WorldWideScience

Sample records for ground-state structures infrared

  1. The ground state infrared spectrum of the MnH radical ( 7Σ) from diode laser spectroscopy

    Science.gov (United States)

    Urban, Rolf-Dieter; Jones, Harold

    1989-11-01

    The infrared spectrum of the manganese hydride radical ( 55MnH) in its ground electronic state ( 7Σ) has been observed using a diode laser spectrometer. The wavenumbers of twelve transitions of the v=1→0 band, five of the v=2→1 band and seven of the v=3→2 band have been measured with a nominal accuracy of ±0.001 cm -1. Coupling between the electronic spin ( S=3) and the overall molecular rotation causes each ro-vibrational transition with N>3 to be split (γ splitting) into seven components each separated by a few hundredths of a wavenumber. In most cases the complete structure was resolved. Correction terms arising from spin-spin coupling had to be included in the analysis. This work has produced the most accurate set of ground-state parameters available for MnH.

  2. On the ground state and infrared divergences of Goldstone bosons in two dimensions

    International Nuclear Information System (INIS)

    Jevicki, A.

    1977-01-01

    The O(N) invariant Goldstone field theory is studied in two dimensions where rigorous theorems forbid the occurrence of spontaneous symmetry breaking. It is agreed that for computation of the ground state energy at weak coupling it is still the standard Goldstone perturbation expansion that is applicable. This happens due to cancellation of infrared divergences and this fact is demonstrated explicitly at the two-loop level. (Auth.)

  3. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  4. Ground state structure of U2Mo: static and lattice dynamics study

    International Nuclear Information System (INIS)

    Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.

    2016-01-01

    According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)

  5. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2006-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in "1"3"1Ba have been performed.

  6. Structural instability and ground state of the U_2Mo compound

    International Nuclear Information System (INIS)

    Losada, E.L.; Garcés, J.E.

    2015-01-01

    This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.

  7. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Clark, Ian P; Towrie, Michael; van Thor, Jasper J

    2009-12-24

    Multipulse picosecond mid-infrared spectroscopy has been used to study photochemical reactions of the cyanobacterial phytochrome photoreceptor Cph1. Different photophysical schemes have been discussed in the literature to describe the pathways after photoexcitation, particularly, to identify reaction phases that are linked to photoisomerisation and electronic decay in the 1566-1772 cm(-1) region that probes C=C and C=O stretching modes of the tetrapyrrole chromophore. Here, multipulse spectroscopy is employed, where, compared to conventional visible pump-mid-infrared probe spectroscopy, an additional visible pulse is incorporated that interacts with populations that are evolving on the excited- and ground-state potential energy surfaces. The time delays between the pump and the dump pulse are chosen such that the dump pulse interacts with different phases in the reaction process. The pump and dump pulses are at the same wavelength, 640 nm, and are resonant with the Pr ground state as well as with the excited state and intermediates. Because the dump pulse additionally pumps the remaining, partially recovered, and partially oriented ground-state population, theory is developed for estimating the fraction of excited-state molecules. The calculations take into account the model-dependent ground-state recovery fraction, the angular dependence of the population transfer resulting from the finite bleach that occurs with linearly polarized intense femtosecond optical excitation, and the partially oriented population for the dump field. Distinct differences between the results from the experiments that use a 1 or a 14 ps dump time favor a branching evolution from S1 to an excited state or reconfigured chromophore and to a newly identified ground-state intermediate (GSI). Optical dumping at 1 ps shows the instantaneous induced absorption of a delocalized C=C stretching mode at 1608 cm(-1), where the increased cross section is associated with the electronic ground-state

  8. Submillimeter-wave and far-infrared spectroscopy of high-J transitions of the ground and ν2 = 1 states of ammonia.

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C; Drouin, Brian J; Sung, Keeyoon; Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline; Endres, Christian P; Shiraishi, Tetsuro; Kobayashi, Kaori; Matsushima, Fusakazu

    2010-11-07

    Complete and reliable knowledge of the ammonia spectrum is needed to enable the analysis and interpretation of astrophysical and planetary observations. Ammonia has been observed in the interstellar medium up to J=18 and more highly excited transitions are expected to appear in hot exoplanets and brown dwarfs. As a result, there is considerable interest in observing and assigning the high J (rovibrational) spectrum. In this work, numerous spectroscopic techniques were employed to study its high J transitions in the ground and ν(2)=1 states. Measurements were carried out using a frequency multiplied submillimeter spectrometer at Jet Propulsion Laboratory (JPL), a tunable far-infrared spectrometer at University of Toyama, and a high-resolution Bruker IFS 125 Fourier transform spectrometer (FTS) at Synchrotron SOLEIL. Highly excited ammonia was created with a radiofrequency discharge and a dc discharge, which allowed assignments of transitions with J up to 35. One hundred and seventy seven ground state and ν(2)=1 inversion transitions were observed with microwave accuracy in the 0.3-4.7 THz region. Of these, 125 were observed for the first time, including 26 ΔK=3 transitions. Over 2000 far-infrared transitions were assigned to the ground state and ν(2)=1 inversion bands as well as the ν(2) fundamental band. Of these, 1912 were assigned using the FTS data for the first time, including 222 ΔK=3 transitions. The accuracy of these measurements has been estimated to be 0.0003-0.0006 cm(-1). A reduced root mean square error of 0.9 was obtained for a global fit of the ground and ν(2)=1 states, which includes the lines assigned in this work and all previously available microwave, terahertz, far-infrared, and mid-infrared data. The new measurements and predictions reported here will support the analyses of astronomical observations by high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA. The comprehensive experimental rovibrational energy levels

  9. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V.V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133 Ba have been performed

  10. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  11. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  12. Ground-State Structures of Ice at High-Pressures

    OpenAIRE

    McMahon, Jeffrey M.

    2011-01-01

    \\textit{Ab initio} random structure searching based on density functional theory is used to determine the ground-state structures of ice at high pressures. Including estimates of lattice zero-point energies, ice is found to adopt three novel crystal phases. The underlying sub-lattice of O atoms remains similar among them, and the transitions can be characterized by reorganizations of the hydrogen bonds. The symmetric hydrogen bonds of ice X and $Pbcm$ are initially lost as ice transforms to s...

  13. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  14. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  15. First-principles determination of the ground-state structure of Mg(BH4)(2)

    DEFF Research Database (Denmark)

    Caputo, R.; Tekin, Adem; Sikora, W.

    2009-01-01

    The ground-state structure of magnesium tetrahydroborate, Mg(BH4)(2), is still under debate. The experimentally and theoretically proposed structures mismatch, and even among the computationally determined structures a disagreement still exists. The main debated question is related to the lattice...

  16. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  17. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  18. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  19. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  20. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  1. Infrared Spectroscopic and Theoretical Study of the HC_nO^+(N=5-12) Cations

    Science.gov (United States)

    Li, Wei; Jin, Jiaye; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    Carbon chains and derivatives are highly active species, which are widely existed as reactive intermediates in many chemical processes including atmospheric chemistry, hydrocarbon combustion, as well as interstellar chemistry. The carbon chain cations, HC_nO^+ (n = 5-12) are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC_nO.CO] cation complexes in the 1600-3500 \\wn region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra in conjunction with theoretical calculations. All the HC_nO^+ (n = 5-12) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen. The HC_nO^+ cations with odd n have closed-shell singlet ground states with polyyne-like structures, while those with even n have triplet ground states with allene-like structures.

  2. On the ground state of Yang-Mills theory

    International Nuclear Information System (INIS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-01-01

    Highlights: → The ground state overlap for sets of meson potential trial states is measured. → Non-uniform gluonic distributions are probed via Wilson loop operator. → The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  3. Dipole-resonance assisted isomerization in the electronic ground state using few-cycle infrared pulses.

    Science.gov (United States)

    Skocek, Oliver; Uiberacker, Christoph; Jakubetz, Werner

    2011-06-30

    A computational investigation of HCN → HNC isomerization in the electronic ground state by one- and few-cycle infrared pulses is presented. Starting from a vibrationally pre-excited reagent state, isomerization yields of more than 50% are obtained using single one- to five-cycle pulses. The principal mechanism includes two steps of population transfer by dipole-resonance (DR), and hence, the success of the method is closely linked to the polarity of the system and, in particular, the stepwise change of the dipole moment from reactant to transition state and on to products. The yield drops massively if the diagonal dipole matrix elements are artificially set to zero. In detail, the mechanism includes DR-induced preparation of a delocalized vibrational wavepacket, which traverses the barrier region and is finally trapped in the product well by DR-dominated de-excitation. The excitation and de-excitation steps are triggered by pulse lobes of opposite field direction. As the number of optical cycles is increased, the leading field lobes prepare a vibrational superposition state by off-resonant ladder climbing, which is then subjected to the three steps of the principal isomerization mechanism. DR excitation is more efficient from a preformed vibrational wavepacket than from a molecular eigenstate. The entire process can be loosely described as Tannor-Kosloff-Rice type transfer mechanism on a single potential surface effected by a single pulse, individual field lobes assuming the roles of pump- and dump-pulses. Pre-excitation to a transient wavepacket can be enhanced by applying a separate, comparatively weak few-cycle prepulse, in which the prepulse prepares a vibrational wavepacket. The two-pulse setup corresponds to a double Tannor-Kosloff-Rice control scheme on a single potential surface.

  4. On the ground state of Yang-Mills theory

    OpenAIRE

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-01-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state ...

  5. On the ground state of Yang-Mills theory

    Science.gov (United States)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  6. Characterization of a ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se multiple quantum well structure for mid-infrared device applications by contactless electroreflectance and Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Wu, J D; Lin, J W; Huang, Y S; Charles, W O; Shen, A; Zhang, Q; Tamargo, M C

    2009-01-01

    Contactless electroreflectance (CER) and Fourier transform infrared (FTIR) spectroscopy were used to study the intersubband transitions of a Zn x Cd 1-x Se/Zn x' Cd y' Mg 1-x'-y' Se multiple quantum well (MQW) structure grown by molecular beam epitaxy for mid-infrared device applications. The CER spectrum revealed a wide range of possible optical transitions in the MQW structure. The ground state transition was assigned by comparison with the photoluminescence emission signal taken from the same structure. A comprehensive analysis of the CER spectrum led to the identification of various interband transitions. The intersubband transitions were estimated and confirmed by FTIR measurements. The results demonstrate the potential of using CER as a complementary technique for the contactless and nondestructive characterization of the wide band gap II-VI MQW structures for mid-IR intersubband device applications.

  7. Measurement of soy contents in ground beef using near-infrared spectroscopy

    Science.gov (United States)

    Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100...

  8. Asymptotic states and infrared divergences in gauge theories

    International Nuclear Information System (INIS)

    Butler, D.R.

    1981-01-01

    The gauge theories, Gravity and QCD are shown to be infrared finite to a non-trival order by a generalization of the coherent state approach. The asymptotic Hamiltonian operator is used, along with a mathematical theorem by Magnus, to specify a S-operator and to show cancellation of infrared divergences at the amplitude level. This procedure is exemplified in Gravity to third order and applied to QCD for leading order divergences to fifth order in the coupling constant. Dimensional regularization is used to isolate the infrared singularities in QCD. The sections on Gravity include a derivation of the infrared structure of the propagators for a massive particle and the graviton

  9. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  10. Ground state structures and properties of Si3Hn (n= 1–6) clusters

    Indian Academy of Sciences (India)

    The ground state structures and properties of Si3H (1 ≤ ≤ 6) clusters have been calculated using Car–Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of ...

  11. A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters

    Science.gov (United States)

    Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro

    2018-03-01

    Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.

  12. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  13. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    Science.gov (United States)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  14. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  15. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  16. The resonating group method three cluster approach to the ground state 9 Li nucleus structure

    International Nuclear Information System (INIS)

    Filippov, G.F.; Pozdnyakov, Yu.A.; Terenetsky, K.O.; Verbitsky, V.P.

    1994-01-01

    The three-cluster approach for light atomic nuclei is formulated in frame of the algebraic version of resonating group method. Overlap integral and Hamiltonian matrix elements on generating functions are obtained for 9 Li nucleus. All permissible by Pauli principle 9 Li different cluster nucleon permutations were taken into account in the calculations. The results obtained can be easily generalised on any three-cluster system up to 12 C. Matrix elements obtained in the work were used in the variational calculations of the ground state energetic and geometric 9 Li characteristics. It is shown that 9 Li ground state is not adequate to the shell model limit and has pronounced three-cluster structure. (author). 16 refs., 4 tab., 2 figs

  17. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    Science.gov (United States)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  18. Ground state searches in fcc intermetallics

    International Nuclear Information System (INIS)

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration

  19. Calculations of the ground state of 16O

    International Nuclear Information System (INIS)

    Pieper, S.C.

    1989-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: specification of the Hamiltonian, and calculation of the ground states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependences. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At present, reliable solutions of the Faddeev equations for the A = 3 nuclei with such interactions are routine. Recently, Carlson has made an essentially exact GFMC calculation of the He ground state using just a two-nucleon interaction, and there are reliable variational calculations for more complete potential models. Nuclear matter calculations can also be made with reasonable reliability. However, there have been very few calculations of nuclei with A > 5 using realistic interactions, and none with a modern three-nucleon interaction. In the present paper I present a new technique for variational calculations for such nuclei and apply it to the ground state of 16 O. 15 refs., 2 figs., 3 tabs

  20. Sub-Doppler spectroscopy of thioformaldehyde: Excited state perturbations and evidence for rotation-induced vibrational mixing in the ground state

    International Nuclear Information System (INIS)

    Clouthier, D.J.; Huang, G.; Adam, A.G.; Merer, A.J.

    1994-01-01

    High-resolution intracavity dye laser spectroscopy has been used to obtain sub-Doppler spectra of transitions to 350 rotational levels in the 4 1 0 band of the A 1 A 2 --X 1 A 1 electronic transition of thioformaldehyde. Ground state combination differences from the sub-Doppler spectra, combined with microwave and infrared data, have been used to improve the ground state rotational and centrifugal distortion constants of H 2 CS. The upper state shows a remarkable number of perturbations. The largest of these are caused by nearby triplet levels, with matrix elements of 0.05--0.15 cm -1 . A particularly clear singlet--triplet avoided crossing in K a ' = 7 has been shown to be caused by interaction with the F 1 component of the 3 1 6 2 vibrational level of the a 3 A 2 state. At least 53% of the S 1 levels show evidence of very small perturbations by high rovibronic levels of the ground state. The number of such perturbations is small at low J, but increases rapidly beyond J=5 such that 40%--80% of the observed S 1 levels of any given J are perturbed by ground state levels. Model calculations show that the density and J dependence of the number of perturbed levels can be explained if there is extensive rotation-induced mixing of the vibrational levels in the ground state

  1. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  2. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  3. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    Science.gov (United States)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  4. Cavity optomechanics -- beyond the ground state

    Science.gov (United States)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  5. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  6. Communication: The ground electronic state of Si2C: Rovibrational level structure, quantum monodromy, and astrophysical implications

    International Nuclear Information System (INIS)

    Reilly, Neil J.; Kokkin, Damian L.; McCarthy, Michael C.; Changala, P. Bryan; Baraban, Joshua H.; Stanton, John F.

    2015-01-01

    We report the gas-phase optical detection of Si 2 C near 390 nm and the first experimental investigation of the rovibrational structure of its 1 A 1 ground electronic state using mass-resolved and fluorescence spectroscopy and variational calculations performed on a high-level ab initio potential. From this joint study, it is possible to assign all observed K a = 1 vibrational levels up to 3800 cm −1 with confidence, as well as a number of levels in the K a = 0, 2,  and 3 manifolds. Dixon-dip plots for the bending coordinate (ν 2 ) allow an experimental determination of a barrier to linearity of 783(48) cm −1 (2σ), in good agreement with theory (802(9) cm −1 ). The calculated (K a , ν 2 ) eigenvalue lattice shows an archetypal example of quantum monodromy (absence of a globally valid set of quantum numbers) that is reflected by the experimentally observed rovibrational levels. The present study provides a solid foundation for infrared and optical surveys of Si 2 C in astronomical objects, particularly in the photosphere of N- and J-type carbon stars where the isovalent SiC 2 molecule is known to be abundant

  7. Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Finster, F.

    1997-01-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc

  8. The use of quadratic forms in the calculation of ground state electronic structures

    International Nuclear Information System (INIS)

    Keller, Jaime; Weinberger, Peter

    2006-01-01

    There are many examples in theoretical physics where a fundamental quantity can be considered a quadratic form ρ=Σ i ρ i =vertical bar Ψ vertical bar 2 and the corresponding linear form Ψ=Σ i ψ i is highly relevant for the physical problem under study. This, in particular, is the case of the density and the wave function in quantum mechanics. In the study of N-identical-fermion systems we have the additional feature that Ψ is a function of the 3N configuration space coordinates and ρ is defined in three-dimensional real space. For many-electron systems in the ground state the wave function and the Hamiltonian are to be expressed in terms of the configuration space (CS), a replica of real space for each electron. Here we present a geometric formulation of the CS, of the wave function, of the density, and of the Hamiltonian to compute the electronic structure of the system. Then, using the new geometric notation and the indistinguishability and equivalence of the electrons, we obtain an alternative computational method for the ground state of the system. We present the method and discuss its usefulness and relation to other approaches

  9. Calibrated infrared ground/air radiometric spectrometer

    Science.gov (United States)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  10. Zethrenes, Extended p -Quinodimethanes, and Periacenes with a Singlet Biradical Ground State

    KAUST Repository

    Sun, Zhe

    2014-08-19

    ConspectusResearchers have studied polycyclic aromatic hydrocarbons (PAHs) for more than 100 years, and most PAHs in the neutral state reported so far have a closed-shell electronic configuration in the ground state. However, recent studies have revealed that specific types of polycyclic hydrocarbons (PHs) could have a singlet biradical ground state and exhibit unique electronic, optical, and magnetic activities. With the appropriate stabilization, these new compounds could prove useful as molecular materials for organic electronics, nonlinear optics, organic spintronics, organic photovoltaics, and energy storage devices. However, before researchers can use these materials to design new devices, they need better methods to synthesize these molecules and a better understanding of the fundamental relationship between the structure and biradical character of these compounds and their physical properties. Their biradical character makes these compounds difficult to synthesize. These compounds are also challenging to physically characterize and require the use of various experimental techniques and theoretic methods to comprehensively describe their unique properties.In this Account, we will discuss the chemistry and physics of three types of PHs with a significant singlet biradical character, primarily developed in our group. These structures are zethrenes, Z-shaped quinoidal hydrocarbons; hydrocarbons that include a proaromatic extended p-quinodimethane unit; and periacenes, acenes fused in a peri-Arrangement. We used a variety of synthetic methods to prepare these compounds and stabilized them using both thermodynamic and kinetic approaches. We probed their ground-state structures by electronic absorption, NMR, ESR, SQUID, Raman spectroscopy, and X-ray crystallography and also performed density functional theory calculations. We investigated the physical properties of these PHs using various experimental methods such as one-photon absorption, two-photon absorption

  11. A Model Ground State of Polyampholytes

    International Nuclear Information System (INIS)

    Wofling, S.; Kantor, Y.

    1998-01-01

    The ground state of randomly charged polyampholytes (polymers with positive and negatively charged groups along their backbone) is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched 'strings' attempted to quantify the qualitative necklace model, by suggesting a zero approximation model, in which the longest neutral segment of the polyampholyte forms a globule, while the remaining part will form a tail. Expanding this approximation, we suggest a specific necklace-type structure for the ground state of randomly charged polyampholyte's, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the second longest neutral segment) compacts into a globule, then the third, and so on. A random sequence of charges is equivalent to a random walk, and a neutral segment is equivalent to a loop inside the random walk. We use analytical and Monte Carlo methods to investigate the size distribution of loops in a one-dimensional random walk. We show that the length of the nth longest neutral segment in a sequence of N monomers (or equivalently, the nth longest loop in a random walk of N steps) is proportional to N/n 2 , while the mean number of neutral segments increases as √N. The polyampholytes in the ground state within our model is found to have an average linear size proportional to dN, and an average surface area proportional to N 2/3

  12. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  13. Graphene ground states

    Science.gov (United States)

    Friedrich, Manuel; Stefanelli, Ulisse

    2018-06-01

    Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

  14. Study of structure and potential energy curve for ground state X1Σ+ of LaF

    International Nuclear Information System (INIS)

    Chen Linhong; Shang Rencheng

    2002-01-01

    The equilibrium geometry, harmonic frequency and dissociation energy of the molecule LaF have been calculated on several kinds of computation levels with energy-consistent relativistic effective core potentials and valence basis sets including polarization functions 4f2g and diffuse functions 1s1p1d. The possible electronic state and its reasonable dissociation limit for the ground state of LaF are determined based on Atomic and Molecular Reaction Statics (AMRS). The potential energy curve scan for the ground state X 1 Σ + has been carried out with B3LYP method of density functional theory. Murrell-Sorbie analytic potential energy function and its Dunham expansion around equilibrium position have been also derived with a nonlinear least-square fit. The calculated spectroscopic constants are in good agreement with the experimental results of vibrational spectra. The analytical function obtained here is of great realistic importance due to its use in calculating fine transitional structure of vibrational spectra and the reaction dynamic process between atoms and molecules

  15. Ground states of a spin-boson model

    International Nuclear Information System (INIS)

    Amann, A.

    1991-01-01

    Phase transition with respect to ground states of a spin-boson Hamiltonian are investigated. The spin-boson model under discussion consists of one spin and infinitely many bosons with a dipole-type coupling. It is shown that the order parameter of the model vanishes with respect to arbitrary ground states if it vanishes with respect to ground states obtained as (biased) temperature to zero limits of thermic equilibrium states. The ground states of the latter special type have been investigated by H. Spohn. Spohn's respective phase diagrams are therefore valid for arbitrary ground states. Furthermore, disjointness of ground states in the broken symmetry regime is examined

  16. Effects of ground state correlations on the structure of odd-mass spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed

  17. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  18. Complete characterization of the ground-space structure of two-body frustration-free Hamiltonians for qubits

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Wei Zhaohui; Zeng Bei

    2011-01-01

    The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground-state degeneracy is as hard as, but no harder than, its classical analog.

  19. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    Science.gov (United States)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  20. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  1. Prediction of new ground-state crystal structure of T a2O5

    Science.gov (United States)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  2. Magnetostriction-driven ground-state stabilization in 2H perovskites

    International Nuclear Information System (INIS)

    Porter, D. G.; Senn, M. S.; University of Oxford; Khalyavin, D. D.; Cortese, A.

    2016-01-01

    In this paper, the magnetic ground state of Sr_3ARuO_6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca_3ARuO_6, with A = (Li,Na), and Ca_3LiOsO_6 whose magnetic ground states are still not completely understood.

  3. Electronic and ground state properties of ThTe

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Purvee, E-mail: purveebhardwaj@gmail.com; Singh, Sadhna, E-mail: drsadhna100@gmail.com [High Pressure Research Lab. Department of Physics Barkatullah University, Bhopal (MP) 462026 (India)

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  4. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    Science.gov (United States)

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  5. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  6. The ground state infrared spectra of several isotopic forms of the CdH and ZnH radicals

    International Nuclear Information System (INIS)

    Urban, R.; Magg, U.; Birk, H.; Jones, H.

    1990-01-01

    The infrared spectra of six isotopic forms of cadmium monohydride, [ 116 CdH (7.6%), 114 CdH (28.9%), 113 CdH (12.3%), 112 CdH (24.1%), 111 CdH (12.7%), and 110 CdH (12.4%)] and four isotopic forms of zinc hydride [ 68 ZnH (18.6%), 67 ZnH (4.1%), 66 ZnH (27.8%), and 64 ZnH (48.9%)] have been observed in natural abundance in their ground electronic state ( 2 Σ + ) in the gas phase using a diode laser spectrometer. A number of transitions of 108 CdH (0.9%) and 106 CdH (1.2%) and 70 ZnH (0.6%) were also observed, but too little data was accumulated to allow a good analysis. The hydrides were produced by reaction of hydrogen with metal vapor at elevated temperature in an electric discharge. The analysis of the experimental data was carried out in two ways. (a) A complete set of Dunham parameters and spin--rotation parameters (γ parameters) was determined for each isotopic species of the two radicals and (b) a set of mass-independent parameters were calculated for both ZnH and CdH. Since only information over the isotopic species of the heavy atom was produced in each case, effects arising from a breakdown of the Born--Oppenheimer approximation were negligible. The effects of the strong anharmonicity present in these two molecules on the values of the parameters are discussed

  7. The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states

    Science.gov (United States)

    Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.

    2008-09-01

    The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.

  8. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  9. Ground states of quantum spin systems

    International Nuclear Information System (INIS)

    Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.

    1978-07-01

    The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume

  10. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2014-01-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt 2 Mo-type, DO 22 and D1 a superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420} fcc planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt 2 Mo-type and DO 22 superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1 a superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries

  11. Mechanical properties of ground state structures in substitutional ordered alloys: High strength, high ductility and high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M., E-mail: tawancy@kfupm.edu.sa [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 1639, Dhahran 31261 (Saudi Arabia); Aboelfotoh, M.O., E-mail: oaboelfotoh@gmail.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-05-01

    We have studied the effect of atom arrangements in the ground state structures of substitutional ordered alloys on their mechanical properties using nickel–molybdenum-based alloys as model systems. Three alloys with nominal compositions of Ni–19.43 at% Mo, Ni–18.53 at% Mo–15.21 at% Cr and Ni–18.72 at% Mo–6.14 at% Nb are included in the study. In agreement with theoretical predictions, the closely related Pt{sub 2}Mo-type, DO{sub 22} and D1{sub a} superlattices with similar energies are identified by electron diffraction of ground state structures, which can directly be derived from the parent disordered fcc structure by minor atom rearrangements on {420}{sub fcc} planes. The three superlattices are observed to coexist during the disorder–order transformation at 700 °C with the most stable superlattice being determined by the exact chemical composition. Although most of the slip systems in the parent disordered fcc structure are suppressed, many of the twinning systems remain operative in the superlattices favoring deformation by twinning, which leads to considerable strengthening while maintaining high ductility levels. Both the Pt{sub 2}Mo-type and DO{sub 22} superlattices are distinguished by high strength and high ductility due to their nanoscale microstructures, which have high thermal stability. However, the D1{sub a} superlattice is found to exhibit poor thermal stability leading to considerable loss of ductility, which has been correlated with self-induced recrystallization by migration of grain boundaries.

  12. Probing the 8He ground state via the 8He(p,t)6He reaction

    International Nuclear Information System (INIS)

    Keeley, N.; Skaza, F.; Lapoux, V.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Kemper, K.W.; Nalpas, L.; Pakou, A.; Pollacco, E.C.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.

    2007-01-01

    The weakly-bound 8 He nucleus exhibits a neutron halo or thick neutron skin and is generally considered to have an α+4n structure in its ground state, with the four valence neutrons each occupying 1p 3/2 states outside the α core. The 8 He(p,t) 6 He reaction is a sensitive probe of the ground state structure of 8 He, and we present a consistent analysis of new and existing data for this reaction at incident energies of 15.7 and 61.3A MeV, respectively. Our results are incompatible with the usual assumption of a pure (1p 3/2 ) 4 structure and suggest that other configurations such as (1p 3/2 ) 2 (1p 1/2 ) 2 may be present with significant probability in the ground state wave function of 8 He

  13. Fourier transform infrared spectroscopy of D212CO in the 2500-4500 cm-1 region and the first rovibrational analysis of its v2 = 2 state

    Science.gov (United States)

    A'dawiah, Rabia'tul; Tan, T. L.; Ng, L. L.

    2018-03-01

    A low-resolution (0.5 cm-1) Fourier transform infrared (FTIR) spectrum of formaldehyde-d2 (D212CO) in the 2500-4500 cm-1 region was recorded to study the combination bands in this region. The bands ν2 +ν4,ν2 +ν6 , ν2 +ν3 , ν1 +ν2 , ν2 +ν5 , 3ν3 , 2ν2 and 2ν5 were identified and their band centers (with an uncertainty of ± 0.1 cm-1) and band types were determined. Furthermore, the high-resolution FTIR spectrum of the 2ν2 overtone band (3315-3440 cm-1) of D212CO was recorded at an unapodized resolution of 0.0063 cm-1 and its infrared lines were analyzed. A total of 970 rovibrational transitions have been assigned and fitted up to J‧ = 35 and Ka‧ = 14 using the Watson's A-reduced Hamiltonian in the Ir representation. Upper state (v2 = 2) rovibrational constants inclusive of three rotational and five quartic centrifugal distortion constants were accurately determined for the first time. The band center of the 2ν2 band was determined as 3385.200666 ± 0.000035 cm-1. The rms deviation of the rovibrational fit was 0.00093 cm-1. From the fitting of 451 ground state combination differences (GSCDs) of D212CO which were derived from the infrared transitions of the 2ν2 band of this work, together with 360 microwave frequencies from a previous study, new and accurate ground state constants of D212CO up to three octic terms were obtained. The combination and overtone bands and the newly assigned high-resolution infrared lines of the 2ν2 band in the 2500-4500 cm-1 region can be used to detect D212CO in this infrared region. In addition, the results derived from this study give information on the rovibrational molecular structure of D212CO.

  14. Effect of electron correlations and Breit interactions on ground-state fine-structures along the nitrogen-like isoelectronic sequence

    International Nuclear Information System (INIS)

    Wang Xiaolu; Lu Wenlai; Gao Xiang; Li Jiaming

    2009-01-01

    The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections on the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations. (authors)

  15. Gas phase structures and charge localization in small aluminum oxide anions: Infrared photodissociation spectroscopy and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)

    2016-06-28

    We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.

  16. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  17. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe; Zheng, Bin; Hu, Pan; Huang, Kuo-Wei; Wu, Jishan

    2014-01-01

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  18. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  19. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  20. Search for the QCD ground state

    International Nuclear Information System (INIS)

    Reuter, M.; Wetterich, C.

    1994-05-01

    Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)

  1. Is the ground state of Yang-Mills theory Coulombic?

    Science.gov (United States)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  2. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  3. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effe...

  4. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-π-acceptor structure

    International Nuclear Information System (INIS)

    Liu Xiaojun; Zhang Xiao; Hou Yanbing; Teng Feng; Lou Zhidong

    2011-01-01

    Graphical abstract: Within the 10 hybrids, M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy to investigate DCDPC. The figure displays absorption (red dash) and emission (green solid) spectra calculated in acetone for DCDPC using TD-M06 functional. Inserts are the structure of DCDPC. Research highlights: → Red emitter DCDPC is studied by density functional theory (DFT) and time dependent (TD)DFT. → The electronic and geometrical structures for the ground and first excited state are given. → The experimental absorption and fluorescence spectra are reproduced by calculations. → The performance of 10 exchange-correlation functionals is given. → M06 emerges as the most effective functionals. - Abstract: The ground and excited state properties of DCDPC, particularly designed as a red emitter for organic light emitting diodes applications have been studied by means of density functional theory (DFT) and time-dependent (TD)DFT. The electronic and geometrical structures of DCDPC in acetone, tetrahydrofuran and benzene solvents are reported for the first time. The experimental absorption and fluorescence spectra are reproduced by calculations. By comparison with experimental data, insight on the performance of 10 exchange correlation functionals is also given. M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy. Beside the good agreement between the calculational and experimental spectra proving the accuracy of the strategy, the calculations allow further insights into the electronic structure for the family of isophorone-based light emitting materials with D-π-A structure, especially the electronic and geometrical structures for the excited states.

  5. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  6. Is the ground state of Yang-Mills theory Coulombic?

    OpenAIRE

    Heinzl, Thomas; Ilderton, Anton; Langfeld, Kurt; Lavelle, Martin; Lutz, Wolfgang; McMullan, David

    2008-01-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-abelian Coulomb fields is found to have a good overlap with the ground state for all ch...

  7. α-decay half-lives of some nuclei from ground state to ground state using different nuclear potential

    Directory of Open Access Journals (Sweden)

    Akrawy Dashty T.

    2018-01-01

    Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.

  8. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  9. Nuclear ground state

    International Nuclear Information System (INIS)

    Negele, J.W.

    1975-01-01

    The nuclear ground state is surveyed theoretically, and specific suggestions are given on how to critically test the theory experimentally. Detailed results on 208 Pb are discussed, isolating several features of the charge density distributions. Analyses of 208 Pb electron scattering and muonic data are also considered. 14 figures

  10. Measurement of the electron affinity of As and the fine structure of As- using infrared threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Walter, C W; Gibson, N D; Field, R L III; Snedden, A P; Shapiro, J Z; Janczak, C M; Hanstorp, D

    2009-01-01

    The negative ion As - has been investigated using infrared threshold photodetachment spectroscopy. The relative cross section for neutral atom production was measured with a crossed OPO-ion beam apparatus over selected photon energy ranges between 0.63 - 0.82 eV. s-wave thresholds were observed for detachment from As - (4p 4 3 P 0,1,2 ) to the As (4p 3 4 S 3/2 ) ground state. The measurements yield preliminary values for the electron affinity of As (0.8048(2)) eV) and the fine structure intervals of As - (0.1276(2) eV for 3 P 1 - 3 P 2 and 0.1643(10) eV for 3 P 0 - 3 P 2 ). The present results substantially reduce the uncertainties in these quantities.

  11. Search for C+ C clustering in Mg ground state

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...

  12. Numerical study of ground state and low lying excitations of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Trivedi, N.; Ceperley, D.M.

    1989-01-01

    The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves

  13. Synthesis, Acidity Constants and Tautomeric Structure of the Diazonium Coupling Products of 2-(Benzylsulfanyl-7H-purin-6-one in Its Ground and Excited States

    Directory of Open Access Journals (Sweden)

    Hosam A. Saad

    2011-10-01

    Full Text Available A series of new 8-arylhydrazono-2-(benzylsulfanyl-7H-purin-6-ones 6 were synthesized, their electronic absorption spectra in different organic solvents of varying polarities were investigated and their acid dissociation constants in both the ground and excited states were determined spectrophotometrically. The tautomeric structures of such products were elucidated by spectral analyses and correlation of their acid dissociation constants with the Hammett equation. The results indicated that the studied compounds 6 exist predominantly in the hydrazone tautomeric form 6A in both the ground and excited states.

  14. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  15. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    Science.gov (United States)

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  16. Ground states and formal duality relations in the Gaussian core model

    NARCIS (Netherlands)

    Cohn, H.; Kumar, A.; Schürmann, A.

    2009-01-01

    We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising

  17. Study of the structural and electronic properties of YC using DFT: The true ground state is a NiAs-like structure

    International Nuclear Information System (INIS)

    Abdel-Rahim, G P; Rodríguez M, J A; Moreno-Armenta, M G

    2013-01-01

    We study the structural and electronic properties of YC in volume using density functional theory (DFT) within the generalized gradient approximation (GGA), using the scheme of Wu-Cohen 2006 and Tran et al. 2007. Several crystal structures were considered: Nickel Arsenide (NiAs), Sodium Chloride (NaCl), Cesium Chloride (CsCl), and zincblende (ZB). A new fact that we present in this paper is the inclusion of the NiAs-like structure, which is the true ground state (GS) for YC. We calculated the density of states (DOS) and the band structure and found that YC is non-magnetic and its behavior is metallic-like. The lattice parameter alatt is 3.69 Å and the c/a = 1.47. Cohesion energy (Ecoh) is −12.90 eV, which is very close to Ecoh of the NaCl structure. Therefore, YC exists in these two structures. Our results with respect to alatt, bulk modulus (B), Ecoh, and the main features of the electronic properties are in good agreement with those found by other researchers. Other researchers found a transition from NaCl to CsCl, but we found a new transition from NiAs to CsCl, where the volume diminishes ∼10% and its transition pressure (PT ∼79 GPa) is very close to the 80 GPa of the former. The contraction can fracture the material if it is worked on near the transition. For pressures before and after the transition, YC maintains non-magnetic and metallic behaviors

  18. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  19. Construction of ground-state preserving sparse lattice models for predictive materials simulations

    Science.gov (United States)

    Huang, Wenxuan; Urban, Alexander; Rong, Ziqin; Ding, Zhiwei; Luo, Chuan; Ceder, Gerbrand

    2017-08-01

    First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.

  20. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  1. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    International Nuclear Information System (INIS)

    Carlomagno, Giovanni Maria; Meola, Carosena; Di Maio, Rosa; Fedi, Maurizio

    2011-01-01

    This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning

  2. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  3. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  4. Ground state energy of an hydrogen atom confined in carbon nano-structures: a diffusion quantum Monte Carlo study

    International Nuclear Information System (INIS)

    Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.

    2006-01-01

    Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.

  5. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  6. Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the nu1 and nu2 + nu3 States.

    Science.gov (United States)

    Kawashima; Colarusso; Zhang; Bernath; Hirota

    1998-11-01

    The nu1 and nu3 bands of D11BO and the nu1 band of D10BO were observed by using an infrared diode laser spectrometer. The DBO molecule was generated by an ac discharge in a mixture of BCl3, D2, O2, and He. As inferred previously, a strong Coriolis interaction was in fact found to take place between the nu1 and nu2 + nu3 states, and an analysis of the observed nu1 spectra, which explicitly took into account this Coriolis interaction, predicted the pure rotational transition frequencies of DBO in the nu1 state. Pure rotational lines were then detected by microwave spectroscopy, confirming the validity of the infrared assignment. In the microwave experiment DBO molecules were generated by a discharge in a mixture of B2D6 and O2. The three fundamental bands and a hot band of D11BO, as well as the nu1 and nu3 bands of D10BO, were subsequently recorded in emission with a Fourier transform infrared spectrometer. DBO molecules were generated by the reaction of D2 with HBO at temperatures above 800 degreesC in a ceramic tube furnace. All of the observed spectra were simultaneously subjected to a least-squares analysis to obtain molecular parameters in the ground, nu1, nu2, nu3, and nu2 + nu3 states. The results thus obtained improved the force field and molecular structure of the HBO/DBO molecules reported in a previous study (Y. Kawashima, Y. Endo, and E. Hirota, 1989, J. Mol. Spectrosc. 133, 116-127). Copyright 1998 Academic Press.

  7. Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the ν 1and ν 2+ ν 3States

    Science.gov (United States)

    Kawashima, Yoshiyuki; Colarusso, Pina; Zhang, K. Q.; Bernath, Peter; Hirota, Eizi

    1998-11-01

    The ν1and ν3bands of D11BO and the ν1band of D10BO were observed by using an infrared diode laser spectrometer. The DBO molecule was generated by an ac discharge in a mixture of BCl3, D2, O2, and He. As inferred previously, a strong Coriolis interaction was in fact found to take place between the ν1and ν2+ ν3states, and an analysis of the observed ν1spectra, which explicitly took into account this Coriolis interaction, predicted the pure rotational transition frequencies of DBO in the ν1state. Pure rotational lines were then detected by microwave spectroscopy, confirming the validity of the infrared assignment. In the microwave experiment DBO molecules were generated by a discharge in a mixture of B2D6and O2. The three fundamental bands and a hot band of D11BO, as well as the ν1and ν3bands of D10BO, were subsequently recorded in emission with a Fourier transform infrared spectrometer. DBO molecules were generated by the reaction of D2with HBO at temperatures above 800°C in a ceramic tube furnace. All of the observed spectra were simultaneously subjected to a least-squares analysis to obtain molecular parameters in the ground, ν1, ν2, ν3, and ν2+ ν3states. The results thus obtained improved the force field and molecular structure of the HBO/DBO molecules reported in a previous study (Y. Kawashima, Y. Endo, and E. Hirota, 1989,J. Mol. Spectrosc.133, 116-127).

  8. Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling

    Science.gov (United States)

    Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang

    2016-01-01

    Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.

  9. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  10. Modeling of the shape of infrared stimulated luminescence signals in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Jain, Mayank; Murray, Andrew S.

    2012-01-01

    This paper presents a new empirical model describing infrared (IR) stimulation phenomena in feldspars. In the model electrons from the ground state of an electron trap are raised by infrared optical stimulation to the excited state, and subsequently recombine with a nearest-neighbor hole via...... corresponds to a fast rate of recombination processes taking place along the infrared stimulated luminescence (IRSL) curves. The subsequent decay of the simulated IRSL signal is characterized by a much slower recombination rate, which can be described by a power-law type of equation.Several simulations...

  11. Study of ground state optical transfer for ultracold alkali dimers

    Science.gov (United States)

    Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane

    2013-05-01

    Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).

  12. High-resolution far-infrared synchrotron FTIR spectrum of the ν12 band of formamide-d1 (DCONH2)

    Science.gov (United States)

    Tan, T. L.; Wu, Q. Y.; Ng, L. L.; Appadoo, Dominique R. T.; McNaughton, Don

    2018-05-01

    The spectrum of the ν12 band of formamide-d1 (DCONH2) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm-1 in the 350-210 cm-1 region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the v12 = 1 state through the fitting of a total of 2072 far-infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.000073 cm-1. The band centre of the ν12 band of DCONH2 was found to be 289.3327553(47) cm-1 although the experimental uncertainty was limited to ±0.0002 cm-1. Ground state rovibrational constants of DCONH2 up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of the ν12 band, together with 6 previously reported microwave transitions, with a rms deviation of 0.000108 cm-1. The ground state rotational constants (A, B, and C) of DCONH2 were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0002 cm-1. From the ground state rotational constants, the inertial defect of DCONH2 was calculated to be 0.0169412(11) uÅ2.

  13. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  14. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  15. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  16. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state

    Energy Technology Data Exchange (ETDEWEB)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki, E-mail: baba@kuchem.kyoto-u.ac.jp [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Nakajima, Masakazu; Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-12-28

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r{sub 0}(C–C) = 1.3971 Å and r{sub 0}(C–H) = r{sub 0}(C–D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C–H and C–D are identical unlike small aliphatic hydrocarbons, in which r{sub 0}(C–D) is about 5 mÅ shorter than r{sub 0}(C–H). It is considered that anharmonicity is very small in the C–H stretching vibration of aromatic hydrocarbons.

  17. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...... to the decay. Two previous measurements of the shape have revealed deviations from an allowed spectrum but disagree about whether the shape factor has a positive or negative slope. As a test of a new iron-free superconducting β spectrometer, we have measured the shape of the ground state branch of the 66Ga β...... spectrum above a positron energy of 1.9 MeV. The spectrum is consistent with an allowed shape, with the slope of the shape factor being zero to within ±3 × 10−3 per MeV. We have also determined the endpoint energy for the ground state branch to be 4.1535 ± 0.0003 (stat.) ±0.0007 (syst.) MeV, in good...

  18. Normal ground state of dense relativistic matter in a magnetic field

    International Nuclear Information System (INIS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-01-01

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  19. Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Kiselev, N S; Roessler, U K; Bogdanov, A N; Hellwig, O

    2011-01-01

    In this work, we summarize our theoretical results within a phenomenological micromagnetic approach for magnetic ground state and nonequilibrium states as topological magnetic defects in multilayers with strong perpendicular anisotropy and antiferromagnetic (AF) interlayer exchange coupling (IEC), e.g. [Co/Pt(Pd)]/Ru(Ir, NiO). We give detailed analysis of our model together with the most representative results which elucidate common features of such systems. We discuss phase diagrams of the magnetic ground state, and compare solutions of our model with experimental data. A model to assess the stability of so-called tiger tail patterns is presented. It is found that these modulated topological defect cannot be stabilized by an interplay between magnetostatic and IEC energies only. It is argued that tiger tail patterns arise as nuclei of ferro-stripe structure in AF domain walls and that they are stabilized by domain wall pinning.

  20. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  1. Variational Monte Carlo calculations of nuclear ground states

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1990-01-01

    A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting nucleons. We start with realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, and try to predict nuclear ground properties, such as the binding energy, density and momentum distributions, and electromagnetic form factors. We also seek to predict other properties of nuclei such as excited states and low-energy reactions. 21 refs., 14 figs., 5 tabs

  2. Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Stehr, D.

    2007-12-28

    This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2p{sub z} confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. These results also require reinterpretation of previous experimental data. The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 {mu}m and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements. Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. By varying the carrier

  3. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  4. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  5. Electron scattering from the ground state of mercury

    International Nuclear Information System (INIS)

    Fursa, D.; Bray, I.

    2000-01-01

    effect by adding a short ranged local potential with parameters chosen to reproduce ground state ionization energy. Singlet-triplet mixing in mercury has been accounted for in the framework of the fine-structure approximation. Theoretical calculation of the 6s6p 1 P state differential cross sections crucially depends on accurate 6s6p 1 P optical oscillator strength. For mercury it was found that core polarization effects are very large. In our calculations these effects are modeled by two-electron polarization potential which reduced optical oscillator strength from 2.12 a.u. to 1.18 a.u. in close agreement with experimental values. We will present comparison between our close-coupling calculations of e-Hg mercury scattering and available experimental data, showing very good agreement with experimental differential cross section data for elastic scattering and excitation of the 6s6p 1 P state

  6. Prospects for transferring 87Rb84Sr dimers to the rovibrational ground state based on calculated molecular structures

    Science.gov (United States)

    Chen, Tao; Zhu, Shaobing; Li, Xiaolin; Qian, Jun; Wang, Yuzhu

    2014-06-01

    Using fitted model potential curves of the ground and lowest three excited states yielded by the relativistic Kramers-restricted multireference configuration interaction method with 19 electrons correlated, we theoretically investigate the rovibrational properties including the number of vibrational state and diagonally distributed Franck-Condon factors for a 87Rb84Sr molecule. Benefiting from a turning point at about v'=20 for the Franck-Condon factors between the ground state and spin-orbit 2(Ω=1/2) excited state, we choose |2(Ω=1/2),v'=21,J'=1> as the intermediate state in the three-level model to theoretically analyze the possibility of performing stimulated Raman adiabatic passage to transfer weakly bound RbSr molecules to the rovibrational ground state. With 1550 nm pump laser (2 W/cm2) and 1342 nm dump laser (10 mW/cm2) employed and appropriate settings of pulse time length (about 300 μs), we have formalistically achieved a round-trip transfer efficiency of 60%, namely 77% for one-way transfer. The results demonstrate the possibility of producing polar 87Rb84Sr molecules efficiently in a submicrokelvin regime, and further provide promising directions for future theoretical and experimental studies on alkali-alkaline(rare)-earth dimers.

  7. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  8. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  9. Study of some electronics properties of new superconductor Sr2VO3FeAs in ground state

    Directory of Open Access Journals (Sweden)

    M Majidiyan

    2010-09-01

    Full Text Available In this paper, some electronics properties of new superconductor Sr2VO3FeAs, such as density of states, band structure, density of electron cloud and bound lengths in the ground state have been calculated. According to N(Ef in ground state CV/T value has been estimated. The calculations were performed in the framework of density functional theory (DFT, using the full potential linearized augmented plane wave (FP-LAPW method with the general gradient approximation (GGA.

  10. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  11. Ground state depletion – A step towards mid-IR lasing of doped silver halides

    Energy Technology Data Exchange (ETDEWEB)

    Tsur, Yuval, E-mail: yuvaltsu@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel); Goldring, Sharone [Applied Physics Division, Soreq NRC, Yavne 81800 (Israel); Galun, Ehud [DDR& D, Ministry of Defense (Israel); Katzir, Abraham [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel)

    2016-07-15

    We show for the first time ground state absorption saturation in a doped silver halide crystal (AgCl{sub x}Br{sub 1−x}), specifically with cobalt. Spectroscopic studies showed absorption bands in the 1.4–2.5 μm region and emission bands in the 3.8–5.0 μm region, with a 1.5 ms lifetime at low temperatures. Absorption saturation indicates a good low and room temperature lasing feasibility at 4.1 μm. In addition, a comparison of cobalt, nickel and iron as dopants is presented. These doped silver halide crystals can be extruded to form optical fibers, possibly introducing a new family of fiber lasers for the middle infrared.

  12. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  13. Approximating the ground state of gapped quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  14. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  15. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    DEFF Research Database (Denmark)

    Baldacci, A.; Stoppa, P.; Visinoni, R.

    2012-01-01

    .710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson...... and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined....

  16. Fast Preparation of Critical Ground States Using Superluminal Fronts

    Science.gov (United States)

    Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.

    2018-05-01

    We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.

  17. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  18. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  19. Correlated ground state and E2 giant resonance built on it

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1995-01-01

    Taking 16 O as an example of realistic nuclei, we demonstrate that a correlated ground state can be obtained as a long time solution of a time-dependent density-matrix formalism (TDDM) when the residual interaction is adiabatically treated. We also study in TDDM the E2 giant resonance of 16 O built on the correlated ground state and compare it with that built on the Hartree-Fock ground state. It is found that a spurious mixing of low frequency components seen in the latter is eliminated by using the correlated ground state. (author)

  20. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  1. Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers

    International Nuclear Information System (INIS)

    Izosimov, I.N.

    2015-01-01

    It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.

  2. Infrared remote sensing of Earth degassing - Ground study

    Directory of Open Access Journals (Sweden)

    P. Strobl

    2005-06-01

    Full Text Available Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM emanates.

  3. The ground state energy of a classical gas

    International Nuclear Information System (INIS)

    Conlon, J.G.

    1983-01-01

    The ground state energy of a classical gas is treated using a probability function for the position of the particles and a potential function. The lower boundary for the energy when the particle number is large is defined as ground state energy. The coulomb gas consisting of positive and negative particles is also treated (fixed and variable density case) the stability of the relativistic system is investigated as well. (H.B.)

  4. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano

  5. Design of a far infrared interferometer diagnostic support structure

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Rice, B.W.; Peebles, W.A.

    1987-10-01

    The Far Infrared Interferometer (FIR) diagnostic will operate in the 119 to 400 micron range to measure the plasma electron density on the Microwave Tokamak Experiment (MTX) being set up at LLNL. This diagnostic is a multi-channel system which incorporates a long elliptically shaped beam that passes through the plasma and is imaged onto an array of 14 detectors that are located on a table above the machine. The reference beam is brought around the machine and mixed with the plasma beam onto the detectors. The density is measured by a phase shift between these beams and is, therefore, very sensitive to path length changes between the two beam paths due to motion of the support structure. The design goal for allowable phase shifts caused by changes in the path length due to structure movement is 1/50th of a wavelength (2.4 to 8 microns). The structure needs to maintain this stability during the 0.5 second plasma shot. The structure is approximately 5 meters tall to support the optics table above the machine. In order to reduce the structure motion to the required level the forces acting on it were evaluated. The forces evaluated were eddy currents from the pulsed electromagnetic fields, the ambient ground motion, and the floor movement as the magnets are pulsed. The designs for similar diagnostic interferometers on other tokamaks were also reviewed to evaluate the forces and motions that might cause such small deflections in the support structure. Our structure is somewhat unique in that it is designed for operation in relatively large pulsed magnetic fields (100 to 7000 gauss) arising from the air core transformer of MTX. The design chosen incorporates a very rigid structure with high resistive and non-conductive materials. The choice of materials selected is discussed with reference to their response to expected forces. 14 refs., 10 figs

  6. Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes

    Science.gov (United States)

    Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong

    2018-04-01

    Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.

  7. Lanthanide-organic frameworks constructed from multi-functional ligands: Syntheses, structures, near-infrared and visible photoluminescence properties

    International Nuclear Information System (INIS)

    Li Xinfa; Xie Zailai; Lin Jingxiang; Cao Rong

    2009-01-01

    A series of multi-functional ligands supported lanthanide-organic frameworks, formulated as [Ln(HL 1 )(H 2 L 2 ) 0.5 (H 4 L 2 ) 0.5 (H 2 O)].(H 2 O) 1.5 .{Ln=La (1), Pr (2), Nd (3), Sm (4), Eu (5); H 3 L 1 =5-Sulfosaclicylic acid; H 4 L 2 =N,N'-piperazine (bis-methylene phosphonic acid)}, have been synthesized by hydrothermal reactions. Single crystal X-ray diffractions and powder XRD patterns confirm they are isostructural. They feature 3D framework structures based on extension of a 'zigzag' inorganic chain by organic linkers. Moreover, the photoluminescence properties of 5 and 3 have been investigated, and they show strong solid-state emissions in the visible and near-infrared (IR) regions at room temperature. - Graphical abstract: Five multi-functional ligands supported 3D lanthanide-organic frameworks have been synthesized and structurally characterized. Compounds 5 and 3 displayed strong solid-state emissions in the visible and near-infrared region at room temperature.

  8. Electronic structure and nature of the ground state of the mixed-valence binuclear tetra(mu-1,8-naphthyridine-N,N')-bis(halogenonickel) tetraphenylborate complexes: experimental and DFT characterization.

    Science.gov (United States)

    Bencini, Alessandro; Berti, Elisabetta; Caneschi, Andrea; Gatteschi, Dante; Giannasi, Elisa; Invernizzi, Ivana

    2002-08-16

    The ground state electronic structure of the mixed-valence systems [Ni(2)(napy)(4)X(2)](BPh(4)) (napy=1,8-naphthyridine; X=Cl, Br, I) was studied with combined experimental (X-ray diffraction, temperature dependence of the magnetic susceptibility, and high-field EPR spectroscopy) and theoretical (DFT) methods. The zero-field splitting (zfs) ground S=3/2 spin state is axial with /D/ approximately 3 cm(-1). The iodide derivative was found to be isostructural with the previously reported bromide complex, but not isomorphous. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a=17.240(5), b=26.200(5), c=11.340(5) A, beta=101.320(5) degrees. DFT calculations were performed on the S=3/2 state to characterize the ground state potential energy surface as a function of the nuclear displacements. The molecules can thus be classified as Class III mixed-valence compounds with a computed delocalization parameter, B=3716, 3583, and 3261 cm(-1) for the Cl, Br, and I derivatives, respectively.

  9. Infrared Spectroscopy of HNO and Noh Suspended in Solid Parahydrogen

    Science.gov (United States)

    Anderson, David T.; Ruzi, Mahmut

    2013-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, the NOH is synthesized by co-deposition of NO/Ar and a H_2/Ar mixture that is passed through a microwave discharge to create H-atoms. The H-atoms recombine with NO in the Ar matrix to produce mostly HNO, but some NOH is produced as well. In this work we irradiate NO doped parahydrogen solids at 2 K using 193 nm radiation which is known to generate H-atoms as by-products. After the photolysis laser is stopped, we detect growth of HNO and NOH presumably due to reactions of H-atoms with NO analogous to the previous Ar matrix study. The higher energy NOH isomer is predicted by high-level calculations to be in a triplet ground electronic state. Interestingly, the infrared absorptions of NOH for the two observed vibrational modes (bend and OH stretch) display fine structure; an intense central peak with smaller peaks spaced symmetrically to both lower and higher wavenumbers. Further, the spacing between the peaks is the same for both vibrational modes. We believe this fine structure reflects the zero-field splitting of the triplet ground state of NOH (magnetic dipole-dipole interaction) and our most current results and analysis will be presented. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). M. Fushitani and T. Momose, Low Temp. Phys. 29, 740-743 (2003). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012).

  10. Solving satisfiability problems by the ground-state quantum computer

    International Nuclear Information System (INIS)

    Mao Wenjin

    2005-01-01

    A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed

  11. Ab initio calculation of the electronic structures of the 7∑+ ground and A 7Π and a 5∑+ excited states of MnH

    Science.gov (United States)

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-01

    Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  12. Ab initio calculation of the electronic structures of the (7)Sigma+ ground and A (7)Pi and a (5)Sigma+ excited states of MnH.

    Science.gov (United States)

    Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo

    2009-04-21

    Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.

  13. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  14. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    Science.gov (United States)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  15. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  16. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  17. State of dissolved water in triglycerides as determined by Fourier transform infrared and near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. (Ajinomoto Co. Inc., Tokyo (Japan)); Takaoka, K.; Takasago, M.; Taru, Y.; Kobayashi, K. (Musashi Institute of Technology, Tokyo (Japan))

    1991-07-20

    The states of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein and trilinolenin were analyzed by Fourier transform infrared (FT-IR) and near infrared (FT-NIR) spectroscopy, and compared with those of water itself. In the case of water, its states were considered to be mainly polymer clusters larger than dimer ones at 20{degree}C, and mostly monomer or dimer clusters at 120{degree}C. In TG, the states varied widely from monomer to polymer clusters at 20{degree}C. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG, and the water state was noted to change due to the interaction between unsaturated bonds and dissolved water. Although the states of dissolved water in trilinolein were similar to those of original water at 20{degree}C, the ratio of monomer water decreased and polymer clusters bigger than those in original water increased with an increase in number of unsaturated bonds of TG. 9 refs., 6 figs., 3 tabs.

  18. Quinoidal Oligo(9,10-anthryl)s with Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release

    KAUST Repository

    Lim, Zhenglong

    2015-11-12

    Quinoidal π-conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10-anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10-anthryl dimer 1 has a closed-shell ground state, whereas the tri- (2) and tetramers (3) both have an open-shell diradical ground state with a small singlet-triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed-shell quinoidal form that drives the molecule to a flexible open-shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed-shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain-length dependence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  20. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  1. Fourier Transform Infrared spectrum of the OCD bending mode in methanol-D1

    Science.gov (United States)

    Mukhopadhyay, Indra

    2016-03-01

    The infrared (IR) spectra corresponding to OCD bending vibration of asymmetrically deuterated methanol species CH2DOH have been recorded with a Fourier Transform Spectrometer. The spectrum shows a typical structure of a parallel a-type band. This is expected because the bending vibration mainly executed parallel to the symmetry axis The Q-branch lines are grouped closely around 896 cm-1 and the P- and R-Branches show complex structure. Nonetheless it was possible to assign a-type P- and R-branch lines up to K value of 8 and J value up to about 20 in most cases. The Q-branch lines for higher K values can be followed to about J = 15, the presence of which confirmed the assignments. The observations suggest that in the OCD bend some energy levels are highly interacted by highly excited torsional state from the ground torsional state. A full catalogue is presented along with the effective molecular parameters. An intensity anomaly was also observed in the transitions. So far it has been possible to assign only transitions between e0 ← e0 states. Plausible explanations of intensity anomaly are presented. Lastly, a number of optically pumped far infrared (FIR) laser lines have been assigned either to exact or tentative quantum states. These assignments should prove valuable for production of new FIR laser lines.

  2. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  3. Search for 12 C+ 12 C clustering in 24 Mg ground state

    Indian Academy of Sciences (India)

    In the backdrop of many models, the heavy cluster structure of the ground state of 24 Mg has been probed experimentally for the first time using the heavy cluster knockout reaction 24 Mg( 12 C, 212 C) 12 C in thequasifree scattering kinematic domain. In the ( 12 C, 212 C) reaction, the direct 12 C-knockout cross-section was ...

  4. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  5. Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol

    Science.gov (United States)

    Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.

    2017-09-01

    We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm-1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm-1, with J and K a ranges of 1-59 and 0-16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.

  6. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  7. Infrared photonic bandgap materials and structures

    Science.gov (United States)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  8. Effects prediction guidelines for structures subjected to ground motion

    International Nuclear Information System (INIS)

    1975-07-01

    Part of the planning for an underground nuclear explosion (UNE) is determining the effects of expected ground motion on exposed structures. Because of the many types of structures and the wide variation in ground motion intensity typically encountered, no single prediction method is both adequate and feasible for a complete evaluation. Furthermore, the nature and variability of ground motion and structure damage prescribe effects predictions that are made probabilistically. Initially, prediction for a UNE involves a preliminary assessment of damage to establish overall project feasibility. Subsequent efforts require more detailed damage evaluations, based on structure inventories and analyses of specific structures, so that safety problems can be identified and safety and remedial measures can be recommended. To cover this broad range of effects prediction needs for a typical UNE project, three distinct but interrelated methods have been developed and are described. First, the fundamental practical and theoretical aspects of predicting the effects of dynamic ground motion on structures are summarized. Next, experimentally derived and theoretically determined observations of the behavior of typical structures subjected to ground motion are presented. Then, based on these fundamental considerations and on the observed behavior of structures, the formulation of the three effects prediction procedures is described, along with guidelines regarding their applicability. Example damage predictions for hypothetical UNEs demonstrate these procedures. To aid in identifying the vibration properties of complex structures, one chapter discusses alternatives in vibration testing, instrumentation, and data analysis. Finally, operational guidelines regarding data acquisition procedures, safety criteria, and remedial measures involved in conducting structure effects evaluations are discussed. (U.S.)

  9. Optical properties of InAs/GaAs quantum dot superlattice structures

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Zahid, M. Noaman; Yousaf, M.; Shah, Z. H.

    2018-06-01

    Quantum dot (QD) structure has potential applications in modern highly efficient optoelectronic devices due to their band-tuning. The device dimensions have been miniatured with increased efficiencies by virtue of this discovery. In this research, we have presented modified analytical and simulation results of InAs/GaAs QD superlattice (QDSL). We have applied tight binding model for the investigation of ground state energies using timeindependent Schrödinger equation (SE) with effective mass approximation. It has been investigated that the electron energies are confined due to wave function delocalization in closely coupled QD structures. The minimum ground state energy can be obtained by increasing the periodicity and decreasing the barrier layer thickness. We have calculated electronics and optical properties which includes ground state energies, transition energies, density of states (DOS), absorption coefficient and refractive index, which can be tuned by structure modification. In our results, the minimum ground state energy of QDSL is achieved to be 0.25 eV with a maximum period of 10 QDs. The minimum band to band and band to continuum transition energies are 63 meV and 130 meV with 2 nm barrier layer thickness respectively. The absorption coefficient of our proposed QDSL model is found to be maximum 1.2 × 104 cm-1 and can be used for highly sensitive infrared detector and high efficiency solar cells.

  10. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy

    International Nuclear Information System (INIS)

    Wang, Jianping; Yang, Fan; Zhao, Juan; Shi, Jipei

    2015-01-01

    In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH 3 CN, CHCl 3 , and CCl 4 ), were examined using the N—H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N—H stretching mode was observed

  11. The near-infrared spectrum of ethynyl radical

    International Nuclear Information System (INIS)

    Le, Anh T.; Hall, Gregory E.; Sears, Trevor J.

    2016-01-01

    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C 2 H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a 2 Σ + state at 6696 cm −1 , a second 2 Σ + state at 7088 cm −1 , and a 2 Π state at 7110 cm −1 . By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. The observed states contain both X 2 Σ + and A 2 Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. The case of C 2 H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.

  12. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    Science.gov (United States)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  13. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  14. The relation between the (N) and (N-1) electrons atomic ground state

    International Nuclear Information System (INIS)

    Briet, P.

    1984-05-01

    The relation between the ground state of an N and (N-1) electrons atomic system are studied. We show that in some directions of the configuration space, the ratio of the N electrons atomic ground state to the one particle density is asymptotically equivalent to the (N-1) electrons atomic ground state

  15. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  16. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  17. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    Science.gov (United States)

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  18. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    Science.gov (United States)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  19. Ground state of charged Base and Fermi fluids in strong coupling

    International Nuclear Information System (INIS)

    Mazighi, R.

    1982-03-01

    The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions) [fr

  20. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  1. Antibonding hole ground state in InAs quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Planelles, Josep [Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló (Spain)

    2015-01-22

    Using four-band k⋅p Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.

  2. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  3. Three-body problem in the ground-state representation

    International Nuclear Information System (INIS)

    Gonzalez, A.

    1993-01-01

    The ground-state probability density of a three-body system is used to construct a classical potential U whose minimum coincides exactly with the ground-state energy. The spectrum of excited states may approximately be obtained by imposing quasiclassical quantization conditions over the classical motion in U. We show nontrivial one-dimensional models in which either this quantization condition is exact or considerably improves the usual semiclassical quantization. For three-dimensional problems, the small-oscillation frequencies in states with total angular momentum L = 0 are computed. These frequencies could represent an improvement over the frequencies of triatomic molecules computed with the use of ordinary quasiclassics for the motion of the nuclei in the molecular term. By providing a semiclassical description of the first excited quantum states, the sketched approach rises some interesting questions such as, for example, the relevance (once again) of classical chaos to quantum mechanics

  4. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  5. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  6. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  7. Synthesis, Acidity Constants and Tautomeric Structure of the Diazonium Coupling Products of 2-(Benzylsulfanyl)-7H-purin-6-one in Its Ground and Excited States

    OpenAIRE

    Darwish, Elham S.; Mosselhi, Mosselhi A.; Altalbawy, Farag M.; Saad, Hosam A.

    2011-01-01

    A series of new 8-arylhydrazono-2-(benzylsulfanyl)-7H-purin-6-ones 6 were synthesized, their electronic absorption spectra in different organic solvents of varying polarities were investigated and their acid dissociation constants in both the ground and excited states were determined spectrophotometrically. The tautomeric structures of such products were elucidated by spectral analyses and correlation of their acid dissociation constants with the Hammett equation. The results indicated that t...

  8. On calculations of the ground state energy in quantum mechanics

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-02-01

    In nonrelativistic quantum mechanics the Wick-ordering method called the oscillator representation suggested to calculate the ground-state energy for a wide class of potentials allowing the existence of a bound state. The following examples are considered: the orbital excitations of the ground-state in the Coulomb plus linear potential, the Schroedinger equation with a ''relativistic'' kinetic energy √p 2 +m 2 , the Coulomb three-body problem. (author). 22 refs, 2 tabs

  9. Ground-state fidelity in the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Khan, Ayan; Pieri, Pierbiagio

    2009-01-01

    The ground-state fidelity has been introduced recently as a tool to investigate quantum phase transitions. Here, we apply this concept in the context of a crossover problem. Specifically, we calculate the fidelity susceptibility for the BCS ground-state wave function, when the intensity of the fermionic attraction is varied from weak to strong in an interacting Fermi system, through the BCS-Bose-Einstein Condensation crossover. Results are presented for contact and finite-range attractive potentials and for both continuum and lattice models. We conclude that the fidelity susceptibility can be useful also in the context of crossover problems.

  10. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  11. Coulomb Scattering in the Massless Nelson Model III: Ground State Wave Functions and Non-commutative Recurrence Relations

    Science.gov (United States)

    Dybalski, Wojciech; Pizzo, Alessandro

    2018-02-01

    Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.

  12. Optimal ground motion intensity measure for long-period structures

    International Nuclear Information System (INIS)

    Guan, Minsheng; Du, Hongbiao; Zeng, Qingli; Cui, Jie; Jiang, Haibo

    2015-01-01

    This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures. (paper)

  13. Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu

    2000-04-01

    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)

  14. The near-infrared spectrum of ethynyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Le, Anh T., E-mail: anhle@bnl.gov; Hall, Gregory E., E-mail: gehall@bnl.gov [Department of Energy and Photon Sciences, Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Sears, Trevor J., E-mail: sears@bnl.gov, E-mail: trevor.sears@stonybrook.edu [Department of Energy and Photon Sciences, Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Chemistry Department, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-21

    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C{sub 2}H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a {sup 2}Σ{sup +} state at 6696 cm{sup −1}, a second {sup 2}Σ{sup +} state at 7088 cm{sup −1}, and a {sup 2}Π state at 7110 cm{sup −1}. By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. The observed states contain both X{sup 2}Σ{sup +} and A{sup 2}Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. The case of C{sub 2}H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.

  15. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.

    2014-01-01

    of phenanthroline. The structural dynamics of the photoinduced charge transfer process in the [CuI(dppS)2]+/TiO2 hybrid is also investigated, which suggests a more restricted environment for the complex upon binding to TiO2 NPs. Moreover, the Cu-N bond length of the oxidized state of [CuI(dppS)2]+ after electron...... dynamics and structures as well as those of the charge separated state resulting from the interfacial electron injection from the MLCT state to TiO2 nanoparticles (NPs). The OTA results show the absence of the sub-picosecond component previously assigned as the time constant for flattening, while the two...... injection to TiO2 NPs shortens by 0.05 Å compared to that in the ground state. The interpretation of these observed structural changes associated with excited and charge separated states will be discussed. These results not only set an example for applying XTA in capturing the intermediate structure...

  16. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  17. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  18. Para-quinodimethane-bridged perylene dimers and pericondensed quaterrylenes: The effect of the fusion mode on the ground states and physical properties

    KAUST Repository

    Das, Soumyajit

    2014-07-23

    Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcalmol-1), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds. A matter of fusion mode! Fusion of a para-quinodimethane (p-QDM) subunit at the peri and β positions of perylene dimers leads to systems with different ground states, that is, open and closed shell (see picture). These systems showed large two-photon absorption cross sections and ultrafast excited-state dynamics relative to their corresponding pericondensed aromatic quaterrylene counterparts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  20. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  1. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  2. Main line maser emission in the OH ground state Λdoublet as a result of overlapping far infrared transitions

    International Nuclear Information System (INIS)

    Pelling, M.

    1977-01-01

    Transitions 2πsub(1/2), j = 5/2, F = 3 → 2πsub(3/2), j = 3/2, F = 2 and 2πsub(1/2), j = 5/2, F = 2 → 2πsub(3/2), J = 3/2, F = 1 have overlapping Doppler line wings at a kinetic temperature of 100 K. This alters the transport of radiation in each line from that which would occur in the absence of line overlap. As a result, the upper levels of the ground state Λ-doublet become overpopulated. (author)

  3. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  4. RPA ground state correlations in nuclei

    International Nuclear Information System (INIS)

    Lenske, H.

    1990-01-01

    Overcounting in the RPA theory of ground state correlations is shown to be avoided if exact rather than quasiboson commutators are used. Single particle occupation probabilities are formulated in a compact way by the RPA Green function. Calculations with large configuration spaces and realistic interactions are performed with 1p1h RPA and second RPA (SRPA) including 2p2h mixing in excited states. In 41 Ca valence hole states are found to be quenched by about 10% in RPA and up to 18% in SRPA. Contributions from low and high lying excitations and their relation to long and short range correlations in finite nuclei are investigated. (orig.)

  5. Infrared spectroscopy and photochemistry of NCCN+ and CNCN+ trapped in solid neon

    International Nuclear Information System (INIS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2007-01-01

    When a Ne:NCCN sample is codeposited at 4.3 K with neon atoms that have been excited in a microwave discharge, the infrared and near infrared spectra of the resulting deposit include a prominent peak at 1799.5 cm -1 , previously assigned to ν 3 of NCCN + , and several new absorptions at higher frequencies which are contributed by combination bands of ground-state NCCN + . The exposure of the deposit to near infrared and red light results in the appearance of two new absorptions which are attributed to CNCN + . The reverse isomerization occurs when the sample is exposed to near ultraviolet radiation, but the two new absorptions are regenerated upon subsequent irradiation with near infrared and red light

  6. Kinetically blocked stable heptazethrene and octazethrene: Closed-shell or open-shell in the ground state?

    KAUST Repository

    Li, Yuan

    2012-09-12

    Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ(2)) were determined for HZ-TIPS (σ(2)max = 920 GM at 1250 nm) and OZ-TIPS (σ(2)max = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals. © 2012 American Chemical Society.

  7. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  8. Hylleraas-Configuration Interaction study of the 1S ground state of the negative Li ion.

    Science.gov (United States)

    Sims, James S

    2017-12-28

    In a previous work Sims and Hagstrom [J. Chem. Phys. 140, 224312 (2014)] reported Hylleraas-Configuration Interaction (Hy-CI) method variational calculations for the neutral atom and positive ion 1 S ground states of the beryllium isoelectronic sequence. The Li - ion, nominally the first member of this series, has a decidedly different electronic structure. This paper reports the results of a large, comparable calculation for the Li - ground state to explore how well the Hy-CI method can represent the more diffuse L shell of Li - which is representative of the Be(2sns) excited states as well. The best non-relativistic energy obtained was -7.500 776 596 hartree, indicating that 10 - 20 nh accuracy is attainable in Hy-CI and that convergence of the r 12 r 34 double cusp is fast and that this correlation type can be accurately represented within the Hy-CI model.

  9. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    otherwise, inclusion of excitation energy decreases the T1/2 values. ... penetrates the nuclear barrier and reaches scission configuration after running .... between the ground-state energy levels of the parent nuclei and the ground-state energy.

  10. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  11. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  12. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  13. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  14. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  15. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  16. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  17. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  18. Learning Approach on the Ground State Energy Calculation of Helium Atom

    International Nuclear Information System (INIS)

    Shah, Syed Naseem Hussain

    2010-01-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  19. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  20. On the ground state for fractional quantum hall effect

    International Nuclear Information System (INIS)

    Jellal, A.

    1998-09-01

    In the present letter, we investigate the ground state wave function for an explicit model of electrons in an external magnetic field with specific inter-particle interactions. The excitation states of this model are also given. (author)

  1. Ground state of the U{sub 2}Mo compound: Physical properties of the Ω-phase

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L. [SIM3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E., E-mail: garces@cab.cnea.gov.ar [GIA, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina)

    2016-10-15

    Using ab initio calculations, unexpected structural instability was recently found in the ground state of the U{sub 2} Mo compound. Instead of the unstable I4/mmm and the Pmmn structures, in this work the P6/mmm (#191) space group, usually called Ω-phase, is proposed as the fundamental state. Total energy calculations using Wien2k code slightly favoured the last structure. Electronic and elastic properties are studied in this work in order to characterize the physical properties of this new phase. The stability of the Ω-phase is studied by means of its elastic constants calculation and phonon dispersion spectrum. Analysis of isotropic indices shows that the new phase is a ductile material with a minimal degree of anisotropy, suggesting that U{sub 2} Mo in the P6/mmm structure is an elastic isotropic material. Analysis of charge density, density of electronic states (DOS) and the character of the bands revealed a high level of hybridization between d-molybdenum electronic states and d- and f-uranium ones.

  2. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-01-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  3. Photo-crystallography: from the structure towards the electron density of metastable states

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, V [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, CNRS UMR 7036, UHP Nancy 1, Faculte des sciences, Boulevard des Aiguillettes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France); Carbonera, C [Institut de Chimie de la Matiere Condensee de Bordeaux, UPR CNRS 9048, Universite de Bordeaux 1, Groupe de Sciences Moleculaires, 87 Avenue du Docteur Schweitzer, 33608 Pessac cedex (France); Pillet, S [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, CNRS UMR 7036, UHP Nancy 1, Faculte des sciences, Boulevard des Aiguillettes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France); Souhassou, M [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, CNRS UMR 7036, UHP Nancy 1, Faculte des sciences, Boulevard des Aiguillettes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France); Letard, J F [Institut de Chimie de la Matiere Condensee de Bordeaux, UPR CNRS 9048, Universite de Bordeaux 1, Groupe de Sciences Moleculaires, 87 Avenue du Docteur Schweitzer, 33608 Pessac cedex (France); Guionneau, P [Institut de Chimie de la Matiere Condensee de Bordeaux, UPR CNRS 9048, Universite de Bordeaux 1, Groupe de Sciences Moleculaires, 87 Avenue du Docteur Schweitzer, 33608 Pessac cedex (France); Lecomte, C [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, CNRS UMR 7036, UHP Nancy 1, Faculte des sciences, Boulevard des Aiguillettes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2005-01-01

    A photo-crystallographic study of Fe(btr){sub 2}(NCS){sub 2}{center_dot}H{sub 2}O was performed in order to describe the modification of structures and charge densities on going from the ground low spin (LS) state to the metastable high spin (HS) state during the LIESST phenomenon at 15 K. Related photo-magnetic and spectroscopic measurements are also described. We show that at 15 K, the thermally quenched and photo-induced structures of the metastable HS state are identical. For comparison, we also derived the structure of the HS and LS states at 130 K in the hysteresis loop; the thermal spin transition and the LIESST spin transition exhibit similar structural behaviours.

  4. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  5. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  6. Dissociation energy of the ground state of NaH

    International Nuclear Information System (INIS)

    Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun

    2010-01-01

    The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v '' ≤21 and 1≤J '' ≤14 were assigned to the X 1 Σ + state of NaH. The highest vibrational level observed was only about 40 cm -1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation v D from the highest four vibrational levels yielded the dissociation energy D e =15 815±5 cm -1 . Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.

  7. Structural Analysis of Grounding Damages on MS DEXTRA

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Simonsen, Bo Cerup; Zhang, Shengming

    Sub-task 1.2 of DEXTREMEL deals with development of models for external ship collision and grounding dynamics and for internal ship structure dynamics. In order to get a better overview of the work performed in this task it has been decided to write two reports on the work. One dealing...... with internal and external collision dynamics and the present report which deals with structural analysis of grounding events.The first part of the present report is devoted to an energy balance for raking damage situations.Then follows a numerical study of the forces associated with cutting and crushing...

  8. Regionalization of ground motion attenuation in the conterminous United States

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1979-01-01

    Attenuation results from geometric spreading and from absorption. The former is almost independent of crustal geology or physiographic region. The latter depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high-frequency waves, absorption does not affect ground motion at distances less than 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States will be similar to that in the western United States. Most of the differences in ground motion can be accounted for by differences in attenuation caused by differences in absorption. The other important factor is that for some Western earthquakes the fault breaks the earth's surface, resulting in larger ground motion. No Eastern earthquakes are known to have broken the earth's surface by faulting. The stress drop of Eastern earthquakes may be higher than for Western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. This factor is believed to be of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. 6 figures

  9. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  10. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  11. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    International Nuclear Information System (INIS)

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-01-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths

  12. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  13. Ground-state and rotational properties of a two-component Bose–Einstein condensate in a harmonic plus quartic trap

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guang-Ping [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhi-Yuan [The School of Physics and Mech-tronic Engineering, Sichuan University of Art and Science, DaZhou 635000 (China); Dong, Biao [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Lin-Xue [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China); Zhang, Shou-Gang, E-mail: szhang@ntsc.ac.cn [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi' an 710600 (China)

    2015-10-02

    We consider a two-component Bose–Einstein condensate under extreme elongation in a harmonic plus quartic trap. The ground-state and rotational properties of such a system are numerically studied as a function of intra- and inter-component contact interactions, and of the rotational frequency. For the nonrotational case, we obtain the exact phase diagram showing the ground-state density distributions as contact-interactions varied. For both slowly and ultrarapidly rotational cases, we demonstrate that the vortex configurations depend strongly on the relative strength of the contact interactions, as well as on the rotational frequency. The controllable system may be used to investigate the interplay of interaction and rotation, and to explore more exotic quantum phases. - Highlights: • Quartic trap extends the parameter space to a fast rotating region. • Different ground state density distributions and novel vortex structures are obtained within the full parameter space. • Effects of the contact interactions and rotation are discussed in detail.

  14. Ground-state and rotational properties of a two-component Bose–Einstein condensate in a harmonic plus quartic trap

    International Nuclear Information System (INIS)

    Chen, Guang-Ping; Zhang, Zhi-Yuan; Dong, Biao; Wang, Lin-Xue; Zhang, Xiao-Fei; Zhang, Shou-Gang

    2015-01-01

    We consider a two-component Bose–Einstein condensate under extreme elongation in a harmonic plus quartic trap. The ground-state and rotational properties of such a system are numerically studied as a function of intra- and inter-component contact interactions, and of the rotational frequency. For the nonrotational case, we obtain the exact phase diagram showing the ground-state density distributions as contact-interactions varied. For both slowly and ultrarapidly rotational cases, we demonstrate that the vortex configurations depend strongly on the relative strength of the contact interactions, as well as on the rotational frequency. The controllable system may be used to investigate the interplay of interaction and rotation, and to explore more exotic quantum phases. - Highlights: • Quartic trap extends the parameter space to a fast rotating region. • Different ground state density distributions and novel vortex structures are obtained within the full parameter space. • Effects of the contact interactions and rotation are discussed in detail

  15. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  16. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  17. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  18. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    Science.gov (United States)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  19. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Science.gov (United States)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  20. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  1. Charge Order in (TMTTF)2TaF6 by Infrared Spectroscopy

    Science.gov (United States)

    Oka, Yuki; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsuhi; Yamamoto, Kaoru; Yakushi, Kyuya

    2015-11-01

    We have performed infrared spectroscopy in (TMTTF)2TaF6 (TMTTF: tetramethyltetrathiafulvalene) to investigate the relationship between the charge order (CO) state and the antiferromagnetic (AF) insulating ground state. A clear peak splitting corresponding to the charge disproportionation was observed below the CO transition temperature. We estimated the degree of charge disproportionation, Δρ = ρrich - ρpoor, as 0.28e from the peak splitting and found that the CO state coexists with the AF state and there is no charge redistribution below the AF transition.

  2. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians.

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G

    2017-02-17

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  3. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  4. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  5. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  6. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    Science.gov (United States)

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy

  7. Spatiotemporal Diffusive Evolution and Fractal Structure of Ground Motion

    Science.gov (United States)

    Suwada, Tsuyoshi

    2018-02-01

    The spatiotemporal diffusive evolution and fractal structure of ground motion have been investigated at the in-ground tunnel of the KEK B-Factory (KEKB) injector linear accelerator (linac). The slow dynamic fluctuating displacements of the tunnel floor are measured in real time with a new remote-controllable sensing system based on a laser-based alignment system. Based on spatiotemporal analyses with linear-regression models, which were applied in both the time and frequency domains to time-series data recorded over a period of approximately 8 months, both coherent and stochastic components in the displacements of the tunnel floor were clearly observed along the entire length of the linac. In particular, it was clearly observed that the stochastic components exhibited characteristic spatiotemporal diffusive evolution with the fractal structure and fractional dimension. This report describes in detail the experimental techniques and analyses of the spatiotemporal diffusive evolution of ground motion observed at the in-ground tunnel of the injector linac using a real-time remote-controllable sensing system.

  8. Earthquake response characteristics of large structure 'JOYO' deeply embedded in quaternary ground, (3)

    International Nuclear Information System (INIS)

    Yajima, Hiroshi; Sawada, Yoshihiro; Hanada, Kazutake; Sawada, Makoto.

    1987-01-01

    In order to examine aseismicity of embedded structure and to clarify embedment effect, earthquake observations of the large structure 'JOYO' are carried out which is deeply embedded in quaternary ground, and the results are summarized as follows. (1) Amplification factors of horizontal component in ground surface is about 3 to 4 times against the bedrock. Contrastively on the structure, any amplification is not observed at the underground portion, however, little amplification exists at the ground portion of structure. (2) Transfer function of structure has several predominant peaks at frequencies of 4.3 Hz and 8.0 Hz which are well coincided with values obtained from force excitation tests. It is shown that transfer function between basement and ground surface is similar to that between ground of same level to basement and ground surface, suggesting the behavior of basement to be able to estimate by these under ground earthquake motion. (3) According to earthquake motion analysis using S-R models, without regard to consider or not the side ground stiffness, the calculated response values do not so much differ in each model and mostly correspond with observation data, provided that the underground earthquake motion at same level to basement is used as a input wave. Consequently, the behavior of these deeply embedded structure is subject to setting method of input wave rather than modeling method, and it is very useful in design that the most simple model without side ground stiffness can roughly represent the embedment effect. (author)

  9. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  10. Basic equations of quasiparticle-phonon model of nucleus with account of Pauli principle and phonons interactions in ground state

    International Nuclear Information System (INIS)

    Voronov, V.V.; Dang, N.D.

    1984-01-01

    the system of equations, enabling to calculate the energy and the structure of excited states, described by the wave function, containing one- and two-phon components was obtained in the framework of quasiparticlephonon model. The requirements of Pauli principle for two-phonon components and phonon correlation in the ground nucleus state are taken into account

  11. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  12. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...

  13. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the v(4) band is essentially unaffected by perturbations....

  14. Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.

    Science.gov (United States)

    Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2013-09-26

    Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.

  15. Quantum ground state and single-phonon control of a mechanical resonator.

    Science.gov (United States)

    O'Connell, A D; Hofheinz, M; Ansmann, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; Sank, D; Wang, H; Weides, M; Wenner, J; Martinis, John M; Cleland, A N

    2010-04-01

    Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator-a 'quantum drum'-coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

  16. Near Real-Time Ground-to-Ground Infrared Remote-Sensing Combination and Inexpensive Visible Camera Observations Applied to Tomographic Stack Emission Measurements

    Directory of Open Access Journals (Sweden)

    Philippe de Donato

    2018-04-01

    Full Text Available Evaluation of the environmental impact of gas plumes from stack emissions at the local level requires precise knowledge of the spatial development of the cloud, its evolution over time, and quantitative analysis of each gaseous component. With extensive developments, remote-sensing ground-based technologies are becoming increasingly relevant to such an application. The difficulty of determining the exact 3-D thickness of the gas plume in real time has meant that the various gas components are mainly expressed using correlation coefficients of gas occurrences and path concentration (ppm.m. This paper focuses on a synchronous and non-expensive multi-angled approach combining three high-resolution visible cameras (GoPro-Hero3 and a scanning infrared (IR gas system (SIGIS, Bruker. Measurements are performed at a NH3 emissive industrial site (NOVACARB Society, Laneuveville-devant-Nancy, France. Visible data images were processed by a first geometrical reconstruction gOcad® protocol to build a 3-D envelope of the gas plume which allows estimation of the plume’s thickness corresponding to the 2-D infrared grid measurements. NH3 concentration data could thereby be expressed in ppm and have been interpolated using a second gOcad® interpolation algorithm allowing a precise volume visualization of the NH3 distribution in the flue gas steam.

  17. A Ground State Tri-pí-Methane Rearrangement

    Czech Academy of Sciences Publication Activity Database

    Zimmerman, H. E.; Církva, Vladimír; Jiang, L.

    2000-01-01

    Roč. 41, č. 49 (2000), s. 9585-9587 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z4072921 Keywords : tri-pi-methane * ground state Subject RIV: CC - Organic Chemistry Impact factor: 2.558, year: 2000

  18. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  19. Infrared emission from supernova condensates

    International Nuclear Information System (INIS)

    Dwek, E.; Werner, M.W.

    1981-01-01

    We examine the possibility of detecting grains formed in supernovae by observations of their emission in the infrared. The basic processes determining the temperature and infrared radiation of grains in supernovae environments are analyzed, and the results are used to estimate the infrared emission from the highly metal enriched ''fast moving knots'' in Cas A. The predicted fluxes lie within the reach of current ground-based facilities at 10 μm, and their emission should be detectable throughout the infrared band with cryogenic space telescopes

  20. Shell structure of the A = 6 ground states from three-body dynamics

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.

    1983-01-01

    Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models

  1. Probing the spin multiplicity of gas-phase polycyclic aromatic hydrocarbons through their infrared emission spectrum: a theoretical study.

    Science.gov (United States)

    Falvo, Cyril; Calvo, Florent; Parneix, Pascal

    2012-08-14

    The anharmonic infrared emission spectrum following an optical excitation has been calculated for a variety of polycyclic aromatic hydrocarbon molecules in their ground singlet electronic state or in their triplet state. The computational protocol relies on second-order perturbation theory and involves a quartic vibrational Hamiltonian, the vibrational quantum numbers being sampled according to a Monte Carlo procedure. In the case of neutral naphthalene, the IR spectrum obtained in the (ground) singlet state differs significantly from the spectrum in the triplet state, especially for out-of-plane CH bending modes. Although not as prominent, spectral differences in larger molecules are still observable.

  2. Ground-state properties of a supersymmetric fermion chain

    International Nuclear Information System (INIS)

    Fendley, Paul; Hagendorf, Christian

    2011-01-01

    We analyze the ground state of a strongly interacting fermion chain with a supersymmetry. We conjecture a number of exact results, such as a hidden duality between weak and strong couplings. By exploiting a scale-free property of the perturbative expansions, we find exact expressions for the order parameters, yielding the critical exponents. We show that the ground state of this fermion chain and another model in the same universality class, the XYZ chain along a line of couplings, are both written in terms of the same polynomials. We demonstrate this explicitly for up to N = 24 sites and provide consistency checks for large N. These polynomials satisfy a recursion relation related to the Painlevé VI differential equation and, using a scale-free property of these polynomials, we derive a simple and exact formula for their N→∞ limit

  3. USING OF THERMAL STRUCTURE MAPS FOR VEGETATION MAPPING (CASE OF ALTACHEYSKY WILDLIFE AREA

    Directory of Open Access Journals (Sweden)

    L. A. Abramova

    2014-01-01

    Full Text Available Thermal infrared imagery contains considerable amount of qualitative information about ground objects and landscapes. In spite of it, this type of data is often used to derive quantitative information such as land or sea surface temperatures. This paper describes the examination of Altacheysky wildlife area situated in the southern part of Buryatia Republic, Mukhorshibirsky district based on Landsat imagery and ground observations. Ground observations were led to study the vegetation cover of the area. Landsat imagery were used to make multitemporal thermal infrared image combined of 7 ETM+ scenes and to make multispectral image combined of different zones of a OLI scene. Both images were classified. The multitemporal thermal infrared classification result was used to compose thermal structure map of the wildlife area. Comparison of the map, multispectral image classification result and ground observations data reveals that thermal structure map describes better the particularities of Altacheysky wildlife area vegetation cover.

  4. ITO/Au/ITO sandwich structure for near-infrared plasmonics.

    Science.gov (United States)

    Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah

    2014-09-24

    ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.

  5. A density functional study of structures and stability of SinCN clusters

    International Nuclear Information System (INIS)

    Gai Zhigang; Yang Li; Zhao Jie; Chu Shibo

    2011-01-01

    In this paper, density functional theory (DFT) B3LYP method with 6-311G * basis set has been used to investigate geometric configurations, vibrational frequencies and ground state energies of Si n CN (n = 2 ∼ 6) clusters. The energies and spin multiplicities of ground states and substable states have been discussed, respectively. Harmonic frequencies and infrared spectra intensity for these clusters are given in order to aid in the characterization of the stable structures. The results show that the zero point energy (ZPE), thermocapacity and entropies are nearly in proportion to increased n, whose average enhancement are 0.80 kcal/mol, 5.20 cal/mol · K and 12.72 cal/ mol · K, respectively. The stability of Si n CN (n = 2 ∼ 6) clusters with even n are greater than that with odd n. (authors)

  6. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  7. Correlation induced paramagnetic ground state in FeAl

    Czech Academy of Sciences Publication Activity Database

    Mohn, P.; Persson, C.; Blaha, P.; Schwarz, K.; Novák, Pavel; Eschrig, H.

    2001-01-01

    Roč. 87, č. 19 (2001), s. 196401-1-196401-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z1010914 Keywords : FeAl * paramagnetic ground state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001

  8. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  9. Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering

    International Nuclear Information System (INIS)

    Ruedenberg, K.; Schwarz, W.H.E.

    1990-01-01

    Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated

  10. Stable π-Extended p -Quinodimethanes: Synthesis and Tunable Ground States

    KAUST Repository

    Zeng, Zebing

    2014-12-18

    © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. p-Quinodimethane (p-QDM) is a highly reactive hydrocarbon showing large biradical character in the ground state. It has been demonstrated that incorporation of the p-QDM moiety into an aromatic hydrocarbon framework could lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. On the other hand, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. Therefore, the synthesis of stable π-extended p-QDMs is very challenging. In this Personal Account we will briefly discuss different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties, including two types of polycyclic hydrocarbons: (1) tetrabenzo-Tschitschibabin\\'s hydrocarbons, and (2) tetracyano-rylenequinodimethanes. We will discuss how the aromaticity, substituents and steric hindrance play important roles in determining their ground states and properties. Incorporation of the p-quinodimethane moiety into aromatic hydrocarbon frameworks can lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. Furthermore, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. In this Personal Account, different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties are briefly discussed, including the roles of aromaticity, substituents and steric hindrance.

  11. Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    ,2]. Moreover plasmonics for mid-infrared offer unique applications such as bio-sensing, thermal imaging and quest for novel materials and structures has been continuing [3]. In this report we show that vertical trench structures made of, for example, aluminum-doped ZnO (AZO) or other transparent conductive...

  12. Ground states of the massless Derezinski-Gerard model

    International Nuclear Information System (INIS)

    Ohkubo, Atsushi

    2009-01-01

    We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.

  13. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  14. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  15. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  16. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    Energy Technology Data Exchange (ETDEWEB)

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Tretyakova, T. Yu. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  17. Characterization of design ground motion for the central and eastern United States: licensing implications

    International Nuclear Information System (INIS)

    Litehiser, J.; Carrato, P.

    2005-01-01

    For the first time in decades several US utilities are exploring the possibility of building new Nuclear Power Plant (NPP) generating capacity in the Central and Eastern United States (CEUS). Among the many topics that must be considered to license a nuclear plant (NPP) is appropriate design to mitigate the potential effects of vibratory ground motion from earthquakes. Agreement on seismic design ground motion was not always easy during licensing of the last generation of NPPs. Therefore, over the last few decades both industry and the United States Nuclear Regulatory Commission (USNRC) have worked to find ground motion criteria that recognize and overcome earlier licensing difficulties. Such criteria should be stable and easily implemented. Important and complementary programs under the direction of the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI) were part of this effort, and these studies resulted in probabilistic seismic hazard assessments (PSHAs) for a number of CEUS NPP sites. These results and the concepts underlying them are now incorporated into both USNRC regulation and regulatory guidance. Nevertheless, as the utilities and the NRC begin a renewed licensing dialog, issues of regulatory interpretation of earthquake ground motion design criteria have emerged. These issues are as fundamental as the shape and amplitude of ground motion design response spectra and as significant as the impact of these spectra on structural design. Successful and timely resolution of these issues will significantly impact the future of nuclear power in the US. The purpose of this paper is to briefly describe some of these issues and the approaches that have been proposed for their resolution. (authors)

  18. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  19. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  20. Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy

    Science.gov (United States)

    Santosa, Hendrik; Aarabi, Ardalan; Perlman, Susan B.; Huppert, Theodore J.

    2017-05-01

    Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of red to near-infrared light to measure changes in cerebral blood oxygenation. Spontaneous (resting state) functional connectivity (sFC) has become a critical tool for cognitive neuroscience for understanding task-independent neural networks, revealing pertinent details differentiating healthy from disordered brain function, and discovering fluctuations in the synchronization of interacting individuals during hyperscanning paradigms. Two of the main challenges to sFC-NIRS analysis are (i) the slow temporal structure of both systemic physiology and the response of blood vessels, which introduces false spurious correlations, and (ii) motion-related artifacts that result from movement of the fNIRS sensors on the participants' head and can introduce non-normal and heavy-tailed noise structures. In this work, we systematically examine the false-discovery rates of several time- and frequency-domain metrics of functional connectivity for characterizing sFC-NIRS. Specifically, we detail the modifications to the statistical models of these methods needed to avoid high levels of false-discovery related to these two sources of noise in fNIRS. We compare these analysis procedures using both simulated and experimental resting-state fNIRS data. Our proposed robust correlation method has better performance in terms of being more reliable to the noise outliers due to the motion artifacts.

  1. Stellar bars and the spatial distribution of infrared luminosity

    International Nuclear Information System (INIS)

    Devereux, N.

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology

  2. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  3. Far-infrared spectroscopy of neutral interstellar clouds

    International Nuclear Information System (INIS)

    Watson, D.M.

    1984-01-01

    A summary is presented of airborne observations of the far-infrared fine structure lines of neutral atomic oxygen and singly-ionized carbon, and of the far-infrared rotational lines of CO, OH, NH 3 and HD, together with a brief description of the analysis and interpretation of the spectra. The 'state of the art' in instrument performance and the prospects for improved sensitivity and resolution are also surveyed. (Auth.)

  4. Competition of ground states in URu2Si2 and UCoGe

    International Nuclear Information System (INIS)

    Hassinger, E.

    2010-10-01

    In this thesis, two uranium based heavy fermion compounds are studied under pressure. URu2Si2 has a mysterious ground state below T0 = 17.5 K at ambient pressure. The order parameter has not been identified yet which led to the name 'hidden order' (HO). In addition, below 1.5 K the system becomes superconducting. With pressure, the ground state switches from the HO phase to an antiferromagnetic (AF) phase at a critical pressure and superconductivity is concomitantly suppressed. Shubnikov-de Haas measurements under pressure show that the Fermi surface doesn't change between the two phases. The folding of the Fermi surface which occurs in the high pressure AF phase therefore already happens in the HO phase, indicating a unit cell doubling. Our measurements of the complete angular dependence of the oscillation frequencies test the electronic structure and support new theoretical band structure calculations with rather itinerant 5f electrons. The second part of my research focuses on another uranium compound, UCoGe. It is one of the few known materials where superconductivity (Tsc = 0.6 K) coexists with ferromagnetism (T Curie = 2.8 K). Precise studies of the pressure phase diagram by resistivity, ac calorimetry and ac susceptibility show that the ferromagnetic phase is suppressed at a pressure of about 1 GPa and the superconducting phase extends into the paramagnetic phase induced by pressure. When ferromagnetism is suppressed to the superconducting transition no further distinct ferromagnetic anomalies are observed. Thus, the pressure phase diagram of UCoGe is unique in the class of ferromagnetic superconductors. (author)

  5. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Ground State Energy of the Modified Nambu-Goto String

    Science.gov (United States)

    Hadasz, Leszek

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  7. Ground state energy of the modified Nambu-Goto string

    OpenAIRE

    Hadasz, Leszek

    1997-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  8. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  9. The far-infrared spectrum of the OH radical

    Science.gov (United States)

    Brown, J. M.; Schubert, J. E.; Evenson, K. M.; Radford, H. E.

    1982-01-01

    It is thought likely that the study of spectral lines in the far-infrared might provide at least as much information about the physics and chemistry of the interstellar environment as radioastronomy. However, by comparison with the microwave region, the far-infrared is largely unexplored. There is a pressing need for good laboratory data to aid searches and assignments of spectra from the interstellar clouds and nebulae. Brown et al. (1981) have conducted a study of the laser magnetic resonance (LMR) spectrum of the OH radical in its ground state at far-infrared wavelengths. The present investigation is concerned with the computation of the frequencies of individual hyperfine transitions involving all rotational levels up to J = 4 1/2. The results of the calculation are presented in a table. The results are summarized in a diagram which shows the low-lying energy levels of OH. The frequencies of transitions between levels studied directly in the LMR spectrum are quite reliable.

  10. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  11. Unambiguous assignment of the ground state of a nearly degenerate cluster

    International Nuclear Information System (INIS)

    Gutsev, G. L.; Khanna, S. N.; Jena, P.

    2000-01-01

    A synergistic approach that combines first-principles theory and electron photodetachment experiment is shown to be able to uniquely identify the ground state of a nearly degenerate cluster in the gas phase. Additionally, this approach can complement the Stern-Gerlach technique in determining the magnetic moment of small clusters unambiguously. The method, applied to a Fe 3 cluster, reveals its ground state to have a magnetic moment of 10μ B --in contrast with earlier predictions. (c) 2000 The American Physical Society

  12. Infrared spectroscopy of physisorbed and chemisorbed N-2 in the Pt(111)(3x3)N-2 structure

    DEFF Research Database (Denmark)

    Gustafsson, K.; Karlberg, Gustav; Andersson, Sven

    2007-01-01

    Using infrared spectroscopy and low electron energy diffraction, we have investigated the adsorption of N-2, at 30 K, on the Pt(111) and the Pt(111)(1x1)H surfaces. At monolayer coverage, N-2 orders in commensurate (3x3) structures on both surfaces, and we propose that the unit cells contain four...... molecules in each case. The infrared spectra reveal that N-2 exclusively physisorbs on the Pt(111)(1x1)H surface, while both physisorbed and chemisorbed N-2 is detected on the Pt(111) surface. Physisorbed N-2 is the majority species in the latter case, and the two adsorption states show an almost identical...... uptake behavior, which indicates that they are intrinsic constituents of the growing (3x3) N-2 islands. An analysis of the infrared absorbance data, based on a simple scaling concept suggested by density functional theory calculations, supports a model in which the (3x3) unit cell contains one...

  13. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    Science.gov (United States)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  14. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  15. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    Science.gov (United States)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417

  16. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  17. Kohn-Sham Theory for Ground-State Ensembles

    International Nuclear Information System (INIS)

    Ullrich, C. A.; Kohn, W.

    2001-01-01

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles

  18. Unveiling the chemistry of interstellar CH. Spectroscopy of the 2 THz N = 2 ← 1 ground state line

    Science.gov (United States)

    Wiesemeyer, H.; Güsten, R.; Menten, K. M.; Durán, C. A.; Csengeri, T.; Jacob, A. M.; Simon, R.; Stutzki, J.; Wyrowski, F.

    2018-04-01

    Context. The methylidyne radical CH is commonly used as a proxy for molecular hydrogen in the cold, neutral phase of the interstellar medium. The optical spectroscopy of CH is limited by interstellar extinction, whereas far-infrared observations provide an integral view through the Galaxy. While the HF ground state absorption, another H2 proxy in diffuse gas, frequently suffers from saturation, CH remains transparent both in spiral-arm crossings and high-mass star forming regions, turning this light hydride into a universal surrogate for H2. However, in slow shocks and in regions dissipating turbulence its abundance is expected to be enhanced by an endothermic production path, and the idea of a "canonical" CH abundance needs to be addressed. Aim. The N = 2 ← 1 ground state transition of CH at λ149 μm has become accessible to high-resolution spectroscopy thanks to the German Receiver for Astronomy at Terahertz Frequencies (GREAT) aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Its unsaturated absorption and the absence of emission from the star forming regions makes it an ideal candidate for the determination of column densities with a minimum of assumptions. Here we present an analysis of four sightlines towards distant Galactic star forming regions, whose hot cores emit a strong far-infrared dust continuum serving as background signal. Moreover, if combined with the sub-millimeter line of CH at λ560 μm , environments forming massive stars can be analyzed. For this we present a case study on the "proto-Trapezium" cluster W3 IRS5. Methods: While we confirm the global correlation between the column densities of HF and those of CH, both in arm and interarm regions, clear signposts of an over-abundance of CH are observed towards lower densities. However, a significant correlation between the column densities of CH and HF remains. A characterization of the hot cores in the W3 IRS5 proto-cluster and its envelope demonstrates that the sub-millimeter/far-infrared

  19. A simple parameter-free wavefunction for the ground state of two-electron atoms

    International Nuclear Information System (INIS)

    Ancarani, L U; Rodriguez, K V; Gasaneo, G

    2007-01-01

    We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models

  20. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  1. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  2. Enhancing mid-infrared spectral response at the LaAlO3/SrTiO3 interface by magnetic field

    International Nuclear Information System (INIS)

    Feng, Xin; Zhao, Kun; Xi, Jian-Feng; Xiang, Wen-Feng; Lu, Zhi-Qing; Sun, Qi; Wu, Shi-Xiang; Ni, Hao

    2014-01-01

    Many unexpected properties have been found in the LaAlO 3 /SrTiO 3 heterostructure, but the interaction of the many ground states at its interface remains unclear. Here, we demonstrate an optical property of this n-type heterostructure where the mid-infrared spectral responsivity at the interface is enhanced by an external magnetic field. The field intensity ranged from 0.8 to 6 kOe at a low temperature (19 K) as measured with our spectral response measurement system. Two spectral peaks related to the spin-orbit coupling effect were also observed at wavelengths 2400 nm and 3700 nm. The intriguing phenomena relate to changes in the crystallographic structure and subband structure at the interface

  3. Guidelines for ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs

  4. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    International Nuclear Information System (INIS)

    Amour, Laurent; Faupin, Jeremy

    2008-01-01

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literature, we explain how to verify some properly chosen binding conditions which lead to the existence of a ground state for our model, and for all values of the fine-structure constant

  5. Construction and study of exact ground states for a class of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Fannes, M.

    1989-01-01

    Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt

  6. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  7. Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain

    Directory of Open Access Journals (Sweden)

    S. Paul

    2017-06-01

    Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.

  8. Infrared detectors and emitters on the basis of semiconductor quantum structures

    International Nuclear Information System (INIS)

    Kruck, P. R.

    1997-08-01

    Intersubband transitions in Si/SiGe and GaAs/AlGaAs semiconductor quantum structures have been investigated with respect to possible application as infrared detectors and emitters. Investigation of the polarization dependence of subband absorption in Si/SiGe quantum wells shows both transverse magnetic and transverse electric polarized excitations. Intersubband transitions to several excited states are identified by comparison with self-consistent Luttinger-Kohn type calculations. On the basis of these investigations a quantum well infrared photodetector operating between 3 and 8 μm with a detectivity as high as D*=2 x 10 10 cm Hz 1/2 W -1 under normal incidence illumination and at an operating temperature of T=77K is realized. The polarization dependence of the photoconductivity shows the importance of both the absorption and the vertical transport properties of the photoexcited carriers for the detection mechanism. On the basis of the GaAs/AlGaAs material system a unipolar quantum cascade light emitting diode (LED) has been realized. The LED operates at a wavelength of 6.9 μm. A detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm 2 the optical output power lies in the ten nanowatt range. (author)

  9. Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Iowa State University, Aerospace Engineering Department, Ames, IA (United States); University of Minnesota, Saint Anthony Falls Laboratory, Minneapolis, MN (United States); Sarkar, Partha P. [Iowa State University, Aerospace Engineering Department, Ames, IA (United States)

    2012-02-15

    The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03-0.3 (vane angle {theta}{sub v} = 15 -60 ), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, {theta}{sub v} = 15 ) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1-0.3, {theta}{sub v} = 30 -60 ). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio ({theta}{sub v} = 45 ) that at the low swirl ratio ({theta}{sub v} = 15 ), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the

  10. Cooper pairs versus Bose condensed molecules: The ground-state current in superfluid 3He-A

    International Nuclear Information System (INIS)

    Mermin, N.D.; Muzikar, P.

    1980-01-01

    We present a new calculation of the current g flowing in a ground state of the Bardeen-Cooper-Schrieffer (BCS) form for a weakly inhomogeneous superfluid with the symmetry of 3 He-A. When the structure of the order parameter not determined by symmetry is appropriate to 3 He-A and when the mass density rho of the helium is essentially uniform, our current reduces to that calculated by Cross. If the mass density is allowed to vary, we find a generalization of the Cross current which shows that when v/sub s/=0 and the anisotropy axis l is uniform, then the current is simply (h/4M) del-arrow-rightrho x l. We show that this property of the BCS ground state, which taken with the Cross definition leads to an ''intrinsic angular momentum density'' of rhoh/2M at zero temperature, also follows directly from the Gor'kov equations. If the range of the order parameter is taken to be small compared with the interatomic separation, then the ground state does not describe 3 He-A, but a Bose-Einstein condensate of tightly bound diatomic molecules. In this limit our current reduces to the form calculated by Ishikawa et al. We indicate why their analysis is only valid in this limit, and offer some rather more general remarks on the differences between Cooper pairing and the Bose-Einstein condensation of diatomic molecules

  11. Numerical simulations of oscillating soliton stars: Excited states in spherical symmetry and ground state evolutions in 3D

    International Nuclear Information System (INIS)

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai

    2008-01-01

    Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries

  12. Gas phase structure of transition metal dihydrides

    International Nuclear Information System (INIS)

    Demuynck, J.; Schaefer, H.F. III

    1980-01-01

    ESR and infrared spectroscopic measurements on matrix isolated MnH 2 and CrH 2 have recently suggested that these simple molecules may be bent. This result would be the opposite of that found experimentally for the transition metal dihalides MX 2 , known to be linear. Here the geometrical structure of MnH 2 has been investigated by molecular electronic structure theory. A large contracted Gaussian basis set [Mn(14s11p6p/9s8p3d), H(5s1p/3s1p)] was used in conjunction with self-consistent field and configuration interaction methods. These suggest that the 6 A 1 ground state of MnH 2 is linear. Further studies of the 3 A 1 state (one of several low-lying states) of TiH 2 also favor linearity, although this potential energy surface is extremely flat with respect to bending. Thus it appears probable that most MH 2 molecules, like the related MX 2 family, are linear

  13. Competing ground states in LuFe{sub 4}Ge{sub 2} tuned by external pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ajeesh, Mukkattu Omanakuttan; Weber, Katharina; Reis, Ricardo dos; Geibel, Christoph; Nicklas, Michael [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    Tuning competing ground-state properties using external pressure has attracted much attention in current condensed matter research. This is due to the fact that exotic phenomena and unconventional phases occur in regions of competing energy scales. Here, we present an investigation on LuFe{sub 4}Ge{sub 2} by electrical resistivity experiments under external pressure in order to understand the interplay between competing ground states in a frustrated, itinerant magnetic system. At ambient pressure LuFe{sub 4}Ge{sub 2} orders antiferromagnetically below 32 K. The antiferromagnetic (AFM) transition is connected with a structural transition. We have established the temperature - pressure phase diagram: pressure suppresses the original antiferromagnetically ordered state to zero temperature at around 1.7 GPa. Upon further increasing pressure a new pressure-induced phase emerges. This phase exhibits a qualitatively different magnetoresistance compared with the AFM phase suggesting a different type of ordering than at lower pressures. Furthermore, above 1.5 GPa we find a metamagnetic transition at higher magnetic fields. The onset of this phase shifts to lower fields with increasing pressure. Further studies to understand the nature of the new phases are on the way.

  14. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  15. Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors

    Science.gov (United States)

    Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Santos-Filho, Osvaldo A.; Esposito, Emilio X.; Hopfinger, Anton J.; Tseng, Yufeng J.

    2008-06-01

    In previous studies we have developed categorical QSAR models for predicting skin-sensitization potency based on 4D-fingerprint (4D-FP) descriptors and in vivo murine local lymph node assay (LLNA) measures. Only 4D-FP derived from the ground state (GMAX) structures of the molecules were used to build the QSAR models. In this study we have generated 4D-FP descriptors from the first excited state (EMAX) structures of the molecules. The GMAX, EMAX and the combined ground and excited state 4D-FP descriptors (GEMAX) were employed in building categorical QSAR models. Logistic regression (LR) and partial least square coupled logistic regression (PLS-CLR), found to be effective model building for the LLNA skin-sensitization measures in our previous studies, were used again in this study. This also permitted comparison of the prior ground state models to those involving first excited state 4D-FP descriptors. Three types of categorical QSAR models were constructed for each of the GMAX, EMAX and GEMAX datasets: a binary model (2-state), an ordinal model (3-state) and a binary-binary model (two-2-state). No significant differences exist among the LR 2-state model constructed for each of the three datasets. However, the PLS-CLR 3-state and 2-state models based on the EMAX and GEMAX datasets have higher predictivity than those constructed using only the GMAX dataset. These EMAX and GMAX categorical models are also more significant and predictive than corresponding models built in our previous QSAR studies of LLNA skin-sensitization measures.

  16. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  17. Ground-state correlations within a nonperturbative approach

    Czech Academy of Sciences Publication Activity Database

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 024306. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : ground state * harmonic oscillator frequency * space dimensions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016

  18. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  19. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  20. Communication: Photodissociation of CH3CHO at 308 nm: Observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface

    Science.gov (United States)

    Li, Hou-Kuan; Tsai, Po-Yu; Hung, Kai-Chan; Kasai, Toshio; Lin, King-Chuen

    2015-01-01

    Following photodissociation of acetaldehyde (CH3CHO) at 308 nm, the CO(v = 1-4) fragment is acquired using time-resolved Fourier-transform infrared emission spectroscopy. The CO(v = 1) rotational distribution shows a bimodal feature; the low- and high-J components result from H-roaming around CH3CO core and CH3-roaming around CHO radical, respectively, in consistency with a recent assignment by Kable and co-workers (Lee et al., Chem. Sci. 5, 4633 (2014)). The H-roaming pathway disappears at the CO(v ≥ 2) states, because of insufficient available energy following bond-breaking of H + CH3CO. By analyzing the CH4 emission spectrum, we obtained a bimodal vibrational distribution; the low-energy component is ascribed to the transition state (TS) pathway, consistent with prediction by quasiclassical trajectory calculations, while the high-energy component results from H- and CH3-roamings. A branching fraction of H-roaming/CH3-roaming/TS contribution is evaluated to be (8% ± 3%)/(68% ± 10%)/(25% ± 5%), in which the TS pathway was observed for the first time. The three pathways proceed concomitantly along the electronic ground state surface.

  1. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  2. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  3. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    Science.gov (United States)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  4. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com [School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan Province, 650221 (China); Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221 (China)

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  5. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wang, Hanquan

    2014-01-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method

  6. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  7. Pade approximants for the ground-state energy of closed-shell quantum dots

    International Nuclear Information System (INIS)

    Gonzalez, A.; Partoens, B.; Peeters, F.M.

    1997-08-01

    Analytic approximations to the ground-state energy of closed-shell quantum dots (number of electrons from 2 to 210) are presented in the form of two-point Pade approximants. These Pade approximants are constructed from the small- and large-density limits of the energy. We estimated that the maximum error, reached for intermediate densities, is less than ≤ 3%. Within that present approximation the ground-state is found to be unpolarized. (author). 21 refs, 3 figs, 2 tabs

  8. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  9. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    Science.gov (United States)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  10. Theory of Nonlinear Dispersive Waves and Selection of the Ground State

    International Nuclear Information System (INIS)

    Soffer, A.; Weinstein, M.I.

    2005-01-01

    A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides

  11. Viability of infrared FEL facilities

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  12. Ground-state properties of third-row elements with nonlocal density functionals

    International Nuclear Information System (INIS)

    Bagno, P.; Jepsen, O.; Gunnarsson, O.

    1989-01-01

    The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are calculated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expansion functionals. The PW functional is found to give somewhat better results than the LMH functional and both are found to typically remove half the errors in the local-spin-density (LSD) approximation, while the gradient expansion gives worse results than the local-density approximation. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground state

  13. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  14. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    International Nuclear Information System (INIS)

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-01-01

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility α of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and α to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  15. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  16. Matrix isolation infrared spectroscopic and theoretical study of 1,1,1-trifluoro-2-chloroethane (HCFC-133a)

    Science.gov (United States)

    Rodrigues, Gessenildo Pereira; Lucena, Juracy Régis; Ventura, Elizete; Andrade do Monte, Silmar; Reva, Igor; Fausto, Rui

    2013-11-01

    The molecular structure and infrared spectrum of the atmospheric pollutant 1,1,1-trifluoro-2-chloroethane (HCFC-133a; CF3CH2Cl) in the ground electronic state were characterized experimentally and theoretically. Excited state calculations (at the CASSCF, MR-CISD, and MR-CISD+Q levels) have also been performed in the range up to ˜9.8 eV. The theoretical calculations show the existence of one (staggered) conformer, which has been identified spectroscopically for the monomeric compound isolated in cryogenic (˜10 K) argon and xenon matrices. The observed infrared spectra of the matrix-isolated HCFC-133a were interpreted with the aid of MP2/aug-cc-pVTZ calculations and normal coordinate analysis, which allowed a detailed assignment of the observed spectra to be carried out, including identification of bands due to different isotopologues (35Cl and 37Cl containing molecules). The calculated energies of the several excited states along with the values of oscillator strengths and previous results obtained for CFCs and HCFCs suggest that the previously reported photolyses of the title compound at 147 and 123.6 nm [T. Ichimura, A. W. Kirk, and E. Tschuikow-Roux, J. Phys. Chem. 81, 1153 (1977)] are likely to be initiated in the n-4s and n-4p Rydberg states, respectively.

  17. Nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruo-Ping [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2013-02-01

    We have demonstrated nano-structured Cu(In,Al)Se{sub 2} (CIAS) near-infrared (NIR) photodetectors (PDs). The CIAS NIR PDs were fabricated on ZnO nanowires (NWs)/ZnO/Mo/ITO (indium tin oxide) glass substrate. CIAS film acted as a sensing layer and sparse ZnSe NWs, which were converted from ZnO NWs after selenization process, were embedded in the CIAS film to improve the amplification performance of the NIR PDs. X-ray diffraction patterns show that the CIAS film is a single phased polycrystalline film. Scanning electron microscopy was used to examine the morphology of the CIAS film and the growth of NWs. Two detection schemes, plain Al–CIAS–Al metal–semiconductor–metal structure and vertical structure with CIAS/ZnSe NWs annular p–n junctions, were studied. The nano-structured NIR PDs demonstrate two orders of magnitude for the annular p–n junction and one order of magnitude for the MSM structure in photocurrent amplification. The responsivities of the PDs using both sensing structures have the same cut-off frequency near 790 nm. - Highlights: ► We demonstrate nano-structured Cu(In,Al)Se{sub 2} near-infrared photodetectors. ► Photodetectors were fabricated on ZnO nanowires/ZnO/Mo/ITO glass substrate. ► Two detection schemes studied: a plain MSM structure and a vertical structure. ► Photocurrent amplification for the vertical structure is two orders of magnitude. ► Photocurrent amplification for the MSM structure is one order of magnitude.

  18. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  19. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  20. Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M

    2007-01-01

    We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed

  1. Far infrared spectroscopy of solids. I. Impurity states in Al2O3. II. Electron-hole droplets in Ge

    International Nuclear Information System (INIS)

    Aurbauch, R.L.

    1975-01-01

    Far infrared Fourier transform spectroscopy was used to study the low lying vibronic states of Mn 3+ in Al 2 O 3 and the plasma absorption of electron-hole droplets in Ge. The transmission of Mn-doped samples of Al 2 O 3 was measured in the frequency range from 3 to 30 cm -1 in applied magnetic fields up to 50 kG. Absorption lines were observed due to both ground and excited state transitions. Polarization measurements established that these absorption lines were due to electric dipole transitions. Temperature dependence measurements were used to derive a level diagram for the low lying states of Mn 3+ . A phenomenological model based on an electronic Hamiltonian was developed which successfully describes the data. The empirically determined trigonal field and spin-orbit quenching parameters of this model are 0.7 and 0.1 respectively. This quenching is attributed to the dynamic Jahn--Teller interaction. The plasma absorption of small (α) electron-hole drops in Ge was measured in the frequency range from 30 to 300 cm -1 . The observed absorption is in good agreement with measurements by Vavilov and other workers. A theoretical model which includes both intraband and interband contributions to the dielectric constant in the Rayleigh limit of Mie theory is used to describe the observed lineshape. Measurements of plasma absorption of large (γ) drops in inhomogeneously stressed Ge were made in magnetic fields up to 50 kG. The lineshape at zero applied field was calculated in the large sphere limit of Mie theory including intraband terms and a zero-strain interband term. Qualitative agreement with experiment was obtained. The peak absorption shifted quadratically with applied magnetic field and the total plasma absorption increased. No oscillatory structure was observed in the field-dependence of the total absorption

  2. Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling

    Science.gov (United States)

    Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki

    2017-07-01

    We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.

  3. Sideband cooling of micromechanical motion to the quantum ground state.

    Science.gov (United States)

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  4. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    Science.gov (United States)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We

  5. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    OpenAIRE

    G. M. Nahibasheva; A. A. Bagomaev; R. A. Musaeva

    2008-01-01

    For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  6. Symmetry Breakdown in Ground State Dissociation of HD+

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Wells, E.; Carnes, K. D.; Krishnamurthi, Vidhya; Weaver, O. L.; Esry, B. D.

    2000-01-01

    Experimental studies of the dissociation of the electronic ground state of HD + following ionization of HD by fast proton impact indicate that the H + +D 1s dissociation channel is more likely than the H1s+D + dissociation channel by about 7% . This isotopic symmetry breakdown is due to the finite nuclear mass correction to the Born-Oppenheimer approximation which makes the 1sσ state 3.7 meV lower than the 2pσ state at the dissociation limit. The measured fractions of the two dissociation channels are in agreement with coupled-channels calculations of 1sσ to 2pσ transitions. (c) 2000 The American Physical Society

  7. Bond dimension witnesses and the structure of homogeneous matrix product states

    Directory of Open Access Journals (Sweden)

    Miguel Navascues

    2018-01-01

    Full Text Available For the past twenty years, Matrix Product States (MPS have been widely used in solid state physics to approximate the ground state of one-dimensional spin chains. In this paper, we study homogeneous MPS (hMPS, or MPS constructed via site-independent tensors and a boundary condition. Exploiting a connection with the theory of matrix algebras, we derive two structural properties shared by all hMPS, namely: a there exist local operators which annihilate all hMPS of a given bond dimension; and b there exist local operators which, when applied over any hMPS of a given bond dimension, decouple (cut the particles where they act from the spin chain while at the same time join (glue the two loose ends back again into a hMPS. Armed with these tools, we show how to systematically derive `bond dimension witnesses', or 2-local operators whose expectation value allows us to lower bound the bond dimension of the underlying hMPS. We extend some of these results to the ansatz of Projected Entangled Pairs States (PEPS. As a bonus, we use our insight on the structure of hMPS to: a derive some theoretical limitations on the use of hMPS and hPEPS for ground state energy computations; b show how to decrease the complexity and boost the speed of convergence of the semidefinite programming hierarchies described in [Phys. Rev. Lett. 115, 020501 (2015] for the characterization of finite-dimensional quantum correlations.

  8. Non-Gaussian ground-state deformations near a black-hole singularity

    Science.gov (United States)

    Hofmann, Stefan; Schneider, Marc

    2017-03-01

    The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.

  9. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  10. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  11. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    International Nuclear Information System (INIS)

    Borges, L.H.C.; Barone, F.A.

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  12. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  13. Cine: Line excitation by infrared fluorescence in cometary atmospheres

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-03-01

    CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  14. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    Directory of Open Access Journals (Sweden)

    G. M. Nahibasheva

    2008-01-01

    Full Text Available For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  15. On the topological ground state of E-infinity spacetime and the super string connection

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2007-01-01

    There are at present a huge number of valid super string ground states, making the one corresponding to our own universe extremely hard to determine. Therefore it may come as quite a surprise that it is a rather simple undertaking to determine the exact topological ground state of E-infinity Cantorian spacetime theory. Similar to the ground state of the Higgs for E-infinity, the expectation value of the topological ground state is non-zero and negative. Its value is given exactly by -bar o -∼ n(1/φ) n =-(4+φ 3 ) where φ=(5-1)/2 and n represents an integer Menger-Uhryson dimension running from n=0 to n=-∼. Recalling that the average dimension of ε (∼) is given by ∼ =4+φ 3 , one could interpret this result as saying that our E-infinity spacetime may be viewed as an in itself closed manifold given by the remarkable equation: + =zeroThus in a manner of speaking, the universe could have spontaneously tunnelled into existence from virtual nothingness

  16. Narrowband infrared emitters for combat ID

    Science.gov (United States)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  17. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  18. Quantitative structural analysis of lignin by diffuse reflectance fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Schultz, T.P.; Glasser, W.G.

    1986-01-01

    Empirical quantitative relationships were established between infrared (IR) spectral information and several structural features in lignins as determined by conventional methods. The structural composition of average phenylpropane (C g ) units which significantly correlated (0.01 level) with IR peak intensities included methoxy content, aromatic hydrogen content, phenolic hydroxy content, guaiacyl/syringyl ratio, and ''hydrolysis'' and ''condensation'' ratios

  19. Quantifying confidence in density functional theory predictions of magnetic ground states

    Science.gov (United States)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there

  20. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  1. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  2. Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum

    Science.gov (United States)

    Chen, Yong-Cong; Xiu, Kai

    1993-10-01

    The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.

  3. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  4. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  5. Ground-state energy for 1D (t,U,X)-model at low densities

    International Nuclear Information System (INIS)

    Buzatu, F.D.

    1992-09-01

    In describing the properties of quasi-1D materials with a highly-screened interelectronic potential, an attractive hopping term has to be added to the Hubbard Hamiltonian. The effective interaction and the ground-state energy in ladder approximation are analyzed. At low electronic densities, the attractive part of the interaction, initially smaller than the repulsive term, can become more effective, the ground-state energy decreasing below the unperturbed value. (author). 12 refs, 4 figs

  6. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency.

    Science.gov (United States)

    Moradi, Sharif; Sharifi-Zarchi, Ali; Ahmadi, Amirhossein; Mollamohammadi, Sepideh; Stubenvoll, Alexander; Günther, Stefan; Salekdeh, Ghasem Hosseini; Asgari, Sassan; Braun, Thomas; Baharvand, Hossein

    2017-12-12

    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Search for the weak non-analog Fermi branch in the 42Sc ground state beta decay

    International Nuclear Information System (INIS)

    DelVecchio, R.M.; Daehnick, W.W.

    1978-01-01

    We have searched for the β-decay branch from the 4 2Sc ground state to the 1.837 MeV level in 4 2Ca. Since both states are J/sup π/ = 0 + , T = 1, this decay is an example of a non-analog Fermi decay which could occur by reason of some mixing of the analog ground states into the lowest excited 0 + state in both 4 2Sc and 4 2Ca. As a signal for this branch, we looked for a subsequent cascade γ ray with a Ge(Li) detector-rabbit arrangement. We found a branching ratio of (2.2 +- 1.7) x 10 - 5 relative to the superallowed ground state to ground state decay. Interpreted as an upper limit, this corresponds to a branching ratio - 5 at the 68% confidence level. This result is at the lower bound of what present theory can predict with a Coulomb force mixing calculation

  8. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  9. Use of infrared spectroscopy to study the γ-irradiated dextran structure

    International Nuclear Information System (INIS)

    Komar, V.P.; Bondarenko, N.T.; Zhbankov, R.G.; Markevich, S.V.

    1977-01-01

    Infrared spectra of the fractions of γ-irradiated dextran aqueous solutions have been investigated in the range 3800 -1 -400 cm -1 . Infrared spectra of the irradiated non-fractionated dextran do not differ from those of non-irradiated dextran whereas the spectra of the fractions beginning with the molecular weight 50x1O 3 dalton and lower differ considerably. With decreasing molecular weight of the fractions, more significant changes in the spectra are observed. A polymer obtained as a result of γ-irradiation of dextran differs in structure from the initial product. It is assumed that similar transformations can take place upon irradiation of other polysaccharides

  10. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  11. The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment

    OpenAIRE

    Scheidsteger, T.; Urbschat, H.; Griffiths, R. B.; Schellnhuber, H. J.

    1997-01-01

    A procedure is described for efficiently finding the ground state energy and configuration for a Frenkel-Kontorova model in a periodic potential, consisting of N parabolic segments of identical curvature in each period, through a numerical solution of the convex minimization problem described in the preceding paper. The key elements are the use of subdifferentials to describe the structure of the minimization problem; an intuitive picture of how to solve it, based on motion of quasiparticles;...

  12. In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity

    Science.gov (United States)

    Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.

    2007-01-01

    The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.

  13. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  14. Ground state energy and width of 7He from 8Li proton knockout

    International Nuclear Information System (INIS)

    Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.

    2008-01-01

    The ground state energy and width of 7 He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. 7 He was produced by proton knockout from a secondary 8 Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125( -15 +40 ) keV

  15. Energies of the ground state and first excited 0 sup + state in an exactly solvable pairing model

    CERN Document Server

    Dinh Dang, N

    2003-01-01

    Several approximations are tested by calculating the ground-state energy and the energy of the first excited 0 sup + state using an exactly solvable model with two symmetric levels interacting via a pairing force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation (RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA). It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the ground-state energy and the energy of the first excited 0 sup + state is achieved. (orig.)

  16. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  17. The Raman effect and its application to electronic spectroscopies in metal-centered species : Techniques and investigations in ground and excited states

    NARCIS (Netherlands)

    Browne, W.R.; J. McGarvey, J.

    In the decades since its discovery and somewhat limited early applications, Raman scattering has become the basis for the development of a variety of methods for probing molecular structure both in ground and electronically excited states. In this review, following a brief look at the underlying

  18. Topological orders in rigid states

    International Nuclear Information System (INIS)

    Wen, X.G.

    1990-01-01

    The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation

  19. Exact ground state of finite Bose-Einstein condensates on a ring

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2005-01-01

    The exact ground state of the many-body Schroedinger equation for N bosons on a one-dimensional ring interacting via a pairwise δ-function interaction is presented for up to 50 particles. The solutions are obtained by solving Lieb and Liniger's system of coupled transcendental equations numerically for finite N. The ground-state energies for repulsive and attractive interactions are shown to be smoothly connected at the point of zero interaction strength, implying that the Bethe ansatz can be used also for attractive interactions for all cases studied. For repulsive interactions the exact energies are compared to (i) Lieb and Liniger's thermodynamic limit solution and (ii) the Tonks-Girardeau gas limit. It is found that the energy of the thermodynamic limit solution can differ substantially from that of the exact solution for finite N when the interaction is weak or when N is small. A simple relation between the Tonks-Girardeau gas limit and the solution for finite interaction strength is revealed. For attractive interactions we find that the true ground-state energy is given to a good approximation by the energy of the system of N attractive bosons on an infinite line, provided the interaction is stronger than the critical interaction strength of mean-field theory

  20. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  1. Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping

    Science.gov (United States)

    Chen, K.; Strigari, F.; Sundermann, M.; Hu, Z.; Fisk, Z.; Bauer, E. D.; Rosa, P. F. S.; Sarrao, J. L.; Thompson, J. D.; Herrero-Martin, J.; Pellegrin, E.; Betto, D.; Kummer, K.; Tanaka, A.; Wirth, S.; Severing, A.

    2018-01-01

    We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M4 ,5 edges of Cd- and Sn-doped CeCoIn5. The 4 f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In1-xCdx) 5 suggests that the 4 f -conduction-electron (c f ) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In1-ySny) 5 compresses the 4 f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4 f and conduction electrons, even conveying information about direction dependencies.

  2. Ground state energies from converging and diverging power series expansions

    International Nuclear Information System (INIS)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-01-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  3. Ground state energies from converging and diverging power series expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E., E-mail: eugene-stefanovich@usa.net; Su, Q.; Grobe, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  4. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  5. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  6. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  7. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  8. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  9. Ground states for light and heavy quark hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J T [Physics Dept., Philippines Univ., Manila (Philippines)

    1994-01-01

    According to de Rujula et al. if the degenerate multiplet masses are known then it is not necessary to parametrize the interactions. With degenerate multiplet masses calculated from the spinorial decomposition of the SU(2)xSU(2) part of the SU(6)xSU(6) symmetry, the ground states for 3, 4 and 5 quark hadrons are calculated in terms of the Cartan matrix integers n[sub [alpha

  10. Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation

    Directory of Open Access Journals (Sweden)

    Y.K. Gupta

    2015-09-01

    Full Text Available The isoscalar giant monopole resonance (ISGMR strength distribution in 24Mg has been determined from background-free inelastic scattering of 386-MeV α particles at extreme forward angles, including 0∘. The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of the prolate deformation of the ground state of 24Mg.

  11. α-clustering in the ground state of 40Ca

    International Nuclear Information System (INIS)

    Michel, F.

    1976-01-01

    The anomalous large angle scattering observed in 40 Ca(α, α) is studied in the frame of a semi-microscopic model taking into account the presence of α-correlations in the ground state of 40 Ca. The calculations, performed between 18 and 29 MeV, assert the potential, non resonant nature of the phenomenon. (Auth.)

  12. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    Science.gov (United States)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  13. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  14. Structural properties of maize hybrids established by infrared spectra

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2015-01-01

    Full Text Available This paper discusses the application of the infrared (IR spectroscopy method for determination of structural properties of maize hybrid grains. The IR spectrum of maize grain has been registered in the following hybrids: ZP 341, ZP 434 and ZP 505. The existence of spectral bands varying in both number and intensity, as well as their shape, frequency and kinetics have been determined. They have been determined by valence oscillations and deformation oscillations of the following organic compounds: alkanes, alkenes, alkynes, amides, alcohols, ethers, carboxylic acids, esters and aldehydes and ketones, characteristic for biogenic compounds such as carbohydrates, proteins and lipids. In this way, possible changes in the grain structure of observed maize hybrids could be detected.

  15. Study of ground-state configuration of neutron-rich aluminium isotopes through electromagnetic excitation

    International Nuclear Information System (INIS)

    Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.

    2013-01-01

    The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature

  16. Boson and fermion many-body assemblies: Fingerprints of excitations in the ground-state wave functions, with examples of superfluid 4He and the homogeneous correlated electron liquid

    International Nuclear Information System (INIS)

    March, N.H.

    2007-08-01

    After a brief summary of some basic properties of ideal gases of bosons and of fermions, two many-body Hamiltonians are cited for which ground-state wave functions allow the generation of excited states. But because of the complexity of ground-state many-body wave functions, we then consider properties of reduced density matrices, and in particular, the diagonal element of the second-order density matrix. For both the homogeneous correlated electron liquid and for an assembly of charged bosons, the ground-state pair correlation function g(r) has fingerprints of the zero-point energy of the plasmon modes. These affect crucially the static structure factor S(k), in the long wavelength limit. This is best understood by means of the Ornstein-Zernike direct correlation function c(r), which plays an important role throughout this article. Turning from such charged liquids, both boson and fermion, to superfluid 4 He, the elevated temperature (T) structure factor S(k, T) is related, albeit approximately, to its zero-temperature counterpart, via the velocity of sound, reflecting the collective phonon excitations, and the superfluid density. Finally some future directions are pointed. (author)

  17. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties.

    Science.gov (United States)

    Dral, Pavlo O; Wu, Xin; Spörkel, Lasse; Koslowski, Axel; Thiel, Walter

    2016-03-08

    The semiempirical orthogonalization-corrected OMx methods (OM1, OM2, and OM3) go beyond the standard MNDO model by including additional interactions in the electronic structure calculation. When augmented with empirical dispersion corrections, the resulting OMx-Dn approaches offer a fast and robust treatment of noncovalent interactions. Here we evaluate the performance of the OMx and OMx-Dn methods for a variety of ground-state properties using a large and diverse collection of benchmark sets from the literature, with a total of 13035 original and derived reference data. Extensive comparisons are made with the results from established semiempirical methods (MNDO, AM1, PM3, PM6, and PM7) that also use the NDDO (neglect of diatomic differential overlap) integral approximation. Statistical evaluations show that the OMx and OMx-Dn methods outperform the other methods for most of the benchmark sets.

  18. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  19. The ground state energy of 3He droplet in the LOCV framework

    International Nuclear Information System (INIS)

    Modarres, M.; Motahari, S.; Rajabi, A.

    2012-01-01

    The (extended) lowest order constrained variational method was used to calculate the ground state energy of liquid helium 3 ( 3 He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3 He atoms are needed to get the bound state for 3 He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3 He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3 He droplet were compared with those of Variational Monte Carlo method, Diffusion Monte Carlo method and Density Functional Theory, for which a reasonable agreement was found.

  20. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  1. USE OF NEAR INFRARED TECHNOLOGY TO PREDICT FATTY ACID GROUPS IN COMMERCIAL GROUND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Sofia Ton

    2015-09-01

    Full Text Available Near infrared transmittance (NIT, 850 to 1048 nm spectroscopy was used to predict groups of fatty acids (FA, namely saturated FA (SFA, monounsaturated FA (MUFA and polyunsaturated FA (PUFA, in commercial ground meat samples aiming to develope a fast and reliable method for their determination in support of label declaration by the new EC Regulation 1169/2011. Dataset was built using 81 samples of commercial ground meat from different species: beef, pork, chicken and turkey. In some samples, meat was mixtured with different ingredients such as bread, cheese, spices and additives. Samples were first analysed by NIT instrument for spectral information and reference FA values were obtained by gas chromatographic analysis. Prediction models for SFA, MUFA and PUFA expressed on total FA exhibited coefficients of determination of calibration of 0.822, 0.367 and 0.780 on intact samples, and 0.879, 0.726 and 0.908 on minced samples, respectively. Good results were also obtained when FA groups were expressed as g/100g of fresh meat: the coefficient of determination of calibration increased to values larger than 0.915. Moreover, comparing the slightly lower coefficient of determination in crossvalidation of intact compared with minced meat suggested that equations developed for minced samples were more accurate than those built for intact products. Results highlighted the effectiveness of NIT spectroscopy to predict the major FA groups in commercial meat products.

  2. A Design of a Terahertz Microstrip Bandstop Filter with Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Arjun Kumar

    2013-01-01

    Full Text Available A planar microstrip terahertz (THz bandstop filter has been proposed with defected ground structure with high insertion loss (S21 in a stopband of −25.8 dB at 1.436 THz. The parameters of the circuit model have been extracted from the EM simulation results. A dielectric substrate of Benzocyclobutene (BCB is used to realize a compact bandstop filter using modified hexagonal dumbbell-shape defected ground structure (DB-DGS. In this paper, a defected ground structure topology is used in a λ/4, 50 Ω microstrip line at THz frequency range for compactness. No article has been reported on the microstrip line at terahertz frequency regime using DGS topology. The proposed filter can be used for sensing and detection in biomedical instruments in DNA testing. All the simulations/cosimulations are carried out using a full-wave EM simulator CST V.9 Microwave Studio, HFSS V.10, and Agilent Design Suite (ADS.

  3. Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers

    Science.gov (United States)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.

    2013-05-01

    We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.

  4. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.

    Science.gov (United States)

    Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai

    2010-12-01

    The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Delineating shallow Neogene deformation structures in northeastern Pará State using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Dilce F. Rossetti

    2003-06-01

    Full Text Available The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.A caracterização geológica de depósitos neógenos ocorrentes em sub-superfície rasa no nordeste do Estado do Pará, usando Radar de Penetração no Solo (GPR, revelou a presença de falhas normais e reversas, bem como dobras, ainda não documentadas em estudos de campo prévios. As falhas são identificadas por reflexões inclinadas que cortam bruscamente reflexões vizinhas, causando freqüentes deslocamentos de camadas. As dobras são reconhecidas por reflexões fortemente ondulantes, configurando feições côncavas e convexas que medem até 50 m de amplitude e 80 a 90 m de profundidade. Estas estruturas deformacionais desenvolvem-se, principalmente

  6. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    Science.gov (United States)

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  7. Numerical study of the t-J model: Exact ground state and flux phases

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Poilblanc, D.

    1990-01-01

    Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs

  8. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  9. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    International Nuclear Information System (INIS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-01-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound

  10. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    Science.gov (United States)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi

  11. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]- and [Gd2@C80]-

    Science.gov (United States)

    Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.

    2017-09-01

    The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.

  12. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  13. Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians

    Science.gov (United States)

    Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.

    2017-12-01

    The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.

  14. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Directory of Open Access Journals (Sweden)

    Alexander Tichai

    2016-05-01

    Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  15. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Energy Technology Data Exchange (ETDEWEB)

    Tichai, Alexander, E-mail: alexander.tichai@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Langhammer, Joachim [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Binder, Sven [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Roth, Robert, E-mail: robert.roth@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-05-10

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  16. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  17. Observation of hyperfine transitions in trapped ground-state antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: A. Olin for the ALPHA Collaboration

    2015-08-15

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  18. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  19. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  20. Application of gas-fired infra-red radiator to thermal disinfection of horticultural substrate

    International Nuclear Information System (INIS)

    Wawer, M.; Osiński, A.

    1998-01-01

    The studies were carried out on heating horticultural substrate (moor peat - bark, 1:1 by volume) with a gas-fired infra-red radiator to destroy the pests and pathogens. Minimum distance between radiator and substrate surface was determined considering assumed time of heating. Dynamics of substrate heating was determined depending on its layer thickness and kind of surface under substrate layer; black rubber, ground steel sheet and aluminium foil were used as the surface. Considerable decreasing of infra-red radiation penetrability through the substrate layer above 7 mm thick was found as well as an significant effect of the radiation reflected from the surface under substrate layer on the intensity of its heating. It was also stated that heating horticultural substrates with the gas-fired infra-red radiator enables to rise the temperature of thin substrate layer up to 70 degree of C within relatively short time [pl

  1. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor toward the Supergiant Star VY Canis Majoris

    Science.gov (United States)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-06-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 μm grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power λ/Δλ of ~2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of ~25 Lsolar. In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the 2Π1/2(J=5/2)VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 725-616 line at 29.8367 μm, the 441-312 line at 31.7721 μm, and the 432-303 line at 40.6909 μm. The higher spectral resolving power λ/Δλ of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the ``P Cygni'' profiles that are characteristic of emission from an outflowing envelope. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the UK) with the participation of ISAS and NASA.

  2. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  3. High-temperature Infrared Transmission of Free-standing Diamond Films

    Directory of Open Access Journals (Sweden)

    HEI Li-fu

    2017-02-01

    Full Text Available The combination of low absorption and extreme mechanical and thermal properties make diamond a compelling choice for some more extreme far infrared (8-12 μm window applications. The optical properties of CVD diamond at elevated temperatures are critical to many of these extreme applications. The infrared transmission of free-standing diamond films prepared by DC arc plasma jet were studied at temperature varied conditions. The surface morphology, structure feature and infrared optical properties of diamond films were tested by optical microscope, X-ray diffraction, laser Raman and Fourier-transform infrared spectroscopy. The results show that the average transmittance for 8-12μm is decreased from 65.95% at 27℃ to 52.5% at 500℃,and the transmittance drop is in three stages. Corresponding to the drop of transmittance with the temperature, diamond film absorption coefficient increases with the rise of temperature. The influence of the change of surface state of diamond films on the optical properties of diamond films is significantly greater than the influence on the internal structure.

  4. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  5. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  6. Peak response wavelengths of p- and n-type InxGa1-xAs-InP quantum well infrared photodetectors

    International Nuclear Information System (INIS)

    Fu, Y.; Willander, M.; Sengupta, D.K.

    2005-01-01

    p- and n-type In x Ga 1-x As-InP quantum wells are suitable for multi-color infrared photodetector applications in atmospheric windows due to improved barrier quality and carrier-transport properties. We apply the k.p method to study the energy band structures and optical transition properties, which show that the peak response wavelengths of p- and n-type In x Ga 1-x As-InP quantum well infrared photodetectors (QWIPs) are determined not only by the energy distance from the ground sublevels in the quantum well to the energy band edges of extended states, but also by the characteristics of the extended states. The optical phonon scattering process converts the broad absorption spectrum of the p-QWIP from 0 to 16 μm into a short-wavelength spectrum centered at 4.5 μm. The transport of electrons in the extended states of the n-QWIP is characterized by running wave boundary conditions, resulting in a theoretically optimal absorption rate by a 8-nm-thick In 0.53 Ga 0.47 As quantum well. Moreover, a conduction-band offset of 0.5 for an In x Ga 1-x As-InP (x=0.53) heterostructure gives the best data fitting of theoretical and experimental response peaks, whereas 0.55 is generally recommended in the literature. (orig.)

  7. Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei

    International Nuclear Information System (INIS)

    Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir

    2002-01-01

    It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed

  8. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  9. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  10. Radiant energy during infrared neural stimulation at the target structure

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R.

    2013-03-01

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78+/-2.15 mJ/cm2. With the angle polished fibers, a 90º change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180º, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  11. Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well

    Science.gov (United States)

    Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.

    1999-12-01

    This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.

  12. Structure of quasiparticles and their fusion algebra in fractional quantum Hall states

    International Nuclear Information System (INIS)

    Barkeshli, Maissam; Wen Xiaogang

    2009-01-01

    It was recently discovered that fractional quantum Hall (FQH) states can be characterized quantitatively by the pattern of zeros that describe how the ground-state wave function goes to zero when electrons are brought close together. Quasiparticles in the FQH states can be described in a similar quantitative way by the pattern of zeros that result when electrons are brought close to the quasiparticles. In this paper, we combine the pattern of zeros approach and the conformal field theory (CFT) approach to calculate the topological properties of quasiparticles. We discuss how the quasiparticles in FQH states naturally form representations of a magnetic translation algebra, with members of a representation differing from each other by Abelian quasiparticles. We find that this structure dramatically simplifies topological properties of the quasiparticles, such as their fusion rules, charges, and scaling dimensions, and has consequences for the ground state degeneracy of FQH states on higher genus surfaces. We find constraints on the pattern of zeros of quasiparticles that can fuse together, which allow us to derive the fusion rules of quasiparticles from their pattern of zeros, at least in the case of the (generalized and composite) parafermion states. We also calculate from CFT the number of quasiparticle types in the generalized and composite parafermion states, which confirm the result obtained previously through a completely different approach.

  13. Structure of quasiparticles and their fusion algebra in fractional quantum Hall states

    Science.gov (United States)

    Barkeshli, Maissam; Wen, Xiao-Gang

    2009-05-01

    It was recently discovered that fractional quantum Hall (FQH) states can be characterized quantitatively by the pattern of zeros that describe how the ground-state wave function goes to zero when electrons are brought close together. Quasiparticles in the FQH states can be described in a similar quantitative way by the pattern of zeros that result when electrons are brought close to the quasiparticles. In this paper, we combine the pattern of zeros approach and the conformal field theory (CFT) approach to calculate the topological properties of quasiparticles. We discuss how the quasiparticles in FQH states naturally form representations of a magnetic translation algebra, with members of a representation differing from each other by Abelian quasiparticles. We find that this structure dramatically simplifies topological properties of the quasiparticles, such as their fusion rules, charges, and scaling dimensions, and has consequences for the ground state degeneracy of FQH states on higher genus surfaces. We find constraints on the pattern of zeros of quasiparticles that can fuse together, which allow us to derive the fusion rules of quasiparticles from their pattern of zeros, at least in the case of the (generalized and composite) parafermion states. We also calculate from CFT the number of quasiparticle types in the generalized and composite parafermion states, which confirm the result obtained previously through a completely different approach.

  14. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  15. CO2-laser-microwave double-resonance spectroscopy of D2CO: precise measurement of the dipole moment in the ground state

    International Nuclear Information System (INIS)

    Tanaka, K.; Nakahara, Y.; Yamaguchi, M.; Tanaka, T.

    1987-01-01

    The method of CO 2 -laser-microwave double resonance (LMDR) with an intense electric field was used to measure Stark shifts of ground-state microwave transitions of D 2 CO. Thirty LMDR signals originating from 15 K-doublet transitions were observed, associated with the infrared transitions of the ν 4 and ν 6 bands. Least-squares analysis of the observed LMDR signals yields precise values of the coefficients in the dipole-moment expansion, μ 0 +μ/sub J/ J(J+1)+μ/sub K/ K 2 : μ 0 , 2.347 134(8) D; μ/sub j/, -4.76(10) x 10 -6 D; μ/sub K/, -28.7(18) x 10 -6 D; where one-standard-deviation uncertainties are given in parentheses. The infrared--infrared double-resonance signals of PH 3 , which were calibrated against the OCS dipole moment, were used for the electric-field calibration, allowing us to determine the dipole moment with a precision of 10 parts in 10 6 (ppm). However, the absolute accuracy of the dipole moment obtained is 50 ppm, as limited by the uncertainty of the OCS dipole moment. The effective dipole moment for the 1/sub 1.0/ reverse arrow 1/sub 1.1/ transition measured in the present study agrees well with the effective dipole moment for the 1/sub 1.0/ rotational level from a molecular-beam electric resonance experiment. The μ/sub J/ and μ/sub K/ coefficients calculated from Watson's θ/sub γ//sup α//sup β/ constants agree well with the experimental values

  16. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  17. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    Science.gov (United States)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  18. Spectroscopic factor of the 7He ground state

    International Nuclear Information System (INIS)

    Beck, F.; Frekers, D.; Neumann-Cosel, P. von; Richter, A.; Ryezayeva, N.; Thompson, I.J.

    2007-01-01

    The neutron spectroscopic factor S n of the 7 He ground state is extracted from an R-matrix analysis of a recent measurement of the 7 Li(d, 2 He) 7 He reaction with good energy resolution. The width extracted from a deconvolution of the spectrum is Γ=183(22) keV (full width at half maximum, FWHM). The result S n =0.64(9) is slightly larger than predictions of recent 'ab initio' Green's function Monte Carlo and fermionic molecular dynamics calculations

  19. Lower bounds for the ground states of He-isoelectronic series

    International Nuclear Information System (INIS)

    Fraga, Serafin

    1981-01-01

    A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series

  20. Variational calculation for the ground state of 12C

    International Nuclear Information System (INIS)

    Consoni, L.H.A.; Coelho, H.T.; Das, T.K.

    1983-01-01

    A variational calculation is done for the ground state of a 3α-particle system. Two simple trial wavefunctions are used and results are compared with an exact calculation done by the Hyperspherical Harmonic method. A modifed Ali-Bodmer potential for the α-α interaction is considered for all calculations. It is found that these simple wave functions can be very useful for phenomenological calculations. (Author) [pt

  1. Ground state solutions for diffusion system with superlinear nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhiming Luo

    2015-03-01

    where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  2. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  3. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  4. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  5. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  6. Some fundamental properties of the ground state of atoms and molecules

    International Nuclear Information System (INIS)

    Lieb, E.H.

    1986-01-01

    This paper studies the ground states of atoms and molecules in quantum mechanics and reports on some mathematically rigourous results pertaining to the matter. The non-relativistic Hamiltonian for a molecule in the static nucleus approximation is presented along with notations

  7. The ground-state energy of the ± J sping glass. A comparison of various biologically motivated algorithms

    Science.gov (United States)

    Gropengiesser, Uwe

    1995-06-01

    We compare various evlutionary strategies to determine the ground-state energy of the ± J spin glass. We show that the choice of different evolution laws is less important than a suitable treatment of the "free spins" of the system At least one combination of these strategies does not give the correct results, but the ground states of the other different strategies coincide. Therefore we are able to extrapolate the infinit-size ground-state energy for the square lattice to -1.401±0.0015 and for the simple cubic lattice to -1.786±0.004.

  8. The ground state hydrogen conformations and vibrational analysis of 2-, 3-, 4- and 5- dihydroxybenzaldehyde: A DFT study

    International Nuclear Information System (INIS)

    Cirak, C.; Saglam, A.; Ucun, F.

    2010-01-01

    The ground state hydrogen conformations of 2-, 3-, 4- and 5-dihydroxybenzaldehyde have been investigated using density functional theory (B3LYP) methods with 6-31G (d,p) basis set. The calculations have indicated that the compounds in the ground state exist with the carbonyl group O atom linked intra molecularly by the two hydrogen bonds of the two hydroxyl groups. The vibrational analyses of the ground state conformers of all the compounds were done and their optimized geometry parameters were given.

  9. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  10. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  11. A correlated-k model of radiative transfer in the near-infrared windows of Venus

    International Nuclear Information System (INIS)

    Tsang, C.C.C.; Irwin, P.G.J.; Taylor, F.W.; Wilson, C.F.

    2008-01-01

    We present a correlated-k-based model for generating synthetic spectra in the near-infrared window regions, from 1.0 to 2.5 μm, emitted from the deep atmosphere of Venus on the nightside. This approach is applicable for use with any near-infrared instrument, ground-based and space-borne, for analysis of the thermal emissions in this spectral range. We also approach this work with the view of using the model, in conjunction with a retrieval algorithm, to retrieve minor species from the Venus Express/VIRTIS instrument. An existing radiative-transfer model was adapted for Venusian conditions to deal with the prevailing high pressures and temperatures and other conditions. A comprehensive four-modal cloud structure model based on Pollack et al. [Near-infrared light from venus' nightside: a spectroscopic analysis. Icarus 1993;103:1-42], using refractive indices for a 75% H 2 SO 4 25% H 2 O mixture from Palmer and Williams [Optical constants of sulfuric acid; application to the clouds of Venus? Appl Opt 1975;14(1):208-19], was also implemented. We then utilized a Mie scattering algorithm to account for the multiple scattering effect between cloud and haze layers that occur in the Venusian atmosphere. The correlated-k model is shown to produce good agreement with ground-based spectra of Venus in the near infrared, and to match the output from a line-by-line radiative-transfer model to better than 10%

  12. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  13. Infrared Fibers for Use in Space-Based Smart Structures

    Science.gov (United States)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  14. Effect of ship structure and size on grounding and collision damage distributions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    2000-01-01

    It has been argued that a major shortcoming in the International Maritime Organization (IMO) Interim Guidelines for Approval of Alternative Methods of Design and Construction of Oil Tankers in Collision and Grounding is that grounding and collision damages normalized by the main dimensions...... are expressed in simple expressions involving structural dimensions and the building material of the ships. The study shows that the density distribution for collision and grounding damages normalized by the main dimensions of the ship depends on the size of the ship. A larger ship has a higher probability...

  15. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  16. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding

    2014-01-01

    Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet-triplet energy gap (ΔES-T ≅ -1.78 kcal mol-1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future. This journal

  17. Design and Preparation of a Micro-Pyramid Structured Thin Film for Broadband Infrared Antireflection

    Directory of Open Access Journals (Sweden)

    Shaobo Ge

    2018-05-01

    Full Text Available A micro-pyramid structured thin film with a broad-band infrared antireflection property is designed and fabricated by using the single-point diamond turning (SPDT technique and combined with nano-imprint lithography (NIL. A structure with dimensions of 10 μm pitch and 5 μm height is transferred from the copper mold to the silicon nitride optical film by using NIL and proportional inductively-coupled plasma (ICP etching. Reflectance of the micro-optical surface is reduced below 1.0% over the infrared spectral range (800–2500 nm. A finite-difference-time-domain (FDTD analysis indicates that this micro-structure can localize photons and enhance the absorption inside the micro-pyramid at long wavelengths. As described above, the micro-pyramid array has been integrated in an optical film successfully. Distinguishing from the traditional micro-optical components, considering the effect of refraction and diffraction, it is a valuable and flexible method to take account of the interference effect of optical film.

  18. A new representation for ground states and its Legendre transforms

    International Nuclear Information System (INIS)

    Cedillo, A.

    1994-01-01

    The ground-state energy of an electronic system is a functional of the number of electrons (N) and the external potential (v): E = E(N,V), this is the energy representation for ground states. In 1982, Nalewajski defined the Legendre transforms of this representation, taking advantage of the strict concavity of E with respect to their variables (concave respect v and convex respect N), and he also constructed a scheme for the reduction of derivatives of his representations. Unfortunately, N and the electronic density (p) were the independent variables of one of these representations, but p depends explicitly on N. In this work, this problem is avoided using the energy per particle (ε) as the basic variables, and the Legendre transformations can be defined. A procedure for the reduction of derivatives is generated for the new four representations and, in contrast to the Nalewajski's procedure, it only includes derivatives of the four representations. Finally, the reduction of derivatives is used to test some relationships between the hardness and softness kernels

  19. Mid-infrared studies of GaAs/AlGaAs quantum cascade structures

    International Nuclear Information System (INIS)

    Keightley, Peter Thomas

    2001-01-01

    This thesis describes an investigation of GaAs/AIGaAs Quantum Cascade (QC) structures. Mid-infrared spectroscopic techniques are employed to study several QC LED and laser structures, in order to investigate the fundamental principles underlying the operation of these state of the art devices. The results presented in this thesis include the demonstration of intersubband lasing in a GaAs/AIGaAs QC laser, which closely followed the first report of QC lasing using this materials system in 1998, and form a basis from which further research into QC lasers can be built upon. Initially, a spectroscopic investigation of several QC LEDs is presented, beginning with a comparison of the performance of two designs incorporating an active region based on a diagonal transition. These devices have single quantum well (SQW), or multi-quantum well (MQW) bridging regions and are investigated using intersubband electroluminescence (EL) spectroscopy. It is found that although growth and design are simplified by the use of a SQW bridging region, superior performance is obtained by the use of MQW bridging regions, intersubband EL and photocurrent (PC) spectroscopy are employed to study the operating characteristics of a QC LED incorporating a graded superlattice active region. EL is observed at 9 and 11μm arising from interminiband radiative transitions. Complementary intersubband and interband spectroscopic techniques have been employed to study the evolution of the electron distribution within a QC LED, with increasing bias. Below the device turn on, the transfer of electrons from the donors to the active region ground state is observed. As the bias is increased the redistribution of electrons through the bridging region is observed, in conjunction with an alignment of energy levels within the structure, close to the operating bias. Intersubband lasing has been demonstrated from a GaAs/AIGaAs QC laser at λ∼9μm. Reciprocal gain measurements have been performed to determine the

  20. Stability of the electroweak ground state in the Standard Model and its extensions

    International Nuclear Information System (INIS)

    Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni

    2016-01-01

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  1. Stability of the electroweak ground state in the Standard Model and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2016-02-10

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  2. Ground state properties of new element Z=113 and its alpha decay chain

    International Nuclear Information System (INIS)

    Tai Fei; Chen Dinghan; Xu Chang; Ren Zhongzhou

    2005-01-01

    The authors investigate the ground state properties of the new element 278 113 and of the α-decay chain with different models, where the new element Z=113 has been produced at RIKEN in Japan by cold-fusion reaction. The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model. Theoretical half-lives also reasonably agree with the data. Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278 113. The common points and differences among different models are compared and discussed. (author)

  3. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui [CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2}, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  4. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  5. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    International Nuclear Information System (INIS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-01-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N 2 , Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  6. Effect of high pressure on the ground state of low doped manganite: a neutron diffraction and transport property study

    International Nuclear Information System (INIS)

    Ghosh, Barnali; Raychaudhuri, A.K.; Siruguri, V.; Chatterji, Tapan; Thomas, Hansen; Mukovskii, Ya.M.

    2013-01-01

    Depending on the doping level x the hole-doped perovskite manganites, like La 1-x Ca x MnO 3 exhibit a wide variety of physical properties. These compounds lead their high sensitivity to thermodynamic variables like temperature, magnetic field and pressure. The structure can be modified by application of high pressure and it can be quantitative that changes the Mn-O bond length and increases the Mn-O-Mn bond angle. In some cases the pressure can bring about qualitative changes in the structure like change in the lattice structure or its symmetry. These structural factors can contribute to the effective electron transfer integral between Mn ions, which in turn can change the magnetic exchanges like the double-exchange as well as the super exchange. For low hole doping (0.15 ≤ x ≤ 0.2), the low temperature ground state is Ferromagnetic insulator (FMI). The ground state of the low doped manganite La 0.79 Ca 0.21 MnO 3 (LCMO) can be destabilized by external hydrostatic pressure. We have done electrical transport measurement under magnetic field and under high pressure for understanding the nature of the resulting phase(s) that arise from the applied hydrostatic pressure. We find that the metallic phase so created under pressure has no appreciable magnetoresistance (MR). The Neutron powder diffraction measurement done on D20 diffractometer (λ=1.3Å) at ILL, Grenoble, France under high hydrostatic pressure up to 10GPa shows that the pressure leads to a change in the crystal structure from orthorhombic to rhombohedral and leading to a change in magnetic structure also; and most importantly collapse of the magnetic moment to a low value that leads to absence of any MR under pressure induced metallization. (author)

  7. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  8. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  9. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  10. Line list for the ground state of CaF

    Science.gov (United States)

    Hou, Shilin; Bernath, Peter F.

    2018-05-01

    The molecular potential energy function and electronic dipole moment function for the ground state of CaF were studied with MRCI, ACPF, and RCCSD(T) ab initio calculations. The RCCSD(T) potential function reproduces the experimental vibrational intervals to within ∼2 cm-1. The RCCSD(T) dipole moment at the equilibrium internuclear separation agrees well with the experimental value. Over a wide range of internuclear separations, far beyond the range associated with the observed spectra, the ab initio dipole moment functions are similar and highly linear. An extended Morse oscillator (EMO) potential function was also obtained by fitting the observed lines of the laboratory vibration-rotation and pure rotation spectra of the 40CaF X2Σ+ ground state. The fitted potential reproduces the observed transitions (v ≤ 8, N ≤ 121, Δv = 0, 1) within their experimental uncertainties. With this EMO potential and the RCCSD(T) dipole moment function, line lists for 40CaF, 42CaF, 43CaF, 44CaF, 46CaF, and 48CaF were computed for v ≤ 10, N ≤ 121, Δv = 0-10. The calculated emission spectra are in good agreement with an observed laboratory spectrum of CaF at a sample temperature of 1873 K.

  11. Harmonic Suppressed Slot Antennas Using Rectangular/Circular Defected Ground Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Saeid Ghaffarian

    2012-01-01

    Full Text Available Two wide rectangle-shaped microstrip-fed 2.6-GHz slot antennas using defected ground structures (DGSs with a low design complexity are proposed to achieve wideband harmonic suppression. To accomplish this, two rectangular DGSs (RDGSs in the first antenna and two circular DGSs (CDGSs in the second one with various dimensions are etched into the ground plane, which could have a wideband-stop characteristic. Simulated and measured reflection coefficients indicate that the two proposed structures effectively suppress the second and third harmonics up to 23 dB between 3.5 and 10.5 GHz with a maximum ripple of 2.4 dB. In addition, the radiation patterns and peak gains of the antennas can be suppressed at least 17 dB and 7.1 dBi, respectively, at the third harmonic frequency of 7.86 GHz.

  12. A Photovoltaic InAs Quantum-Dot Infrared Photodetector

    International Nuclear Information System (INIS)

    Guang-Hua, Tang; Bo, Xu; Li-Wen, Jiang; Jin-Xia, Kong; Ning, Kong; De-Chun, Liang; Ping, Liang; Xiao-Ling, Ye; Peng, Jin; Feng-Qi, Liu; Yong-Hai, Chen; Zhan-Guo, Wang

    2010-01-01

    A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78K, a clear spectral response in the range of 2–7 μm has been obtained with peaks at 3.1, 4.8 and 5.7 μm. The bandgap energies of GaAs and Alo.2Gao.sAs at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure

  13. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Fabrocini, A.

    2005-01-01

    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x∼0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x

  14. Perturbative correction to the ground-state properties of one-dimensional strongly interacting bosons in a harmonic trap

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.

    2010-01-01

    We calculate the first-order perturbation correction to the ground-state energy and chemical potential of a harmonically trapped boson gas with contact interactions about the infinite repulsion Tonks-Girardeau limit. With c denoting the interaction strength, we find that, for a large number of particles N, the 1/c correction to the ground-state energy increases as N 5/2 , in contrast to the unperturbed Tonks-Girardeau value that is proportional to N 2 . We describe a thermodynamic scaling limit for the trapping frequency that yields an extensive ground-state energy and reproduces the zero temperature thermodynamics obtained by a local-density approximation.

  15. Inelastic response evaluation of steel frame structure subjected to near-fault ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Kim, Hyung Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-04-01

    A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. It is likely that these faults would be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of nuclear power plants located near the fault. This study was performed to acquire overall knowledge of near-fault ground motions and evaluate inealstic response characteristics of near-fault ground motions. Although Korean peninsular is not located in the strong earthquake region, it is necessary to evaluate seismic safety of NPP for the earthquakes occurred in near-fault area with characteristics different from that of general far-fault earthquakes in order to improve seismic safety of existing NPP structures and equipment. As a result, for the seismic safety evaluation of NPP structures and equipment considering near-fault effects, this report will give many valuable information. In order to improve seismic safety of NPP structures and equipment against near-fault ground motions, it is necessary to consider inelastic response characteristics of near-fault ground motions in current design code. Also in Korea where these studies are immature yet, in the future more works of near-fault earthquakes must be accomplished.

  16. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  17. Hyperfine structure of ScI by infrared Fourier transform spectroscopy

    International Nuclear Information System (INIS)

    Aboussaid, A.; Carleer, M.; Hurtmans, D.; Biemont, E.; Godefroid, M.R.

    1996-01-01

    The spectrum of scandium was recorded in the infrared region using a high resolution Fourier transform spectrometer and a hollow-cathode discharge. Hyperfine structures of the lines connecting the 3d 2 4s and 3d4s4p level systems of Sc 45 I were observed between 4000 and 5000 cm -1 . The structures were not completely resolved but the individual line contributions to the complex profiles were simulated using the 3d 2 4s 4 F J hyperfine structure constants previously measured with a high precision by laser techniques. We investigate the possibility of extracting the hyperfine constants of the 3d4s4p levels from a least-squares fit of the line profiles, assuming a Doppler lineshape and theoretical relative intensities. New results are presented for 12 levels. (orig.)

  18. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding; Lee, Sangsu; Zheng, Bin; Sun, Zhe; Zeng, Wangdong; Huang, Kuo-Wei; Furukawa, Ko; Kim, Dongho; Webster, Richard D.; Wu, Jishan

    2014-01-01

    and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate

  19. COLLISION STRENGTHS AND EFFECTIVE COLLISION STRENGTHS FOR TRANSITIONS WITHIN THE GROUND-STATE CONFIGURATION OF S III

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C. E.; Ramsbottom, C. A.; Scott, M. P., E-mail: c.hudson@qub.ac.uk, E-mail: c.ramsbottom@qub.ac.uk, E-mail: p.scott@qub.ac.uk [Department of Applied Maths and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2012-05-01

    We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s {sup 2}3p {sup 23} P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1} S{sub 0}, and the values given resolve a discrepancy between two previous R-matrix calculations.

  20. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  1. Computer simulation and implementation of defected ground structure on a microstrip antenna

    Science.gov (United States)

    Adrian, H.; Rambe, A. H.; Suherman

    2018-03-01

    Defected Ground Structure (DGS) is a method reducing etching area on antenna ground to form desirable antenna’s ground field. This paper reports the method impact on microstrip antennas working on 1800 and 2400 MHz. These frequencies are important as many radio network applications such mobile phones and wireless devices working on these channels. The assessments were performed by simulating and fabricating the evaluated antennas. Both simulation data and implementation measurements show that DGS successfully improves antenna performances by increasing bandwidth up to 19%, reducing return loss up to 109% and increasing gain up to 33%.

  2. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  3. 2014 - Color & Infrared - Northeastern Vermont (0.5m)

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata record describes the acquisition and production of natural color and color infrared digital ground orthoimagery covering a portion...

  4. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  5. Basic equations of the quasiparticle-phonon nuclear model with the effects due to the Pauli principle and the phonon ground state correlations

    International Nuclear Information System (INIS)

    Nguyen Dinh Dang; Voronov, V.V.

    1983-01-01

    A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed

  6. A Micromachined Infrared Senor for an Infrared Focal Plane Array

    Directory of Open Access Journals (Sweden)

    Seong M. Cho

    2008-04-01

    Full Text Available A micromachined infrared sensor for an infrared focal plane array has been designed and fabricated. Amorphous silicon was used as a sensing material, and silicon nitride was used as a membrane material. To get a good absorption in infrared range, the sensor structure was designed as a l/4 cavity structure. A Ni-Cr film was selected as an electrode material and mixed etching scheme was applied in the patterning process of the Ni-Cr electrode. All the processes were made in 0.5 μm iMEMS fabricated in the Electronics and Telecommunication Research Institute (ETRI. The processed MEMS sensor had a small membrane deflection less than 0.15 μm. This small deflection can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range of 8 ~ 14 μm. The processed infrared sensor showed high responsivity of ~230 kV/W at 1.0V bias and 2 Hz operation condition. The time constant of the sensor was 8.6 msec, which means that the sensor is suitable to be operated in 30 Hz frame rate.

  7. Processing Infrared Images For Fire Management Applications

    Science.gov (United States)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  8. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  9. Magnetic activity at infrared frequencies in structured metallic photonic crystals

    International Nuclear Information System (INIS)

    O'Brien, S.; Pendry, J.P.

    2002-01-01

    We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the negative permeability is a resonance due to the internal inductance and capacitance of the structure. We also present an analytic model for the effective permeability of the crystal. The model reveals the importance of the inertial inductance due to the finite mass of the electrons in the metal. We find that this contribution to the inductance has implications for the design of metallic magnetic structures in the optical region of the spectrum. We show that the magnetic activity in the structure is accompanied by the concentration of the incident field energy into very small volumes within the structure. This property will allow us to considerably enhance non-linear effects with minute quantities of material. (author)

  10. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  11. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation.

    Science.gov (United States)

    Kujawa, Jolanta; Pasternak, Kamila; Zavodnik, Ilya; Irzmański, Robert; Wróbel, Dominika; Bryszewska, Maria

    2014-09-01

    The therapeutic effects of low-power laser radiation of different wavelengths and light doses are well known, but the biochemical mechanism of the interaction of laser light with living cells is not fully understood. We have investigated the effect of MLS (Multiwave Locked System) laser near-infrared irradiation on cell membrane structure, functional properties, and free radical generation using human red blood cells and breast cancer MCF-4 cells. The cells were irradiated with low-intensity MLS near-infrared (simultaneously 808 nm, continuous emission and 905 nm, pulse emission, pulse-wave frequency, 1,000 or 2,000 Hz) laser light at light doses from 0 to 15 J (average power density 212.5 mW/cm(2), spot size was 3.18 cm(2)) at 22 °C, the activity membrane bound acetylcholinesterase, cell stability, anti-oxidative activity, and free radical generation were the parameters used in characterizing the structural and functional changes of the cell. Near-infrared low-intensity laser radiation changed the acetylcholinesterase activity of the red blood cell membrane in a dose-dependent manner: There was a considerable increase of maximal enzymatic rate and Michaelis constant due to changes in the membrane structure. Integral parameters such as erythrocyte stability, membrane lipid peroxidation, or methemoglobin levels remained unchanged. Anti-oxidative capacity of the red blood cells increased after MLS laser irradiation. This irradiation induced a time-dependent increase in free radical generation in MCF-4 cells. Low-intensity near-infrared MLS laser radiation induces free radical generation and changes enzymatic and anti-oxidative activities of cellular components. Free radical generation may be the mechanism of the biomodulative effect of laser radiation.

  12. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  13. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    Science.gov (United States)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  14. Equilibrium states and ground state of two-dimensional fluid foams

    International Nuclear Information System (INIS)

    Graner, F.; Jiang, Y.; Janiaud, E.; Flament, C.

    2001-01-01

    We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs ''repel'' while charges of the opposite signs ''attract;'' (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams

  15. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  16. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  17. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  18. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  19. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  20. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.