually for the Department of Energy, to provide an evaluation of the status of ground-water contamination resulting from Hanford's onsite discharges. Data collected during 1978 describe the movement of major plumes {{beta}{sub t}, {sup 3}H, NO{sub 3}) that respond to the influences of ground-water flow, ionic dispersion and radioactive decay. The total beta plume continues to recede, with the exception of a beta source that is beginning to show up in the 300 Area, a result of minor spills and leaks which have occurred during the operating life of the 300 Area. The tritium plume continues to expand and is mapped as having reached the Columbia River, although its contribution to the river cannot be distinguished from that attributable to atmospheric fallout. The plume now shows much the same configuration as in 1977. The nitrate plume shows general stability relative to its size with concentrations in the vicinity of the 100-H Area continuing to be high as a result of leaks from the evaporation facility. The results of a study to determine the vertical distribution of contaminants in the Hanford ground-water system indicate that the majority of contaminants are stratified in the upper portions of the unconfined aquifer.

  7. State Waste Discharge Permit application: 400 Area Septic System

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  8. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    Science.gov (United States)

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  9. GROUND WATER ASSESSMENT IN AGRICULTURAL AREA, CASE STUDY FROM MACHANG-MALAYSIA (Penilaian Air Tanah di Daerah Pertanian, Studi Kasus di Machang Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Islami

    2010-11-01

    Full Text Available ABSTRACT The study area is located in Machang, North Kelantan - Malaysia. The North Kelantan plain is covered with Quaternary sediments overlying granite bedrock. The drainage system is dendritic with the main river flowing into the South China Sea. Hydrogeochemical method was used to study groundwater of shallow aquifer characters within the area. Based on water samples analysis collected from the study area, it can be deduced that the cations and anions concentration are good for domestic use except in the southern region which the nitrate concentration is higher (more than 20 mg/l compared to the northern region (relatively zero. The areas that possibly possess nitrate-contaminated groundwater have been mapped along with groundwater flow patterns. The southern and middle part of the study area has an east to west groundwater flow pattern, making it impossible for contaminated water from the southern region to enter the northern area, despite in the northern area has lower elevation. ABSTRAK Lokasi area studi adalah berada di Machang, Kelantan Utara – Malaysia. Dataran tanah wilayah Kelantan Utara dilapisi oleh batuan Sedimen Kuarter yang mana batuan granit sebagai batuan dasar. Sistem pengairan adalah berbentuk jaringan dendritik dengan sungai utama mengalir ke Laut Cina Selatan. Metoda hydrogeochemical digunakan untuk mempelajari karakter air tanah dari akuifer dangkal untuk keseluruhan area studi. Berdasarkan pada analisa air yang diperoleh dari area studi, dapat disimpulkan bahwa konsentrasi kation dan anion baik digunakan untuk kehidupan sehari hari kecuali air tanah di area sebelah selatan yang mana kandungan nitratnya tinggi (lebih dari 20 mg/l dibandingkan di area sebelah utara (hampir tidak ada kandungan nitrat. Area yang memungkinkan memiliki konsentrasi nitrat pada air tanah dipetakan dengan kombinasi pola aliran air tanah. Pola aliran air tanah di area belahan selatan dan bagian tengah adalah dari timur ke barat yang mana tidak

  10. Identification of Naegleria fowleri in warm ground water aquifers.

    Science.gov (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  11. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

  12. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  13. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    detected most frequently at concentrations above regulatory levels in both areas. Contaminants in the shallow sand and gravel aquifers and carbonate aquifers appear to have moved with ground water discharging to local lakes, streams, and wetlands. Ground-water flow and possibly contaminant movement is concentrated in the weathered surface zones and in deeper fractures of the carbonate aquifers underlying both areas.

  14. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  15. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    connected to the units stressed by pumping. The best hydraulic connection to the pumped wells was indicated by large drawdown in observation wells that penetrate the water-bearing unit encountered below 400 feet below land surface in wells NP?21 and NP?87. The hydraulic connection between wells NP?21 (or NP?87) and observation wells in the southern area of ground-water contamination near the BAE Systems facility is good because the observation wells probably penetrate this water-bearing unit. A 3-dimensional, finite-difference, groundwater- flow model was used to simulate flow paths and areas contributing recharge to wells for current (2000) conditions of pumping in the Colmar area and for hypothetical situations of pumping suggested by the U.S. Environmental Protection Agency that might be used for remediation. Simulations indicate that under current conditions, ground water in the northern area of contamination near the former Stabilus facility moves to the northwest and discharges mostly to West Branch Neshaminy Creek; in the southern area of contamination near BAE Systems facility, ground water probably moves west and discharges to a tributary ofWest Branch Neshaminy Creek near well NP?21. Model simulations indicate that if NP?21 or NP?87 are pumped at 400 gallons per minute, groundwater recharge is likely captured from the southern area of contamination, but ground-water recharge from the northern area of contamination is less likely to be captured by the pumping. Simulations also indicate that pumping of a new recovery well near BAE Systems facility at 8 gallons per minute and two new recovery wells near the former Stabilus facility at a total of about 30 gallons per minute probably would capture most of the ground-water recharge in the areas where contamination is greatest.

  16. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  17. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  18. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  19. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Bove, D.J.; Plumlee, G.S.; Runkel, R.L.

    2009-01-01

    Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ???1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to porphyry mineralized areas, this study not only documents the range in concentrations of constituents of interest but also provides insight into the primary controls of water chemistry.

  20. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 4. Quantity and Quality of Ground-Water and Tributary Contributions to Stream Base Flow in Selected Main-Valley Reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L. Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  1. Isotope constraints on the hydraulic relationship of ground-waters between Quaternary and Tertiary aquifer in Xi’an area, Shaanxi province

    Institute of Scientific and Technical Information of China (English)

    秦大军; 陶书华

    2001-01-01

    Isotope techniques are increasingly used in evaluating the hydraulic connections between groundwaters in different aquifers, and can improve the geological and hydrogeological database. In the Xi’an area, the upper Quaternary aquifer may have hydraulic connection with the lower aquifer, the Tertiary aquifer, based on geological analyses. δ2H, δ18O, 3H, and 14C data of groundwater samples provide further evidence for the existence of the hydraulic connection between both aquifers.

  2. The effects of ground-water development on the water supply in the Post Headquarters area, White Sands Missile Range, New Mexico

    Science.gov (United States)

    Kelly, T.E.; Hearne, Glenn A.

    1976-01-01

    Water-level declines in the Post Headquarters area, White Sands Missile Range, N. Mex., have been accompanied by slight but progressive increases in the concentration of dissolved solids in water withdrawn from the aquifer. Projected water-level declines through 1996 are estimated from a digital simulation model to not exceed 200 feet (61 metres). A conceptual model of water quality provides three potential sources for water that is relatively high in dissolved solids: brine from the Tularosa Basin to the east, slightly saline water beneath the subjacent aquatard, and very slightly saline water from the less permeable units within the aquifer itself. Management of the well field to minimize drawdown and spread the cone of depression would minimize the rate of water-quality deterioration. A well designed monitoring network may provide advance warning of severe or rapid water-quality deterioration.. The Soledad Canyon area 10 miles (16.1 kilometres) south of the Post Headquarters offers the greatest potential for development of additional water supplies.

  3. Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping

    Science.gov (United States)

    Oki, Delwyn S.

    1998-01-01

    A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model

  4. Environmental isotopes as indicators for ground water recharge to fractured granite.

    Science.gov (United States)

    Ofterdinger, U S; Balderer, W; Loew, S; Renard, P

    2004-01-01

    To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.

  5. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  6. The Development Potential of the Shal ow Ground Water in Upper-Middle Reaches Area of Tarim River%塔里木河中上游地区浅层地下水开发潜力

    Institute of Scientific and Technical Information of China (English)

    邱林

    2015-01-01

    It contains the richer shallow ground water in the Up-per-Middle Reaches Area of Tarim River, which is supplied by under-ground percolation from Tarim River. After massive survey and experi-mental study, we have found the formation and the distribution of the shallow ground fresh water resources in the upper-middle reaches area of Tarim River, analyzing and appraising the amounts of underground fresh water resources; The ground fresh water resources in the river bed and the beach of Tarim River should be developed reasonably on the base of the well plan for hydrology geological prospecting or devel-opment, and developed for the organized and planned use in the region of water-bearing stratum condition; A dynamic observational network should be established to carry out dynamic the monitor work strictly about the quality and amount for water, which can prevent the water quality from worsening and the overmuch amounts, as for the guaran-tees of sustainable development and the use about the shallow ground water in upper-middle reaches area of Tarim River.%塔里木河中上游河床下蕴藏着较丰富的浅层地下水,这些淡水资源主要是由塔里木河渗透补给。经过大量的勘测及试验研究,初步探明了塔里木河中上游地区浅层地下淡水资源的分布规律,评价分析了地下淡水资源量;要合理开发塔里木河河床及滩地地下淡水资源,必须在做好水文地质勘探和开发规划的基础上,有组织有计划地在有含水层条件的地域进行开采利用;要建立动态观测网,严格进行水质和水量的动态监测工作,防止地下水质恶化和水量超采,以保证塔里木河中上游地区浅层地下水的可持续开发与利用。

  7. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  8. Simulated water budgets and ground-water/surface-water interactions in Bushkill and parts of Monocacy Creek watersheds, Northampton County, Pennsylvania--a preliminary study with identification of data needs

    Science.gov (United States)

    Risser, Dennis W.

    2006-01-01

    This report, prepared in cooperation with the Department of Environmental Protection, Office of Mineral Resources Management, provides a preliminary analysis of water budgets and generalized ground-water/surface-water interactions for Bushkill and parts of Monocacy Creek watersheds in Northampton County, Pa., by use of a ground-water flow model. Bushkill Creek watershed was selected for study because it has areas of rapid growth, ground-water withdrawals from a quarry, and proposed stream-channel modifications, all of which have the potential for altering ground-water budgets and the interaction between ground water and streams. Preliminary 2-dimensional, steady-state simulations of ground-water flow by the use of MODFLOW are presented to show the status of work through September 2005 and help guide ongoing data collection in Bushkill Creek watershed. Simulations were conducted for (1) predevelopment conditions, (2) a water table lowered for quarry operations, and (3) anthropogenic changes in hydraulic conductivity of the streambed and aquifer. Preliminary results indicated under predevelopment conditions, the divide between the Bushkill and Monocacy Creek ground-water basins may not have been coincident with the topographic divide and as much as 14 percent of the ground-water discharge to Bushkill Creek may have originated from recharge in the Monocacy Creek watershed. For simulated predevelopment conditions, Schoeneck Creek and parts of Monocacy Creek were dry, but Bushkill Creek was gaining throughout all reaches. Simulated lowering of the deepest quarry sump to an altitude of 147 feet for quarry operations caused ground-water recharge and streamflow leakage to be diverted to the quarry throughout about 14 square miles and caused reaches of Bushkill and Little Bushkill Creeks to change from gaining to losing streams. Lowering the deepest quarry sump to an altitude of 100 feet caused simulated ground-water discharge to the quarry to increase about 4 cubic feet

  9. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  10. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...

  11. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  12. Regional estimation of total recharge to ground water in Nebraska.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive recharge a year.

  13. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    Science.gov (United States)

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  14. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  15. Hanford Site ground-water monitoring for July through December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  16. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  17. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  19. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    Science.gov (United States)

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de

  20. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  1. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  2. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    Science.gov (United States)

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  3. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  4. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  5. Ground-water basic data for Griggs and Steele Counties, North Dakota

    Science.gov (United States)

    Downey, Joe S.

    1973-01-01

    The objectives of the hydrologic investigation in Griggs and Steele Counties, N. Dak. (fig. 1) were to: (1) determine the location, extent, and nature of the major aquifers; (2) evaluate the occurrence and movement of ground water, including recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the major aquifers; and (5) determine the chemical quality of the ground water.

  6. Evaluation on Flow Discharge of Grassed Swale in Lowland Area

    Directory of Open Access Journals (Sweden)

    Mustaffa Nurhazirah

    2017-01-01

    Full Text Available Grassed swale is an open vegetated channel designed specifically in attenuating stormwater runoff to decrease the velocity, to reduce the peak flows, and minimize the causes of flood. Therefore, the fundamental of this study is to evaluate the flow discharge of swale in Universiti Tun Hussein Onn Malaysia (UTHM, which has flat land surface area. There are two sites of study were involved to assess the performance of swale as stormwater quantity control, named as swale 1 and swale 2. Data collection was conducted on 100 meters of length for each swale. The velocity of swale was measured thrice by using a current meter according to the six-tenths depth method, after a rainfall event. The discharge of drainage area in UTHM was determined by the Rational Method (Qpeak, and the discharge of swales (Qswale was evaluated by the Mean-Section Method. Manning’s roughness coefficient and the infiltration rate were also determined in order to describe the characteristics of swale, which contributing factors for the effectiveness of swale. The results shown that Qswale is greater than Qpeak at swale 1 and swale 2, which according to the Second Edition of MSMA, the swales are efficient as stormwater quantity control in preventing flash flood at the campus area of UTHM.

  7. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  8. Section 9: Ground Water - Likelihood of Release

    Science.gov (United States)

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  9. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  10. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  11. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  12. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  13. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  14. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  15. Hydrogeologic framework, ground-water geochemistry, and assessment of nitrogen yield from base flow in two agricultural watersheds, Kent County, Maryland

    Science.gov (United States)

    Bachman, L.J.; Krantz, D.E.; Böhlke, John Karl

    2002-01-01

    Hydrostratigraphic and geochemical data collected in two adjacent watersheds on the Delmarva Peninsula, in Kent County, Maryland, indicate that shallow subsurface stratigraphy is an important factor that affects the concentrations of nitrogen in ground water discharging as stream base flow. The flux of nitrogen from shallow aquifers can contribute substantially to theeutrophication of streams and estuaries, degrading water quality and aquatic habitats. The information presented in this report includes a hydrostratigraphic framework for the Locust Grove study area, analyses and interpretation of ground-water chemistry, and an analysis of nutrient yields from stream base flow. An understanding of the processes by which ground-waternitrogen discharges to streams is important for optimal management of nutrients in watersheds in which ground-water discharge is an appreciable percentage of total streamflow. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency (USEPA), collected and analyzed hydrostratigraphic and geochemical data in support ofground-water flow modeling by the USEPA.The adjacent watersheds of Morgan Creek and Chesterville Branch have similar topography and land use; however, reported nitrogen concentrations are generally 6 to 10 milligrams per liter in Chesterville Branch but only 2 to 4 milligrams per liter in Morgan Creek. Ground water in the surficial aquifer in the recharge areas of both streams has high concentrations of nitrate(greater than 10 milligrams per liter as N) and dissolved oxygen. One component of the ground water discharging to Morgan Creek typically is anoxic and contains virtually no dissolved nitrate; most of the ground water discharging to Chesterville Branch is oxygenated and contains moderately high concentrations of nitrate.The surficial aquifer in the study area is composed of the deeply weathered sands and gravels of the Pensauken Formation (the Columbia aquifer) and the underlying glauconitic

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  17. Characterization of ground-water flow between the Canisteo Mine Pit and surrounding aquifers, Mesabi Iron Range, Minnesota

    Science.gov (United States)

    Jones, Perry M.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, conducted a study to characterize ground-water flow conditions between the Canisteo Mine Pit, Bovey, Minnesota, and surrounding aquifers following mine abandonment. The objective of the study was to estimate the amount of steady-state, ground-water flow between the Canisteo Mine Pit and surrounding aquifers at pit water-level altitudes below the level at which surface-water discharge from the pit may occur. Single-well hydraulic tests and stream-hydrograph analyses were conducted to estimate horizontal hydraulic conductivities and ground-water recharge rates, respectively, for glacial aquifers surrounding the mine pit. Average hydraulic conductivity values ranged from 0.05 to 5.0 ft/day for sands and clays and from 0.01 to 121 ft/day for coarse sands, gravels, and boulders. The 15-year averages for the estimated annual recharge using the winter records and the entire years of record for defining baseflow recession rates were 7.07 and 7.58 in., respectively. These recharge estimates accounted for 25 and 27 percent, respectively, of the average annual precipitation for the 1968-82 streamflow monitoring period. Ground-water flow rates into and out of the mine pit were estimated using a calibrated steady-state, ground-water flow model simulating an area of approximately 75 mi2 surrounding the mine pit. The model residuals, or difference between simulated and measured water levels, for 15 monitoring wells adjacent to the mine pit varied between +28.65 and –3.78 ft. The best-match simulated water levels were within 4 ft of measured water levels for 9 of the 15 wells, and within 2 ft for 4 of the wells. The simulated net ground-water flow into the Canisteo Mine Pit was +1.34 ft3/s, and the net ground-water flow calculated from pit water levels measured between July 5, 1999 and February 25, 2001 was +5.4 ft3/s. Simulated water levels and ground-water flow to and from the mine

  18. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  19. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  20. [Metal contamination of the ground water in Mohammedia (Morocco)].

    Science.gov (United States)

    Serghini, Amal; Fekhaoui, Mohammed; El Abidi, Abdellah; Tahri, Latifa; Bouissi, Mostafa; El Houssine, Zaid

    2003-01-01

    This aim of this study was to assess the heavy metal contamination of the ground water in the Moroccan city of Mohammedia and its relation to the highly developed industrial and domestic activities in the region. Six heavy metals, Cu, Zn, Cd, Hg, Fe and Pb, were assayed in the waters of 19 wells throughout the city, in industrial areas, public landfills, and residential zones. Four sampling campaigns were conducted between January and May 1999. Analysis of the heavy metal levels revealed a causal relation between the human activities at the sites studied and the degree of contamination recorded. The sites in the industrial areas had elevated concentrations of Fe, Zn, Cu or Pb and most often a combination of at least two of these at a single site. Moreover, the spatial distribution of this pollution showed water in S7 areas to be high in iron and that in S5 and S7 (industrial) areas high in mercury. The concentrations measured are respectively 2.5 and 3-5 times greater than the Maximum Acceptable Concentration (MAC) recommended by WHO for potable water. This work has conclusively proven the presence of dangerous heavy metal contamination of the ground water supply in the area of Mohammedia; it demonstrates the need for conservation and antipollution measures aimed against heavy metal contamination of the overall water supply and in particular the ground water.

  1. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  2. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.

    Science.gov (United States)

    Doble, Rebecca C; Simmons, Craig T; Walker, Glen R

    2009-01-01

    In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.

  3. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was

  4. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    Science.gov (United States)

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  5. Radiological status of the ground water beneath the Hanford project, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, P.A.; Wilbur, J.S.

    1980-04-01

    Operations on the Hanford Site since 1944 have resulted in discharge of large volumes of process cooling water and low-level liquid radioactive waste to the ground. Radioactivity and chemical substances have been carried with these discharges and have reached the Hanford ground water. For may years wells have been used as groundwater sampling structures to gather data on the distribution and movement of these discharges as they interact with the unconfined ground water beneath the site. During 1979, 317 wells were sampled on various frequencies from weekly to annually. This report is one of a series prepared annually to document the evaluation of the status of ground water on the Hanford Site. Data collected during 1979 describe the movement of radionuclide (Tritium and Beta) and nitrate plumes that respond to the influence of groundwater flow, ionic dispersion and radioactive decay.

  6. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  7. Assessment of Ground Water Quality in Rajajinagar of Bangalore

    Directory of Open Access Journals (Sweden)

    Alimuddin

    2015-04-01

    Full Text Available Water borne diseases continue to be a dominant cause of water borne morbidities and mortality all over the world. Hence, drinking water needs to be protected from pollution and biological contamination. Ground water samples were collected from ten different sampling point in Rajajinagar area of Bangalore and analysed for water quality parameters viz. pH , total alkalinity, chloride, total dissolved solids, electrical conductivity, sodium, potassium, calcium, magnesium, dissolved oxygen, BOD, COD and total hardness. The pH value of the study area ranges between 7.3 to 8.4 indicating that ground water is slightly alkaline. The total alkalinity are varied in the range from 122 to 282 mg/l which is well within the limit prescribed by BIS. The TDS value found from 397 to 546 mg/l. The values of hardness of water ranges from 125 to 267 mg/l which is within the prescribed limit as per BIS.

  8. Salinization of a fresh palaeo-ground water resource by enhanced recharge.

    Science.gov (United States)

    Leaney, F W; Herczeg, A L; Walker, G R

    2003-01-01

    Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.

  9. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    Science.gov (United States)

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  10. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P.D.; Voss, C.I. [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  11. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  12. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  13. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  14. Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water in the Contributing Recharge Area of a Public-Supply Well near Tampa, Florida, 2002-05

    Science.gov (United States)

    Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, William S.; Berndt, Marian P.

    2007-01-01

    In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic

  15. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    Pavant Valley, in eastern Millard County in west-central Utah, is in the Great Basin section of the Basin and Range province. The area of investigation is 34 miles long from north to south and 9 miles wide from east to west and comprises about 300 square miles. Agriculture, tourist trade, and mining are the principal industries. The population of the valley is about 3,500, of which about half live in Fillmore, the county seat of Millard County. The climate is semiarid and temperatures are moderate. Average normal annual precipitation in the lowlands is estimated to range from 10 to 14 inches. Precipitation is heaviest during the late winter and spring, January through May. The average monthly temperature at Fillmore ranges from 29?F in January to 76?F in July; the average annual temperature is 52?F. Because of the aridity, most crops cannot be grown successfully without irrigation. Irrigation requirements were satisfied for about 60 years after the valley was settled by diverting streams tributary to the valley. Artesian water was discovered near Flowell in 1915. By 1920 flowing artesian wells supplied about 10 percent of the irrigation water used in the valley, not including water from the Central Utah Canal. The Central Utah Canal was constructed in 1916 to convey water to the Pavant Valley from the Sevier River. Especially since 1916, the quantity of surface water available each year for irrigation has changed with the vagaries of nature. The total percentage of irrigation water contributed by ground water, on the other hand, gradually increased to about 15 percent in 1945 and then increased rapidly to 45 percent in 1960; it will probably stabilize at about 50 percent. Sand and gravel deposits of Recent and Pleistocene age are the principal aquifers in Pavant Valley. These deposits are coarser, more extensive, and more permeable near the mountains and become progressively finer .and less .permeable westward away from the mountains. As ground water moves westward

  16. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  17. Geology and ground-water resources of Richardson County, Nebraska

    Science.gov (United States)

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  18. Hydrogeology of, and Simulation of Ground-Water Flow In, the Pohatcong Valley, Warren County, New Jersey

    Science.gov (United States)

    Carleton, Glen B.; Gordon, Alison D.

    2007-01-01

    A numerical ground-water-flow model was constructed to simulate ground-water flow in the Pohatcong Valley, including the area within the U.S. Environmental Protection Agency Pohatcong Valley Ground Water Contamination Site. The area is underlain by glacial till, alluvial sediments, and weathered and competent carbonate bedrock. The northwestern and southeastern valley boundaries are regional-scale thrust faults and ridges underlain by crystalline rocks. The unconsolidated sediments and weathered bedrock form a minor surficial aquifer and the carbonate rocks form a highly transmissive fractured-rock aquifer. Ground-water flow in the carbonate rocks is primarily downvalley towards the Delaware River, but the water discharges through the surficial aquifer to Pohatcong Creek under typical conditions. The hydraulic characteristics of the carbonate-rock aquifer are highly heterogeneous. Horizontal hydraulic conductivities span nearly five orders of magnitude, from 0.5 feet per day (ft/d) to 1,800 ft/d. The maximum transmissivity calculated is 37,000 feet squared per day. The horizontal hydraulic conductivities calculated from aquifer tests using public supply wells open to the Leithsville Formation and Allentown Dolomite are 34 ft/d (effective hydraulic conductivity) and 85 to 190 ft/d (minimum and maximum hydraulic conductivity, respectively, yielding a horizontal anisotropy ratio of 0.46). Stream base-flow data were used to estimate the net gain (or loss) for selected reaches on Brass Castle Creek, Shabbecong Creek, three smaller tributaries to Pohatcong Creek, and for five reaches on Pohatcong Creek. Estimated mean annual base flows for Brass Castle Creek, Pohatcong Creek at New Village, and Pohatcong Creek at Carpentersville (from correlations of partial- and continuous-record stations) are 2.4, 25, and 45 cubic feet per second (ft3/s) (10, 10, and 11 inches per year (in/yr)), respectively. Ground-water ages estimated using sulfur hexafluoride (SF6

  19. Magnificent Ground Water Connection. [Sample Activities].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  20. Ground Water Flow No Longer A Mystery

    Science.gov (United States)

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  1. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  2. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  3. Ground-water availability in part of the Borough of Carroll Valley, Adams County, Pennsylvania, and the establishment of a drought-monitor well

    Science.gov (United States)

    Low, Dennis J.; Conger, Randall W.

    2002-01-01

    weathering, resulting in topographic highs coupled with steep, narrow valleys. This rugged topography results in extensive surface runoff, which limits infiltration and hence recharge to the shallow and deep ground-water systems. Streams that flow through the study area generally are small and ephemeral. Where perennial, the streams represent areas of ground-water discharge. Thickness of the overlying mantle (regolith or depth to bedrock) varies from 0 to more than 65 feet over short distances. In general, a thick regolith will store and transmit large quantities of water to the underlying bedrock aquifers. In the study area, however, there is no correlation between thick regolith and greater reported yields. Thus, it appears that the hydraulic connection between water-bearing fractures at depth and ground water stored in the regolith is poor, which further limits ground-water availability. Recharge to the bedrock aquifers from the approximately 46 inches of annual precipitation aver-ages about 13 inches per year, or 975 gallons per day per acre. During drought years, however, this recharge rate may average only 9 inches per year [675 gallons per day per acre]. Decreased recharge to the bedrock aquifers results in declining water levels and possibly dry wells, as well as reduced flows to streams and other surface-water bodies. Although the consumptive use of ground water by homeowners is minor (about 14 percent), the pumping of a well will change the natural flow paths of ground water and reduce the amount of water stored (at least temporarily) in the bedrock aquifers.

  4. Water-table contours, directions of ground-water movement, and measurements of inflow to American Falls Reservoir, Southeastern Idaho, April 1984

    Science.gov (United States)

    Young, H.W.

    1984-01-01

    In 1978 the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluating the effects of long-term development of the aquifer and to develop a capability for predicting aquifer response to alternative changes in ground-water management. By use of a digital model, this report presents a quantitative description of the High Plains aquifer in Oklahoma. The High Plains aquifer consists predominantly of the Tertiary Ogallala Formation and overlying Quaternary alluvium and terrace deposits which are hydraulically connected to the High Plains aquifer. Much of the aquifer is underlain by formations of Permian through Cretaceous age, which generally have very small hydraulic conductivities. In some areas parts of underlying Triassic, Jurassic, or Cretaceous rocks are hydraulically connected with the aquifer. The High Plains aquifer is a water-table aquifer in which water moves generally to the east-southeast. Before the beginning of extensive irrigation of the 1960's, the aquifer was essentially in dynamic equilibrium with recharge from precipitation balanced by natural discharge from the aquifer. Ground-water discharge appeared in streams leaving the area or was returned to the atmosphere through evapotranspiration. Accurate records of irrigation pumpage are not available from the High Plains. In order to estimate irrigation pumpage, published records of crop distribution were used and a consumptive use was assigned to each principal irrigated crop. This method gave an estimated irrigation demand. Pumpage was taken as a percentage of the total irrigation demand. Irrigation has decreased ground-water discharge from the High Plains aquifer. Ground-water discharge was estimated as approximately 118 cubic feet per second in 1980. A finite-difference digital model was used to simulate flow in the High Plains aquifer. The recharge was adjusted so that 1980 ground-water discharge was 118 cubic feet per

  5. Isotopic composition of ground waters from Kufra (Lybia) as indicator for ground water formation

    Energy Technology Data Exchange (ETDEWEB)

    Swailem, F.M.; Hamza, M.S.; Aly, A.I.M. (Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo (Egypt))

    1984-02-01

    The results of the isotopic composition of shallow and deep ground waters from the Kufra region indicate the fossil origin of these waters and that they are not recharged under the present climatic conditions. The virtual absence of tritium and the radiocarbon ages of these waters show that they were formed mainly in the past pluvial periods. Deuterium and oxygen-18 data indicate that the ground waters were recharged under cooler climatic conditions. These results may explain the origin of the large amounts of ground water which existed in the region.

  6. Geologic Map of Oasis Valley Spring-Discharge Area and Vicinity, Nye County, Nevada

    Science.gov (United States)

    Fridrich, Christopher J.; Minor, Scott A.; Slate, Janet L.; Ryder, Phil L.

    2007-01-01

    This map report presents the geologic framework of an area in southern Nye County, Nevada, that extends from the southern limit of the Oasis Valley spring-discharge site, northeastward to the southwest margin of the Pahute Mesa testing area, on the Nevada Test Site. This map adds new surficial mapping and revises bedrock mapping previously published as USGS Open-File Report 99-533-B. The locations of major concealed structures were based on a combination of gravity and magnetic data. This report includes a geologic discussion explaining many of the interpretations that are presented graphically on the map and sections. Additional discussion of the geologic framework of the Oasis Valley area can be found in an interpretive geophysical report and in a geologic report (USGS Open-File Report 99-533-A that was a companion product to the previously published version of this map. The map presented here covers nine 7.5-minute quadrangles centered on the Thirsty Canyon SW quadrangle. It is a compilation of one previously published quadrangle map and eight new quadrangle maps, two of which were published separately during the course of the study. The new bedrock mapping was completed by S.A. Minor from 1991 to 1995, by C.J. Fridrich from 1992 to 1998, and by P.L. Ryder from 1997 to 1998. New surficial-deposits mapping was completed by J.L. Slate and M.E. Berry in 1998 and 1999. The new bedrock and surficial mapping is partly a revision of several unpublished reconnaissance maps completed by Orkild and Swadley in the 1960's, and of previously published maps by Maldonado and Hausback (1990), Lipman and others (1966); and Sargent and Orkild (1976). Additionally, mapping of the pre-Tertiary rocks of northern Bare Mountain was compiled from Monsen and others (1992) with only minor modification. The cross sections were drawn to a depth of about 5 km below land surface at the request of hydrologists studying the Death Valley ground-water system. Below a depth of about 1 kilometer

  7. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  8. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  9. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  10. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  11. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  12. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  13. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  14. Assessment of an Increase in Boron and Arsenic Concentrations at the Discharge Area of Na-Borate Mine (Kirka-Eskisehir, Turkey

    Directory of Open Access Journals (Sweden)

    Galip Yuce Didem Ugurluoglu Yasin

    2012-01-01

    Full Text Available The Province of Kirka (Eskisehir, Turkey, located in the catchment of the Seydisuyu Plain, has one of the largest Na-borate deposits in the world. However, boron concentrations in surface and ground waters downstream of Kirka Province, the Seyitgazi Plain, have increased over the past twenty years. Seyitgazi plain has been widely irrigated from groundwater and Seydisuyu River. In this respect, quality of the river water directly affects groundwater quality in the Seyitgazi Plain since river water is the main supplier for irrigation water in the Seyitgazi plain in addition to groundwater which is extracted from the wells drilled in the Seyitgazi Plain. Thus, any mining activity built in the catchment area of groundwater poses potential risk for the quality of groundwater in the discharge area.

  15. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  16. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  17. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  18. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  19. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    Science.gov (United States)

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  20. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    Science.gov (United States)

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  1. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  2. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  3. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  4. U.S. Geological Survey ground-water studies in Illinois

    Science.gov (United States)

    Avery, Charles F.

    1994-01-01

    Ground water is an important source of water supply in Illinois. The largest amount of ground*water withdrawal is in the northern one-third of the State where aquifers to a depth of about 1,500 feet below land surface contain large quantities of potable water. Approximately 74 percent of the public water-supply systems in Illinois use ground water to supply potable water to more than 5.5 million people. Ground-water withdrawals account for almost 25 percent of the total water withdrawn for public water supplies in Illinois. Many public water-supply systems in the Chicago area have recently changed from using ground water pumped from wells to using water delivered from Lake Michigan. The major issues related to ground water in Illinois are: Water- quality degradation or contamination from point and nonpoint sources, and Water availability, because of the lowering of ground-water levels in the bedrock aquifers in northeastern Illinois and elsewhere in the State where pumpage has exceeded aquifer recharge and the susceptibility of the limited surface-water supplies in central and southern Illinois to drought.

  5. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  6. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  7. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  8. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  9. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    Science.gov (United States)

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    miles of surface drains. Successful operation of the alternate plan would depend, not only on providing adequate water to replace that exported from the Boise Valley, but also on satisfactory drainage of waterlogged land. That is, water management in the valley would have to couple economical pumping of irrigation water with effective drainage by pumping. The average of recorded yearly diversions from the Boise River is 1,280,000 acre-feet of live water (natural flow in a stream) and 201,000 acre-feet cf recycled water. Gross diversions of record in some recent single years of ample water supply reportedly exceeded 1,800,000 acre-feet. Ground water, on the other hand is used on a relatively small scale, yearly pumpage being only about 150,000 acre-feet. The feasibility of exporting 600,000 acre-feet of Boise River water would depend on the availability of replacement water in the Boise Valley and on the availability of the required surface water in the South Fork of the Boise River at the proposed point of diversion to the Mountain Home project. In 6 of the 20 years, 1931-50, recorded diversions of live and return water from th2 Boise River exceeded the live flow at the Boise Diversion Dam by 3,865 to 107,640 acre-feet. Moreover, although the average residual discharge in the river post Notus was 701,000 acre-feet, in most years some river reaches above Notus were dry at times, owing to diversion of all water from the river. Much of the flow past Notus is surface waste and effluent ground water, which averages about 422,000 acre-feet a year. The total of potential yearly ground water recharge in the Boise Valley, derived from precipitation, incoming underflow, and infiltration of irrigation water, is about 554,000 acre-feet in the feasible exchange-pumping area and areas tributary thereto. Identified and estimated consumptive depletion of ground water in the valley is about 230,000 acre-feet a year, but not all that depletion is within the exchange are

  10. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  11. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  12. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    Science.gov (United States)

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  13. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    Science.gov (United States)

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  14. Ground water and the rural homeowner

    Science.gov (United States)

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  16. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    Science.gov (United States)

    Waltemeyer, Scott D.

    2008-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent

  17. Lateral boundary of the steady-state ground-water flow model by D'Agnese and others (2002), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary of the area simulated by the steady-state ground-water flow model of the Death Valley regional ground-water flow...

  18. Identifying of ground water level by using geoelectric method in Karanganyar, Central Java, Indonesia

    Science.gov (United States)

    Koesuma, S.; Sulastoro

    2016-11-01

    This study aims to determine ground water level in Karanganyar regency, Central Java Province, Indonesia. Karanganyar regency is located in west flank of Lawu volcano, the third highest volcano in Central Java Province. Karanganyar lays from the top submit of Lawu volcano to down town of city with altitude 3265 m to 88 m. Same as other mountain area, Karanganyar has a lot of ground water potential. We use geoelectric method to finds out how deep of ground water level. The survey locations are distributed surround Karanganyar regency which contain 22 sites, in period survey of 2013 - 2015. Schlumberger configuration is used for acqusition data with lenght of current electrode distance varies from 1 m to 700 m. The result shows that ground water level are located in depth from 50 meter to 150 meter with lithology of tuff and sand. In Munggur and Kedung Jeruk sites, we found two potential aquifers, which are shallow and deep aquifers.

  19. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    Science.gov (United States)

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  20. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  1. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  2. Salinity of the ground water in western Pinal County, Arizona

    Science.gov (United States)

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  3. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  4. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Science.gov (United States)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  5. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  6. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, L. Neil; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  7. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    second may be entering the aquifer from underlying formations. For the area west of Hurricane, as much as 1.5 cubic feet per second may be entering the aquifer from underlying formations. On the basis of measurements, estimates, and numerical simulations, total water moving through the Navajo and Kayenta aquifers is estimated to be about 25,000 acre-feet per year for the main part and 5,000 acre-feet per year for the Gunlock part. The primary source of recharge is assumed to be infiltration of precipitation in the main part and seepage from the Santa Clara River in the Gunlock part. The primary source of discharge is assumed to be a well discharge for both the main and Gunlock parts of the aquifers. Numerical simulations indicate that faults with major offset, such as the Washington Hollow Fault and an unnamed fault near Anderson Junction, may impede horizontal ground-water flow. Also, increased horizontal hydraulic conductivity along the orientation of predominant surface fracturing may be important factor in regional ground-water flow. Simulations with increased north-south hydraulic conductivity substantially improved the match to measured water levels in the central area of the model between Snow Canyon and Mill Creek. Numerical simulation of the Gunlock part, using aquifer properties determined for the city of St. George municipal well field, resulted in a reasonable representation of regional water levels and estimated seepage from and to the Santa Clara River. To quantify the Gunlock part of the Navajo and Kayenta aquifers, a better understanding of ground-water flow at the Gunlock Fault is needed.

  8. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  9. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    Science.gov (United States)

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  10. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  11. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    Science.gov (United States)

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  12. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  13. Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea

    Science.gov (United States)

    Koh, D.-C.; Niel, Plummer L.; Kip, Solomon D.; Busenberg, E.; Kim, Y.-J.; Chang, H.-W.

    2006-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated as environmental tracers in ground water from Jeju Island (Republic of Korea), a basaltic volcanic island. Ground-water mixing was evaluated by comparing 3H and CFC-12 concentrations with lumped-parameter dispersion models, which distinguished old water recharged before the 1950s with negligible 3H and CFC-12 from younger water. Low 3H levels in a considerable number of samples cannot be explained by the mixing models, and were interpreted as binary mixing of old and younger water; a process also identified in alkalinity and pH of ground water. The ground-water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seogwipo Formation in coastal areas than in water from the basaltic aquifer. Major cation concentrations are much higher in young water with high nitrate than those in uncontaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increases with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water is consistent with the known history of chemical fertilizer use on the island, but increase of nitrate concentration in ground water is more abrupt after the late 1970s compared with the exponential growth of nitrogen inputs. ?? 2005 Elsevier B.V. All rights reserved.

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  15. Hanford Site ground-water monitoring for April through June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  16. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  17. Outer boundary of major discharge areas of Death Valley regional flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digital data set delineates the outer boundary of each major discharge area evaluated as part of the study. These areas were used to refine estimates of...

  18. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per

  19. Geology and ground-water resources of Rock County, Wisconsin

    Science.gov (United States)

    LeRoux, E.F.

    1964-01-01

    . This sandstone also yields some water to uncased wells that tap the deeper rocks of the Upper Cambrian series. East of the Rock River the Platteville, Decorah, and Galena formations undifferentiated, or Platteville-Galena unit, is the principal source of water for domestic and stock wells. Unconsolidated deposits of glacial origin cover most of Rock County and supply water to many small wells. In the outwash deposits along the Rock River, wells of extremely high capacity have been developed for industrial and municipal use. The most significant feature of the bedrock surface in Rock County is the ancestral Rock River valley, which has been filled with glacial outwash to a depth of at least 396 feet below the present land surface. East of the buried valley the bedrock has a fiat, relatively undissected surface. West of the valley the bedrock surface is rugged and greatly dissected. Ground water in Rock County occurs under both water-table and artesian conditions; however, because of the interconnection and close relation of all ground water in the county, the entire system is considered to be a single groundwater body whose surface may be represented by one piezometric map. Recharge occurs locally, throughout the county. Nearly all recharge is derived directly from precipitation that percolates downward to become a part of the groundwater body. Natural movement of water in the consolidated water-bearing units is generally toward the buried Rock and Sugar River valleys. Movement of water in the sandstones of Cambrian age was calculated to be about 44 million gallons a day toward the Rock River. Discharge from wells in Rock County in 1957 was about 23 million gallons a day. Nearly 90 percent of this water was drawn from the area along the Rock River. Drilled wells, most of which were drilled by the cable-tool method, range in diameter from 3 to 26 inches, and in depth from 46 to 1,225 feet. Driven wells in alluvium and glacial drift are usually 1? to 2? in

  20. The Effect of Degradation of Ground water Resources on Capital of Pistachio Growers in Kerman Province

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mortazavi

    2014-12-01

    Full Text Available Real cost evaluation of water is necessary in agricultural products depending on obtained value by this input. In most areas of world especially in arid and semiarid areas, exist over pumping of ground water because the real value of water is much most than the costs of water supply and the lack of fit management water resources. In this study, using a sample of 110 farmers, water dealing value of over using of groundwater in Rafsanjan pistachio production area were investigated. Analysis and regression methods were used in this regard. The average determined value obtained 24 cents, for each share of water in this region which with over drafting of ground water, and decreasing quality and quantity of water has had significant relationship in the one percent significance level. Finally, for elimination or reduction of ground water degradation and its effects, this paper recommended in addition to reduction of licenses for ground water pumping. Determination of optimal economic water/land ratio in new and old pistachio producing areas is the other proposal of this research for alleviation groundwater over drafting effects. Permission for water conduction between wells and combination of fresh and saline water and also using desalination systems are methods for solving low quality of ground water.

  1. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  2. Ground-water resources of the South Platte River Basin in western Adams and southwestern Weld Counties, Colorado

    Science.gov (United States)

    Smith, Rex O.; Schneider, P.A.; Petri, Lester R.

    1964-01-01

    ground water for irrigation, municipal, and industrial use are obtained in the principal stream valleys from wells tapping valley-fill deposits beneath the flood plain and bordering terraces. Many domestic and stock wells obtain water from the unconsolidated deposits both on the uplands and in the valleys. The ground water in the valley-fill deposits generally is unconfined but in a few places is under slight artesian pressure. The bedrock formations yield small to moderate supplies of water to municipal, industrial, domestic, and stock wells, but the yields are not sufficient for irrigation. Ground water in the South Platte River valley moves downstream and toward the river and is discharged into the river. The direction of ground-water movement in Beebe Draw and Box Elder Creek valley is nearly parallel to the streams. Beebe Seep, the stream in Beebe Draw, gains water from the groundwater reservoir in some reaches and loses water in others, but Box Elder Creek loses water to the ground-water reservoir throughout its course especially during floods. The shape and slope of the water table are affected chiefly by the permeability of the valley-fill deposits, the location and altitude of the areas of recharge and discharge, and the configuration of the underlying bedrock floor. The depth to water in the South Platte River valley ranges from less than 1 foot beneath the flood plain to as much as 80 feet beneath the terraces. In Beebe Draw the depth to water ranges from less than 1 foot to about 60 feet and in Box Elder Creek valley from about 5 feet to about 40 feet. During the period of record the annual fluctuation of water levels in wells in the area has ranged from 2 to 13 feet. Precipitation within the area and infiltrating water from irrigated tracts, reservoirs, canals, and streams are the principal sources of recharge to the ground-water reservoir; some recharge results from underflow from outside the area. Ground water is discharged by evapotranspiratio

  3. CHEMICAL QUALITY CHARACTERISTICS OF TEHRAN GROUND WATER

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1994-06-01

    Full Text Available For better understanding of Tehran ground water, samples were taken randomly from 340 out of 655 deep & semi deep wells in 1993, which dug by Tehran Water Supply and Sewage Engineering Company. 260 Water specimens were examined chemically and physically and compared with the 1993 World Health Organization (WHO and Food and Agriculture Organization (FAO criteria and analyzed statistically. Logarithmic diagram of arithmetic mean of 53 deep wells which are now connected to Tehran water supply system showed Sodium- Sulphate category. Main chemical components of water are closely adjusted to the international standards and no overdoses were observed in any cases. Logarithmic diagram of arithmetic mean of 72 deep wells, which were rsed for the Tehran’s orbital town's drinking water, showed that chemical components of the water were Calcic-Chloride category and there were not observed any increases within the other compounds.

  4. Animating ground water levels with Excel.

    Science.gov (United States)

    Shikaze, Steven G; Crowe, Allan S

    2003-01-01

    This note describes the use of Microsoft Excel macros (programs written in Excel's internal language, Visual Basic for Applications) to create simple onscreen animations of transient ground water data within Excel. Compared to many specialized visualization software packages, the use of Excel macros is much cheaper, much simpler, and can rapidly be learned. The Excel macro can also be used to create individual GIF files for each animation frame. This series of frames can then be used to create an AVI video file using any of a number of graphics packages, such as Corel PhotoPaint. The technique is demonstrated through a macro that animates changes in the elevation of a water table along a transect over several years.

  5. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    Science.gov (United States)

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  6. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    Science.gov (United States)

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO.

  7. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    Science.gov (United States)

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  9. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    Science.gov (United States)

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  10. Research on ground water pollution by leacheate of waste dump of open pit coal mine

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-bin; YAN Hong-kun; WANG Zhao-jun

    2008-01-01

    On the basis of investigation and research on the pollution source and pollution pathway of Yujiagou area, by the ground water quality analysis and the leaching and soaking experiments of the gangue, reliable data were obtained. The experiment results prove that these inorganic salt elements are easily dissolved by the water. The main pollu-tion factors in the ground water are consisted with the main pollution factor in the leading water of the gangue. By synthetically analyzing, a conclusion is shown that the salts in the leacheate of the waste dump of open pit coal mine are the primary pollution source for groundwater of Yujiagou area. An assessment is made about the degree of pollution of the ground water in the study area.

  11. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  12. Identification of septic system effluent in ground water using small catchment hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Foster, M.B.J.; Alexander, E.C. Jr. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Geology and Geophysics)

    1992-01-01

    In many areas the contribution of septic system effluent to ground water contamination is still uncertain because of ambiguous provenance of chemical constituents. The problem is to establish a diagnostic chemical signature for the septic system effluent. Chlorides, nitrogen isotopes and optical brighteners have all been used as single constituent tracers for this purpose. These tracers tend to have limited range of application and cannot resolve ambiguity in areas with multiple potential contaminant sources. The authors addressed this problem using eight major ions to characterize the ground water chemistry, graphically or statistically. They identify the chemical signatures of septic system effluent and other non-point source contamination from the ground water chemistry of small ground water catchments overlain by single or very restricted land use types. They studied five small catchments near Rochester, Minnesota to isolate pre-development and non-septic system components of the ground water chemistry. Five small isolated hills were selected each with a distinct land-use type; natural forest, agricultural, unsewered residential, mixed agricultural/residential and fully sewered residential. The results show that Piper diagrams and statistical analysis can be used to define chemical signatures for the unsewered residential area using septic systems, the natural forest, and the agricultural catchments. The signatures of the mixed agriculture/residential and the fully sewered catchments are very similar to that of the agricultural catchment.

  13. Continuous slope-area discharge records in Maricopa County, Arizona, 2004–2012

    Science.gov (United States)

    Wiele, Stephen M.; Heaton, John W.; Bunch, Claire E.; Gardner, David E.; Smith, Christopher F.

    2015-12-29

    Continuous slope-area (CSA) streamgages have been developed and implemented by the U.S. Geological Survey (USGS) to enable the recording of discharge hydrographs in areas where direct discharge measurements cannot be made. The flashy nature of streamflow in parts of the arid Southwest and remote location of many sites make discharge measurements difficult or impossible to obtain. Consequently, available discharge measurements may be insufficient to develop accurate rating curves, which relate discharge to continuously recorded stage measured at standard streamgages. Nine CSA streamgages have been installed in Maricopa County, Arizona, since 2004 in cooperation with the Flood Control District of Maricopa County. This report presents the data and analysis of computed discharges from those streamgages, along with descriptions of the streamgage site and stream properties.

  14. An update of the distribution of selected radiochemical and chemical constituents in perched ground water, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastes generated at facilities at the Idaho National Laboratory (INL) were discharged since 1952 to infiltration ponds at the Reactor Technology Complex (RTC) (known as the Test Reactor Area [TRA] until 2005), and the Idaho Nuclear Technology and Engineering Center (INTEC) and buried at the Radioactive Waste Management Complex (RWMC). Disposal of wastewater to infiltration ponds and infiltration of surface water at waste burial sites resulted in formation of perched ground water in basalts and in sedimentary interbeds above the Snake River Plain aquifer. Perched ground water is an integral part of the pathway for waste-constituent migration to the aquifer. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to monitor the movement of radiochemical and chemical constituents in wastewater discharged from facilities to both perched ground water and the aquifer. This report presents an analysis of water-quality and water-level data collected from wells completed in perched ground water at the INL during 1999-2001, and summarizes historical disposal data and water-level-and water-quality trends. At the RTC, tritium, strontium-90, cesium-137, dissolved chromium, chloride, sodium, and sulfate were monitored in shallow and deep perched ground water. In shallow perched ground water, no tritium was detected above the reporting level. In deep perched ground water, tritium concentrations generally decreased or varied randomly during 1999-2001. During October 2001, tritium concentrations ranged from less than the reporting level to 39.4?1.4 picocuries per milliliter (pCi/mL). Reportable concentrations of tritium during July-October 2001 were smaller than the reported concentrations measured during July-December 1998. Tritium concentrations in water from wells at the RTC were likely affected by: well's distance from the

  15. Hanford Site ground-water monitoring for January through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  16. Electrode microwave discharge: Areas of application and recent results of discharge physics

    Science.gov (United States)

    Lebedev, Yu A.; Epstein, I. L.; Tatarinov, A. V.; Shakhatov, V. A.

    2010-01-01

    The first paper on the electrode microwave discharge (EMD) appeared in 1996. Presently many problems of EMD physics and applications have already been solved. Several examples of EMD application are discussed: diamond growth, deposition of CNx films and nanotubes, deposition of metal films (Cu, Al), deposition of TiN and TiO2 films, generation of O2(a1Δ), and EMD as a plasma cathode. Results of EMD experiments and modeling give rise to the assumption that an EMD consists of a self-sustained domain (near-electrode plasma region with overcritical plasma density) which is surrounded by a region of a non-self-sustained discharge (ball shaped region with undercritical plasma density). We assumed that the layer of charge separation and of induced electrostatic field originated at the outer EMD boundary was one of the reasons for the abrupt decrease of the plasma density which leads to the formation of a compact plasma structure. Recent modeling results of the strongly nonuniform electrode microwave plasma based on a quasi static, 1D spherically symmetric model showed that such a layer can be generated at the point where a sudden increase of the total ionization rate takes place.

  17. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  18. A modelling approach to determine the origin of urban ground water.

    Science.gov (United States)

    Trowsdale, Sam A; Lerner, David N

    2007-04-01

    A simple modelling approach was developed to link patterns of urban land-use with ground water flow and chemistry in three dimensions and was applied to characterize the origin of recharge in the aquifer beneath the old industrial city of Nottingham, UK. The approach involved dividing land uses into types, and times into periods, and assigning the recharge from each an individual tracer-solute with a unit concentration. The computer code MT3DMS was used to track the multiple tracer-solutes in transient, three-dimensional simulations of the important urban aquifer. A depth-specific hydrochemical dataset collected in parallel supported the model predictions. At depth under the industrial area studied, a large component of ground water originated of older agricultural origin, with relatively low nitrate concentrations. Shallower ground water originated mainly from residential and industrial areas, with higher nitrate concentrations probably arising from leaking sewers and contaminated land. The results highlighted the spectrum of ground water from different origins that amalgamate even at short well screens in a non-pumped borehole and remind us that the non-point-source pollution of ground water from anthropogenic activities will involve more years of slow degradation of quality.

  19. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  20. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  1. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  2. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  3. Sub-Saharan African ground water protection-building on international experience.

    Science.gov (United States)

    Kreamer, David K; Usher, Brent

    2010-01-01

    Sub-Saharan Africa faces significant challenges in dealing with ground water pollution. These countries can look to successes and missteps on other continents to help choose their own individual paths to ensuring reliable and clean supplies of ground water. In the large view, sub-Saharan Africa can define specific levels of acceptable risk in water quality that drive cleanup efforts and are amenable to acceptance across national and geographic boundaries. Ground water quality databases must be expanded, and data must be available in an electronic form that is flexible, expandable, and uniform, and that can be used over wide geographic areas. Guidance from other continents is available on well construction, sampling and monitoring, interim remediation, technical impracticability, monitored natural attenuation, and many specific issues such as how to deal with small waste generators and septic contamination of water supply wells. It is important to establish a common African view on the appropriateness of other nations' ground water quality guidance for African issues, economic conditions, and community circumstances. Establishing numerical, concentration-based, water quality action levels for pollutants in ground water, which many neighboring African nations could hold comparable, would set the stage for risk-based remediation of contaminated sites. Efforts to gain public, grass-roots understanding and support for stable and balanced enforcement of standards are also key. Finally, effective capacity building in the region could be an eventual solution to ground water quality problems; with increased numbers of trained environmental professionals, ground water throughout the region can be protected and contaminated sites cleaned up.

  4. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    Science.gov (United States)

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  5. Quantifying ground water recharge at multiple scales using PRMS and GIS.

    Science.gov (United States)

    Cherkauer, Douglas S

    2004-01-01

    Management of ground water resources requires a method to calculate demonstrably accurate recharge rates at local to regional scales using readily available information bases. Many methods are available to calculate recharge, but most are unable to satisfy all these conditions. A distributed parameter model is shown to meet the stated needs. Such models are input intensive, however, so a procedure to define most inputs from GIS and hydrogeological sources is presented. It simplifies the PRMS calibration observed streamflow hydrographs by reducing degrees of freedom from dozens to four. For seven watersheds (60 to 500 km2), the GIS-aided calibrations have average errors of 5% on recharge and 2% on total streamflow, verifying the accuracy of the process. Recharge is also calculated for 63 local-scale subwatersheds (average size 37 km2). For the study area, calculated recharges average 11 cm/yr. Soil and rock conductivity, porosity, and depth to the water table are shown to be the physical properties which dominate the spatial variability of recharge. The model has been extended to uncalibrated watersheds where GIS and climatic information are known. It reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds. It has not been tested outside the study area, however.

  6. Experimental study and simulation of a micro-discharge with limited cathode area

    CERN Document Server

    Dufour, Thierry; Dussart, Remi; Pitchford, L C; Sadeghi, N; Lefaucheux, P; Kulsreshath, M; Ranson, P

    2016-01-01

    We report in this paper simulation results and experimental measurements to characterize a micro-discharge generated in a single micro cavity device operating in helium. By spatially limiting the cathode surface area using a dielectric layer, we demonstrate the ability of the micro-discharge to work in a steady-state abnormal glow regime. The physical properties of this regime are discussed.

  7. Simulated three-dimensional ground-water flow in the Lockport Group, a fractured-dolomite aquifer near Niagara Falls, New York

    Science.gov (United States)

    Yager, Richard M.

    1996-01-01

    A three-dimensional model was developed through a parameter-estimation method based on nonlinear regression to simulate ground-water flow in the Lockport Group, a fractured dolomite aquifer near Niagara Falls, N.Y. Horizontal fracture zones within the Lockport Group were represented by model layers, and connections between the zones were represented by vertical leakage between the layers. Results of steady-state simulations were compared with (1) the observed potentiometric surface of the weathered bedrock surface, (2) average heads measured by piezometers in underlying fracture zones, (3) low-flow measurements of springs and streams, and (4) measurements of discharge from tunnels and excavations. Results indicated that (1) measured flow into the Falls Street tunnel, an unlined storm sewer excavated in bedrock, exceeds the amount that can be sustained by the aquifer, and, therefore, a connection between the tunnel and the Niagara River can be assumed; (2) recharge within the urban parts of the modeled area is greater than in rural areas, possibly because of losses from the municipal water supply or infiltration from unlined storm sewers that intersect the bedrock; and (3) lowlands near the Niagara River might contain widespread areas of upward flow that discharge ground water through evapotranspiration and surface drainage.

  8. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    Science.gov (United States)

    Welch, Alan H.

    1995-01-01

    beta-emitting radionuclides during sample holding times can contribute to gross-beta activity, particularly in ground water with gross-beta activities > 10 pCi/L. Ingrowth of beta-emitting progeny of238U, specifically234Pa and234Th, contributes much of the measured gross-beta activity in ground water from 4 of the 5 areas studied. Consequently, gross-beta activity measurements commonly overestimate the abundance of beta-emitting radionuclides actually present in ground water. Differing sample holding times before analysis lead to differing amounts of ingrowth of the two progeny. Therefore, holding times can affect observed gross-beta measurements, particularly in ground water with238U activities that are moderate to high compared with the activity of40K plus228Ra. Uncertainties associated with counting efficiencies for beta particles with different energies further complicate the interpretation of gross-beta measurements.

  9. Ground Water Atlas of the United States: Segment 4, Oklahoma, Texas

    Science.gov (United States)

    Ryder, Paul D.

    1996-01-01

    The two States, Oklahoma and Texas, that compose Segment 4 of this Atlas are located in the south-central part of the Nation. These States are drained by numerous rivers and streams, the largest being the Arkansas, the Canadian, the Red, the Sabine, the Trinity, the Brazos, the Colorado, and the Pecos Rivers and the Rio Grande. Many of these rivers and their tributaries supply large amounts of water for human use, mostly in the eastern parts of the two States. The large perennial streams in the east with their many associated impoundments coincide with areas that have dense populations. Large metropolitan areas such as Oklahoma City and Tulsa, Okla., and Dallas, Fort Worth, Houston, and Austin, Tex., are supplied largely or entirely by surface water. However, in 1985 more than 7.5 million people, or about 42 percent of the population of the two States, depended on ground water as a source of water supply. The metropolitan areas of San Antonio and El Paso, Tex., and numerous smaller communities depend largely or entirely on ground water for their source of supply. The ground water is contained in aquifers that consist of unconsolidated deposits and consolidated sedimentary rocks. This chapter describes the geology and hydrology of each of the principal aquifers throughout the two-State area. Precipitation is the source of all the water in Oklahoma and Texas. Average annual precipitation ranges from about 8 inches per year in southwestern Texas to about 56 inches per year in southeastern Texas (fig. 1). In general, precipitation increases rather uniformly from west to east in the two States. Much of the precipitation either flows directly into rivers and streams as overland runoff or indirectly as base flow that discharges from aquifers where the water has been stored for some time. Accordingly, the areal distribution of average annual runoff from 1951 to 1980 (fig. 2) reflects that of average annual precipitation. Average annual runoff in the two-State area ranges

  10. Ground Water Atlas of the United States: Segment 3, Kansas, Missouri, Nebraska

    Science.gov (United States)

    Miller, James A.; Appel, Cynthia L.

    1997-01-01

    total discharge into a stream from surface- and ground-water sources, ranges from about 0.2 inch in the western part of the area to about 20 inches in southeastern Missouri (fig. 2). Average annual runoff generally reflects the distribution of average annual precipitation during the same period. However, runoff is less than precipitation everywhere and ranges from less than 5 to about 35 percent of the average annual precipitation. Evapotranspiration rates are high, especially in the western one-half of the area; thus, only a small percentage of the precipitation is available to recharge aquifers in most places. Locally, however, runoff might be significantly less than shown in figure 2, and ground-water recharge, greater, especially where highly permeable rocks or deposits at the land surface allow precipitation to rapidly infiltrate. Examples of such places are the Sand Hills area of Nebraska, which is blanketed by permeable windblown sands, and parts of southern Missouri, where permeable limestone is at or near the land surface. The land surface of Segment 3 generally slopes gradually from west to east. In the Great Plains Physiographic Province (fig. 3), the altitude of the flat land surface locally is about 5,000 feet above sea level in westernmost Nebraska. By contrast, in the flat Coastal Plain Physiographic Province of eastern Missouri, the altitude is about 500 feet above sea level. The land surface is gently rolling in the Central Lowland Province except where major rivers and their tributaries are deeply incised. In the Ozark Plateaus Physiographic Province, rugged topography has developed where the underlying rocks have been uplifted and deeply eroded.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  12. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  13. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  14. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    Science.gov (United States)

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    quantities of water to wells. The ground-water reservoir is recharged only from precipitation on the basin. Of the average annual precipitation of 19.5 inches, about 0.9 inch infiltrates to the water table, thereby contributing about 220,000 acre-feet of water annually to the ground-water reservoir. About 81 million acre-feet of water that could drain under gravity, and thus theoretically is available to wells, is held in groundwater storage in the basin. Water is discharged from the ground-water reservoir by wells, evaporation and transpiration, springs, seepage into streams, and movement into adjacent areas to the east and southeast. Most of the domestic, stock, and irrigation water supplies and all the public supplies are pumped from wells. During 1953, 96 wells were used to irrigate 10,000 acres of land with 19,000 acre-feet of water. About 34,000 acre-feet of water is evaporated and transpired annually in the valleys of the main streams and in areas of shallow water table in the sandhills. From the projection of base-flow measurements made during 1952, it was estimated that the average annual flow of Frenchman Creek into the reservoir above Enders Dam is about 57,000 acre-feet. By similar determinations, the average annual flow of Frenchman Creek at the gaging station at Palisade, Nebr., about 22 miles downstream from Enders Dam, is about 76,000 acre-feet, and the flow of Stinking Water Creek at the gaging station near Palisade is about 22,000 acre-feet. The combined flow of Frenchman and Stinking Water Creeks at their confluence near Palisade thus is about 98,000 acre-feet per year. About 90,000 acre-feet of ground water is estimated to move eastward each year across the Colorado-Nebraska State line within the basin. Additional irrigation wells that will tap the Ogallala formation and the alluvium in the major valleys undoubtedly will be drilled. On the basis of current estimates of future irrigation.withdrawals, it is concluded that by the

  15. Distinguishing sources of ground water recharge by using delta2H and delta18O.

    Science.gov (United States)

    Blasch, Kyle W; Bryson, Jeannie R

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  16. Classification of evapotranspiration units in major discharge areas of Death Valley regional

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based classification of evapotranspiration (ET) units is for nine major discharge areas in the Death Valley regional flow system. The ET units delineate...

  17. Application of GIS and MODFLOW to Ground Water Hydrology- A Review

    Directory of Open Access Journals (Sweden)

    Singha Sudhakar

    2016-01-01

    Full Text Available Groundwater is one of the most valuable natural resources, which supports human health, economic development and ecological diversity. Due to over exploitation, the ground water systems are affected and require management to maintain the conditions of ground water resources within acceptable limits. With the development of computers and advances in information technology, efficient techniques for water management has evolved. The main intent of the paper is to present a comprehensive review on application of GIS (Geographic Information System followed by coupling with MODFLOW package for ground water management and development. Two major areas are discussed stating GIS applications in ground water hydrology. (i GIS based subsurface flow and pollution modelling (ii Selection of artificial recharge sites. Although the use of these techniques in groundwater studies has rapidly increased since last decade the sucess rate is very limited. Based on this review , it is concluded that integation of GIS and MODFLOW have great potential to revolutionize the monitoring and management of vital ground water resources in the future.

  18. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    recharge in this area is from bedrock. Concentrations of Na+, HCO3-, As, and TDS also increase in the western MVA. Ground water in the MAK is of a Ca2+-HCO3- type. Mass-balance calculations, using Cl- as a natural, conservative tracer, indicate that approximately 17% of the ground water flowing from the confluence area is derived from the MVA.

  19. Groundwater discharge area for Diamond Valley, Central Nevada, 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents "phreatophyte areas" mapped as part of an analysis of irrigation pumping in Diamond Valley, Nevada published in 1968. The data were digitized...

  20. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, K.L.; Reif, A.G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  1. Expertise in exploiting ground water in Australian prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, H. [Macquarie Univ., Sydney, NSW (Australia)

    2000-12-01

    The presence of human beings on the Australian continent has been established to go back to at least 40 000 years. Recent research has put this back to about 60 000 years B.P. (Before Present). With the awareness of living on an extremely arid continent, the need to satisfy water demands was a constant concern. Finding water for all members of the various groups, but especially for those living in the Australian inland with extremely low precipitation, was a perpetual challenge. Thus, in desert areas seeking, finding and protecting ground water was demanded continuously. Native wells were established and used for many centuries often when surface water had dried in nearby watercourses. A number of wells found in the Simpson Desert, with habitation around them until recently, are most interesting. In Central Australia, in the Cleland Hills, the location of habitation has been found at a huge rock shelter close to a rock hole providing permanent ground water when all other sources in the vicinity have dried out. It was scientifically established that this occupation goes back 22 000 years. These examples of obtaining ground water in Australian prehistory many thousands of years ago by Aborigines show a highly developed culture. (orig.) [German] Bisher wurde angenommen, dass die Besiedelung des australischen Kontinents durch den Menschen vor 40 000 Jahren begann. Neueste Untersuchungen datieren diesen Zeitpunkt jedoch auf 60 000 Jahre zurueck. Fuer das Leben auf diesem extrem trockenen Erdteil war die Sicherung des Wasserbedarfs von jeher existenziell. Lebenswichtiges Wasser zu finden war fuer alle Mitglieder der verschiedenen Bevoelkerungsgruppen, vor allem aber fuer diejenigen, die sich im australischen Hinterland ansiedelten, von hoechster Bedeutung. Grundwasser in der Wueste zu suchen, zu finden und zu schuetzen war oberstes Ziel. Urspruengliche Brunnen wurden errichtet und ueber Jahrhunderte hindurch genutzt, wenn alle anderen Wasserressourcen versiegten. Hierbei

  2. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  3. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  4. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded th...

  5. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  6. Ground water hydrology report: Revision 1, Attachment 3. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  7. Procedures for ground-water investigations. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  8. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  9. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

    Science.gov (United States)

    Harvey, Judson W.; Krupa, Steven L.; Gefvert, Cynthia; Mooney, Robert H.; Choi, Jungyill; King, Susan A.; Giddings, Jefferson B.

    2002-01-01

    (ENR), a prototype project for the STAs that began operation in 1994. Determining the effect of ground water on the mercury balance of the ENR treatment wetland was an important additional objective. In order to broaden the relevance of conclusions to all parts of the north-central Everglades, interactions between surface water and ground water and mercury also were investigated in Water Conservation Area 2A (WCA-2A) and, to a lesser extent, in two other WCA basins, WCA-2B and WCA-3A.An important conclusion of this study is that creation of the WCA basins, and accompanying water-resources management, have appreciably increased both recharge and discharge in the north-central Everglades compared with pre-drainage conditions. Recharge and discharge are highest near the northern and northwestern edges of the Everglades, in the relatively small basins such as ENR and the STAs that share borders with both WCA-1 and the EAA. All basins experienced greater increases in recharge relative to discharge, because of the effects that land subsidence and ground-water pumping outside the Everglades had on hydraulic gradients. The highest basin-wide estimate of recharge was measured in ENR, where recharge averaged 0.9 centimeter per day (cm/d) over a 4-year study period. For perspective, that estimate of recharge is the equivalent of 30 percent of pumped surface-water inflows and 230 percent of average daily precipitation in ENR. Ground-water discharge was 10 times smaller than recharge at ENR. The present study estimated a basin-averaged recharge for WCA-2A (0.2 cm/d) that was a factor of 4 smaller than ENR. Although preliminary, that estimate of recharge is 5 times higher than previous estimates (approximately 0.04 cm/d), probably because the newer measurements were able to quantify recharge and discharge at finer spatial and temporal scales. Recharge at WCA-2A is smaller than ENR because WCA-2A has a smaller topographic gradient (3 x 10-5 and 2 x 10-4 in WCA-2A and ENR, respective

  10. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  11. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach.

    Science.gov (United States)

    Harrington, Glenn A; Cook, Peter G; Herczeg, Andrew L

    2002-01-01

    Two environmental tracer methods are applied to the Ti-Tree Basin in central Australia to shed light on the importance of recharge from floodouts of ephemeral rivers in this arid environment. Ground water carbon-14 concentrations from boreholes are used to estimate the average recharge rate over the interval between where the ground water sample first entered the saturated zone and the bore. Environmental chloride concentrations in ground water samples provide estimates of the recharge rate at the exact point in the landscape where the sample entered the saturated zone. The results of the two tracer approaches indicate that recharge rates around one of the rivers and an extensive floodplain are generally higher than rates of diffuse recharge that occurs in areas of lower topographic relief. Ground water 2H/1H and 18O/16O compositions are all depleted in the heavier isotopes (delta2H = -67 per thousand to -50 per thousand; delta18O = -9.2 per thousand to -5.7%o) compared with the long-term, amount-weighted mean isotopic composition of rainfall in the area (delta2H = -33.8 per thousand; delta18O = -6.3 per thousand). This indicates that recharge throughout the basin occurs only after intense rainfall events of at least 150 to 200 mm/month. Finally, a recharge map is developed to highlight the spatial extent of the two recharge mechanisms. Floodout recharge to the freshest ground water (TDS recharge rate of approximately 0.2 mm/year to the remainder of the basin. These findings have important implications for management of the ground water resource.

  12. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  13. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  14. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1999

    Science.gov (United States)

    Locke, G.L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1999. Data collected prior to 1999 are graphically presented and data collected by other agencies (or as part of other Geological Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-99. At two water-supply wells median water levels for calendar year 1999 were unchanged from their respective baseline periods. At a nearby observation well, the 1999 median water level was slightly lower (0.1 foot) than its baseline period. At the remaining four wells in Jackass Flats, median water levels for 1999 were slightly higher (0.2 foot to 1.6 feet) than for their respective baseline periods.

  15. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1998

    Science.gov (United States)

    Locke, Glenn L.

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 34 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1998. Data collected prior to 1998 are graphically presented and data collected by other agencies (or as part of other Geolgical Survey programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-98. At two water-supply wells and a nearby observation well, median water levels for calendar year 1998 were slightly lower (0.2 to 0.3 foot) than for their respective baseline periods. At the remaining four wells in Jackass Flats, median water levels for 1998 were unchanged at two wells and slightly higher (0.4 and 1.4 foot) at two wells than those for their respective baseline periods.

  16. Ground-water flow and contaminant transport at a radioactive-materials processing site, Wood River Junction, Rhode Island

    Science.gov (United States)

    Ryan, Barbara J.; Kipp, Kenneth L.

    1997-01-01

    Liquid wastes from an enriched-uranium cold-scrap recovery plant at Wood River Junction, Rhode Island, were discharged to the environment through evaporation ponds and trenches from 1966 through 1980. Leakage from the ponds and trenches resulted in a plume of contaminated ground water extending northwestward to the Pawcatuck River through a highly permeable sand and gravel aquifer of glacial origin.

  17. Ground-Water Recharge in the Arid and Semiarid Southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferre, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Ni?o and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Ni?o and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area?the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east?provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas

  18. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  19. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    Science.gov (United States)

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  20. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  1. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    the compilation of geographic, geologic, and hydrologic data and estimation of hydraulic properties and flows. The model was calibrated to historical surface-water and ground-water flow for the period 1891-1993. Sources of water to the regional ground-water flow system are natural and artificial recharge, coastal landward flow from the ocean (seawater intrusion), storage in the coarse-grained beds, and water from compaction of fine-grained beds (aquitards). Inflows used in the regional flow model simulation include streamflows routed through the major rivers and tributaries; infiltration of mountain-front runoff and infiltration of precipitation on bedrock outcrops and on valley floors; and artificial ground-water recharge of diverted streamflow, irrigation return flow, and treated sewage effluent. Most natural recharge occurs through infiltration (losses) of streamflow within the major rivers and tributaries and the numerous arroyos that drain the mountain fronts of the basin. Total simulated natural recharge was about 114,100 acre-feet per year (acre-ft/yr) for 1984-93: 27,800 acre-ft/yr of mountain-front and bedrock recharge, 24,100 acre-ft/yr of valley-floor recharge, and 62,200 acre-ft/yr of net streamflow recharge. Artificial recharge (spreading of diverted streamflow, irrigation return, and sewage effluent) is a major source of ground-water replenishment. During the 1984-93 simulation period, the average rate of artificial recharge at the spreading grounds was about 54,400 acre-ft/yr, 13 percent less than the simulated natural recharge rate for streamflow infiltration within the major rivers and tributaries. Estimated recharge from infiltration of irrigation return flow on the valley floors averaged about 51,000 acre-ft/yr, and treated sewage effluent averaged about 9,000 acre-ft/yr. Artificial recharge as streamflow diversion to the spreading grounds has occurred since 1929, and treated-sewage effluent has been discharged to stream channels since 1930. Under

  2. Questa Baseline and Pre-mining Ground-Water Quality Investigation, 7. A Pictorial Record of Chemical Weathering, Erosional Processes, and Potential Debris-flow Hazards in Scar Areas Developed on Hydrothermally Altered Rocks

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ludington, Steve; Vincent, Kirk R.; Verplanck, Philip L.; Caine, Jonathan S.; Livo, K. Eric

    2009-01-01

    Erosional scar areas developed along the lower Red River basin, New Mexico, reveal a complex natural history of mineralizing processes, rapid chemical weathering, and intense physical erosion during periodic outbursts of destructive, storm-induced runoff events. The scar areas are prominent erosional features with craggy headwalls and steep, denuded slopes. The largest scar areas, including, from east to west, Hottentot Creek, Straight Creek, Hansen Creek, Lower Hansen Creek, Sulfur Gulch, and Goat Hill Gulch, head along high east-west trending ridges that form the northern and southern boundaries of the lower Red River basin. Smaller, topographically lower scar areas are developed on ridge noses in the inner Red River valley. Several of the natural scar areas have been modified substantially as a result of large-scale open-pit and underground mining at the Questa Mine; for example, much of the Sulfur Gulch scar was removed by open pit mining, and several scars are now partially or completely covered by mine waste dumps.

  3. Estimating ground water recharge using flow models of perched karstic aquifers.

    Science.gov (United States)

    Weiss, Menachem; Gvirtzman, Haim

    2007-01-01

    The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.

  4. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson,, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  5. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  6. Temporal trends in nitrate and selected pesticides in mid-atlantic ground water

    Science.gov (United States)

    Debrewer, L.M.; Ator, S.W.; Denver, J.M.

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Ground-water contribution to dose from past Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  8. Evidence for large-area superemission into a high-current glow discharge

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1988-10-01

    This letter presents evidence for large-area (≊1 cm2) cathode superemission (˜10 000 A/cm2) into a high-current glow discharge in a pseudospark or back lighted thyratron switch. Cathodes studied with a scannning electron microscope following operation at 6-8 kA, ≊1 μs pulse length, and 105 pulses in a low-pressure H2 discharge show evidence of melting of a thin surface layer within a radius of ˜4 mm, indicating that the discharge is a superdense glow with a cross-sectional area of the order of 1 cm2, rather than an arc. Further supporting evidence is provided by streak camera data. An ion beam present during the avalanche phase of the discharge is responsible for heating the cathode surface resulting in a significant field-enhanced thermionic emission.

  9. A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland

    Directory of Open Access Journals (Sweden)

    A.O. Fadiran

    2008-08-01

    Full Text Available The levels of total phosphate in selected surface water and groundwater bodies from Manzini and Lubombo regions of Swaziland were determined using UV spectroscopic method. Samples were collected from three rivers (upstream and downstream of each, three industrial effluents, one reservoir, one pond, one tap water and fifteen boreholes. Mean phosphate levels in the tap water and reservoir varied between 0.08-0.09 mg/L while for the river samples, the range was 0.11-0.37 and for the industrial discharge, it was 0.11-1.60 mg/L PO4–P. For the ground water systems it ranged between 0.10-0.49 mg/L PO4–P. The mean phosphate levels in all the analyzed surface and groundwater samples were below the recommended maximum contaminant level (MCL by SWSC (Swaziland Water Service Corporation – i.e. 1.0 mg/L for drinking water; 2.0 mg/L for rivers and industrial effluents, and the South African criterion of 1.0 mg/L PO4–P, for sewage effluents being discharged into receiving waters. However, pooled mean values for all the sites were higher than the USEPA criterion of 0.03 mg/L maximum for uncontaminated lakes. Dominant factors considered to have influenced the levels of phosphates in both the surface and groundwater samples analyzed include industrial activities (where present, agricultural activities (including livestock, population density, location (urban, suburban or rural, soil/rock type in the vicinity of the sampling point, climate and rainfall pattern of the area or region concerned.

  10. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    Science.gov (United States)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  11. The Application of MODFLOW about the Exploitation and Evaluation of the Ground water Resource in Xinjiang Irrigated Area%MODFLOW在新疆灌区地下水资源开发评价中的应用

    Institute of Scientific and Technical Information of China (English)

    刘磊; 董新光; 吴斌

    2011-01-01

    In order to improve the contradiction between supply and demand about the seasonal agriculture and peak water resource in the irrigated area of Xinhe county,a reformation will be carried on to the old irrigated area for ensuring sustainable development of the agriculture.Combining with hydrogeology structure this area,using the MODFLOW software,the flow in August,2007 is made as the beginning flow of the programming year,three projects of the groundwater exploitation have been carried on by the numerical simulation.After the model action,the amount of water and the flow level of every project after 5 years and 10 years have been forecasted,and the reasonable statement of the groundwater resources exploitation has been made out,it has provided an effective way to exploit the groundwater resources scientificly and reasonably for this area.%为改善新和县灌区耕地农业用水季节性和高峰期水资源供需矛盾,保证农业经济可持续发展,对新和县旧灌区进行改造。结合新和县水文地质构造,利用MODFLOW软件,将2007年8月的流场作为规划年的初始流场,对新和县灌区地下水开采的三个方案进行数值模拟.模型运行后预报了各方案运行5年和10年后的水量和水位,分析出合理的灌区地下水资源开发方案,为科学合理的开发利用该区域地下水资源提供一条有效途径。

  12. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  13. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  14. Radioactive liquid wastes discharged to ground in the 200 Areas during 1976

    Energy Technology Data Exchange (ETDEWEB)

    Mirabella, J.E.