WorldWideScience

Sample records for ground-state moment analysis

  1. Measurement scheme and analysis for weak ground state hyperfine transition moments through two-pathway coherent control

    CERN Document Server

    Choi, J

    2016-01-01

    We report our detailed analysis of a table-top system for the measurement of the weak-force-induced electric dipole moment of a ground state hyperfine transition carried out in an atomic beam geometry. We describe an experimental configuration of conductors for application of orthogonal r.f. and static electric fields, with cavity enhancement of the r.f. field amplitude, that allows confinement of the r.f. field to a region in which the static fields are uniform and well-characterized. We carry out detailed numerical simulations of the field modes, and analyze the expected magnitude of statistical and systematic limits to the measurement of this transition amplitude in atomic cesium. The combination of an atomic beam with this configuration leads to strong suppression of magnetic dipole contributions to the atomic signal. The application of this technique to the measurement of extremely weak transition amplitudes in other atomic systems, especially alkali metals, seems very feasible.

  2. High-precision quadrupole moment reveals significant intruder component in 20 13 33Al ground state

    Science.gov (United States)

    Heylen, H.; De Rydt, M.; Neyens, G.; Bissell, M. L.; Caceres, L.; Chevrier, R.; Daugas, J. M.; Ichikawa, Y.; Ishibashi, Y.; Kamalou, O.; Mertzimekis, T. J.; Morel, P.; Papuga, J.; Poves, A.; Rajabali, M. M.; Stödel, C.; Thomas, J. C.; Ueno, H.; Utsuno, Y.; Yoshida, N.; Yoshimi, A.

    2016-09-01

    The electric quadrupole moment of the 20 13 33Al ground state, located at the border of the island of inversion, was obtained using continuous-beam β -detected nuclear quadrupole resonance (β -NQR). From the measured quadrupole coupling constant νQ=2.31 (4 ) MHz in an α -Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: 33Al>Qs 141 (3 ) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N =20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z ≥14 isotopes.

  3. High-precision quadrupole moment reveals significant intruder component in 33Al20 ground state

    CERN Document Server

    Heylen, H; Neyens, G; Bissell, M L; Caceres, L; Chevrier, R; Daugas, J M; Ichikawa, Y; Ishibashi, Y; Kamalou, O; Mertzimekis, T J; Morel, P; Papuga, J; Poves, A; Rajabali, M M; Stodel, C; Thomas, J C; Ueno, H; Utsuno, Y; Yoshida, N; Yoshimi, A

    2016-01-01

    The electric quadrupole moment of the 33Al20 ground state, located at the border of the island of inversion, was obtained using continuous-beam beta-detected nuclear quadrupole resonance (beta-NQR). From the measured quadrupole coupling constant Q = 2.31(4) MHz in an alpha-Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: Qs= 141(3) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N = 20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z>14 isotopes.

  4. Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2012-01-01

    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.

  5. Nuclear ground-state spin and magnetic moment of 21Mg

    CERN Document Server

    Krämer, J; De Rydt, M; Flanagan, K T; Geppert, Ch; Kowalska, M; Lievens, P; Neugart, R; Neyens, G; Nörtershäuser, W; Stroke, H H; Vingerhoets, P; Yordanov, D T

    2009-01-01

    We present the results of combined laser spectroscopy and nuclear magnetic resonance studies of 21Mg. The nuclear ground-state spin was measured to be I=5/2 with a magnetic moment of μ=−0.983(7)μN. The isoscalar magnetic moment of the mirror pair is evaluated and compared to the extreme single-particle prediction and to nuclear shell-model calculations. We determine an isoscalar spin expectation value of σ=1.15(2), which is significantly greater than the empirical limit of unity given by the Schmidt values of the magnetic moments. Shell-model calculations taking into account isospin non-conserving effects, are in agreement with our experimental results.

  6. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    Science.gov (United States)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  7. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    Science.gov (United States)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  8. Analysis of ground state in random bipartite matching

    CERN Document Server

    Shi, Gui-Yuan; Liao, Hao; Zhang, Yi-Cheng

    2015-01-01

    In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some intrinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.

  9. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  10. Permanent Electron Electric Dipole Moment Search in the X^3Δ_1 Ground State of Tungsten Carbide Molecules

    Science.gov (United States)

    Lee, Jeongwon; Chen, Jinhai; Leanhardt, Aaron

    2011-06-01

    We are developing an experiment to search for the permanent electric dipole moment (EDM) of the electron using the valence electrons in the X^3Δ_1 ground state of Tungsten Carbide (WC) molecules. Currently, we are detecting the molecules by Laser Induced Fluorescence spectroscopy at ˜75cm downstream of a pulsed ablation beam source. We have a detection rate of ˜10 182W12C molecules/second in X^3Δ_1, v"=0, J"=1 state with geometric detection efficiency of 0.004. A continuous WC molecular beam is under development. Additionally, preliminary measurements of the 183W12C hyperfine structure will be presented.

  11. Fast switching NMR system for measurements of ground-state quadrupole moments of short-lived nuclei

    CERN Document Server

    Minamisono, K; Crawford, H L; Mantica, P F; Matsuta, K; Minamisono, T; Pinter, J S; Stoker, J B

    2008-01-01

    A beta-ray detecting nuclear quadrupole resonance system has been developed at NSCL/MSU to measure ground-state electric quadrupole moments of short-lived nuclei produced as fast rare isotope beams. This system enables quick and sequential application of multiple transition frequencies over a wide range. Fast switching between variable capacitors in resonance circuits ensures sufficient power delivery to the coil in the beta-ray detecting nuclear magnetic resonance technique. The fast switching technique enhances detection efficiency of resonance signals and is especially useful when the polarization and/or production rate of the nucleus of interest are small and when the nuclear spin is large.

  12. The development of pure β-NQR techniques for measurements of nuclear ground state quadrupole moments in lithium isotopes

    Science.gov (United States)

    Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

    2011-09-01

    A β-NQR spectrometer becomes a powerful tool to study changes in nuclear ground state properties along isotopic chains when coupled to a laser excitation beamline to polarise the nuclei of interest. Recently, the β-NQR technique in a zero magnetic field has been applied for the first-time to measure ratios of static nuclear quadrupole moments of, Li. Preliminary results of the experiment determining the ratios Q9/Q8 and Q11/Q9 show agreement with present literature values with improved precision.

  13. Measurement of the spin and magnetic moment of $^{31}$Mg Evidence for a strongly deformed intruder ground state

    CERN Document Server

    Nevens, G; Yordanov, D; Blaum, K; Himpe, P; Lievens, P; Mallion, S; Neugart, R; Vermeulen, N; Utsuno, Y; Otsuka, T

    2005-01-01

    Unambiguous values of the spin and magnetic moment of $^{31}$Mg are obtained by combining the results of a hyperfine-structure measurement and a $\\beta$-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear $\\textit{g}$-factor and spin $\\scriptstyle\\textrm{I}$= 1/2, the magnetic moment $\\mu(^{31}\\!$Mg)=-0.88355(15)$\\mu\\scriptstyle_\\textrm{N}$ is deduced. A revised level scheme of $^{31}$Mg( Z=12, N=19 ) with ground state spin/parity $\\scriptstyle\\textrm{I}$$^{\\pi}$= 1/2$^{+}$ is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500keV. Advanced shell-model calculations and the Nilsson model suggest that the $\\scriptstyle\\textrm{I}$$^{\\pi}$= 1/2$^{+}$ ground state is a strongly prolate deformed intruder state. This result plays a key role for the understanding of nuclear structure changes due to the disappearance of the N=20 shell gap in neutron-rich nuclei.

  14. Conformational study and ground state dipole moments of two ketene dithioacetal compounds

    Science.gov (United States)

    Negroni, B.; Botrel, A.; Hérail, M.; Proutière, A.

    1997-03-01

    Dipole moments (μ) of methyl-2-(1,3-dithietan-2-yliden)-3-oxobutanoate ( 1) and methyl-2-(1,3-dithiolan-2-yliden)-3-oxobutanoate ( 2) were measured in benzene solutions. Calculations of μ were performed using both the quantum chemical semiempirical PM3 method and the bond moments additivity model with additional electrostatic interaction calculations in the case of zwitterionic forms. A comparison of calculated values with the experimental ones shows that the electronic delocalization is larger for 2 than for 1 and more pronounced in the solid state than in solution for both molecules, in qualitative agreement with their first nonlinear polarizabilities β(2ω).

  15. Global Dipole Moment Function for the X1 Sigma+ Ground State of CO

    Science.gov (United States)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1994-01-01

    We have studied the dipole moment function (DMF) for the X(sup 1)Sigma(sup +) state of CO as a function of the completeness of the one- and n-particle treatments. Our best DMF is obtained using an augmented correlation-consistent quadruple-zeta basis set with external correlation included using the averaged-coupled-pair functional (ACPF) approach from a complete-active-space self-consistent-field zeroth-order reference. The DMF evaluated using the finite-field approach is in far better agreement with the experimentally deduced DMF than all previous theoretical determinations, but systematic differences still remain in the DMF at larger internuclear distances that give rise to significant discrepancies between the theoretical and experimental Einstein coefficients for transitions involving vibrational quantum numbers above about Upsilon=15.

  16. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

    Directory of Open Access Journals (Sweden)

    Eduardo Mattei

    2013-11-01

    Full Text Available We introduce a Hamiltonian for two interacting su(2 spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight. Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian.

  17. Nuclear electromagnetic moments of the ground states of /sup 148/Pm and /sup 210/Bi calculated with phenomenological wave functions derived from analyses of. beta. -decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, O.A.; Szybisz, L.

    1983-12-01

    The magnetic dipole and electric quadrupole moments of the ground states of /sup 148/Pm and /sup 210/Bi are evaluated with phenomenological wave functions derived from ..beta..-decay studies published in previous works. It is found that these wave functions account satisfactorily for the experimental data of both nuclear moments of the /sup 210/Bi ground state. In the case of /sup 148/Pm, while the calculated value of the electric quadrupole moment is not inconsistent with the experimental data, a strong disagreement between theory and experiment is found for the magnetic dipole moment. We attribute this failure to the use of a too small configuration space for the expansion of the nuclear wave function of /sup 148/Pm.

  18. Nuclear electromagnetic moments of the ground states of148Pm and210Bi calculated with phenomenological wave functions derived from analyses of β-decay experiments

    Science.gov (United States)

    Rosso, O. A.; Szybisz, L.

    1983-10-01

    The magnetic dipole and electric quadrupole moments of the ground states of148Pm and210Bi are evaluated with phenomenological wave functions derived from β-decay studies published in previous works. It is found that these wave functions account satisfactorily for the experimental data of both nuclear moments of the210Bi ground state. In the case of148Pm, while the calculated value of the electric quadrupole moment is not inconsistent with the experimental data, a strong disagreement between theory and experiment is found for the magnetic dipole moment. We attribute this failure to the use of a too small configuration space for the expansion of the nuclear wave function of148Pm.

  19. Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods.

    Science.gov (United States)

    Kumari, Rekha; Varghese, Anitha; George, Louis

    2017-01-01

    Absorption and fluorescence studies on novel Schiff bases (E)-4-(4-(4-nitro benzylideneamino)benzyl)oxazolidin-2-one (NBOA) and (E)-4-(4-(4-chlorobenzylidene amino)benzyl)oxazolidin-2-one (CBOA) were recorded in a series of twelve solvents upon increasing polarity at room temperature. Large Stokes shift indicates bathochromic fluorescence band for both the molecules. The photoluminescence properties of Schiff bases containing electron withdrawing and donating substituents were analyzed. Intramolecular charge transfer behavior can be studied based on the influence of different substituents in Schiff bases. Changes in position and intensity of absorption and fluorescence spectra are responsible for the stabilization of singlet excited-states of Schiff base molecules with different substituents, in polar solvents. This is attributed to the Intramolecular charge transfer (ICT) mechanism. In case of electron donating (-Cl) substituent, ICT contributes largely to positive solvatochromism when compared to electron withdrawing (-NO2) substituent. Ground-state and singlet excited-state dipole moments of NBOA and CBOA were calculated experimentally using solvent polarity function approaches given by Lippert-Mataga, Bakhshiev, Kawskii-Chamma-Viallet and Reichardt. Due to considerable π- electron density redistribution, singlet excited-state dipole moment was found to be greater than ground-state dipole moment. Ground-state dipole moment value which was determined by quantum chemical method was used to estimate excited-state dipole moment using solvatochromic correlations. Kamlet-Abboud-Taft and Catalan multiple linear regression approaches were used to study non-specific solute-solvent interaction and hydrogen bonding interactions in detail. Optimized geometry and HOMO-LUMO energies of NBOA and CBOA have been determined by DFT and TD-DFT/PCM (B3LYP/6-311G (d, p)). Mulliken charges and molecular electrostatic potential have also been evaluated from DFT calculations.

  20. X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions

    NARCIS (Netherlands)

    van der Laan, G; Thole, BT

    1996-01-01

    Sum rules for magnetic x-ray dichroism, relating the signals of the spin-orbit split core level absorption edges to the ground-state spin and orbital operators, are expressed in jj-coupled operators. These sum rules can be used in the region of intermediate coupling by taking into account the cross

  1. Relativistic analysis of nuclear ground state densities at 135 to 200 MeV

    Indian Academy of Sciences (India)

    M A Suhail; N Neeloffer; Z A Khan

    2005-12-01

    A relativistic analysis of p + 40Ca elastic scattering with different nuclear ground state target densities at 135 to 200 MeV is presented in this paper. It is found that the IGO densities are more consistent in reproducing the data over the energy range considered here. The reproduction of spin-rotation-function data with the simultaneous fitting of differential cross-section and analyzing power, and the appearance of wine-bottle-bottom shaped Re eff() in the transition energy region, sensitively depends on the input nuclear ground state densities and are not solely the relativistic characteristic signatures. We also found that the wine-bottle-bottom shaped Re eff() is preferred by the spin observables in the transition energy region (i.e. 181 MeV to 200 MeV).

  2. MCSCF/CI ground state potential energy surface, dipole moment function, and gas phase vibrational frequencies for the nitrogen dioxide positive ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D.G.

    1980-05-01

    The ground state potential energy surface for the nitrogen dioxide positive ion, NO/sup +//sub 2/X /sup 1/..sigma../sup +//sub g/(..sigma../sup +/,A/sub 1/,A'), has been scanned with a correlated wave function to obtain directly, for the first time, the gas phase equilibrium geometry, force constants, vibrational frequencies, and dipole moment function. The wave function for this scan was constructed from a double-zeta plus polarization one-electron basis with a 12 configuration MCSCF determination of the orbital basis for a full valence /sup 1/..sigma../sup +//sub g/ configuration interaction expansion. The calculated equilibrium bond length is 1.12 A. The vibrational frequencies are computed to be ..nu../sub 1/=1514, ..nu../sub 2/=679, and ..nu../sub 3/=2614 cm/sup -1/ The present ab initio results differ significantly from crystalline spectroscopic studies and are, thus, the best values available for the gas phase vibrational frequencies. The dipole moment function is nonzero at the ..sigma../sup +/, A/sub 1/, and A' geometries included in the potential surface scan, and is obtained here to provide for the future a priori calculation of the infrared band intensities.

  3. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  4. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  5. Perturbative analysis of the ground-state wavefunctions of the quantum anharmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Xie Qiongtao [Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081 (China)], E-mail: xieqiongtao@yahoo.cn

    2009-10-23

    We investigate the perturbative expansions of the ground-state wavefunctions of the quantum anharmonic oscillators. With an appropriate change of spatial scale, the weak-coupling Schroedinger equation is transformed to an equivalent strong-coupling one. The Friedberg-Lee-Zhao method is applied to obtain the improved perturbative expansions. These perturbative expansions give a correction to the WKB results for large spatial distances, and reproduce the conventional weak-coupling results for small spatial distances.

  6. Perturbative analysis of the ground-state wavefunctions of the quantum anharmonic oscillators

    Science.gov (United States)

    Xie, Qiong-Tao

    2009-10-01

    We investigate the perturbative expansions of the ground-state wavefunctions of the quantum anharmonic oscillators. With an appropriate change of spatial scale, the weak-coupling Schrödinger equation is transformed to an equivalent strong-coupling one. The Friedberg-Lee-Zhao method is applied to obtain the improved perturbative expansions. These perturbative expansions give a correction to the WKB results for large spatial distances, and reproduce the conventional weak-coupling results for small spatial distances.

  7. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    Science.gov (United States)

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  8. 单晶场三亚点阵Ising模型铁磁基态自旋微观构型及磁矩%Ferromagnetic Ground State Sping Configuration and Magnetic Moment of Three Sublattice of Ising Model in Single Crystal Field

    Institute of Scientific and Technical Information of China (English)

    李美玲; 王明勇

    2001-01-01

    根据基态能量,讨论基态的自旋微观构型,给出基态子晶格的饱和磁矩.%In this paper,according to ground state energy,microcosmic spin configuration of ground state of three sublittice is discussed,saturated magnetic moment of each sublattice in ground state is given.

  9. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Science.gov (United States)

    Peng, Bo; Kowalski, Karol

    2016-12-01

    In this paper we derive basic properties of the Green's-function matrix elements stemming from the exponential coupled-cluster (CC) parametrization of the ground-state wave function. We demonstrate that all intermediates used to express the retarded (or, equivalently, ionized) part of the Green's function in the ω representation can be expressed only through connected diagrams. Similar properties are also shared by the first-order ω derivative of the retarded part of the CC Green's function. Moreover, the first-order ω derivative of the CC Green's function can be evaluated analytically. This result can be generalized to any order of ω derivatives. Through the Dyson equation, derivatives of the corresponding CC self-energy operator can be evaluated analytically. In analogy to the CC Green's function, the corresponding CC self-energy operator can be represented by connected terms. Our analysis can easily be generalized to the advanced part of the CC Green's function.

  10. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  11. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  12. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  13. Hartree–Fock variational bounds for ground state energy of chargeless fermions with finite magnetic moment in the presence of a hard core potential: A stable ferromagnetic state

    Indian Academy of Sciences (India)

    Sudhanshu S Jha; S D Mahanti

    2007-05-01

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities when the average interparticle distance 0 becomes small compared to the magnetic length m ≡ 22/ħ2, a ferromagnetic state with spheroidal occupation function ↑ $(\\vec{k})$, involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards infinite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants cm ≡ (03/2) is not very smallcompared to 1.

  14. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  15. A neutron polarization analysis study of moment correlations in (Dy(0.4)Y(0.6))T(2) (T = Mn, Al).

    Science.gov (United States)

    Stewart, J R; Hillier, J M; Manuel, P; Cywinski, R

    2011-04-27

    We present a study of the magnetic moment correlations of two pseudo-binary C15 Laves phase compounds, (Dy(0.4)Y(0.6))Mn(2) and (Dy(0.4)Y(0.6))Al(2), both of which have spin-glass-like magnetic ground states at low temperature. We use neutron powder diffraction with polarization analysis to isolate the diffuse scattering associated with the correlated spin-glass ground state, and compare and contrast the two systems. Despite there being differences of correlation length scale, we discover that the moment-moment correlations of these two disordered magnets are quite similar over a short range, and hence conjecture that the Mn ions in (Dy(0.4)Y(0.6))Mn(2) have little influence on the ground-state magnetic properties.

  16. Electronic ground state of Ni$_2^+$

    CERN Document Server

    Zamudio-Bayer, V; Bülow, C; Leistner, G; Terasaki, A; Issendorff, B v; Lau, J T

    2016-01-01

    The $^{4}\\Phi_{9/2}$ ground state of the Ni$_2^+$ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of $7.4 \\pm 0.2$ K was achieved by buffer gas cooling of the molecular ion. The contribution of the magnetic dipole term to the x-ray magnetic circular dichroism spin sum rule amounts to $7\\, T_z = 0.17 \\pm 0.06$ $\\mu_B$ per atom, approximately 11 \\% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of $3d$ transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  17. Multipolarity of the 2-→1- , ground-state transition in 210Bi via multivariable angular correlation analysis

    Science.gov (United States)

    Cieplicka-Oryńczak, N.; Szpak, B.; Leoni, S.; Fornal, B.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.

    2016-07-01

    The multipolarity of the main transition leading to the ground state in 210Bi was investigated using the angular correlations of γ rays. The analyzed γ -coincidence data were obtained from the 209Bi(n ,γ )210Bi experiment performed at Institut Laue-Langevin Grenoble at the PF1B cold-neutron facility. The EXILL (EXOGAM at the ILL) multidetector array, consisting of 16 high-purity germanium detectors, was used to detect γ transitions. The mixing ratio of the 320-keV γ ray was defined by minimizing a multivariable χΣ2 function constructed from the coefficients of angular correlation functions for seven pairs of strong transitions in 210Bi. As a result, the almost pure M 1 multipolarity of the 320-keV γ ray was obtained, with an E 2 admixture of less than 0.6% only (95% confidence limit). Based on this multipolarity the neutron-capture cross section leading to the ground state in 210Bi, that decays in turn to radiotoxic 210Po, was determined to be within the limits 21.3(9) and 21.5(9) mb. This result is important for nuclear reactor applications.

  18. Further analysis of the connected moments expansion

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo; Rodriguez, Martin [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M, E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar, E-mail: martinalexander.rv@gmail.com [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-12-16

    By means of simple quantum-mechanical models we show that under certain conditions the main assumptions of the connected moments expansion (CMX) are no longer valid. In particular, we consider two-level systems: the harmonic oscillator and the pure quartic oscillator. Although derived from such simple models, we think that the results of this investigation may be of utility in future applications of the approach to realistic problems. We show that a straightforward analysis of the CMX exponential parameters may provide a clear indication of the success of the approach. (paper)

  19. Electric dipole moments: A global analysis

    Science.gov (United States)

    Chupp, Timothy; Ramsey-Musolf, Michael

    2015-03-01

    We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.

  20. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  1. Bayesian analysis in moment inequality models

    CERN Document Server

    Liao, Yuan; 10.1214/09-AOS714

    2010-01-01

    This paper presents a study of the large-sample behavior of the posterior distribution of a structural parameter which is partially identified by moment inequalities. The posterior density is derived based on the limited information likelihood. The posterior distribution converges to zero exponentially fast on any $\\delta$-contraction outside the identified region. Inside, it is bounded below by a positive constant if the identified region is assumed to have a nonempty interior. Our simulation evidence indicates that the Bayesian approach has advantages over frequentist methods, in the sense that, with a proper choice of the prior, the posterior provides more information about the true parameter inside the identified region. We also address the problem of moment and model selection. Our optimality criterion is the maximum posterior procedure and we show that, asymptotically, it selects the true moment/model combination with the most moment inequalities and the simplest model.

  2. Truncated Moment Analysis of Nucleon Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    A. Psaker; W. Melnitchouk; M. E. Christy; C. E. Keppel

    2007-11-16

    We employ a novel new approach using "truncated" moments, or integrals of structure functions over restricted regions of x, to study local quark-hadron duality, and the degree to which individual resonance regions are dominated by leading twists. Because truncated moments obey the same Q^2 evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.

  3. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  4. Ground state of 16O

    Science.gov (United States)

    Pieper, Steven C.; Wiringa, R. B.; Pandharipande, V. R.

    1990-01-01

    A variational method is used to study the ground state of 16O. Expectation values are computed with a cluster expansion for the noncentral correlations in the wave function; the central correlations and exchanges are treated to all orders by Monte Carlo integration. The expansion has good convergence. Results are reported for the Argonne v14 two-nucleon and Urbana VII three-nucleon potentials.

  5. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol

    2016-12-23

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CC self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.

  6. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  7. Client Good Moments: An Intensive Analysis of a Single Session.

    Science.gov (United States)

    Stalikas, Anastassios; Fitzpatrick, Marilyn

    1995-01-01

    An intensive analysis of a single counseling session conducted by Fritz Perls was carried out to examine relationships among client experiencing level, client strength of feeling, counselor interventions, and client good moments. The possibility that positive therapeutic outcome is related to the accretion of good moments is discussed. (JBJ)

  8. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...... equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface...

  9. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  10. Dynamic process analysis by moments of extreme orders

    Science.gov (United States)

    Šimberová, S.; Suk, T.

    2016-01-01

    Dynamic processes in astronomical observations are captured in various video sequences. The image datacubes are represented by the datasets of random variables. Diagnostics of a fast developing event is based on the specific behavior of the high-order moments (HOM) in time. The moment curves computed in an image video sequence give valuable information about various phases of the phenomenon and significant periods in the frequency analysis. The proposed method uses statistical moments of high and very high orders to describe and investigate the dynamic process in progress. Since these moments are highly correlated, the method of principal component analysis (PCA) has been suggested for following frequency analysis. PCA can be used both for decorrelation of the moments and for determination of the number of used moments. We experimentally illustrate performance of the method on simulated data. A typical development of the dynamic phenomenon is modeled by the moment time curve. Then applications to the real data sequences follow: solar active regions observed in the spectral line H α (wavelength 6563 A˚-Ondřejov and Kanzelhöhe observatories) in two different angular resolutions. The frequency analysis of the first few principal components showed common periods or quasi-periods of all examined events and the periods specific for individual events. The detailed analysis of the moment's methodology can contribute to the observational mode settings. The method can be applied to video sequences obtained by observing systems with various angular resolutions. It is robust to noise and it can work with high range of sampling frequencies.

  11. Optimal Moments for the Analysis of Peculiar Velocity Surveys

    CERN Document Server

    Watkins, R; Chambers, S W; Gorman, P; Melott, A L; Watkins, Richard; Feldman, Hume A.; Chambers, Scott W.; Gorman, Patrick; Melott, Adrian L.

    2001-01-01

    We present a new method for the analysis of peculiar velocity surveys which removes contributions to velocities from small scale, nonlinear velocity modes while retaining information about large scale motions. Our method utilizes Karhunen--Lo\\`eve methods of data compression to construct a set of moments out of the velocities which are minimally sensitive to small scale power. The set of moments are then used in a likelihood analysis. We develop criteria for the selection of moments, as well as a statistic to quantify the overall sensitivity of a set of moments to small scale power. Although we discuss our method in the context of peculiar velocity surveys, it may also prove useful in other situations where data filtering is required.

  12. Error Estimation for Moments Analysis in Heavy Ion Collision Experiment

    CERN Document Server

    Luo, Xiaofeng

    2011-01-01

    Higher moments of conserved quantities are predicted to be sensitive to the correlation length and connected to the thermodynamic susceptibility. Thus, higher moments of net-baryon, net-charge and net-strangeness have been extensively studied theoretically and experimentally to explore phase structure and bulk properties of QCD matters created in heavy ion collision experiment. As the higher moments analysis is statistics hungry study, the error estimation is crucial to extract physics information from the limited experimental data. In this paper, we will derive the limit distributions and error formula based on Delta theorem in statistics for various order moments used in the experimental data analysis. The Monte Carlo simulation is also applied to test the error formula.

  13. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    Science.gov (United States)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  14. Optimal Moments for Velocity Fields Analysis

    CERN Document Server

    Feldman, H A; Melott, A; Feldman, Hume A; Watkins, Richard; Melott, Adrian; Proxy, Will Chambers; ccsd-00000954, ccsd

    2003-01-01

    We describe a new method of overcoming problems inherent in peculiar velocity surveys by using data compression as a filter with which to separate large-scale, linear flows from small-scale noise that biases the results systematically. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter $\\Gamma$ and amplitude $\\beta$, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.

  15. Higher order statistical moment application for solar PV potential analysis

    Science.gov (United States)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  16. Quench of a symmetry-broken ground state

    Science.gov (United States)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  17. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  18. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  19. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  20. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  1. Photoabsorption by ground-state alkali-metal atoms.

    Science.gov (United States)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  2. On the ground state of metallic hydrogen

    Science.gov (United States)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  3. A global approach to ground state solutions

    Directory of Open Access Journals (Sweden)

    Philip Korman

    2008-08-01

    Full Text Available We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  4. A global approach to ground state solutions

    OpenAIRE

    2008-01-01

    We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  5. Mixed configuration ground state in iron(II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-23

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  6. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  7. Moment methods in extremal geometry

    NARCIS (Netherlands)

    De Laat, D.

    2016-01-01

    In this thesis we develop techniques for solving problems in extremal geometry. We give an infinite dimensional generalization of moment techniques from polynomial optimization. We use this to construct semidefinite programming hierarchies for approximating optimal packing densities and ground state

  8. Moment methods in extremal geometry

    NARCIS (Netherlands)

    De Laat, D.

    2016-01-01

    In this thesis we develop techniques for solving problems in extremal geometry. We give an infinite dimensional generalization of moment techniques from polynomial optimization. We use this to construct semidefinite programming hierarchies for approximating optimal packing densities and ground state

  9. Ground states for nonuniform periodic Ising chains

    Science.gov (United States)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  10. Solar Neutrinos with Magnetic Moment Rates and Global Analysis

    CERN Document Server

    Pulido, J

    2002-01-01

    A statistical analysis of the solar neutrino data is presented assuming the solar neutrino deficit to be resolved by the resonant interaction of the neutrino magnetic moment with the solar magnetic field. Four field profiles are investigated, all exhibiting a rapid increase across the bottom of the convective zone, one of them closely following the requirements from recent solar physics investigations. First a 'rates only' analysis is performed whose best fits appear to be remarkably better than all fits from oscillations. A global analysis then follows with the corresponding best fits of a comparable quality to the LMA one. Despite the fact that the resonant spin flavour precession does not predict any day/night effect, the separate SuperKamiokande day and night data are included in the analysis in order to allow for a direct comparison with oscillation scenarios. Remarkably enough, the best fit for rates and global analysis which is compatible with most astrophysical bounds on the neutrino magnetic moment i...

  11. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  12. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  13. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  14. Magnetostriction-driven ground-state stabilization in 2H perovskites

    Science.gov (United States)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  15. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  16. Terahertz spectroscopy of ground state HD18O

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  17. Transient Analysis of Air-Core Coils by Moment Method

    Science.gov (United States)

    Fujita, Akira; Kato, Shohei; Hirai, Takao; Okabe, Shigemitu

    In electric power system a threat of lighting surge is decreased by using ground wire and arrester, but the risk of failure of transformer is still high. Winding is the most familiar conductor configuration of electromagnetic field components such as transformer, resistors, reactance device etc. Therefore, it is important that we invest the lighting surge how to advance into winding, but the electromagnet coupling in a winding makes lighting surge analysis difficult. In this paper we present transient characteristics analysis of an air-core coils by moment method in frequency domain. We calculate the inductance from time response and impedance in low frequency, and compare them with the analytical equation which is based on Nagaoka factor.

  18. Patterns of the ground states in the presence of random interactions: nucleon systems

    CERN Document Server

    Zhao, Y M; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and $\\alpha$ clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of $\\alpha$-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a sec...

  19. EIT ground-state cooling of long ion strings

    CERN Document Server

    Lechner, R; Hempel, C; Jurcevic, P; Lanyon, B P; Monz, T; Brownnutt, M; Blatt, R; Roos, C F

    2016-01-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  20. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  1. Thermal ground state and nonthermal probes

    CERN Document Server

    Grandou, Thierry

    2015-01-01

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  2. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  3. Ground states for the fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2013-05-01

    Full Text Available In this article, we show the existence of ground state solutions for the nonlinear Schrodinger equation with fractional Laplacian $$ (-Delta ^alpha u+ V(xu =lambda |u|^{p}uquadhbox{in $mathbb{R}^N$ for $alpha in (0,1$}. $$ We use the concentration compactness principle in fractional Sobolev spaces $H^alpha$ for $alpha in (0,1$. Our results generalize the corresponding results in the case $alpha =1$.

  4. Electronic Ground State of Higher Acenes

    CERN Document Server

    Jiang, De-en

    2007-01-01

    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic grou...

  5. Analysis of geometric moments as features for firearm identification.

    Science.gov (United States)

    Md Ghani, Nor Azura; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2010-05-20

    The task of identifying firearms from forensic ballistics specimens is exacting in crime investigation since the last two decades. Every firearm, regardless of its size, make and model, has its own unique 'fingerprint'. These fingerprints transfer when a firearm is fired to the fired bullet and cartridge case. The components that are involved in producing these unique characteristics are the firing chamber, breech face, firing pin, ejector, extractor and the rifling of the barrel. These unique characteristics are the critical features in identifying firearms. It allows investigators to decide on which particular firearm that has fired the bullet. Traditionally the comparison of ballistic evidence has been a tedious and time-consuming process requiring highly skilled examiners. Therefore, the main objective of this study is the extraction and identification of suitable features from firing pin impression of cartridge case images for firearm recognition. Some previous studies have shown that firing pin impression of cartridge case is one of the most important characteristics used for identifying an individual firearm. In this study, data are gathered using 747 cartridge case images captured from five different pistols of type 9mm Parabellum Vektor SP1, made in South Africa. All the images of the cartridge cases are then segmented into three regions, forming three different set of images, i.e. firing pin impression image, centre of firing pin impression image and ring of firing pin impression image. Then geometric moments up to the sixth order were generated from each part of the images to form a set of numerical features. These 48 features were found to be significantly different using the MANOVA test. This high dimension of features is then reduced into only 11 significant features using correlation analysis. Classification results using cross-validation under discriminant analysis show that 96.7% of the images were classified correctly. These results demonstrate

  6. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  7. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  8. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  9. Superimposed particles in 1D ground states

    Energy Technology Data Exchange (ETDEWEB)

    Sueto, Andras, E-mail: suto@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-01-21

    For a class of nonnegative, range-1 pair potentials in one-dimensional continuous space we prove that any classical ground state of lower density {>=}1 is a tower-lattice, i.e. a lattice formed by towers of particles the heights of which can differ only by 1, and the lattice constant is 1. The potential may be flat or may have a cusp at the origin; it can be continuous, but its derivative has a jump at 1. The result is valid on finite intervals or rings of integer length and on the whole line.

  10. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.;

    1977-01-01

    approximations, be reduced to the Stoner model. Results for the volume dependence of the ferromagnetic moment and the electronic pressure of bcc, fcc and hcp Fe are presented, together with theoretical values for the equilibrium atomic volume, the bulk modulus, the ferromagnetic moment, the spin susceptibility...

  11. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  12. Regional frequency analysis of extreme rainfalls using partial L moments method

    Science.gov (United States)

    Zakaria, Zahrahtul Amani; Shabri, Ani

    2013-07-01

    An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events.

  13. Performance improvement of a moment method for reliability analysis using kriging metamodels

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Byeong Hyeon; Cho, Tae Min; Lee, Byung Chai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jung, Do Hyun [Korea Automotive Technology Institute, Chonan (Korea, Republic of)

    2006-08-15

    Many methods for reliability analysis have been studied and one of them, a moment method, has the advantage that it doesn't require sensitivities of performance functions. The moment method for reliability analysis requires the first four moments of a performance function and then Pearson system is used for the probability of failure where the accuracy of the probability of failure greatly depends on that of the first four moments. But it is generally impossible to assess them analytically for multidimensional functions, and numerical integration is mainly used to estimate the moment. However, numerical integration requires many function evaluations and in case of involving finite element analyses, the calculation of the first four moments is very time-consuming. To solve the problem, this research proposes a new method of approximating the first four moments based on kriging metamodel. The proposed method substitutes the kriging metamodel for the performance function and can also evaluate the accuracy of the calculated moments adjusting the approximation range. Numerical examples show the proposed method can approximate the moments accurately with the less function evaluations and evaluate the accuracy of the calculated moments.

  14. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  15. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  16. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  17. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  18. Lapped Block Image Analysis via the Method of Legendre Moments

    Directory of Open Access Journals (Sweden)

    El Fadili Hakim

    2003-01-01

    Full Text Available Research investigating the use of Legendre moments for pattern recognition has been performed in recent years. This field of research remains quite open. This paper proposes a new technique based on block-based reconstruction method (BBRM using Legendre moments compared with the global reconstruction method (GRM. For alleviating the blocking artifact involved in the processing, we propose a new approach using lapped block-based reconstruction method (LBBRM. For the problem of selecting the optimal number of moment used to represent a given image, we propose the maximum entropy principle (MEP method. The main motivation of the proposed approaches is to allow fast and efficient reconstruction algorithm, with improvement of the reconstructed images quality. A binary handwritten musical character and multi-gray-level Lena image are used to demonstrate the performance of our algorithm.

  19. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  20. Phenomenological description of ground state bands for doubly even plutonium-isotopes

    CERN Document Server

    Alsoraya, A M

    2002-01-01

    The energy levels of the ground state bands of even-even plutonium-isotopes are studied according to the variable moment of inertia (VMI), variable moment of inertia nuclear softness (VMINS) and nuclear softness (NS) models. In general, the NS3 model leads to more reasonable results than the others. The backbending phenomena in these were described and discussed. The calculations of the transition probabilities B(E2) show that the effect of addition of each neutron pair on the deformation parameter (BETA) is very small. Furthermore, the proton and neutron effective charges are found to be e sub = 0.48 eb and e-v =0.33 eb.

  1. Regional analysis of annual maximum rainfall using TL-moments method

    Science.gov (United States)

    Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd

    2011-06-01

    Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.

  2. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  3. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    Science.gov (United States)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  4. Score-moment combined linear discrimination analysis (SMC-LDA) as an improved discrimination method.

    Science.gov (United States)

    Han, Jintae; Chung, Hoeil; Han, Sung-Hwan; Yoon, Moon-Young

    2007-01-01

    A new discrimination method called the score-moment combined linear discrimination analysis (SMC-LDA) has been developed and its performance has been evaluated using three practical spectroscopic datasets. The key concept of SMC-LDA was to use not only the score from principal component analysis (PCA), but also the moment of the spectrum, as inputs for LDA to improve discrimination. Along with conventional score, moment is used in spectroscopic fields as an effective alternative for spectral feature representation. Three different approaches were considered. Initially, the score generated from PCA was projected onto a two-dimensional feature space by maximizing Fisher's criterion function (conventional PCA-LDA). Next, the same procedure was performed using only moment. Finally, both score and moment were utilized simultaneously for LDA. To evaluate discrimination performances, three different spectroscopic datasets were employed: (1) infrared (IR) spectra of normal and malignant stomach tissue, (2) near-infrared (NIR) spectra of diesel and light gas oil (LGO) and (3) Raman spectra of Chinese and Korean ginseng. For each case, the best discrimination results were achieved when both score and moment were used for LDA (SMC-LDA). Since the spectral representation character of moment was different from that of score, inclusion of both score and moment for LDA provided more diversified and descriptive information.

  5. Full Moment Tensor Analysis at The Geysers Geothermal Field

    Science.gov (United States)

    Boyd, O. S.; Dreger, D. S.; Hellweg, M.; Lombard, P. N.; Ford, S. R.; Taira, T.; Taggart, J.; Weldon, T. J.

    2011-12-01

    Geothermal energy has been produced at The Geysers Geothermal Field in Northern California for more than forty years. It has been demonstrated that increased steam production and fluid injection correlates positively with changes in earthquake activity, resulting in thousands of tiny earthquakes each year with events ranging in magnitude up to 4.5. We determine source parameters for the largest of these earthquakes using a regional distance moment tensor method. We invert three-component, complete waveform data from broadband stations of the Berkeley Digital Seismic Network, the Northern California Seismic Network and the USArray deployment (2005-2007) for the complete, six-element moment tensor. Some solutions depart substantially from a pure double-couple with some events having large volumetric components. Care is needed in the assessment of the significance of the non-double-couple terms. We have worked to develop a systematic procedure for the evaluation of aleatoric and epistemic solution uncertainty (e.g. Ford et al., 2009; Ford et al., 2010). We will present the solutions for The Geysers events together with estimates of random errors and systematic errors due to imperfect station coverage and knowledge of the velocity structure, which are needed to compute Green's functions for the inversion. Preliminary results indicate that some events have large isotropic components that appear to be stable and suggestive of fluid or gas involvement during the rupture processes. We are presently incorporating full moment tensor capability in the Berkeley Seismological Laboratory's automatic processing system and analyst interface. This upgrade will enable improved monitoring at The Geysers and volcanically active regions of California.

  6. Ground-state rotational constants of 12CH 3D

    Science.gov (United States)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  7. Theoretical study on thermal decomposition of azoisobutyronitrile in ground state

    Institute of Scientific and Technical Information of China (English)

    SUN Chengke; ZHAO Hongmei; LI Zonghe

    2004-01-01

    The thermal decomposition mechanisms of azoisobutyronitrile (AIBN) in the ground state have been investigated systematically. Based on the potential energy surfaces (PES) of various possible dissociation paths obtained using the semiempirical AM1 method with partial optimization, the density function theory B3LYP/6-311G* method was employed to optimize the geometric parameters of the reactants, the intermediates, the products and the transition states,which were further confirmed by the vibrational analysis. The obtained results show that the reaction process of the two-bond (three-body) simultaneous cleavage Me2(CN)C-N=Nleading to the reaction proceeding in the former pathway. The calculation results were consistent with all the experimental facts.

  8. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  9. Ultracold Dipolar Gas of Fermionic 23Na40 K Molecules in Their Absolute Ground State.

    Science.gov (United States)

    Park, Jee Woo; Will, Sebastian A; Zwierlein, Martin W

    2015-05-22

    We report on the creation of an ultracold dipolar gas of fermionic 23Na40 K molecules in their absolute rovibrational and hyperfine ground state. Starting from weakly bound Feshbach molecules, we demonstrate hyperfine resolved two-photon transfer into the singlet X 1Σ+|v=0,J=0⟩ ground state, coherently bridging a binding energy difference of 0.65 eV via stimulated rapid adiabatic passage. The spin-polarized, nearly quantum degenerate molecular gas displays a lifetime longer than 2.5 s, highlighting NaK's stability against two-body chemical reactions. A homogeneous electric field is applied to induce a dipole moment of up to 0.8 D. With these advances, the exploration of many-body physics with strongly dipolar Fermi gases of 23Na40K molecules is within experimental reach.

  10. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  11. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  12. Classical and quantum filaments in the ground state of trapped dipolar Bose gases

    Science.gov (United States)

    Cinti, Fabio; Boninsegni, Massimo

    2017-07-01

    We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.

  13. Extremal Optimization for Ground States of the Sherrington-Kirkpatrick Spin Glass with Levy Bonds

    Science.gov (United States)

    Boettcher, Stefan

    2013-03-01

    Using the Extremal Optimization heuristic (EO),[3] ground states of the SK-spin glass are studied with bonds J distributed according to a Levy distribution P (J) ~ 1 /| J | 1 + α with | J | > 1 and 1 model with Gaussian bonds.[4] We find that the energies attain universally the Parisi-energy of the SK when the second moment of P(J) exists (α > 2). They compare favorably with recent one-step replica symmetry breaking predictions well below α = 2 . Near α = 2 , the simulations deviate significantly from theoretical expectations. The finite-size corrections exponent ω decays from the putative SK value ωSK =2/3 already well above α = 2 . The exponent ρ for the scaling of ground state energy fluctuations with system size decays linearly from its SK value for decreasing α and vanishes at α = 1 . Supported through NSF grant DMR-#1207431

  14. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  15. Analysis of Bearing Capacity of Suction Bucket Foundation Subjected to Horizontal and Moment Loadings

    OpenAIRE

    W.U. Ke; M.A. Mingyue

    2013-01-01

    The suction bucket foundation is not only supporting the vertical loading such as the sea platform and weight itself, but also subjecting to horizontal and moment loading due to wind and wave. The response of bucket foundation to combined Horizontal (H) and Moment (M) loading has been studied using 3D finite element analysis Then the proposed method is numerically implemented in the framework of the general-purpose FEM software ABAQUS. Relationship curve between the coefficient of ultimate be...

  16. Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation

    Science.gov (United States)

    Bourhill, G.; Bredas, J-L.; Cheng, L-T.; Marder, S. R.; Meyers, F.; Perry, J. W.; Tiemann, B. G.

    1993-01-01

    The dependence of the product of the first hyperpolarizability, beta, and the ground-state dipole moment, mu, for a series of donor-acceptor polyenes with a large range of ground-state polarization, was measured in a variety of solvents by electric field induced second harmonic generation. The observed behavior of mu times beta as a function of ground-state polarization agrees well with theoretical predictions. In particular, as a function of increasing polarization, mu times beta was found to first increase, peak in a positive sense, decrease, pass through zero, become large and negative, and eventually peak in a negative sense.

  17. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  18. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  19. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  20. Magnetic moments of odd spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Levon, A.I.; Fedotkin, S.N.; Vdovin, A.I.

    1986-06-01

    Using the quasiparticle-phonon model, the magnetic moments of the ground state and several of the excited states are calculated for spherical nuclei. The polarization of the core is taken into account, by means of 1+ phonons, as well as 2/sup +/ and 3/sup -/ excitations, which give a collective contribution to the magnetic moment.

  1. Modified magnetic ground state in NiMn2O4 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B. B.; Chopdekar, R. V.; Toney, M. F.; Arenholz, E.; Suzuki, Y.; Iwata, J.M.

    2010-08-03

    We demonstrate the stabilization of a magnetic ground state in epitaxial NiMn2O4 (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low temperature. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+} while the canted moment ferrimagnetic ordering is preserved below 60 K.

  2. Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

    2012-08-23

    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

  3. Precision study of ground state capture in the 14N(p,gamma)15O reaction

    CERN Document Server

    Marta, M; Gyurky, Gy; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Kunz, R; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2008-01-01

    The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

  4. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  5. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION

    Institute of Scientific and Technical Information of China (English)

    张建; 唐先华; 张文

    2014-01-01

    This article is concerned with the nonlinear Dirac equations Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  6. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  7. Light-cone distribution amplitudes of the ground state bottom baryons in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Wang, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hambrock, C. [Technische Univ. Dortmund (Germany); Parkhomenko, A.Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation)

    2012-12-15

    We provide the definition of the complete set of light-cone distribution amplitudes (LCDAs) for the ground state heavy bottom baryons with the spin-parities J{sup P}=1/2{sup +} and J{sup P}=3/2{sup +} in the heavy quark limit. We present the renormalization effects on the twist-2 light-cone distribution amplitudes and use the QCD sum rules to compute the moments of twist-2, twist-3, and twist-4 LCDAs. Simple models for the heavy baryon distribution amplitudes are analyzed with account of their scale dependence.

  8. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.

  9. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; GUO Lu

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field (RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A=139 where the neutron number is the magic number N=82.It is also found that the octupole deformations may exist in the La isotopes with mass number A~ 145-155.

  10. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  11. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  12. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    Science.gov (United States)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  13. Numerical Analysis of Excitation Characteristic of Piezoelectric Transducers for SAW Propagation Using Wavelet Method of Moment

    Institute of Scientific and Technical Information of China (English)

    CHENMing; TANGTiantong; ZHANGXiaolin

    2003-01-01

    In this paper, an effective numerical method based on wavelet moment method is presented to enhance the analysis of interdigital transducer (IDT)for the excitation of surface acoustic waves (SAW) on the piezoelectric substrate of acoustic-optical devices. This problem is formulated in terms of an integral equa-tion, and its electric charge matrix equations obtained by the method of moment (MoM) are effectively solved by Daubechies discrete wavelet transform. One of the mosts triking advantage of this method is that it can greatly ac-celerate the computing with the help of conjugate gradient methods because the wavelet transform make the moment matrices sparse. As a result of the use of this method, the transducer input power coupling factors to both surface and bulk waves are computed. Analysis results show this method is a powerful numerical technique in analysis of IDT for acousto-optical devices.

  14. The motion analysis of fire video images based on moment features and flicker frequency

    Institute of Scientific and Technical Information of China (English)

    LI Jin; FONG N. K.; CHOW W. K.; WONG L.T.; LU Puyi; XU Dian-guo

    2004-01-01

    In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection.

  15. On the ground state energy of the delta-function Fermi gas

    Science.gov (United States)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  16. Fostering a Social Child with Autism: A Moment-by-Moment Sequential Analysis of an Early Social Engagement Intervention

    Science.gov (United States)

    Vernon, Ty W.

    2014-01-01

    Young children with autism often experience limited social motivation and responsiveness that restricts establishment of crucial social momentum. These characteristics can lead to decreased opportunities for parental engagement and the social learning associated with these moments. Early social interventions that capitalize on pre-existing…

  17. Prediction and evaluation of magnetic moments in T =1 /2 , 3/2, and 5/2 mirror nuclei

    Science.gov (United States)

    Mertzimekis, Theo J.

    2016-12-01

    The Buck-Perez analysis of mirror nuclei magnetic moments has been applied on an updated set of data for T =1 /2 ,3 /2 mirror pairs and attempted for the first time for T =5 /2 nuclei. The spin expectation value for mirror nuclei up to mass A =63 has been reexamined. The main purpose is to test Buck-Perez analysis effectiveness as a prediction and—more importantly—an evaluation tool of magnetic moments in mirror nuclei. In this scheme, ambiguous signs of magnetic moments are resolved, evaluations of moments with multiple existing measurements have been performed, and a set of predicted values for missing moments, especially for several neutron-deficient nuclei is produced. A resolution for the case of the 57Cu ground-state magnetic moment is proposed. Overall, the method seems to be promising for future evaluations and planning future measurements.

  18. Prospects for the formation of ultracold polar ground state KCs molecules via an optical process

    CERN Document Server

    Borsalino, D; Aymar, M; Luc-Koenig, E; Dulieu, O; Bouloufa-Maafa, N

    2015-01-01

    Heteronuclear alkali-metal dimers represent the class of molecules of choice for creating samples of ultracold molecules exhibiting an intrinsic large permanent electric dipole moment. Among them, the KCs molecule, with a permanent dipole moment of 1.92 Debye still remains to be observed in ultracold conditions. Based on spectroscopic studies available in the literature completed by accurate ab initio calculations, we propose several optical coherent schemes to create ultracold bosonic and fermionic KCs molecules in their absolute rovibrational ground level, starting from a weakly bound level of their electronic ground state manifold. The processes rely on the existence of convenient electronically excited states allowing an efficient stimulated Raman adiabatic transfer of the level population.

  19. Torsional inertia moment of beam element with complex section analysis based on FEM

    Institute of Scientific and Technical Information of China (English)

    Zhao An; Huang Jun; Lu Jianming

    2012-01-01

    Currently, for the analysis of complex bridge based on beam element, the calculation of cross-section torsional inertia moment is still an unresolved technical problem. Most current calculation of section torsional inertia moment is an approximate analytic method for two-dimensional cross-section, which is not fully consistent with the actual situation, and do not consider the effects of diaphragm in bridge. In order to analyze accurately cable-stayed bridge, suspension bridge and other complex bridge structures based on beam element, the calculation method of section torsional inertia moment based on finite element method (FEM) is invented in this paper. Firstly, setting up local cantilever fine model with solid element or shell element and applying torsion on the end of cantilever. Secondly, calculating the torsion angle of cantilever by FEM method and then the torsional moment through equivalent beam method. Finally, the examples of the section torsional moment calculation of concrete model with solid element with diaphragm and steel girder box model with shell element with diaphragm are used to verify the calculation method, which is applied to the suspension bridge design and construction control special software SBNA developed by Research Institute of Highway Ministry of Transport. Taizhou Bridge under construction is one of the examples.

  20. Detection of tremor bursts by a running second order moment function and analysis using interburst histograms

    NARCIS (Netherlands)

    Journee, Henricus Louis; Postma, Alida Annechien; Sun, Mingui; Staal, Michiel J.

    2008-01-01

    Introduction: Conventional linear signal processing techniques are not always suitable for the detection of tremor bursts in clinical practice due to inevitable noise from electromyographic (EMG) bursts. This study introduces (1) a non-linear analysis technique based on a running second order moment

  1. Estimation of low back moments from video analysis: A validation study

    NARCIS (Netherlands)

    Coenen, P.; Kingma, I.; Boot, C.R.L.; Faber, G.S.; Xu, X.; Bongers, P.M.; Dieën, J.H. van

    2011-01-01

    This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed.

  2. Estimation of low back moments from video analysis: A validation study

    NARCIS (Netherlands)

    Coenen, P.; Kingma, I.; Boot, C.R.L.; Faber, G.S.; Xu, X.; Bongers, P.M.; Dieën, J.H. van

    2011-01-01

    This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed.

  3. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    Science.gov (United States)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  4. MULTIRESOLUTION MOMENT METHOD BASED ON THE IMPEDANCE OPERATOR FOR THE ANALYSIS OF PLANAR MICROSTRIP STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEJLA OUESLATI,

    2011-03-01

    Full Text Available This paper presents an integral equation analysis of planar microstrip circuits. In the developed approach, the Moment Method (MoM with wavelet expansion is combined to the generalized equivalent circuit (GEC to characterize microstrip structures. The interest of the (GEC method is to simplify the implementation of the moment method by the translation of an electromagnetic problem to an electric one with the use of the impedance operator. In the multiresolution moment method (MRMoM-GEC, an excitation on the plane of the circuit is used in conjunction with compactly supported wavelets trial functions. This approach generates a sparse linear system. The application of the Discrete Wavelet Transform (DWT,especially for large structures, allows a significant reduction of the unit time of central processing.

  5. Bayesian Method of Moments (BMOM) Analysis of Mean and Regression Models

    CERN Document Server

    Zellner, Arnold

    2008-01-01

    A Bayesian method of moments/instrumental variable (BMOM/IV) approach is developed and applied in the analysis of the important mean and multiple regression models. Given a single set of data, it is shown how to obtain posterior and predictive moments without the use of likelihood functions, prior densities and Bayes' Theorem. The posterior and predictive moments, based on a few relatively weak assumptions, are then used to obtain maximum entropy densities for parameters, realized error terms and future values of variables. Posterior means for parameters and realized error terms are shown to be equal to certain well known estimates and rationalized in terms of quadratic loss functions. Conditional maxent posterior densities for means and regression coefficients given scale parameters are in the normal form while scale parameters' maxent densities are in the exponential form. Marginal densities for individual regression coefficients, realized error terms and future values are in the Laplace or double-exponenti...

  6. Characterization and Moment Stability Analysis of Quasilinear Quantum Stochastic Systems with Quadratic Coupling to External Fields

    CERN Document Server

    Vladimirov, Igor G

    2012-01-01

    The paper is concerned with open quantum systems whose Heisenberg dynamics are described by quantum stochastic differential equations driven by external boson fields. The system-field coupling operators are assumed to be quadratic polynomials of the system observables, with the latter satisfying canonical commutation relations. In combination with a cubic system Hamiltonian, this leads to a class of quasilinear quantum stochastic systems which retain algebraic closedness in the evolution of mixed moments of the observables. Although such a system is nonlinear and its quantum state is no longer Gaussian, the dynamics of the moments of any order are amenable to exact analysis, including the computation of their steady-state values. In particular, a generalized criterion is developed for quadratic stability of the quasilinear systems. The results of the paper are applicable to the generation of non-Gaussian quantum states with manageable moments and an optimal design of linear quantum controllers for quasilinear...

  7. Theoretical and experimental study of the Stark effect in the ground state of alkali atoms in helium crystals

    OpenAIRE

    2007-01-01

    This thesis work describes a detailed study of the Stark interaction in the ground state of cesium atoms trapped in a solid helium matrix. The motivation for the investigation of electric field effects on alkali species implanted in solid helium is related to the original main goal of our experimental activities, i.e., the measurement of a permanent atomic electric dipole moment (EDM). The existence of an atomic EDM simultaneously violates the discrete symmetries of time reversal (T) and pari...

  8. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    Science.gov (United States)

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  9. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  10. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  11. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Directory of Open Access Journals (Sweden)

    S. Torquato

    2015-05-01

    Full Text Available It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded long-ranged pair potentials (similar to Friedel oscillations have classical ground states that are (counterintuitively disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space R^{d} is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility that apply to any ground-state ensemble as a function of ρ in any d, and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g_{2}(r and structure factor S(k must obey for any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit by exploiting an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g_{2}(r and S(k are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive

  12. Ground states of the SU(N) Heisenberg model.

    Science.gov (United States)

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  13. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Science.gov (United States)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  14. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  15. Study of ground state phases for spin-1/2 Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, T.; Singh, Ishwar

    2014-07-01

    The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation U, exchange interaction J and filling of electrons. We have found that the ground state configurations exhibit long range Neèl order, ferromagnetism or a mixture of both as J is varied. The magnetic moments of itinerant (d) and localized (f) electrons are also studied. For the one-fourth filling case we found no magnetic moment from d- and f-electrons for U less than a critical value.

  16. A moment-convergence method for stochastic analysis of biochemical reaction networks

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-01

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  17. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  18. Evolution of the Hox gene complex from an evolutionary ground state.

    Science.gov (United States)

    Gehring, Walter J; Kloter, Urs; Suga, Hiroshi

    2009-01-01

    In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes

  19. Finger crease pattern recognition using Legendre moments and principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Rongfang Luo; Tusheng Lin

    2007-01-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper,we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the preprocessing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.

  20. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality of...

  1. Borromean ground state of fermions in two dimensions

    DEFF Research Database (Denmark)

    G. Volosniev, A.; V. Fedorov, D.; S. Jensen, A.;

    2014-01-01

    -body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states...

  2. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  3. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  4. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  5. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  6. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.;

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...

  7. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  8. Regional Frequency Analysis of Significant Wave Heights Based on L-moments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    L-moments are defined as linear combinations of probability-weighted moments. They are virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood information. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.

  9. Analysis of Bearing Capacity of Suction Bucket Foundation Subjected to Horizontal and Moment Loadings

    Directory of Open Access Journals (Sweden)

    W.U. Ke

    2013-07-01

    Full Text Available The suction bucket foundation is not only supporting the vertical loading such as the sea platform and weight itself, but also subjecting to horizontal and moment loading due to wind and wave. The response of bucket foundation to combined Horizontal (H and Moment (M loading has been studied using 3D finite element analysis Then the proposed method is numerically implemented in the framework of the general-purpose FEM software ABAQUS. Relationship curve between the coefficient of ultimate bearing capacity and displacement is obtained by the application of load-displacement controlled method in homogeneous soft foundation the failure envelope of foundation in the M-H is obtained by the application of swipe testing. The behavior is explained using upper bound plasticity mechanisms suggested by the soil deformation mechanisms observed in the finite element analysis. The numerical results computed by the proposed method will be helpful in engineering practices.

  10. Parameters estimation for amino acids adsorption in a fixed bed by moment analysis

    Directory of Open Access Journals (Sweden)

    M.A. Cremasco

    2001-06-01

    Full Text Available Equilibrium constant and mass transfer parameters are needed for the study of amino acid separation in any process involving adsorption in fixed beds. The adsorption constants, effective diffusion coefficients, and axial dispersion coefficients for two amino acids, L-phenylalanine (Phe and L-tyrosine (Tyr, are determined from a series of pulse tests in a fixed bed packed with PVP (poly-4-vinylpyridine resin. Total bed voidage at different flow rates is estimated from NaCl pulse test data. The effective pore diffusivities of Phe, Tyr, and NaCl are estimated from moment analysis of pulse data. A detailed rate model is then solved numerically and adsorption constants, effective diffusion coefficients, axial dispersion coefficients are determined by moment analysis and compared with the pulse data. The advantage of this method is that the effective intraparticle diffusivities can be determined without the influence of extracolumn dispersion or intracolumn axial dispersion effects.

  11. AMIC: an expandable integrated analog front-end for light distribution moments analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spaggiari, M; Herrero, V; Lerche, C W; Aliaga, R; Monzo, J M; Gadea, R, E-mail: michele.spaggiari@gmail.com [Instituto de Instrumentacion para Imagen Molecular (I3M), Universidad Politecnica de Valencia, Camino de Vera, 46022, Valencia (Spain)

    2011-01-15

    In this article we introduce AMIC (Analog Moments Integrated Circuit), a novel analog Application Specific Integrated Circuit (ASIC) front-end for Positron Emission Tomography (PET) applications. Its working principle is based on mathematical analysis of light distribution through moments calculation. Each moment provides useful information about light distribution, such as energy, position, depth of interaction, skewness (deformation due to border effect) etc. A current buffer delivers a copy of each input current to several processing blocks. The current preamplifier is designed in order to achieve unconditional stability under high input capacitance, thus allowing the use of both Photo-Multiplier Tubes (PMT) and Silicon Photo-Multipliers (SiPM). Each processing block implements an analog current filtering by multiplying each input current by a programmable 8-bit coefficient. The latter is implemented through a high linear MOS current divider ladder, whose high sensitivity to variations in output voltages requires the integration of an extremely stable fully differential current collector. Output currents are then summed and sent to the output stage, that provides both a buffered output current and a linear rail-to-rail voltage for further digitalization. Since computation is purely additive, the 64 input channels of AMIC do not represent a limitation in the number of the detector's outputs. Current outputs of various AMIC structures can be combined as inputs of a final AMIC, thus providing a fully expandable structure. In this version of AMIC, 8 programmable blocks for moments calculation are integrated, as well as an I2C interface in order to program every coefficient. Extracted layout simulation results demonstrate that the information provided by moment calculation in AMIC helps to improve tridimensional positioning of the detected event. A two-detector test-bench is now being used for AMIC prototype characterization and preliminary results are presented.

  12. Hamiltonian closures for fluid models with four moments by dimensional analysis

    CERN Document Server

    Perin, M; Morrison, P J; Tassi, E

    2015-01-01

    Fluid reductions of the Vlasov-Amp{\\`e}re equations that preserve the Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian closures using the first four moments of the Vlasov distribution are obtained, and all closures provided by a dimensional analysis procedure for satisfying the Jacobi identity are identified. Two Hamiltonian models emerge, for which the explicit closures are given, along with their Poisson brackets and Casimir invariants.

  13. Ground state phase diagram of the half-filled bilayer Hubbard model

    OpenAIRE

    Golor, Michael; Reckling, Timo; Classen, Laura; Scherer, Michael M.; Wessel, Stefan

    2014-01-01

    Employing a combination of functional renormalization group calculations and projective determinantal quantum Monte Carlo simulations, we examine the Hubbard model on the square lattice bilayer at half filling. From this combined analysis, we obtain a comprehensive account on the ground state phase diagram with respect to the extent of the system's metallic and (antiferromagnetically ordered) Mott-insulating as well as band-insulating regions. By means of an unbiased functional renormalizatio...

  14. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Júnior, D. S., E-mail: damiao.vieira@ifsudestemg.edu.br [Departamento Acadêmico de Matemática, Física e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Câmpus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Leonel, S. A., E-mail: sidiney@fisica.ufjf.br; Dias, R. A., E-mail: radias@fisica.ufjf.br; Toscano, D., E-mail: danilotoscano@fisica.ufjf.br; Coura, P. Z., E-mail: pablo@fisica.ufjf.br; Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  15. Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels

    CERN Document Server

    Vexiau, R; Aymar, M; Bouloufa-Maafa, N; Dulieu, O

    2015-01-01

    We have calculated the isotropic $C\\_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $X^1\\Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers \\textit{et.~al.}, Phys.~Rev.~A \\textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it i...

  16. Electromagnetically-induced-transparency ground-state cooling of long ion strings

    Science.gov (United States)

    Lechner, Regina; Maier, Christine; Hempel, Cornelius; Jurcevic, Petar; Lanyon, Ben P.; Monz, Thomas; Brownnutt, Michael; Blatt, Rainer; Roos, Christian F.

    2016-05-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground-state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  17. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  18. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  19. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  20. Borromean ground state of fermions in two dimensions

    Science.gov (United States)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2014-09-01

    The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body Borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of Borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a Borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the Borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.

  1. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  2. Cluster expansion for ground states of local Hamiltonians

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  3. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  4. Non-uniform ground state for the Bose gas

    OpenAIRE

    2000-01-01

    We study the ground state, sum a_X |X>, of N hard-core bosons on a finite lattice in configuration space, X={x_1,...,x_N}. All a_X being positive, the ratios a_X / sum a_Y can be interpreted as probabilities P_a (X). Let E denote the energy of the ground state and B_X the number of nearest-neighbor particle-hole pairs in the configuration X. We prove the concentration of P_a to X's with B_X in a sqrt(|E|)-neighborhood of |E|, show that the average of a_X over configurations with B_X=n increas...

  5. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  6. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  7. Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.

  8. Cluster expansion for ground states of local Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)

    2016-08-15

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  9. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  10. Virtual Reality Presentation of Moment Tensor Analysis by SiGMA

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Masayasu; Shigeishi, Mitsuhiro [Kumamoto University, Kumamoto (Japan)

    2003-06-15

    Nucleation of a crack is readily defected by acoustic emission (AE) method. One powerful technique for AE waveform analysis has been developed as SiGMh (Simplified Greens functions for Moment tensor Analysis), as crack kinematics of locations, types and orientations are quantitatively determined. Because these kinematical outcomes are obtained as three-dimensional (3-D) locations and vectors, 3-D visualization is definitely desirable. To this end, the visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, failure protest of a reinforced concrete beam is discussed

  11. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  12. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  13. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  14. Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach

    Directory of Open Access Journals (Sweden)

    Marta Borrajo

    2017-01-01

    Full Text Available We present a self-consistent theory for odd nuclei with exact blocking and particle number and angular momentum projection. The demanding treatment of the pairing correlations in a variation-after-projection approach as well as the explicit consideration of the triaxial deformation parameters in a projection after variation method, together with the use of the finite-range density-dependent Gogny force, provides an excellent tool for the description of odd–even and even–even nuclei. We apply the theory to the Magnesium isotopic chain and obtain an outstanding description of the ground-state properties, in particular binding energies, odd–even mass differences, mass radii and electromagnetic moments among others.

  15. Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach

    CERN Document Server

    Borrajo, Marta

    2016-01-01

    We present a self-consistent theory for odd nuclei with exact blocking and particle number and angular momentum projection. The demanding treatment of the pairing correlations in a variation-after-projection approach as well as the explicit consideration of the triaxial deformation parameters in a projection after variation method, together with the use of the finite-range density-dependent Gogny force, provides an excellent tool for the description of odd-even and even-even nuclei. We apply the theory to the Magnesium isotopic chain and obtain an outstanding description of the ground-state properties, in particular binding energies, odd-even mass differences, mass radii and electromagnetic moments among others.

  16. Triplet-singlet conversion in ultracold Cs$_2$ and production of ground state molecules

    CERN Document Server

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier

    2010-01-01

    We propose a process to convert ultracold metastable Cs$_2$ molecules in their lowest triplet state into (singlet) ground state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled $A^{1}\\Sigma_{u}^{+} \\sim b ^{3}\\Pi_{u}$ states. Using spectroscopic data and accurate quantum chemistry calculations for Cs$_2$ potential curves and transition dipole moments, we show that this process has a high rate and competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  17. Ground-state properties of even and odd Magnesium isotopes in a symmetry-conserving approach

    Science.gov (United States)

    Borrajo, Marta; Egido, J. Luis

    2017-01-01

    We present a self-consistent theory for odd nuclei with exact blocking and particle number and angular momentum projection. The demanding treatment of the pairing correlations in a variation-after-projection approach as well as the explicit consideration of the triaxial deformation parameters in a projection after variation method, together with the use of the finite-range density-dependent Gogny force, provides an excellent tool for the description of odd-even and even-even nuclei. We apply the theory to the Magnesium isotopic chain and obtain an outstanding description of the ground-state properties, in particular binding energies, odd-even mass differences, mass radii and electromagnetic moments among others.

  18. Reduced M(atrix) theory models: ground state solutions

    CERN Document Server

    López, J L

    2015-01-01

    We propose a method to find exact ground state solutions to reduced models of the SU($N$) invariant matrix model arising from the quantization of the 11-dimensional supermembrane action in the light-cone gauge. We illustrate the method by applying it to lower dimensional toy models and for the SU(2) group. This approach could, in principle, be used to find ground state solutions to the complete 9-dimensional model and for any SU($N$) group. The Hamiltonian, the supercharges and the constraints related to the SU($2$) symmetry are built from operators that generate a multicomponent spinorial wave function. The procedure is based on representing the fermionic degrees of freedom by means of Dirac-like gamma matrices, as was already done in the first proposal of supersymmetric (SUSY) quantum cosmology. We exhibit a relation between these finite $N$ matrix theory ground state solutions and SUSY quantum cosmology wave functions giving a possible physical significance of the theory even for finite $N$.

  19. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  20. Alternative ground states enable pathway switching in biological electron transfer

    Science.gov (United States)

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  1. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  2. Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments

    Science.gov (United States)

    Kazemba, Cole D.; Braun, Robert D.; Schoenenberger, Mark; Clark, Ian G.

    2013-01-01

    This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort.

  3. Magnetic investigations of phase transitions, exchange interactions, and magnetic ground state in nanosheets of β-Co(OH)2

    Science.gov (United States)

    Wang, Zhengjun; Seehra, Mohindar S.

    2017-06-01

    Detailed investigations of the magnetic properties of the layered system β-Co(OH)2 are presented. X-ray diffraction and scanning electron microscopy of the sample show it to consist of hexagonal nanosheets with thickness  ≈30 nm and width ~100 nm-200 nm. Analysis of its measured magnetization (M) as a function of temperature (T  =  2 K to 300 K) and magnetic field (H up to 90 kOe) yields a Neel temperature T N  =  9.2 K. This lower T N  =  9.2 K, compared to T N  =  11.6 K reported for bulk β-Co(OH)2, is due to finite-size effects. Analysis of the data for T  >  T N shows that the M versus T data does not quite fit the Curie-Weiss law since both the Curie constant C and Weiss temperature θ have noticeable temperature dependence. This temperature dependence is interpreted to be due to the effect of spin-orbit coupling, yielding a low-temperature effective spin S  =  1/2 ground state with magnetic moment µ  =  4.745 µ B and g  =  5.479. For T  forced alignment of the spins yielding saturation magnetization M S  =  160 emu g-1 at 2 K, in agreement with the calculated M S  =  163 emu g-1 for the complete alignment of the spins at T  =  0 K for the spin S  =  1/2 ground state with g  =  5.479. The fitting of the M versus T data for T  >  T N to the high temperature series for S  =  1/2 XY model yields the in-plane ferromagnetic exchange constant J 1/k B  =  (1.8  ±  0.2) K for Co2+ ions, with the interplane exchange constant J 2/k B  ≃  -0.2 K determined from the magnitude of T N. The temperature dependence of H C1 and H C2 is presented and discussed.

  4. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  5. Uniqueness and symmetry of ground states for the L^2-critical boson star equation

    CERN Document Server

    Frank, Rupert L

    2009-01-01

    We prove uniqueness of ground state solutions for the $L^2$-critical boson star equation $\\sqrt{-\\Delta} u - \\big (|x|^{-1} \\ast |u|^2 \\big) u = -u$ in $\\R^3$, thereby settling a uniqueness conjecture of Lieb and Yau in [CMP \\textbf{112} (1987), 147--174] for the massless case. Our proof blends variational arguments with an harmonic extension to the halfspace $\\R^4_+ = \\R^3 \\times \\R_+$. Apart from uniqueness, we also establish the radial symmetry of ground state solutions (up to translations) as well as the nondegeneracy of the linearization. Our results provide an indispensable basis for the blowup analysis for the time-dependent $L^2$-critical massless boson star equation. The main result of this paper can be generalized to different fractional powers $(-\\Delta)^s$ and dimensions $d \\geq 3$. In particular, it can be regarded as the first non-perturbative uniqueness result for ground states of fractional elliptic nonlinear equations in higher space dimensions, beyond the conformally invariant case of Sobole...

  6. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  7. On the Factorial Moment Analysis of High Energy Experimental Data with Non-integer Partition Number

    CERN Document Server

    Gang, C; Yanmin, G; Gang, Chen; Lianshou, Liu; Yanmin, Gao

    1999-01-01

    It is pointed out that in doing the factorial moment analysis with non-integer partition $M$ of phase space, the influence of the phase-space variation of two- (or more-) particle correlations has to be considered carefully. In this paper this problem is studied and a systematic method is developed to minimize this influence. The efficiency and self-consistency of this method are shown using the data of 250 GeV/$c$ $\\pi^+$p and K$^+$p collisions from the NA22 experiment as example.

  8. Effect of structural disorder on the ground state properties of Co2CrAl Heusler alloy

    Science.gov (United States)

    Zagrebin, Mikhail A.; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Pavlukhina, Oksana O.

    2017-08-01

    In order to discuss the difference between the available theoretical and experimental values of the total magnetic moment of Co2CrAl Heusler alloy, in this paper we studied the effects of a structural disorder on the magnetic and electronic ground state properties of the alloy studied by means of ab initio and Monte Carlo methods. On the one hand, it is shown that a calculated magnetic ground state of the austenite L21 structure is ferromagnetic, and the alloy demonstrates half-metallic behavior. However, the equilibrium lattice parameter and magnetic moment calculated for ferrimagnetic state (where the Cr atoms are ordered antiferromagnetically) are in better agreement with the available experimental data than the ferromagnetic one. On the other hand, an account of a structural disorder results in a decrease in the magnetic moment to a value close to the experimental. However, systems with a structural disorder are energetically unfavorable in comparison with the ordered L21 structure at zero temperature. Using the calculated exchange coupling parameters in the Heisenberg Hamiltonian, the temperature dependences of magnetization, specific heat, magnetic part of internal energy as well as Helmholtz energy are simulated in the framework of Monte Carlo technique for both ordered and disordered cases. Eventually, it is shown that the disordered structure with smaller magnetization is more stable at higher temperatures. This indicates that the experimental compound might be disordered.

  9. Ground State Correlations and the Multiconfiguration Mixing Method

    CERN Document Server

    Pillet, N; Van Giai, N; Berger, J F; Giai, Nguyen Van

    2004-01-01

    We study the convergence properties of a truncation scheme in describing the ground state properties of a many-particle system of fermions. The model wave function is built within a multiconfiguration mixing approach where the many-body wave function is described as a superposition of multiparticle-multihole configurations constructed upon a Slater determinant. The convergence properties of physical quantities such as correlation energies and single-particle occupation probabilities in terms of the increasing number of particle-hole configurations are investigated for the case of an exactly solvable pairing hamiltonian.

  10. Ground-state spin of {sup 59}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Koester, U.; Aeystoe, J. [CERN, Geneva (Switzerland). EP Div.; Fedoseyev, V.; Mishin, V. [Rossijskaya Akademiya Nauk, Troitsk (Russian Federation). Inst. Spektroskopii; Huikari, J.; Jokinen, A.; Nieminen, A.; Peraejaervi, K. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Knipper, A.; Walter, G. [Institute de Recherches Subatomiques, 67 - Strasbourg (France)

    2001-02-01

    Beta-decay of {sup 59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured {beta}-decay rates the ground-state spin and parity are proposed to be J{sup {pi}} = 5/2{sup -}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line. (orig.)

  11. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  12. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M

    2012-01-01

    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  13. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  14. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  15. Fate of the Superconducting Ground State on the Moyal Plane

    CERN Document Server

    Basu, Prasad; Vaidya, Sachindeo

    2009-01-01

    It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is {\\it smaller} compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt.

  16. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    Science.gov (United States)

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  17. Analysis on Origin of Oscillation of H Moment in High-Energy hh Collision

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHOU Dai-Cui

    2000-01-01

    Multiplicity distributions of negative binomial distribution (NBD) and modified NBD are obtained from a birth process model with an immigration. The ratio of factorial cumulant moment to factorial moment, i.e., H moment is calculated from different multiplicity distributions of NBD, modified NBD and the three fireball model, which shows an oscillatory behavior when there is a truncation of multiplicity. The oscillation of H moment is related to the common character of the truncated multiplicity distributions.

  18. Moment Method Based on Fuzzy Reliability Sensitivity Analysis for a Degradable Structural System

    Institute of Scientific and Technical Information of China (English)

    Song Jun; Lu Zhenzhou

    2008-01-01

    For a degradable structural system with fuzzy failure region, a moment method based on fuzzy reliability sensitivity algorithm is presented. According to the value assignment of porformance function, the integral region for calculating the fuzzy failure probability is first split into a series of subregions in which the membership function values of the performance function within the fuzzy failure region can be approximated by a set of constants. The fuzzy failure probability is then transformed into a sum of products oftbe random failure probabilities and the approximate constants of the membership function in the subregions. Furthermore, the fuzzy reliability sensitivity analysis is transformed into a series of random reliability sensitivity analysis, and the random reliability sensitivity can be obtained by the constructed moment method. The primary advantages of the presented method include higher efficiency for implicit performance function with low and medium dimensionality and wide applicability to multiple failure modes and nonnormal basic random variables. The limitation is that the required computation effort grows exponentially with the increase of dimensionality of the basic random vari-able; hence, it is not suitable for high dimensionality problem. Compared with the available methods, the presented one is pretty com-petitive in the case that the dimensionality is lower than 10. The presented examples are used to verify the advantages and indicate the limitations.

  19. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sant, E-mail: santkumar1210@gmail.com; Maitra, Tulika; Singh, Ishwar [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India); Yadav, Umesh K. [Center for Condensed Matter Theory, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (J{sub se}) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund’s exchange (J), super-exchange interaction (J{sub se}) and also depends on the number of (d-) electrons (N{sub d}). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N{sub d}). Also the density of d electrons at each site depends on the value of J and J{sub se}.

  20. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, Tulika; Singh, Ishwar

    2015-06-01

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (Jse) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (Jse) and also depends on the number of (d-) electrons (Nd). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (Nd). Also the density of d electrons at each site depends on the value of J and Jse.

  1. Dilution Effects on Two-Dimensional Heisenberg Antiferromagnets with Non-Magnetic Spin-Gapped Ground State

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime

    2002-01-01

    Dilution effects on spin-1/2 quantum Heisenberg antiferromagnets with a non-magnetic spin-gapped ground state are studied by means of the qunatum Monte Carlo simulation. In the site-diluted system, an antiferromagnetic long-range order (AF-LRO) is induced at an infinitesimal concentration of dilution due to an effective coupling $\\tilde{J}_{mn}$ between induced magnetic moments. In the bond-diluted case, on the other hand, the AF-LRO is not induced up to a certain concentration of dilution du...

  2. Crystal-Structure Analysis with Moments of the Density-of-States: Application to Intermetallic Topologically Close-Packed Phases

    Directory of Open Access Journals (Sweden)

    Thomas Hammerschmidt

    2016-02-01

    Full Text Available The moments of the electronic density-of-states provide a robust and transparent means for the characterization of crystal structures. Using d-valent canonical tight-binding, we compute the moments of the crystal structures of topologically close-packed (TCP phases as obtained from density-functional theory (DFT calculations. We apply the moments to establish a measure for the difference between two crystal structures and to characterize volume changes and internal relaxations. The second moment provides access to volume variations of the unit cell and of the atomic coordination polyhedra. Higher moments reveal changes in the longer-ranged coordination shells due to internal relaxations. Normalization of the higher moments leads to constant (A15,C15 or very similar (χ, C14, C36, μ, and σ higher moments of the DFT-relaxed TCP phases across the 4d and 5d transition-metal series. The identification and analysis of internal relaxations is demonstrated for atomic-size differences in the V-Ta system and for different magnetic orderings in the C14-Fe 2 Nb Laves phase.

  3. Uniqueness of ground states of some coupled nonlinear Schrodinger systems and their application

    OpenAIRE

    MA,LI; Lin ZHAO

    2007-01-01

    We establish the uniqueness of ground states of some coupled nonlinear Schrodinger systems in the whole space. We firstly use Schwartz symmetrization to obtain the existence of ground states for a more general case. To prove the uniqueness of ground states, we use the radial symmetry of the ground states to transform the systems into an ordinary differential system, and then we use the integral forms of the system. More interestingly, as an application of our uniqueness results, we derive a s...

  4. Ground state for CH2 and symmetry for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Wen-Lang; Ruan Wen; Jiang Gang; Zhu Zheng-He

    2008-01-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, I.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) I.e. CH4→CH2+H2, is forbidden and the decomposition type (2) I.e. CH4→CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  5. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  6. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  7. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    Science.gov (United States)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  8. Spatial competition of the ground states in 1111 iron pnictides

    Science.gov (United States)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  9. On the nature of the oligoacene ground state

    Science.gov (United States)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  10. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  11. A new classification of hemiplegia gait patterns based on bicluster analysis of joint moments.

    Science.gov (United States)

    Pauk, Jolanta; Minta-Bielecka, Katarzyna

    2016-01-01

    Hemiplegia is a paralysis on one side of the body resulting from disease or injury to the motor centers of the brain that may lead to difficulty in walking and problems in balance. A new methodology for hemiplegia gait patterns classification based on bicluster analysis, which aims to identify a group of patients with similar gait patterns, and verify if spatial-temporal gait parameters are correlated with the Barthel Index, has been proposed. Eighteen hemiplegia patients were recruited. Measurements included spatialtemporal gait parameters and joint moments. Gait data were measured using a motion tracking system and two force platforms. Bicluster analysis was used to classify the subjects' gait patterns. The relation between Barthel Index and spatial-temporal gait parameters was determined based on the Spearman correlation. A high correlation between spatial-temporal gait parameters and Barthel Index (r>0.5, p rehabilitation strategies at the patient's individual needs.

  12. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  13. Regional maximum rainfall analysis using L-moments at the Titicaca Lake drainage, Peru

    Science.gov (United States)

    Fernández-Palomino, Carlos Antonio; Lavado-Casimiro, Waldo Sven

    2016-07-01

    The present study investigates the application of the index flood L-moments-based regional frequency analysis procedure (RFA-LM) to the annual maximum 24-h rainfall (AM) of 33 rainfall gauge stations (RGs) to estimate rainfall quantiles at the Titicaca Lake drainage (TL). The study region was chosen because it is characterised by common floods that affect agricultural production and infrastructure. First, detailed quality analyses and verification of the RFA-LM assumptions were conducted. For this purpose, different tests for outlier verification, homogeneity, stationarity, and serial independence were employed. Then, the application of RFA-LM procedure allowed us to consider the TL as a single, hydrologically homogeneous region, in terms of its maximum rainfall frequency. That is, this region can be modelled by a generalised normal (GNO) distribution, chosen according to the Z test for goodness-of-fit, L-moments (LM) ratio diagram, and an additional evaluation of the precision of the regional growth curve. Due to the low density of RG in the TL, it was important to produce maps of the AM design quantiles estimated using RFA-LM. Therefore, the ordinary Kriging interpolation (OK) technique was used. These maps will be a useful tool for determining the different AM quantiles at any point of interest for hydrologists in the region.

  14. Dipole Moment and Binding Energy of Water in Proteins from Crystallographic Analysis.

    Science.gov (United States)

    Morozenko, A; Leontyev, I V; Stuchebrukhov, A A

    2014-10-14

    The energetics of water molecules in proteins is studied using the water placement software Dowser. We compared the water position predictions for 14 high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules. From the analysis of the outputs of Dowser with variable parameters and comparison with experimental X-ray data, we derived an estimate of the average dipole moment of water molecules located in the internal cavities of the protein and their binding energies. The water parameters thus obtained from the experimental data are then analyzed within the framework of charge-scaling theory developed recently by this group; the parameters are shown to be in good agreement with the predictions that the theory makes for the dipole moment in a protein environment. The water dipole in the protein environment is found to be much different from that in the bulk and in such models as SPC or TIPnP. The role of charge scaling due to electronic polarizability of the protein is discussed.

  15. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Leon, H., E-mail: hleon@imre.oc.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, Zapata e/ Mazon y G. Vedado, 10400 La Habana (Cuba)

    2013-02-15

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112{sup Macron }] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: Black-Right-Pointing-Pointer Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. Black-Right-Pointing-Pointer Numerical results are presented for distorted fcc [001] structures. Black-Right-Pointing-Pointer The lowest energy of a system depends on how the tetragonal distortion is achieved. Black-Right-Pointing-Pointer A striped phase with magnetization in the [112{sup Macron }] direction is the

  16. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  17. The ground state of the D=11 supermembrane and matrix models on compact regions

    CERN Document Server

    Boulton, L; Restuccia, A

    2015-01-01

    We establish a general framework for the analysis of boundary value problems at zero energy of matrix models on compact regions. This allows us to prove existence and uniqueness of ground state wavefunctions for the mass operator of the D=11 regularized supermembrane theory (and therefore the N=16 supersymmetric matrix model) on a ball of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.

  18. The magnetic structure on the ground state of the equilateral triangular spin tube

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-12-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  19. Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state

    Science.gov (United States)

    Hernández, J. M.; Ramírez, C.; Sánchez, M.

    2014-05-01

    We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.

  20. The ground state of the D = 11 supermembrane and matrix models on compact regions

    Science.gov (United States)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2016-09-01

    We establish a general framework for the analysis of boundary value problems of matrix models at zero energy on compact regions. We derive existence and uniqueness of ground state wavefunctions for the mass operator of the D = 11 regularized supermembrane theory, that is the N = 16 supersymmetric SU (N) matrix model, on balls of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.

  1. The Analysis of the Moments of the Velocity Distribution in the Gaia Sphere

    Science.gov (United States)

    Romero-Gomez, M.; Figueras, F.; Antoja, T.; Roca-Fabrega, S.; Abedi, H.; Aguilar, L.

    2016-10-01

    The good precision in radial velocities provided by the WEAVE instrument (at ING), together with the proper motions obtained by the Gaia (ESA) mission, will allow the kinematic study of the end of the bar region. This is a rich, kinematically speaking, region that could help answer the big question regarding the one bar or two bar problem. Therefore, with Gaia and WEAVE, we are not limited to the study of the bar overdensity, but we can use all the 6D phase space. We are currently working on the analysis of the moments of the velocity distribution function in the Gaia sphere, about 4-5 kpc from the Sun, to try to obtain information on the potential of the Galaxy.

  2. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  3. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  4. LABS problem and ground state spin glasses system

    Science.gov (United States)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  5. Ground state structures and properties of small hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    R Prasad

    2003-01-01

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon atoms. We find that in the case of a compact and closed silicon cluster hydrogen bonds to the silicon cluster from outside. To understand the structural evolutions and properties of silicon cluster due to hydrogenation, we have studied the cohesive energy and first excited electronic level gap of clusters as a function of hydrogenation. We find that first excited electronic level gap of Si and SiH fluctuates as function of size and this may provide a first principle basis for the short-range potential fluctuations in hydrogenated amorphous silicon. The stability of hydrogenated silicon clusters is also discussed.

  6. Ground-state correlations within a nonperturbative approach

    Science.gov (United States)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  7. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  8. Eigenvectors in the superintegrable model II: ground-state sector

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yang, Helen; Perk, Jacques H H [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)], E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu

    2009-09-18

    In 1993, Baxter gave 2{sup m{sub Q}} eigenvalues of the transfer matrix of the N-state superintegrable chiral Potts model with the spin-translation quantum number Q, where m{sub Q} = lfloor(NL - L - Q)/Nrfloor. In our previous paper we studied the Q = 0 ground-state sector, when the size L of the transfer matrix is chosen to be a multiple of N. It was shown that the corresponding {tau}{sub 2} matrix has a degenerate eigenspace generated by the generators of r = m{sub 0} simple sl{sub 2} algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators E{sup {+-}}{sub m} and H{sub m} for m = 1, ..., r. Moreover, the corresponding 2{sup r} eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of H{sub m}.

  9. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  10. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  11. Application of Laser Magnetic Resonance Spectroscopy to the Measurement of Electric Dipole Moment of Free Radicals

    Institute of Scientific and Technical Information of China (English)

    郭远清; 黄光明; 林洁丽; 段传喜; 李奉延; 李津蕊; 刘煜炎

    2001-01-01

    An intracavity CO laser magnetic resonance spectrometer with homogeneous dc electric field applied via a pairof parallel Stark plates in the absorption cell is used to measure the electric dipole moments of free radicals.Taking advantage of the high sensitivity and high resolution of this technique and the Stark effect, highlyresolved saturated absorption spectra of the ν = 1 - 0 transition of 15 N16 O in the ground state X2 П3/2 have beensuccessfully observed in the presence of a low electric field. The electric dipole moment of NO in the electronicground state is determined asμ = 0.1566 ± 14D (Debye) from the analysis of the observed spectra, confirmingthat, combined with the Stark field, the laser magnetic resonance technique can be an effective and reliableapproach for the precise measurement of electric dipole moments of free radicals, especially unstable ones.

  12. Magnetic ground state of Ti{sub 1-x}Sc{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Saoudi, M.; Deportes, J.; Ouladdiaf, B. E-mail: ouladdiaf@ill.fr

    2001-06-01

    The magnetic ground states of the Laves phases Ti{sub 1-x}Sc{sub x}Fe{sub 2} system have been investigated by means of powder neutron diffraction and magnetisation techniques. For x=0.23, a transition is observed from a collinear ferromagnet along the c-axis to a canted one at T{sub f}=200 K. For x=0.27, 0.3, 0.33, an additional first-order transition is observed at T{sub t1}{approx}120 K accompanied by a large magnetovolume anomaly associated to a jump of the magnetic moment of the Fe atoms at the 2a site. The magnetic moment instability in a frustrated lattice should be considered to interpret this transition, although most of the other magnetic states can be discussed within Moriya's theory for itinerant electron systems with competing ferromagnetic and antiferromagnetic spin fluctuations.

  13. Friction moment analysis of space gyroscope bearing with ribbon cage under ultra-low oscillatory motion

    Directory of Open Access Journals (Sweden)

    Jiang Shaona

    2014-10-01

    Full Text Available This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing’s total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved. The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing’s maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing’s total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.

  14. Friction moment analysis of space gyroscope bearing with ribbon cage under ultra-low oscillatory motion

    Institute of Scientific and Technical Information of China (English)

    Jiang Shaona; Chen Xiaoyang; Gu Jiaming; Shen Xuejin

    2014-01-01

    This paper presents the model of calculating the total friction moment of space gyro-scope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing’s total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved. The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing’s maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing’s total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.

  15. Private Moments

    OpenAIRE

    Paul R. Reed; Carol J. Cumber

    2000-01-01

    In October, 1996 Private Moments, an adult novelty store, opened for business in Huntsville, Texas. Huntsville had no ordinances in place to prevent the opening of this type of business. In fact, the local Small Business Development Center provided guidance and assistance to Edward Delagarza, the founder and owner of Private Moments. Many of the Huntsville citizens, unhappy with the opening of Private Moments, approached the City Council requesting that it be closed immediately and asked for ...

  16. Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: An investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    Science.gov (United States)

    Gardner, Adrian M.; Tuttle, William D.; Groner, Peter; Wright, Timothy G.

    2017-03-01

    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0-350 cm-1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In Paper II [W. D. Tuttle et al., J. Chem. Phys. 146, 124309 (2017)], we examine the 350-600 cm-1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [{3,3}]D2h and we include the symmetry operations, character table, and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here.

  17. Hip abductor moment arm - a mathematical analysis for proximal femoral replacement

    Directory of Open Access Journals (Sweden)

    Temple H Thomas

    2011-01-01

    Full Text Available Abstract Background Patients undergoing proximal femoral replacement for tumor resection often have compromised hip abductor muscles resulting in a Trendelenberg limp and hip instability. Commercially available proximal femoral prostheses offer several designs with varying sites of attachment for the abductor muscles, however, no analyses of these configurations have been performed to determine which design provides the longest moment arm for the hip abductor muscles during normal function. Methods This study analyzed hip abductor moment arm through hip adduction and abduction with a trigonometric mathematical model to evaluate the effects of alterations in anatomy and proximal femoral prosthesis design. Prosthesis dimensions were taken from technical schematics that were obtained from the prosthesis manufacturers. Manufacturers who contributed schematics for this investigation were Stryker Orthopaedics and Biomet. Results Superior and lateral displacement of the greater trochanter increased the hip abductor mechanical advantage for single-leg stance and adduction and preserved moment arm in the setting of Trendelenberg gait. Hip joint medialization resulted in less variance of the abductor moment arm through coronal motion. The Stryker GMRS endoprosthesis provided the longest moment arm in single-leg stance. Conclusions Hip abductor moment arm varies substantially throughout the hip's range of motion in the coronal plane. Selection of a proximal femur endoprosthesis with an abductor muscle insertion that is located superiorly and laterally will optimize hip abductor moment arm in single-leg stance compared to one located inferiorly or medially.

  18. RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers

    Science.gov (United States)

    Figueroa-Vinas, Adolfo

    2013-01-01

    RUSHMAPS is a new onboard data reduction scheme that gives real-time access to key science parameters (e.g. moments) of a class of heliophysics science and/or solar system exploration investigation that includes plasma particle spectrometers (PPS), but requires moments reporting (density, bulk-velocity, temperature, pressure, etc.) of higher-level quality, and tolerates a lowpass (variable quality) spectral representation of the corresponding particle velocity distributions, such that telemetry use is minimized. The proposed methodology trades access to the full-resolution velocity distribution data, saving on telemetry, for real-time access to both the moments and an adjustable-quality (increasing quality increases volume) spectral representation of distribution functions. Traditional onboard data storage and downlink bandwidth constraints severely limit PPS system functionality and drive cost, which, as a consequence, drives a limited data collection and lower angular energy and time resolution. This prototypical system exploit, using high-performance processing technology at GSFC (Goddard Space Flight Center), uses a SpaceCube and/or Maestro-type platform for processing. These processing platforms are currently being used on the International Space Station as a technology demonstration, and work is currently ongoing in a new onboard computation system for the Earth Science missions, but they have never been implemented in heliospheric science or solar system exploration missions. Preliminary analysis confirms that the targeted processor platforms possess the processing resources required for realtime application of these algorithms to the spectrometer data. SpaceCube platforms demonstrate that the target architecture possesses the sort of compact, low-mass/power, radiation-tolerant characteristics needed for flight. These high-performing hybrid systems embed unprecedented amounts of onboard processing power in the CPU (central processing unit), FPGAs (field

  19. Ground-state properties of neutron-rich Mg isotopes

    CERN Document Server

    Watanabe, Shin; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2014-01-01

    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by ?ne-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of defor...

  20. Continuous Vibrational Cooling of Ground State Rb2

    Science.gov (United States)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  1. Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics.

    Science.gov (United States)

    Barborini, Matteo; Guidoni, Leonardo

    2015-09-08

    Due to the crucial role played by electron correlation, the accurate determination of ground state geometries of π-conjugated molecules is still a challenge for many quantum chemistry methods. Because of the high parallelism of the algorithms and their explicit treatment of electron correlation effects, Quantum Monte Carlo calculations can offer an accurate and reliable description of the electronic states and of the geometries of such systems, competing with traditional quantum chemistry approaches. Here, we report the structural properties of polyacetylene chains H-(C₂H₂)(N)-H up to N = 12 acetylene units, by means of Variational Monte Carlo (VMC) calculations based on the multi-determinant Jastrow Antisymmetrized Geminal Power (JAGP) wave function. This compact ansatz can provide for such systems an accurate description of the dynamical electronic correlation as recently detailed for the 1,3-butadiene molecule [J. Chem. Theory Comput. 2015 11 (2), 508-517]. The calculated Bond Length Alternation (BLA), namely the difference between the single and double carbon bonds, extrapolates, for N → ∞, to a value of 0.0910(7) Å, compatible with the experimental data. An accurate analysis was able to distinguish between the influence of the multi-determinantal AGP expansion and of the Jastrow factor on the geometrical properties of the fragments. Our size-extensive and self-interaction-free results provide new and accurate ab initio references for the structures of the ground state of polyenes.

  2. Structural anomalies and the orbital ground state in FeCr2S4

    Science.gov (United States)

    Tsurkan, V.; Zaharko, O.; Schrettle, F.; Kant, Ch.; Deisenhofer, J.; Krug von Nidda, H.-A.; Felea, V.; Lemmens, P.; Groza, J. R.; Quach, D. V.; Gozzo, F.; Loidl, A.

    2010-05-01

    We report on high-resolution x-ray synchrotron powder-diffraction, magnetic-susceptibility, sound-velocity, thermal-expansion, and heat-capacity studies of the stoichiometric spinel FeCr2S4 . We provide clear experimental evidence of a structural anomaly which accompanies an orbital-order transition at low temperatures due to a static cooperative Jahn-Teller effect. At 9 K, magnetic susceptibility, ultrasound velocity, and specific heat reveal pronounced anomalies that correlate with a volume contraction as evidenced by thermal-expansion data. The analysis of the low-temperature heat capacity using a mean-field model with a temperature-dependent gap yields a gap value of about 18 K and is interpreted as the splitting of the electronic ground state of Fe2+ by a cooperative Jahn-Teller effect. This value is close to the splitting of the ground state due to spin-orbit coupling for isolated Fe2+ ions in an insulating matrix, indicating that Jahn-Teller and spin-orbit coupling are competing energy scales in this system. We argue that due to this competition, the spin-reorientation transition at around 60 K marks the onset of short-range orbital ordering accompanied by a clear broadening of Bragg reflections, an enhanced volume contraction compared to usual anharmonic behavior, and a softening of the lattice observed in the ultrasound measurements.

  3. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  4. Ground State and Collective Modes of Magnetic Dipoles Fixed on Two-Dimensional Lattice Sites

    Science.gov (United States)

    Feldmann, John; Kalman, Gabor; Hartmann, Peter; Rosenberg, Marlene

    2006-10-01

    In complex (dusty) plasmas the grains may be endowed with intrinsic dipole moments. We present here our results of theoretical calculations accompanied by and Molecular Dynamics simulation findings on the ground state configuration and on the collective modes mode spectrum of a system of magnetic dipoles, interacting via the magnetic dipole pair-dipole potential, fixed on two-dimensional (2D) lattice sites. In particular, we We study a family of lattices that can be characterized by two parameters: (parallelogram)---the aspect ratio, c/a, and the rhombic angle, phi. The The new collective modes of in the system associated with the dipole-dipole interaction are the angular oscillations (or wobbling) of the direction of the dipoles about their equilibrium configurations. We identify in-plane and out-of-plane modes and display their dispersions. Orders of magnitudes of the parameters of the system relevant to possible future experiments will be discussed. JD Feldmann, G J Kalman and M Rosenberg, J. Phys. A: Math. Gen. 39 (2006) 4549-4553

  5. New measurements and global analysis of rotational spectra of Cl-, Br-, and I-benzene: Spectroscopic constants and electric dipole moments

    Science.gov (United States)

    Dorosh, Orest; Białkowska-Jaworska, Ewa; Kisiel, Zbigniew; Pszczółkowski, Lech

    2007-12-01

    The data available from rotational spectroscopy for chlorobenzene, bromobenzene, and iodobenzene have been extended by new measurements in the mm-wave region and in supersonic expansion in the cm-wave region. All available ground state measurements have been combined in global fits to derive precise rotational, centrifugal, and nuclear quadrupole coupling constants for the molecules. Rotational transitions in first excited states of the lowest frequency normal modes in bromobenzene and iodobenzene have been assigned and fitted. The values of electric dipole moments for 35Cl-, 79Br-, 81Br-, and I-benzene have been determined from Stark effect measurements on selected hyperfine components in the supersonic expansion spectrum, and are compared with values for several other series of monohalogen molecules.

  6. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    Science.gov (United States)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  7. Irreversible and reversible reactive chromatography: analytical solutions and moment analysis for rectangular pulse injections.

    Science.gov (United States)

    Bibi, Sameena; Qamar, Shamsul; Seidel-Morgenstern, Andreas

    2015-03-13

    This work is concerned with the analysis of models for linear reactive chromatography describing irreversible A→B and reversible A↔B reactions. In contrast to previously published results rectangular reactant pulses are injected into initially empty or pre-equilibrated columns assuming both Dirichlet and Danckwerts boundary conditions. The models consist of two partial differential equations, accounting for convection, longitudinal dispersion and first order chemical reactions. Due to the effect of involved mechanisms on solute transport, analytical and numerical solutions of the models could be helpful to understand, design and optimize chromatographic reactors. The Laplace transformation is applied to solve the model equations analytically for linear adsorption isotherms. Statistical temporal moments are derived from solutions in the Laplace domain. Analytical results are compared with numerical predictions generated using a high-resolution finite volume scheme for two sets of boundary conditions. Several case studies are carried out to analyze reactive liquid chromatographic processes for a wide range of mass transfer and reaction kinetics. Good agreements in the results validate the correctness of the analytical solutions and accuracy of the proposed numerical algorithm.

  8. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2016-12-01

    Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  9. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.

    Science.gov (United States)

    Lin, Johnny; Bentler, Peter M

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.

  10. Assessment of drug disposition in the perfused rat brain by statistical moment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, T.; Nakatsu, M.; Yamamoto, A.; Hashida, M.; Sezaki, H.; Yamashita, S.; Nadai, T. (Faculty of Pharmaceutical Sciences, Setsunan University, Osaka (Japan))

    1991-06-01

    Drug disposition in the brain was investigated by statistical moment analysis using an improved in situ brain perfusion technique. The right cerebral hemisphere of the rat was perfused in situ. The drug and inulin were injected into the right internal carotid artery as a rapid bolus and the venous outflow curve at the posterior facial vein was obtained. The infusion rate was adjusted to minimize the flow of perfusion fluid into the left hemisphere. The obtained disposition parameters were characteristics and considered to reflect the physicochemical properties of each drug. Antipyrine showed a small degree of initial uptake. Therefore, its apparent distribution volume (Vi) and apparent intrinsic clearance (CLint,i) were small. Diazepam showed large degrees of both influx and efflux and, thus, a large Vi. Water showed parameters intermediate between those of antipyrine and those of diazepam. Imipramine, desipramine, and propranolol showed a large CLint,i compared with those of the other drugs. The extraction ratio of propranolol significantly decreased with increasing concentrations of unlabeled propranolol in the perfusion fluid. These findings may be explained partly by the tissue binding of these drugs. In conclusion, the present method is useful for studying drug disposition in the brain.

  11. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    Science.gov (United States)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2016-05-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.

  12. Analysis of large effective electric fields of weakly polar molecules for electron electric dipole moment searches

    CERN Document Server

    Sunaga, A; Hada, M; Das, B P

    2016-01-01

    The electric dipole moment of an electron (eEDM) is one of the sensitive probes of physics beyond the standard model. The possible existence of the eEDM gives rise to an experimentally observed energy shift, which is proportional to the effective electric field (Eeff) of a target molecule. Hence, an analysis of the quantities that enhance Eeff is necessary to identify suitable molecules for eEDM searches. In the context of such searches, it is generally believed that a molecule with larger electric polarization also has a larger value of Eeff. However, our Dirac-Fock and relativistic coupled-cluster singles and doubles calculations show that the hydrides of Yb and Hg have larger Eeff than those of fluorides, even though their polarizations are smaller. This is due to significant mixing of valence s and p orbitals of the heavy atom in the molecules. This mixing has been attributed to the energy differences of the valence atomic orbitals and the overlap of the two atomic orbitals based on the orbital interactio...

  13. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Science.gov (United States)

    Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian

    2016-12-01

    In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  14. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    Science.gov (United States)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2017-02-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.

  15. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    Science.gov (United States)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  16. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  17. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  18. Exact many-electron ground states on diamond and triangle Hubbard chains

    OpenAIRE

    2008-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fu...

  19. Numerical analysis of the Magnus moment on a spin-stabilized projectile

    Science.gov (United States)

    Cremins, Michael; Rodebaugh, Gregory; Verhulst, Claire; Benson, Michael; van Poppel, Bret

    2016-11-01

    The Magnus moment is a result of an uneven pressure distribution that occurs when an object rotates in a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on flight stability. According to one source, most transonic and subsonic flight instabilities are caused by the Magnus moment [Modern Exterior Ballistics, McCoy], and yet simulations often fail to accurately predict the Magnus moment in the subsonic regime. In this study, we present hybrid Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) predictions of the Magnus moment for a spin-stabilized projectile. Velocity, pressure, and Magnus moment predictions are presented for multiple Reynolds numbers and spin rates. We also consider the effect of a sting mount, which is commonly used when conducting flow measurements in a wind tunnel or water channel. Finally, we present the initial designs for a novel Magnetic Resonance Velocimetry (MRV) experiment to measure three-dimensional flow around a spinning projectile. This work was supported by the Department of Defense High Performance Computing Modernization Program (DoD HPCMP).

  20. Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking

    Science.gov (United States)

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089

  1. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    Science.gov (United States)

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  2. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  3. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters

    Science.gov (United States)

    Roberts, Chistopher L.

    2001-01-01

    and 30 degrees while the separation distance remained constant. This examination was performed to determine if increases in flap deflection would increase or decrease the effects of the wake-induced forces and moments. Next, the wake-induced forces and moments from each flight were analyzed based on separation distances of 1-3 nautical miles. In this comparison, flap deflection was held constant at 30 degrees. The purpose of this study was to determine if increased separation distances reduced the effects of the wake vortex on the aircraft. The last objective compared the wake-induced forces and moments of each flight as it executed a series of maneuvers through the wake-vortex. This analysis was conducted to examine the impact of the wake on the B737 as it traversed the wake horizontally and vertically. Results from the first analysis indicated that there was no difference in wake effect at flap deflections of 15 and 30 degrees. This conclusion is evidenced in the cases of the wake-induced sideforce, rolling moment, and yawing moment. The wake-induced lift, drag, and pitching moment cases yielded less conclusive results. The second analysis compared the wake-induced forces and moments at separation distances of 1-3 nautical miles. Results indicated that there was no significant difference in the wake-induced lift, drag, sideforce, or yawing moment coefficients. The analysis compared the wake-induced forces and moments based on different flight maneuvers. It was found that the wake-induced forces and moments had the greatest impact on out-to-in and in-to-out maneuvers.

  4. Use of moment of inertia in comparative molecular field analysis to model chromatographic retention of nonpolar solutes.

    Science.gov (United States)

    Collantes, E R; Tong, W; Weish, W J; Zielinski, W L

    1996-07-01

    A quantitative structure-retention relationship (QSRR) was developed from chromatographic data on 31 unsubstituted 3-6 ring polycyclic aromatic hydrocarbons (PAHs) using the 3D-QSAR method known as comparative molecular field analysis (CoMFA). The resulting CoMFA model gave an excellent correlation to high-performance liquid chromatography retention data for these PAHs yielding r2 values of 0.947 (conventional) and 0.865 (cross-validated). The steric and electrostatic contributions to the CoMFA model were 100% and 0%, respectively. A unique feature of this study was the use of moment of inertia, I, as a basis for CoMFA alignment of the PAH molecules. The moment of inertia also provided an alternative method for calculating the solute length-to-breadth ratio (L/B), which has been applied in previous QSRR studies as a molecular descriptor for PAH retention. By virtue of its mathematical simplicity and lack of ambiguity, the present derivation of L/B from I offers several advantages over other geometry-based schemes. Finally, Ix was evaluated for use as a molecular descriptor in QSRR regression analysis to predict the log of the retention index (log I) for these PAHs. The correlation with PAH retention was weak when the moment of inertia was considered alone but improved dramatically (r2 = 0.928) when the moment of inertia and connectivity index chi were used in combination as descriptors.

  5. Full Moment Tensor Analysis Using First Motion Data at The Geysers Geothermal Field

    Science.gov (United States)

    Boyd, O.; Dreger, D. S.; Lai, V. H.; Gritto, R.

    2012-12-01

    Seismicity associated with geothermal energy production at The Geysers Geothermal Field in northern California has been increasing during the last forty years. We investigate source models of over fifty earthquakes with magnitudes ranging from Mw 3.5 up to Mw 4.5. We invert three-component, complete waveform data from broadband stations of the Berkeley Digital Seismic Network, the Northern California Seismic Network and the USA Array deployment (2005-2007) for the complete, six-element moment tensor. Some solutions are double-couple while others have substantial non-double-couple components. To assess the stability and significance of non-double-couple components, we use a suite of diagnostic tools including the F-test, Jackknife test, bootstrap and network sensitivity solution (NSS). The full moment tensor solutions of the studied events tend to plot in the upper half of the Hudson source type diagram where the fundamental source types include +CLVD, +LVD, tensile-crack, DC and explosion. Using the F-test to compare the goodness-of-fit values between the full and deviatoric moment tensor solutions, most of the full moment tensor solutions do not show a statistically significant improvement in fit over the deviatoric solutions. Because a small isotropic component may not significantly improve the fit, we include first motion polarity data to better constrain the full moment tensor solutions.

  6. Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions

    Science.gov (United States)

    Xu, Tongyi; Liang, Ming; Li, Chuan; Yang, Shuai

    2015-10-01

    A two-terminal mass (TTM) based vibration absorber with variable moment of inertia (VMI) for passive vehicle suspension is proposed. The VMI of the system is achieved by the motion of sliders embedded in a hydraulic driven flywheel. The moment of inertia increases in reaction to strong vertical vehicle oscillations and decreases for weak vertical oscillations. The hydraulic mechanism of the system converts the relative linear motion between the two terminals of the suspension into rotating motion of the flywheel. In the case of stronger vehicle vertical oscillation, the sliders inside the flywheel move away from the center of the flywheel because of the centrifugal force, hence yielding higher moment of inertia. The opposite is true in the case of weaker vehicle oscillation. As such, the moment of inertia adjusts itself adaptively in response to the road conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. In comparison to its counterpart with constant moment of inertia, the proposed VMI system offers faster response, better road handling and safety, improved ride comfort, and reduced suspension deflection except in the case of sinusoidal excitations.

  7. Analysis of RLC Elements under Stochastic Conditions Using the First and the Second Moments

    Directory of Open Access Journals (Sweden)

    WALCZAK, J.

    2015-11-01

    Full Text Available This paper describes a method of determining the first two moments of the response for basic components of electrical circuits, i.e. resistors, inductors and capacitors. The paper goal was to obtain closed form formulae for the moments describing voltage or current stochastic processes. It has been assumed that the element parameters R (resistance, L (inductance and C (capacitance could be random variables, deterministic functions or stochastic processes and excitations are second order stochastic processes. Moreover, two cases of dependence between the random parameters and the excitation stochastic processes have been considered. The obtained results enable determination of exact solutions for the first two moments without application of numerical algorithms.

  8. Quality descriptors of optical beams based on centred reduced moments I spot analysis

    CERN Document Server

    Castaneda, R; García-Sucerquia, J

    2003-01-01

    A method for analyzing beam spots is discussed. It is based on the central reduced moments of the spot and its associated density functions. These functions allow us to separately analyze specific spot fractions, in such a way that specific combinations of higher order moments can be interpreted as coordinates of their centre of mass and the length and orientations of their principal axis. So, the descriptors of the associated density functions deal with the quantitative estimation of spot features, such as coma-like and astigmatism-like distortions. To assure high accuracy, background noise suppression and an optimal match of the spot support onto the region [-1,1]x[- 1,1] are performed prior to the calculation of the moments. Simulations were performed for illustrating the method.

  9. Computational Analysis of Ares I Roll Control System Jet Interaction Effects on Rolling Moment

    Science.gov (United States)

    Deere, Karen A.; Pao, S. Paul; Abdol-Hamid, Khaled S.

    2011-01-01

    The computational flow solver USM3D was used to investigate the jet interaction effects from the roll control system on the rolling moment of the Ares I full protuberance configuration at wind tunnel Reynolds numbers. Solutions were computed at freestream Mach numbers from M = 0.5 to M = 5 at the angle of attack 0deg, at the angle of attack 3.5deg for a roll angle of 120deg, and at the angle of attack 7deg for roll angles of 120deg and 210deg. Results indicate that the RoCS housing provided a beneficial jet interaction effect on vehicle rolling moment for M > or = 0.9. Most of the components downstream of the roll control system housing contributed to jet interaction penalties on vehicle rolling moment.

  10. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis

    Science.gov (United States)

    Singha, Kamini; Gorelick, Steven M.

    2005-01-01

    Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.

  11. Competing magnetic ground states and their coupling to the crystal lattice in CuFe2Ge2

    Science.gov (United States)

    May, Andrew F.; Calder, Stuart; Parker, David S.; Sales, Brian C.; McGuire, Michael A.

    2016-01-01

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. Temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below TN ≈ 175 K, and an incommensurate spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe2Ge2. The neutron diffraction data also reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. These results demonstrate that the ground state in CuFe2Ge2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies. PMID:27739477

  12. Revised Iterative Solution of Ground State of Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin

    2005-01-01

    The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.

  13. Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-03-01

    Full Text Available This article concerns the ground state solutions of nonlinear fractional Schrodinger equations involving critical growth. We obtain the existence of ground state solutions when the potential is not a constant and not radial. We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity condition on the nonlinearity.

  14. Ground state correlations and mean field using the exp(S) method

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-01-01

    This document gives a detailed account of the terms used in the computation of the ground state mean field and the ground state correlations. While the general approach to this description is given in a separate paper (nucl-th/9802029) we give here the explicite expressions used.

  15. The study of magnetization of the spin systm in the ground state

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Wang Xi-Kun; Zhao Qiang

    2006-01-01

    Within the framework of the effective-field theory with self-spin correlations and the differential operator technique,the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied.The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.

  16. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  17. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  18. Optimal control of the initiation of a pericyclic reaction in the electronic ground state

    Indian Academy of Sciences (India)

    Timm Bredtmann; Jörn Manz

    2012-01-01

    Pericyclic reactions in the electronic ground state may be initiated by down-chirped pump-dump sub-pulses of an optimal laser pulse, in the ultraviolet (UV) frequency and sub-10 femtosecond (fs) time domain. This is demonstrated by means of a quantum dynamics model simulation of the Cope rearrangement of Semibullvalene. The laser pulse is designed by means of optimal control theory, with detailed analysis of the mechanism. The theoretical results support the recent experimental initiation of a pericyclic reaction. The present approach provides an important step towards monitoring asynchronous electronic fluxes during synchronous nuclear pericyclic reaction dynamics, with femto-to-attosecond time resolution, as motivated by the recent prediction of our group.

  19. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  20. Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO

    CERN Document Server

    Tecmer, Pawel; Legeza, Ors; Reiher, Markus

    2013-01-01

    The accurate description of the complexation of the CUO molecule by Ne and Ar noble gas matrices represents a challenging task for present-day quantum chemistry. Especially, the accurate prediction of the spin ground state of different CUO--noble-gas complexes remains elusive. In this work, the interaction of the CUO unit with the surrounding noble gas matrices is investigated in terms of complexation energies and dissected into its molecular orbital quantum entanglement patterns. Our analysis elucidates the anticipated singlet--triplet ground-state reversal of the CUO molecule diluted in different noble gas matrices and demonstrates that the strongest uranium-noble gas interaction is found for CUOAr4 in its triplet configuration.

  1. Phi meson spectral moments and QCD condensates in nuclear matter

    Science.gov (United States)

    Gubler, Philipp; Weise, Wolfram

    2016-10-01

    A detailed analysis of the lowest two moments of the ϕ meson spectral function in vacuum and nuclear matter is performed. The consistency is examined between the constraints derived from finite energy QCD sum rules and the spectra computed within an improved vector dominance model, incorporating the coupling of kaonic degrees of freedom with the bare ϕ meson. In the vacuum, recent accurate measurements of the e+e- →K+K- cross section allow us to determine the spectral function with high precision. In nuclear matter, the modification of the spectral function can be described by the interactions of the kaons from ϕ → K K ‾ with the surrounding nuclear medium. This leads primarily to a strong broadening and an asymmetric deformation of the ϕ meson peak structure. We confirm that, both in vacuum and nuclear matter, the zeroth and first moments of the corresponding spectral functions satisfy the requirements of the finite energy sum rules to a remarkable degree of accuracy. Limits on the strangeness sigma term of the nucleon are examined in this context. Applying our results to the second moment of the spectrum, we furthermore discuss constraints on four-quark condensates and the validity of the commonly used ground state saturation approximation.

  2. Local reversibility and entanglement structure of many-body ground states

    CERN Document Server

    Kuwahara, Tomotaka; Amico, Luigi; Vedral, Vlatko

    2015-01-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are ...

  3. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.

  4. Analysis of DIS structure functions of the nucleon within truncated Mellin moments approach

    CERN Document Server

    Kotlorz, D

    2016-01-01

    We present generalized evolution equations and factorization in terms of the truncated Mellin moments (TMM) of the parton distributions and structure functions. We illustrate the $x$ and $Q^2$ dependence of TMM in the polarized case. Using the TMM approach we compare the integrals of $g_1$ with HERMES and COMPASS data from the limited $x$-ranges.

  5. Analysis of the variability of the axial dipole moment of a numerical geodynamo model

    NARCIS (Netherlands)

    Kuipers, J.; Hoyng, P.; Wicht, J.; Barkema, G.T.

    2009-01-01

    We have analysed the time evolution of the axial dipole moments (ADMs) from three numerical geodynamo models by relating it to the Fokker–Planck equation governing the systematic and random ADM motion. We have determined the effective growth rate of the ADM and the diffusion coefficient D characteri

  6. Good Moments in Gestalt Therapy: A Descriptive Analysis of Two Perls Sessions.

    Science.gov (United States)

    Boulet, Donald; And Others

    1993-01-01

    Analyzed two Gestalt therapy sessions conducted by Fritz Perls using category system for identifying in-session client behaviors valued by Gestalt therapists. Four judges independently rated 210 client statements. Found common pattern of therapeutic movement: initial phase dominated by building block good moments and second phase characterized by…

  7. A critical analysis of dipole-moment calculations as obtained from experimental and theoretical structure factors.

    Science.gov (United States)

    Poulain-Paul, Agnieszka; Nassour, Ayoub; Jelsch, Christian; Guillot, Benoit; Kubicki, Maciej; Lecomte, Claude

    2012-11-01

    Three models of charge-density distribution - Hansen-Coppens multipolar, virtual atom and kappa - of different complexities, different numbers of refined parameters, and with variable levels of restraints, were tested against theoretical and high-resolution X-ray diffraction structure factors for 2-methyl-4-nitro-1-phenyl-1H-imidazole-5-carbonitrile. The influence of the model, refinement strategy, multipole level and treatment of the H atoms on the dipole moment was investigated. The dipole moment turned out to be very sensitive to the refinement strategy. Also, small changes in H-atom treatment can greatly influence the calculated magnitude and orientation of the dipole moment. The best results were obtained when H atoms were kept in positions determined by neutron diffraction and anisotropic displacement parameters (obtained by SHADE, in this case) were used. Also, constraints on kappa values of H atoms were found to be superior to the free refinement of these parameters. It is also shown that the over-parametrization of the multipolar model, although possibly leading to better residuals, in general gives worse dipole moments.

  8. Identification and inference in moments based analysis of linear dynamic panel data models

    NARCIS (Netherlands)

    Bun, M.J.G.; Kleibergen, F.

    2013-01-01

    We show that Dif(ference), see Arellano and Bond (1991), Lev(el), see Arellano and Bover (1995) and Blundell and Bond (1998), or the N(on-)L(inear) moment conditions of Ahn and Schmidt (1995) do not identify the parameters of a first-order autoregressive panel data model when the autoregressive para

  9. Theoretical analysis of thermal effects in fiber laser from the moment when pump is turned on to steady-state

    Institute of Scientific and Technical Information of China (English)

    Zilun Chen; Jing Hou; Zongfu Jiang

    2007-01-01

    A theoretical analysis of the pump-induced temperature change and associated thermal phase shift occurring in a fiber laser is presented. The temperature rise and thermal phase shift from the moment when pump is turned on to steady-state in fiber lasers, such as Yb-doped fiber laser, are numerical calculated.With the same parameters, the numerical solution is in good agreement with the finite-element (ANSYS software) simulation.

  10. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    Directory of Open Access Journals (Sweden)

    Appel Markus

    2015-01-01

    Full Text Available The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene. They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  11. Kinetically blocked stable heptazethrene and octazethrene: Closed-shell or open-shell in the ground state?

    KAUST Repository

    Li, Yuan

    2012-09-12

    Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ(2)) were determined for HZ-TIPS (σ(2)max = 920 GM at 1250 nm) and OZ-TIPS (σ(2)max = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals. © 2012 American Chemical Society.

  12. Inclusion of trial functions in the Langevin equation path integral ground state method: application to parahydrogen clusters and their isotopologues.

    Science.gov (United States)

    Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas

    2014-06-21

    We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψT, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 - 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

  13. Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas, E-mail: pnroy@uwaterloo.ca [Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-06-21

    We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

  14. Higher Electric Multipole Moments for Some Polyatomic Molecules from Accurate SCF Calculations

    Institute of Scientific and Technical Information of China (English)

    Telhat Ozdogan

    2002-01-01

    Higher electric multipole moments for the ground-state electronic configuration of some polyatomicmolecules, i.e. CH4, NH3, H2O, were calculated from SCF-HFR wavefunctions using Slater-type orbital basis sets.The calculated results for electric multipole moments of these molecules are in good agreement with the theoretical andexperimental ones.

  15. Statistical analysis of the Lognormal-Pareto distribution using Probability Weighted Moments and Maximum Likelihood

    OpenAIRE

    Marco Bee

    2012-01-01

    This paper deals with the estimation of the lognormal-Pareto and the lognormal-Generalized Pareto mixture distributions. The log-likelihood function is discontinuous, so that Maximum Likelihood Estimation is not asymptotically optimal. For this reason, we develop an alternative method based on Probability Weighted Moments. We show that the standard version of the method can be applied to the first distribution, but not to the latter. Thus, in the lognormal- Generalized Pareto case, we work ou...

  16. Regional Frequency Analysis of Annual Maximum Rainfall in Monsoon Region of Pakistan using L-moments

    OpenAIRE

    Amina Shahzadi; Ahmad Saeed Akhter; Betul Saf

    2013-01-01

    The estimation of magnitude and frequency of extreme rainfall has immense importance to make decisions about hydraulic structures like spillways, dikes and dams etc The main objective of this study is to get the best fit distributions for annual maximum rainfall data on regional basis in order to estimate the extreme rainfall events (quantiles) for various return periods. This study is carried out using index flood method using L-moments by Hosking and wallis (1997). The study is based on 23 ...

  17. A Complete Analysis of "Flavored" Electric Dipole Moments in Supersymmetric Theories

    OpenAIRE

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2008-01-01

    The Standard Model predictions for the hadronic and leptonic electric dipole moments (EDMs) are well far from the present experimental resolutions, thus, the EDMs represent very clean probes of New Physics effects. Especially, within supersymmetric frameworks with flavor-violating soft terms large and potentially visible effects to the EDMs are typically expected. In this work, we systematically evaluate the predictions for the EDMs at the beyond-leading-order (BLO). In fact, we show that BLO...

  18. Robust Anisotropic Diffusion Based Edge Enhancement for Level Set Segmentation and Asymmetry Analysis of Breast Thermograms using Zernike Moments.

    Science.gov (United States)

    Prabha, S; Sujatha, C M; Ramakrishnan, S

    2015-01-01

    Breast thermography plays a major role in early detection of breast cancer in which the thermal variations are associated with precancerous state of breast. The distribution of asymmetrical thermal patterns indicates the pathological condition in breast thermal images. In this work, asymmetry analysis of breast thermal images is carried out using level set segmentation and Zernike moments. The breast tissues are subjected to Tukey’s biweight robust anisotropic diffusion filtering (TBRAD) for the generation of edge map. Reaction diffusion level set method is employed for segmentation in which TBRAD edge map is used as stopping criterion during the level set evolution. Zernike moments are extracted from the segmented breast tissues to perform asymmetry analysis. Results show that the TBRAD filter is able to enhance the edges near infra mammary folds and lower breast boundaries effectively. It is observed that segmented breast tissues are found to be continuous and has sharper boundary. This method yields high degree of correlation (98%) between the segmented output and the ground truth images. Among the extracted Zernike features, higher order moments are found to be significant in demarcating normal and carcinoma breast tissues by 9%. It appears that, the methodology adopted here is useful in accurate segmentation and differentiation of normal and carcinoma breast tissues for automated diagnosis of breast abnormalities.

  19. Seismic response analysis of a 13-story steel moment-framed building in Alhambra, California

    Science.gov (United States)

    Rodgers, Janise E.; Sanli, Ahmet K.; Celebi, Mehmet

    2004-01-01

    The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections of some frames following the M6.7 1994 Northridge earthquake. This report presents an investigation of the seismic behavior of an instrumented 13-story steel moment frame building located in the greater Los Angeles area of California. An extensive strong motion dataset, ambient vibration data, engineering drawings and earthquake damage reports are available for this building. The data are described and subsequently analyzed. The results of the analyses show that the building response is more complex than would be expected from its highly symmetrical geometry. The building's response is characterized by low damping in the fundamental mode, larger peak accelerations in the intermediate stories than at the roof, extended periods of vibration after the cessation of strong input shaking, beating in the response, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses of the data and all damage detection methods employed except one method based on system identification indicate that the response of the structure was elastic in all recorded earthquakes. These findings are in general agreement with the results of intrusive inspections (meaning fireproofing and architectural finishes were removed) conducted on approximately 5 percent of the moment connections following the Northridge earthquake, which found no earthquake damage.

  20. Distortional Buckling Analysis of Steel-Concrete Composite Girders in Negative Moment Area

    Directory of Open Access Journals (Sweden)

    Zhou Wangbao

    2014-01-01

    Full Text Available Distortional buckling is one of the most important buckling modes of the steel-concrete composite girder under negative moment. In this study, the equivalent lateral and torsional restraints of the bottom flange of a steel-concrete composite girder under negative moments due to variable axial forces are thoroughly investigated. The results show that there is a coupling effect between the applied forces and the lateral and torsional restraint of the bottom flange. Based on the calculation formula of lateral and torsional restraints, the critical buckling stress of I-steel-concrete composite girders and steel-concrete composite box girders under variable axial force is obtained. The critical bending moment of the steel-concrete composite girders can be further calculated. Compared to the traditional calculation methods of elastic foundation beam, the paper introduces an improved method, which considers coupling effect of the external loads and the foundation spring constraints of the bottom flange. Fifteen examples of the steel-concrete composite girders in different conditions are calculated. The calculation results show a good match between the hand calculation and the ANSYS finite element method, which validated that the analytic calculation method proposed in this paper is practical.

  1. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  2. Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Curtarolo, Stefano

    2012-02-01

    Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt, and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

  3. A remark on ground state of boundary Izergin-Korepin model

    CERN Document Server

    Kojima, Takeo

    2011-01-01

    We study the ground state of the boundary Izergin-Korepin model. The boundary Izergin-Korepin model is defined by so-called $R$-matrix and $K$-matrix for $U_q(A_2^{(2)})$ which satisfy Yang-Baxter equation and boundary Yang-Baxter equation respectively. The ground state associated with identity $K$-matrix $K(z)=id$ was constructed in earlier study [Yang and Zhang, Nucl.Phys.B596,495-(2001)]. We construct the free field realization of the ground state associated with nontrivial diagonal $K$-matrix.

  4. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  5. Direct production of ultracold rovibronic ground state LiRb molecules through photoassociation and spontaneous decay

    CERN Document Server

    Stevenson, I C; Chen, Y P; Elliott, D S

    2016-01-01

    We report a newly observed photoassociation resonance in $^7$Li-$^{85}$Rb, a mixed $2(1) - 4(1)$ excited state, that spontaneously decays to the rovibronic ground state. This resonance between ultracold Li and Rb is the strongest ground state molecule-forming photoassociation line observed in LiRb, and forms deeply bound $X \\: ^1\\Sigma^+$ molecules in large numbers. The production rate of the $v=0 \\ J=0$ rovibrational ground state is $\\sim 1.5 \\times 10^{4}$ molecules/s.

  6. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    Science.gov (United States)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is

  7. Analysis of the Yrast Bands with q-Deformed Moment of Inertia

    Institute of Scientific and Technical Information of China (English)

    FANG Xiang-Zheng; RUAN Tu-Nan

    2001-01-01

    The rigid-rotor with a q-deformed moment of inertia is introduced to describe the nuclear rotational spectra. With the representations of quantum algebra, the normal deformed and superdeformed bands are naturally differentiated by softness. The yrast normal deformed bands in rare earth and actinium regions, as well as the yrast superdeformed bands in A-190 and 150 regions are investigated. The calculated results agree with experimental data qualitatively well, and the values of the parameters are physically reasonable. This indicates that the fixed deformation, the stretching effect and the many body statistics effect are three possible dominant factors to govern nuclear rotational bands.

  8. Discrete Time Mean-variance Analysis with Singular Second Moment Matrixes and an Exogenous Liability

    Institute of Scientific and Technical Information of China (English)

    Wen Cai CHEN; Zhong Xing YE

    2008-01-01

    We apply the dynamic programming methods to compute the analytical solution of the dynamic mean-variance optimization problem a.ected by an exogenous liability in a multi-periods market model with singular second moment matrixes of the return vector of assets. We use orthogonal transformations to overcome the difficulty produced by those singular matrixes, and the analytical form of the e.cient frontier is obtained. As an application, the explicit form of the optimal mean-variance hedging strategy is also obtained for our model.

  9. A New Approach for the Analysis of Hyperspectral Data: Theory and Sensitivity Analysis of the Moment Distance Method

    Directory of Open Access Journals (Sweden)

    Eric Ariel L. Salas

    2013-12-01

    Full Text Available We present the Moment Distance (MD method to advance spectral analysis in vegetation studies. It was developed to take advantage of the information latent in the shape of the reflectance curve that is not available from other spectral indices. Being mathematically simple but powerful, the approach does not require any curve transformation, such as smoothing or derivatives. Here, we show the formulation of the MD index (MDI and demonstrate its potential for vegetation studies. We simulated leaf and canopy reflectance samples derived from the combination of the PROSPECT and SAIL models to understand the sensitivity of the new method to leaf and canopy parameters. We observed reasonable agreements between vegetation parameters and the MDI when using the 600 to 750 nm wavelength range, and we saw stronger agreements in the narrow red-edge region 720 to 730 nm. Results suggest that the MDI is more sensitive to the Chl content, especially at higher amounts (Chl > 40 mg/cm2 compared to other indices such as NDVI, EVI, and WDRVI. Finally, we found an indirect relationship of MDI against the changes of the magnitude of the reflectance around the red trough with differing values of LAI.

  10. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  11. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Institute of Scientific and Technical Information of China (English)

    YANG Kai-Hua; TIAN Guang-Shan; HAN Ru-Qi

    2003-01-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model.However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models.

  12. Efficient sympathetic motional ground-state cooling of a molecular ion

    CERN Document Server

    Wan, Yong; Wolf, Fabian; Schmidt, Piet O

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.

  13. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  14. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  15. Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems

    CERN Document Server

    Kennedy, Ricardo

    2014-01-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d+1)-dimensional system in symmetry class s+1. This relation gives a new vantage point on topological insulators and superconductors.

  16. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  17. Vacuum polarization screening corrections to the ground state energy of two-electron ions

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1997-01-01

    Vacuum polarization screening corrections to the ground state energy of two-electron ions are calculated in the range $Z=20-100$. The calculations are carried out for a finite nucleus charge distribution.

  18. Temporal moment analysis of solute transport in a coupled fracture-skin-matrix system

    Indian Academy of Sciences (India)

    V Renu; G Suresh Kumar

    2014-04-01

    In the present study, method of temporal moments has been used to analyse the transport characteristics of reactive solute along fracture in a coupled fracture-skin-matrix system. In order to obtain the concentration distribution within the fracture, a system of coupled partial differential equations for fracture, fractureskin and rock-matrix has been solved numerically in a pseudo two-dimensional domain using implicit finite difference method. Subsequently, lower order temporal moments of solute have been computed from the concentration distribution to analyse the transport characteristics of solutes in the fracture. This study has been done by considering an inlet boundary condition of constant continuous source in a single fracture. The effect of various fracture-skin parameters like porosity, thickness and diffusion coefficient on the transport of solutes have been studied by doing sensitivity analyses. The effect of nonlinear sorption and radioactive decay of solutes have also been analysed by carrying out simulations for different sorption intensities and decay constants. Numerical results suggested that the presence of fracture-skin significantly influences the transport characteristics of reactive solutes along the fracture.

  19. A Relativistic Many-Body Analysis of the Electric Dipole Moment of $^{223}$Rn

    CERN Document Server

    Sahoo, B K; Das, B P

    2014-01-01

    We report the results of our {\\it ab initio} relativistic many-body calculations of the electric dipole moment (EDM) $d_A$ arising from the electron-nucleus tensor-pseudotensor (T-PT) interaction, the interaction of the nuclear Schiff moment (NSM) with the atomic electrons and the electric dipole polarizability $\\alpha_d$ for $^{223}$Rn. Our relativistic random-phase approximation (RPA) results are substantially larger than those of lower-order relativistic many-body perturbation theory (MBPT) and the results based on the relativistic coupled-cluster (RCC) method with single and double excitations (CCSD) are the most accurate to date for all the three properties that we have considered. We obtain $d_A = 4.85(6) \\times 10^{-20} C_T \\ |e| \\ cm$ from T-PT interaction, $d_A=2.89(4) \\times 10^{-17} {S/(|e|\\ fm^3)}$ from NSM interaction and $\\alpha_d=35.27(9) \\ ea_0^3$. The former two results in combination with the measured value of $^{223}$Rn EDM, when it becomes available, could yield the best limits for the T-...

  20. Regional Frequency Analysis of Annual Maximum Rainfall in Monsoon Region of Pakistan using L-moments

    Directory of Open Access Journals (Sweden)

    Amina Shahzadi

    2013-02-01

    Full Text Available The estimation of magnitude and frequency of extreme rainfall has immense importance to make decisions about hydraulic structures like spillways, dikes and dams etc The main objective of this study is to get the best fit distributions for annual maximum rainfall data on regional basis in order to estimate the extreme rainfall events (quantiles for various return periods. This study is carried out using index flood method using L-moments by Hosking and wallis (1997. The study is based on 23 sites of rainfall which are divided into three homogeneous regions. The collective results of L-moment ratio diagram, Z-statistic and AWD values show the GLO, GEV and GNO to be best fit for all three regions and in addition PE3 for region 3. On the basis of relative RMSE, for region 1 and region 2, GLO, GEV and GNO are producing approximately the same relative RMSE for return periods upto 100. While GNO is producing less relative RMSE for large return periods of 500 and 1000. So for large return periods GNO could be best distribution. For region 3 GLO, GEV, GNO and PE3 are having approximately the same relative RMSE for return periods upto 100. While for large return periods of 500 and 1000 PE3 could be best on basis of less relative RMSE.

  1. Relativistic many-body analysis of the electric dipole moment of 223Rn

    Science.gov (United States)

    Sahoo, B. K.; Singh, Yashpal; Das, B. P.

    2014-11-01

    We report the results of our ab initio relativistic many-body calculations of the electric dipole moment (EDM) dA arising from the electron-nucleus tensor-pseudotensor (T-PT) interaction, the interaction of the nuclear Schiff moment (NSM) with the atomic electrons and the electric dipole polarizability αd for 223Rn . Our relativistic random-phase approximation results are substantially larger than those of lower-order relativistic many-body perturbation theory and the results based on the relativistic coupled-cluster method with single and double excitations are highly accurate for all three properties that we have considered. We obtain dA=4.85 (6 ) ×10-20 CT|e | cm from T-PT interaction, dA=2.89 (4 ) ×10-17S /(|e |fm3) from NSM interaction, and αd=35.27 (9 ) e a03 . The former two results in combination with the measured value of 223Rn EDM, when it becomes available, could yield the best limits for the T-PT coupling constant, EDMs, and chromo-EDMs of quarks and θQCD parameter, and would thereby shed light on leptoquark and supersymmetric models that predict C P violation.

  2. Table of nuclear electric quadrupole moments

    Science.gov (United States)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  3. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  4. Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.

  5. Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED

    CERN Document Server

    Amour, L

    2010-01-01

    We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.

  6. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  7. Universal Wave Function Overlap and Universal Topological Data from Generic Gapped Ground States

    OpenAIRE

    2014-01-01

    We propose a way -- universal wave function overlap -- to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data should fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological orders in 2+1D, this universal topological data consist of two matrices, $S$ and $T$, which generate a projective representation of $SL(2,\\mathbb Z)$ on the degenerate ground state Hilbert space on ...

  8. Relationship Between the Shape of Suspension Particle and Ground State Structure of Electrorheological Solid

    Institute of Scientific and Technical Information of China (English)

    WU Feng; HE Pei; CHEN Zu-Yao; JIANG Wan-Quan

    2000-01-01

    The effect of the shape of suspension particle in electrorheological (ER) fluid on the ground state structure of ER solid is discussed. The results of computation show that the ground state structure will change with the shape of suspension particle. This phenomenon is a kind of phase transitions that takes the shape factors of suspension particle as tuning parameters. The variation-value of interaction energy of the lattice structure of ER solid with the shape factors of suspension particle is sometimes noticeable.

  9. Anisotropic media effect on the dipole moment of some coumarin dyes.

    Science.gov (United States)

    Zakerhamidi, M S; Ghanadzadeh, A; Moghadam, M; Tajalli, H

    2010-11-01

    The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, C500 and C503, were studied at room temperature in various solvents, viz., aprotic solvents, alcohols and liquid crystals at 298 K. We report dipole moment of laser dyes in different anisotropic (liquid crystals) and isotropic environments. The dipole moments values in different media help to investigate environment effects on the molecular dipole moment and provide a straightforward method for comparing their properties. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than corresponding ground state values (μ(g)), indicating a substantial redistribution of the π-electron densities in a more polar excited state for the dyes investigated.

  10. High Resolution Spatio Temporal Moments Analysis of Solute Migration Captured using Pre-clinical Medical Imaging Techniques

    Science.gov (United States)

    Dogan, M.; Moysey, S. M.; Powell, B. A.; DeVol, T. A.

    2016-12-01

    Advances in medical imaging technologies are continuously expanding the range of applications enabled within the earth sciences. While computed x-ray tomography (CT) scans have traditionally been used for investigating the structure of geologic materials, it is now possible to perform 3D time-lapse imaging of dynamic processes, such as monitoring the infiltration of water into a soil, with sub-millimeter resolution. Likewise, single photon emission computed tomography (SPECT) can provide information on the evolution of solute transport with spatial resolution on the order of a millimeter by tracking the migration of gamma-ray emitting isotopes like 99mTc and 111In. While these imaging techniques are revolutionizing our ability to look within porous media, techniques for the analysis of such rich and large data sets are limited. The spatial and temporal moments of a plume have long been used to provide quantitative measures to describe plume movement in a wide range of settings from the lab to field. Moment analysis can also be used to estimate the hydrologic properties of the porous media. In this research, we investigate the use of moments for analyzing a high resolution 4D SPECT data set collected during a 99mTc transport experiment performed in a heterogeneous column. The 4D nature of the data set makes it amenable to the use of data mining and pattern recognition methods, such as cluster analysis, to identify regions or zones within the data that exhibit abnormal or unexpected behaviors. We then compare anomalous features within the SPECT data to similar features identified within the CT image to relate the flow behavior to pore-scale structures, such as porosity differences and macropores. Such comparisons help to identify whether these features are good predictors of preferential transport. Likewise, we evaluate whether local analysis of moments can be used to infer apparent parameters governing non-conservative transport in a heterogeneous porous media, such

  11. Quantum tunneling of the magnetic moment in a free nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)

    2012-09-15

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  12. Analysis of the moment caused by friction of cardan joint. Cardan joint no friction kishinryoku kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Yagi, Shida, T. (Atsugi Unisia Corp., Kanagawa (Japan))

    1990-10-01

    Analyzing the vibromotive force, generated by the friction, in generation morphology, level, dynamical characteristics, etc., through measurement of joint unit friction simulation of frictional vibromotive force and on-platform measurement of propeller shaft in vibromotive force, the present report investigated the influence of friction on the vehicle in sound vibration performance. By a vibromotive force measurement system, internally equipped with a piezoelectric type force meter, frictional vibromotive force could be quantitatively grasped. The friction must be appropriately controlled, because the moment, generated by it, is expected to be put in the vehicle by intermediation of a supporting point and adversely influence the sound vibration performance. Apart from the above, elucidation was made of relation between the ordinal number components of rotation of vibromotive force and friction, calculation of reaction force at the supporting point by the frictional measurement, relation between the joint angle and frictional vibromotive force, second couple force due to the friction, etc. 3 refs., 15 figs.

  13. Magnetic Moment and Band Structure Analysis of Fe, Co, Ni-modified Graphene-nano- ribbon

    OpenAIRE

    Ota, Norio

    2014-01-01

    Magnetic properties and band characteristics of graphene-nano-ribbon (GNR) modified by Fe, Co, and Ni were analyzed by the first principles DFT calculation. Typical unit cell is [C32H2Fe1], [C32H2Co1] and [C32H2Ni1] respectively. The most stable spin state was Sz=4/2 for Fe-modified GNR, whereas Sz=3/2 for Co-case and Sz=2/2 for Ni-case. Atomic magnetic moment of Fe, Co and Ni were 3.63, 2.49 and 1.26 {\\mu}B, which were reduced values than that of atomic Hund-rule due to magnetic coupling wit...

  14. A NEW MOMENT METHOD FOR THE FAST AND ACCURATE ANALYSIS OF NORMAL MODE HELICAL ANTENNAS

    Institute of Scientific and Technical Information of China (English)

    Ji Yicai; Sun Baohua; Liu Qizhong

    2001-01-01

    In this letter, a new moment method using helical segments is presented to model Normal Mode Helical Antenna (NMHA). Using this method, the NMHA can be modeled by a few segments. The current distributions and radiation patterns of some NMHAs are calculated.A comparison is made between results obtained using this helical segment algorithm and a linear segment algorithm, and the results of the two algorithms agree fairly well. When calculating the impedance matrix [Z], all the elements of the matrix can be obtained by only calculating a few elements with the application of the symmetric and periodic characteristics of the NMHA.Therefore, the CPU time and the memory storage are significantly reduced, with the accuracy and speed enhanced.

  15. Analysis of perturbations of moments associated with orthogonality linear functionals through the Szegö transformation

    Directory of Open Access Journals (Sweden)

    Edinson Fuentes

    2015-06-01

    Full Text Available In this paper, we consider perturbations to a sequence of moments associated with an orthogonality linear functional that is represented by a positive measure supported in [−1, 1]. In particular, given a perturbation to such a measure on the real line, we analyze the perturbation obtained on the corresponding measure on the unit circle, when both measures are related through the Szeg´´o transformation. A similar perturbation is analyzed through the inverse Szeg´´o transformation. In both cases, we show that the applied perturbation can be expressed in terms of the singular part of the measures, and also in terms of the corresponding sequences of moments. Resumen. En el presente trabajo, analizamos las perturbaciones a una sucesión de momentos asociada a un funcional lineal de ortogonalidad que se representa por una medida positiva con soporte en [−1, 1]. En particular, dada una cierta perturbación a dicha medida en la recta real, analizamos la perturbación obtenida en la correspondiente medida en la circunferencia unidad, cuando dichas medidas están relacionadas por la transformación de Szeg´´o. También se analiza una perturbación similar a través de la transformación inversa de Szeg´´o. En ambos casos, se muestra que la perturbación aplicada puede ser expresada en términos de la parte singular de las medidas, y también a través de las correspondientes sucesiones de momentos.

  16. Properties of the {sup 7}He ground state from {sup 8}He neutron knockout

    Energy Technology Data Exchange (ETDEWEB)

    Aksyutina, Yu. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Johansson, H.T. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Aumann, T.; Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Borge, M.J.G. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Cortina-Gil, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); University of Santiago de Compostela, 15706 Santiago de Compostela (Spain); Pramanik, U. Datta [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Emling, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Forssen, C. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Geissel, H.; Ickert, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden)], E-mail: bjn@fy.chalmers.se; Kulessa, R. [Instytut Fizyki, Universytet Jagiellonski, PL-30-059 Krakow (Poland); Langer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lantz, M. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); LeBleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lindahl, A.O. [Institutionen foer Fysik, University of Gothenburg, S-412 96 Goeteborg (Sweden)] (and others)

    2009-08-24

    The unbound nucleus {sup 7}He, produced in neutron-knockout reactions with a 240 MeV/u {sup 8}He beam in a liquid-hydrogen target, has been studied in an experiment at the ALADIN-LAND setup at GSI. From an R-matrix analysis the resonance parameters for {sup 7}He as well as the spectroscopic factor for the {sup 6}He(0{sup +}) + n configuration in its ground-state have been obtained. The spectroscopic factor is 0.61 confirming that {sup 7}He is not a pure single-particle state. An analysis of {sup 5}He data from neutron-knockout reactions of {sup 6}He in a carbon target reveals the presence of an s-wave component at low energies in the {alpha}+n relative energy spectrum. A possible low-lying exited state in {sup 7}He observed in neutron knockout data from {sup 8}He in a carbon target and tentatively interpreted as a I{sup {pi}}=1/2{sup -} state, could not be observed in the present experiment. Possible explanations of the shape difference between the {sup 7}He resonance obtained in the two knockout reactions are discussed in terms of target-dependence or different reaction mechanisms at relativistic energies.

  17. Ground state of the U2Mo compound: Physical properties of the Ω-phase

    Science.gov (United States)

    Losada, E. L.; Garcés, J. E.

    2016-10-01

    Using ab initio calculations, unexpected structural instability was recently found in the ground state of the U2 Mo compound. Instead of the unstable I4/mmm and the Pmmn structures, in this work the P6/mmm (#191) space group, usually called Ω-phase, is proposed as the fundamental state. Total energy calculations using Wien2k code slightly favoured the last structure. Electronic and elastic properties are studied in this work in order to characterize the physical properties of this new phase. The stability of the Ω-phase is studied by means of its elastic constants calculation and phonon dispersion spectrum. Analysis of isotropic indices shows that the new phase is a ductile material with a minimal degree of anisotropy, suggesting that U2 Mo in the P6/mmm structure is an elastic isotropic material. Analysis of charge density, density of electronic states (DOS) and the character of the bands revealed a high level of hybridization between d-molybdenum electronic states and d- and f-uranium ones.

  18. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy.

    Science.gov (United States)

    Lofrumento, C; Arci, F; Carlesi, S; Ricci, M; Castellucci, E; Becucci, M

    2015-02-25

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311+G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  19. Moments of Negotiation

    NARCIS (Netherlands)

    Pieters, Jurgen

    2001-01-01

    'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,

  20. Moments of Negotiation

    NARCIS (Netherlands)

    Pieters, Jurgen

    2001-01-01

    'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement, wh

  1. Moments Based Framework for Performance Analysis of One-Way/Two-Way CSI-Assisted AF Relaying

    KAUST Repository

    Xia, Minghua

    2012-09-01

    When analyzing system performance of conventional one-way relaying or advanced two-way relaying, these two techniques are always dealt with separately and, thus, their performance cannot be compared efficiently. Moreover, for ease of mathematical tractability, channels considered in such studies are generally assumed to be subject to Rayleigh fading or to be Nakagami-$m$ channels with integer fading parameters, which is impractical in typical urban environments. In this paper, we propose a unified moments-based framework for general performance analysis of channel-state-information (CSI) assisted amplify-and-forward (AF) relaying systems. The framework is applicable to both one-way and two-way relaying over arbitrary Nakagami-$m$ fading channels, and it includes previously reported results as special cases. Specifically, the mathematical framework is firstly developed under the umbrella of the weighted harmonic mean of two Gamma-distributed variables in conjunction with the theory of Pad\\\\\\'e approximants. Then, general expressions for the received signal-to-noise ratios of the users in one-way/two-way relaying systems and the corresponding moments, moment generation function, and cumulative density function are established. Subsequently, the mathematical framework is applied to analyze, compare, and gain insights into system performance of one-way and two-way relaying techniques, in terms of outage probability, average symbol error probability, and achievable data rate. All analytical results are corroborated by simulation results as well as previously reported results whenever available, and they are shown to be efficient tools to evaluate and compare system performance of one-way and two-way relaying.

  2. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    Science.gov (United States)

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  3. "Plug and play" full-dimensional ab initio potential energy and dipole moment surfaces and anharmonic vibrational analysis for CH4-H2O.

    Science.gov (United States)

    Qu, Chen; Conte, Riccardo; Houston, Paul L; Bowman, Joel M

    2015-03-28

    The potential energy surface of the methane-water dimer is represented as the sum of a new intrinsic two-body potential energy surface and pre-existing intramolecular potentials for the monomers. Different fits of the CH4-H2O intrinsic two-body energy are reported. All these fits are based on 30 467 ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ for C and O, cc-pVTZ for H) level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical representation with root-mean-square (rms) fitting error of 3.5 cm(-1). Two other computationally more efficient two-body potentials are also reported, albeit with larger rms fitting errors. Of these a compact permutationally invariant fit is shown to be the best one in combining precision and speed of evaluation. An intrinsic two-body dipole moment surface is also obtained, based on MP2/haTZ expectation values, with an rms fitting error of 0.002 au. As with the potential, this dipole moment surface is combined with existing monomer ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy, D0, are determined by diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR spectrum of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials is analyzed by comparing the energetics and the harmonic frequencies of the global minimum well, and the maximum impact parameter employed in a sample methane-water scattering calculation.

  4. Application of Linear Moments and Uncertainty Analysis to Extreme Rainfall Events in Sabah

    Directory of Open Access Journals (Sweden)

    Chuah Shu Lim

    2017-01-01

    Full Text Available Linear moments (LM has been applied in extreme rainfall study for several countries, including China, United States of America, and Peninsular Malaysia. In this study, the LM procedures were applied to extreme rainfall data corresponding to locations provided in Malaysia Urban Stromwater Manual (MSMA to derive new design rainfalls. Different record lengths were considered to assess the changes in design rainfall, and Monte Carlo simulations were carried out to compute confidence interval of the derived design rainfalls. Based on the Goodness-of-Fit (GoF test results, the Generalized Extreme Value (GEV probability distribution was chosen to derive the design rainfalls. The updated design rainfalls at all four locations showed significant reduction at design rainfalls of 50-year ARI and above. The difference of the design rainfalls from shorter record lengths with respect to the full record length and the confidence intervals do not necessarily reduce with a longer record. In hypothetical cases where 100-yr ARI rainfall was added, the increase in design rainfalls did not exceed the upper bound of the confidence intervals. The derived confidence intervals hence allow for better risk assessment, and should be considered in the design of critical structures, i.e. dams.

  5. Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    CERN Document Server

    Preciado, Victor M

    2015-01-01

    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence $\\bar{w}_n^{^{T}} = (w^{(n)}_1,\\ldots,w^{(n)}_n)$ is prescribed on the ensemble. Let $\\mathbf{a}_{i,j} =1$ if there is an edge between the nodes $\\{i,j\\}$ and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: $\\mathbf{A}_n$ $=$ $ [\\mathbf{a}_{i,j}/\\sqrt{n}]_{i,j=1}^{n}$. The empirical spectral distribution of $\\mathbf{A}_n$ denoted by $\\mathbf{F}_n(\\mathord{\\cdot})$ is the empirical measure putting a mass $1/n$ at each of the $n$ real eigenvalues of the symmetric matrix $\\mathbf{A}_n$. Under some technical conditions on the expected degrees sequence, we show that with probability one, $\\mathbf{F}_n(\\mathord{\\cdot})$ converges weakly to a deterministic distribution $F(\\mathord{\\cdot})$. Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of $...

  6. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  7. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  8. Electromagnetic Structure of Few-Nucleon Ground States

    CERN Document Server

    Marcucci, L E; Pena, M T; Piarulli, M; Schiavilla, R; Sick, I; Stadler, A; Van Orden, J W; Viviani, M

    2015-01-01

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q \\lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q \\gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary....

  9. Chiral extrapolations and strangeness in the baryon ground states

    CERN Document Server

    Lutz, Matthias F M

    2013-01-01

    We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.

  10. Temporal moment analysis as a means to improve model parameterisation and peakflow predictions

    Science.gov (United States)

    Kesson, A. Ö.; Wörman, A.

    2012-04-01

    Hydrological predictions of extreme flows are often associated with a high degree of uncertainty. Reasons for this are partly that the predictions often are conceived by extrapolating hydrological models outside the prediction range for which the model has been calibrated and validated. As a means of improving peak flow predictions, we are here focusing on the processes within the stream network as they have proven to be essential factors for determining the timing and magnitude of flow peaks. The average travelling time within a stream network has previously been shown to vary non-linearly with stage, and been shown to depend on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. A semi-2D formulation of the kinematic-diffusive wave equation including a lateral exchange with the floodplains is applied to a distribution of flow paths in a stream network, aiming to increase the understanding of the discharge response following a precipitation event. Focus is put on investigating the non-linear relationship between discharge and flow travel time, as well as to formulate generalised methods of incorporating the effects of flooded cross sections into the response functions of hydrological models. The effects of this novel parameterisation are evaluated in the context of a response function, focusing on the potential improvements when making peakflow predictions. By basing the parameterisation procedure of a compartment model in physical catchment properties and process understanding rather statistical parameterisation based in how a catchment has responded in the past, hydrological models are believed to be more reliable during extreme conditions as well as during changing conditions such as climate change and landscape modifications. The results show that temporal moment analyses and distributed routing can be used as a means to parameterise the surface water component of compartmental runoff models and that the mean error of runoff models

  11. Towards {sup 6}Li-{sup 40}K ground state molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brachmann, Johannes Felix Simon

    2013-02-08

    The production of a quantum gas with strong long - range dipolar interactions is a major scientific goal in the research field of ultracold gases. In their ro - vibrational ground state Li-K dimers possess a large permanent dipole moment, which could possibly be exploited for the realization of such a quantum gas. A production of these molecules can be achieved by the association of Li and K at a Feshbach resonance, followed by a coherent state transfer. In this thesis, detailed theoretical an experimental preparations to achieve state transfer by means of Stimulated Raman Adiabatic Passage (STIRAP) are described. The theoretical preparations focus on the selection of an electronically excited molecular state that is suitable for STIRAP transfer. In this context, molecular transition dipole moments for both transitions involved in STIRAP transfer are predicted for the first time. This is achieved by the calculation of Franck-Condon factors and a determination of the state in which the {sup 6}Li-{sup 40}K Feshbach molecules are produced. The calculations show that state transfer by use of a single STIRAP sequence is experimentally very well feasible. Further, the optical wavelengths that are needed to address the selected states are calculated. The high accuracy of the data will allow to carry out the molecular spectroscopy in a fast and efficient manner. Further, only a comparatively narrow wavelength tuneability of the spectroscopy lasers is needed. The most suitable Feshbach resonance for the production of {sup 6}Li-{sup 40}K molecules at experimentally manageable magnetic field strengths is occurring at 155 G. Experimentally, this resonance is investigated by means of cross-dimensional relaxation. The application of the technique at various magnetic field strengths in the vicinity of the 155 G Feshbach resonance allows a determination of the resonance position and width with so far unreached precision. This reveals the production of molecules on the atomic side

  12. Effect of anisotropic and isotropic solvent on the dipole moment of coumarin dyes.

    Science.gov (United States)

    Zakerhamidi, M S; Ghanadzadeh, A; Moghadam, M

    2011-03-01

    The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, coumarin 440 and 460, were studied at room temperature in various solvents, viz., general solvents, alcohols and liquid crystals at 298 K. In this work, we report dipole moment of laser dyes in different anisotropic (liquid crystal) and isotropic environments for understanding the effects of environments on the molecular dipole moment and comparing them. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than the corresponding ground state values (μ(g)) in all media.

  13. Solvent effects on the absorption and fluorescence spectra of quinine sulphate: Estimation of ground and excited-state dipole moments

    Science.gov (United States)

    Joshi, Sunita; Pant, Debi D.

    2012-06-01

    Ground and excited state dipole moments of probe quinine sulphate (QS) was obtained using Solvatochromic shift method. Higher dipole moment is observed for excited state as compared to the ground state which is attributed to the higher polarity of excited state.

  14. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  15. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    Science.gov (United States)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  16. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  17. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  18. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    Science.gov (United States)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  19. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  20. Tree based machine learning framework for predicting ground state energies of molecules

    Science.gov (United States)

    Himmetoglu, Burak

    2016-10-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16 242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials informatics.

  1. Tree based machine learning framework for predicting ground state energies of molecules

    CERN Document Server

    Himmetoglu, Burak

    2016-01-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16,242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials inform...

  2. Ground-State Transition in a Two-Dimensional Frenkel-Kontorova Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; ZHENG Zhi-Gang

    2011-01-01

    The ground state of a generalized Frenkel-Kontorova model with a transversaJ degree of freedom is studied. When the coupling strength, K, and the frequency of & single-Atom vibration in the transversaJ direction, ωou are increased, the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensionai ground state is θ≠1//q.%The ground state of a generalized Frenkel-Kontorova model with a transversal degree of freedom is studied.When the coupling strength,K,and the frequency of a single-atom vibration in the transversal direction,ωoy,are increased,the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one.This transition can manifest in different ways.Furthermore,we find that the prerequisite of a two-dimensional ground state is θ ≠ 1/q.In recent years,the Frenkel-Kontorova (FK) model has been applied to a variety of physical systems,such as adsorbed monolayers,[1,2] Josephsonjunction arrays,[3-5] tribology[6-8] and charge-density waves.[9,10] Experimental and large-scale simulation data at the nanoscale have become available,and more complicated FK-type models have been investigated using simulations of molecular dynamics.[11

  3. v-representability and density functional theory. [for nonrelativistic electrons in nondegenerate ground state

    Science.gov (United States)

    Kohn, W.

    1983-01-01

    It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

  4. First-principles prediction of a ground state crystal structure of magnesium borohydride.

    Science.gov (United States)

    Ozolins, V; Majzoub, E H; Wolverton, C

    2008-04-04

    Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.

  5. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  6. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  7. Universal crossover from ground-state to excited-state quantum criticality

    Science.gov (United States)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  8. Preparing ground States of quantum many-body systems on a quantum computer.

    Science.gov (United States)

    Poulin, David; Wocjan, Pawel

    2009-04-03

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  9. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  10. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  11. Boundedness and convergence of perturbed corrections for helium-like ions in ground states

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun-Hui; Hai Wen-Hua; Zhao Cheng-Lin; Luo Xiao-Bing

    2008-01-01

    Applying the improved Rayleigh-Schr(o)dinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations,we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity.It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable,and the corresponding perturbation series is convergent.The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.

  12. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  13. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  14. Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang

    2008-01-01

    The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.

  15. Exact spin-cluster ground states in a mixed diamond chain

    Science.gov (United States)

    Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo

    2009-09-01

    The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.

  16. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  17. A new approach for elasto-plastic finite strain analysis of cantilever beams subjected to uniform bending moment

    Indian Academy of Sciences (India)

    GOKHAN T TAYYAR

    2016-04-01

    The reliability and limits of solutions for static structural analysis depend on the accuracy of the curvature and deflection calculations. Even if the material model is close to the actual material behavior, physically unrealistic deflections or divergence problems are unavoidable in the analysis if an appropriate fundamental kinematic theory is not chosen. Moreover, accurate deflection calculation plays an important role in ultimate strength analysis where in-plane stresses are considered. Therefore, a more powerful method is neededto achieve reliable deflection calculation and modeling. For this purpose, a new advanced step was developed by coupling the elasto-plastic material behavior with precise general planar kinematic analysis. The deflection is generated precisely without making geometric assumptions or using differential equations of the deflection curve. An analytical finite strain solution was derived for an elasto-plastic prismatic/non-prismatic rectangular cross-sectioned beam under a uniform moment distribution. A comparison of the analytical results with thosefrom the Abaqus FEM software package reveals a coherent correlation.

  18. First-Principles Momentum Dependent Local Ansatz Approach to the Ground-State Properties of Iron-Group Transition Metals

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-08-01

    The ground-state properties of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz (MLA) theory. Correlation energy gain is found to show large values for Mn and Fe: 0.090 Ry (Mn) and 0.094 Ry (Fe). The Hund-rule coupling energies are found to be 3000 K (Fe), 1400 K (Co), and 300 K (Ni). It is suggested that these values can resolve the inconsistency in magnetic energy between the density functional theory and the first-principles dynamical coherent potential approximation theory at finite temperatures. Charge fluctuations are shown to be suppressed by the intra-orbital correlations and inter-orbital charge-charge correlations, so that they show nearly constant values from V to Fe: 1.57 (V and Cr), 1.52 (Mn), and 1.44 (Fe), which are roughly twice as large as those obtained by the d band model. The amplitudes of local moments are enhanced by the intra-orbital and inter-orbital spin-spin correlations and show large values for Mn and Fe: 2.87 (Mn) and 2.58 (Fe). These values are in good agreement with the experimental values estimated from the effective Bohr magneton number and the inner core photoemission data.

  19. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...

  20. Fourier-transform spectroscopy of Sr2 and revised ground-state potential

    Science.gov (United States)

    Stein, A.; Knöckel, H.; Tiemann, E.

    2008-10-01

    Precise potentials for the ground-state XΣg+1 and the minimum region of the excited state 2Σu+1 of Sr2 are derived by high-resolution Fourier-transform spectroscopy of fluorescence progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at 950°C . A change of the rotational assignment by four units compared to an earlier work [G. Gerber , J. Chem. Phys. 81, 1538 (1984)] is needed for a consistent description leading to a significant shift of the potentials toward longer interatomic distances. The huge amount of ground-state data derived for the three different isotopomers Sr288 , Sr86Sr88 , and Sr87Sr88 (almost 60% of all excisting bound rovibrational ground-state levels for the isotopomer Sr288 ) fixes this assignment beyond a doubt. The presented ground-state potential is derived from the observed transitions for the radial region from 4to11Å ( 9cm-1 below the asymptote) and is extended to the long-range region by the use of theoretical dispersion coefficients together with already available photoassociation data. New estimations of the scattering lengths for the complete set of isotopic combinations are derived by mass scaling with the derived potential. The data set for the excited state 2Σu+1 was sufficient to derive a potential energy curve around the minimum.

  1. Theoretical Studies on Thermal Decomposition of Benzoyl Peroxide in Ground State

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-ke; YANG Si-ya; LIN Xue-fei; MA Si-yu; LI Zong-he

    2003-01-01

    Systematic studies of the thermal decomposition mechanism of benzoyl peroxide(BPO) in ground state, leading to various intermediates, products and the potential energy surface(PES) of possible dissociation reactions were made computationally. The structures of the transition states and the activation energies for all the paths causing the formation of the reaction products mentioned above were calculated by the AM1 semi-empirical method. This method is shown to to be one predict correctly the preferred pathway for the title reaction. It has been found that in ground state, the thermal decomposition of benzoyl peroxide has two kinds of paths. The first pathway PhC(O)O-OC(O)Ph→PhC(O)O*→Ph*+CO2 produces finally phenyl radicals and carbon dioxide. And the second pathway PhC(O)OO-C(O)Ph→PhC(O)OO*+PhC(O)*→PhC(O)*+O2→Ph*+CO+O2, via which the reaction takes place only in two steps, produces oxygen and PhC(O)* radicals, and the further thermal dissociation of PhC(O)* is quite difficult because of the high activation energy in ground state. The calculated activation energies and reaction enthalpies are in good agreement with the experimental values. The research results also show that also the thermal dissociation process of the two bonds or the three bonds for the benzoyl peroxide doesn′t take place in ground state.

  2. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  3. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  4. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  5. The preformation probability inside Alpha-emitters having different ground state spin-parity than daughters

    CERN Document Server

    Seif, W M; Refaie, A I

    2015-01-01

    The ground-state spin and parity of a formed daughter in the radioactive Alpha-emitter is expected to influence the preformation probability of the Alpha and daughter clusters inside it. We investigate the Alpha and daughter preformation probability inside odd-A and doubly-odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground-state to ground-state unfavored decays. This is to extract precise information about the effect of the difference in the ground states spin-parity of the involved nuclei far away any influences from the excitation energy if the decays are coming from isomeric states. The calculations are done for 161 Alpha-emitters, with Z=65-112 and N=84-173, in the framework of the extended cluster model, with WKB penetrability and assault frequency. We used a Hamiltonian energy density scheme based on Skyrme-SLy4 interaction to compute the interaction potential. The Alpha plus cluster preformation probability is extracted from the calculat...

  6. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  7. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  8. Ground-state and Pairing Properties of Pr Isotopes in RMF Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The ground-state and pairing properties of Pr (Z=59) isotopes have been investigated in therelativistic mean-field (RMF). The pairing correlation is studied in Bardeen-Cooper-Schrieffer (BCS) approximation and the pairingforces are taken to be isospin dependent. The ’blocking’ method is adopted to deal with unpaired odd

  9. A Simple Volcano Potential with an Analytic, Zero-Energy, Ground State

    CERN Document Server

    Nieto, Michael Martin

    2000-01-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  10. Theoretical study of the ground state of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; van Duijnen, Piet Th.; van Loosdrecht, Paul H.M.; Broer, Ria

    2015-01-01

    In this paper we present a theoretical study of the nature of the ground state of the (EDO-TTF)(2)PF6 charge transfer salt by using ab initio quantum chemical theory for clusters in vacuum, for embedded clusters and for the periodic system. Exemplary for other organic charge transfer systems, we sho

  11. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  12. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  13. Positive and ground state solutions for the critical Klein-Gordon-Maxwell system with potentials

    CERN Document Server

    Carriao, Paulo C; Miyagaki, Olimpio H

    2010-01-01

    In this paper we study a class of Klein-Gordon-Maxwell system when the nonlinearity exhibits critical growth. First we prove both existence and ground state solutions for this system with a periodic potencial V, and then we show the existence in the case that a nonperiodic potencial V is introduced.

  14. Laser cooling a neutral atom to the three-dimensional vibrational ground state of an optical tweezer

    CERN Document Server

    Kaufman, Adam M; Regal, Cindy A

    2012-01-01

    We report three-dimensional ground state cooling of a single neutral atom in an optical tweezer. After employing Raman sideband cooling for 33 ms, we measure via sideband spectroscopy a three-dimensional ground state occupation of ~90%. Ground state neutral atoms in optical tweezers will be instrumental in numerous quantum logic applications and for nanophotonic interfaces that require a versatile platform for storing, moving, and manipulating ultracold single neutral atoms.

  15. Calibration of transient groundwater models using time series analysis and moment matching

    NARCIS (Netherlands)

    Bakker, M.; Maas, K.; Von Asmuth, J.R.

    2008-01-01

    A comprehensive and efficient approach is presented for the calibration of transient groundwater models. The approach starts with the time series analysis of the measured heads in observation wells using all active stresses as input series, which may include rainfall, evaporation, surface water leve

  16. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    Science.gov (United States)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  17. Theoretical study of the fragmentation pathways of norbornane in its doubly ionized ground state.

    Science.gov (United States)

    Knippenberg, Stefan; Hajgató, Balazs; François, Jean-Pierre; Deleuze, Michael S

    2007-10-25

    The potential energy surface of norbornane in its dicationic singlet ground state has been investigated in detail using density functional theory along with the nonlocal hybrid and gradient-corrected Becke three-parameter Lee-Yang-Parr functional (B3LYP) and the cc-pVDZ basis set. For the sake of more quantitative insight into the chemical reactions induced by double ionization of norbornane, this study was supplemented by a calculation of basic thermodynamic state functions coupled to a focal point analysis of energy differences obtained using correlation treatments and basis sets of improving quality, enabling an extrapolation of these energy differences at the CCSD(T) level in the limit of an asymptotically complete (cc-pV infinity Z) basis set. Our results demonstrate the likelihood of an ultrafast intramolecular rearrangement of the saturated hydrocarbon cage after a sudden removal of two electrons into a kinetically metastable five-membered cyclic C5H8+-CH+-CH3 intermediate, prior to a Coulomb explosion into C5H7+=CH2 and CH3+ fragments, which might explain a tremendous rise of electron-impact (e, 2e) ionization cross sections at electron binding energies around the double-ionization threshold. The first step is straightforward and strongly exothermic (DeltaH298 = -114.0 kcal mol-1). The second step is also exothermic (DeltaH298 = -10.2 kcal mol-1) but requires an activation enthalpy (DeltaH298) of 39.7 kcal/mol. The various factors governing the structure of this intermediate, such as electrostatic interactions, inductive effects, cyclic strains, and methylenic hyperconjugation interactions, are discussed in detail.

  18. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Science.gov (United States)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  19. Optimal Moments for the Analysis of Peculiar Velocity Surveys II: Testing

    CERN Document Server

    Feldman, H A; Melott, A L; Chambers, S W; Feldman, Hume A.; Watkins, Richard; Melott, Adrian L.; Chambers, Scott W.

    2003-01-01

    Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. This is the second in a series of papers in which we describe a new method of overcoming these problems by using data compression as a filter with which to separate large--scale, linear flows from small--scale noise that can bias results. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter $\\Gamma$ and amplitude $\\beta$, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.

  20. Robust Feature Detection and Local Classification for Surfaces Based on Moment Analysis

    OpenAIRE

    2004-01-01

    The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. He...

  1. Intraoperative forces and moments analysis on patient head clamp during awake brain surgery.

    Science.gov (United States)

    De Lorenzo, Danilo; De Momi, Elena; Conti, Lorenzo; Votta, Emiliano; Riva, Marco; Fava, Enrica; Bello, Lorenzo; Ferrigno, Giancarlo

    2013-03-01

    In brain surgery procedures, such as deep brain stimulation, drug-resistant epilepsy and tumour surgery, the patient is intentionally awakened to map functional neural bases via electrophysiological assessment. This assessment can involve patient's body movements; thus, increasing the mechanical load on the head-restraint systems used for keeping the skull still during the surgery. The loads exchanged between the head and the restraining device can potentially result into skin and bone damage. The aim of this work is to assess such loads for laying down the requirements of a surgical robotics system for dynamic head movements compensation by fast moving arms and by an active restraint able to damp such actions. A Mayfield(®) head clamp was tracked and instrumented with strain gages (SGs). SG locations were chosen according to finite element analyses. During an actual brain surgery, displacements and strains were measured and clustered according to events that generated them. Loads were inferred from strain data. The greatest force components were exerted vertically (median 5.5 N, maximum 151.87 N) with frequencies up to 1.5 Hz. Maximum measured displacement and velocity were 9 mm and 60 mm/s, with frequencies up to 2.8 Hz. The analysis of loads and displacements allowed to identify the surgery steps causing maximal loads on the head-restraint device.

  2. Confirmation using Monte Carlo ground-state energies of the instability of free planar films of liquid 4He at T=0 K

    Science.gov (United States)

    Szybisz, Leszek

    1998-07-01

    The stability of free slabs of liquid 4He at T=0 K is studied by examining ground-state energies computed with Monte Carlo techniques. A stability condition derived by imposing a positive areal isothermal compressibility is applied. It is shown that Monte Carlo data clearly indicate that all finite films are unstable supporting the finding of previous investigations based on the analysis of values obtained from self-consistent microscopic calculations.

  3. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    Directory of Open Access Journals (Sweden)

    Logan D Andrews

    2013-07-01

    Full Text Available Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i was determined from pH dependencies of the binding of Pi and tungstate, a P(i analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the

  4. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  5. Regional intensity-duration-frequency analysis in the Eastern Black Sea Basin, Turkey, by using L-moments and regression analysis

    Science.gov (United States)

    Ghiaei, Farhad; Kankal, Murat; Anilan, Tugce; Yuksek, Omer

    2016-10-01

    The analysis of rainfall frequency is an important step in hydrology and water resources engineering. However, a lack of measuring stations, short duration of statistical periods, and unreliable outliers are among the most important problems when designing hydrology projects. In this study, regional rainfall analysis based on L-moments was used to overcome these problems in the Eastern Black Sea Basin (EBSB) of Turkey. The L-moments technique was applied at all stages of the regional analysis, including determining homogeneous regions, in addition to fitting and estimating parameters from appropriate distribution functions in each homogeneous region. We studied annual maximum rainfall height values of various durations (5 min to 24 h) from seven rain gauge stations located in the EBSB in Turkey, which have gauging periods of 39 to 70 years. Homogeneity of the region was evaluated by using L-moments. The goodness-of-fit criterion for each distribution was defined as the ZDIST statistics, depending on various distributions, including generalized logistic (GLO), generalized extreme value (GEV), generalized normal (GNO), Pearson type 3 (PE3), and generalized Pareto (GPA). GLO and GEV determined the best distributions for short (5 to 30 min) and long (1 to 24 h) period data, respectively. Based on the distribution functions, the governing equations were extracted for calculation of intensities of 2, 5, 25, 50, 100, 250, and 500 years return periods (T). Subsequently, the T values for different rainfall intensities were estimated using data quantifying maximum amount of rainfall at different times. Using these T values, duration, altitude, latitude, and longitude values were used as independent variables in a regression model of the data. The determination coefficient (R 2) value indicated that the model yields suitable results for the regional relationship of intensity-duration-frequency (IDF), which is necessary for the design of hydraulic structures in small and

  6. A BHLS model based moment analysis of muon g-2, and its use for lattice QCD evaluations of $a_\\mu^{\\rm had}$

    CERN Document Server

    Benayoun, M; DelBuono, L; Jegerlehner, F

    2016-01-01

    We present an up-to-date analysis of muon $g-2$ evaluations in terms of Mellin-Barnes moments as they might be useful for lattice QCD calculations of $a_\\mu$. The moments up to 4th order are evaluated directly in terms of $e^+e^-$--annihilation data and improved within the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms. The model provides a reliable Effective Lagrangian (BHLS) estimate of the two-body channels plus the $\\pi\\pi\\pi$ channel up to 1.05~GeV, just including the $\\phi$ resonance. The HLS piece accounts for 80\\% of the contribution to $a_\\mu$. The missing pieces are evaluated in the standard way directly in terms of the data. We find that the moment expansion converges well in terms of a few moments. The two types of moments which show up in the Mellin-Barnes representation are calculated in terms of hadronic cross--section data in the timelike region and in terms of the hadronic vacuum polarization (HVP) function in the spacelike region which is accessible...

  7. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.

    Science.gov (United States)

    Kim, K; Lee, S K; Kim, Y H

    2010-10-01

    The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.

  8. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression.

    Science.gov (United States)

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-03-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ground state properties of neutron-rich Mg isotopes the "island of inversion" studied with laser and $\\beta$-NMR spectroscopy

    CERN Document Server

    Kowalska, M

    2006-01-01

    Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N=20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable $^{24-26}$Mg, as well as spins and magnetic moments of short-lived $^{29,31}$Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and $\\beta$-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280 nm transition from the atomic ground state $^2\\!$S$_{1/2}$ to one of the two lowest excited states $^2\\!$P$_{1/2 ,\\,3/2}$ using continuous wave laser beams. The isotope-shift measurements with fluor...

  10. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  11. Precise dipole moment of methanol by microwave Stark spectroscopy III: Parent 12CH316OH species

    Science.gov (United States)

    Mukhopadhyay, Indra; Sastry, K. V. L. N.

    2015-06-01

    In this work, precise Stark effect measurements have been carried out on several transitions in the first four torsional states of methanol. The Stark shifted transition frequencies for a wide range of steady electric field have been measured with an accuracy of approximately ±10 kHz. Detailed analysis of the data allowed for the determination of the dipole moment components in the first four torsional states of the ground vibrational state. The extrapolated zero field frequencies of the transitions studied have been determined and found to be in perfect agreement with known values. For the torsional ground state the values of μa = 0.8961(2) and μb = 1.4201(9) have been obtained, whereas for the first excited torsional state the corresponding values obtained are 0.9035(1) and 1.4317(5) (These values are in Debye, denoted by D). These values confirm the fact that the dipole moment values increase at a considerable rate as one move toward higher torsional states as seen in previous studies. To our knowledge, this is the first time the most accurate and elaborate dipole moment values of methanol are being reported.

  12. Dipole moment of methanol by microwave stark spectroscopy IV: 13CD316OH species

    Science.gov (United States)

    Mukhopadhyay, Indra; Sastry, K. V. L. N.

    2015-10-01

    In this work, Stark effect measurements have been carried out on several transitions C-13 substituted species of triply-deuterated (D3) methanol. The analysis of the data allowed the determination of the dipole moment components in the first two torsional states of the ground vibrational state of this species. The extrapolated zero field frequencies of the transitions studied have been determined and found to be in excellent agreement with known values. For the torsional ground state the values {in Debye (D)} of μa = 0.9080(9) and μb = 1.4378(10) have been obtained for this species. These values increase for the first excited state as was observed for other species. The dipole moment values are considerably higher than the non-deuterated species. To our knowledge the present study represents the measurement of the most accurate dipole moment values of 13CD3OH for the first time. The results obtained will prove useful for radio astronomy and in understanding of large amplitude internal energy pathways in polyatomic molecules.

  13. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca [Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  14. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  15. Properties of the ground state in a spin-2 transverse Ising model with the presence of a crystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 杜安; 张起

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field arestudied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phasediagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).

  16. Properties of the ground state in a spin—2 transverse Ising model with the presence of a srystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 等

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal of a crystal field are studied by using the effective-field theory with correlations,The longitudinal and transverse magnetizations,the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice(z=3).

  17. NUMERICAL SIMULATION ANALYSIS OF EXTERNAL FLOW FIELD OF WAGON-SHAPED CAR AT THE MOMENT OF PASSING

    Institute of Scientific and Technical Information of China (English)

    GU Zhengqi; HE Yibin; ZHOU Wei; JIANG Bo

    2008-01-01

    In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the Cs -x/l curve of side force coefficient(Cs) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data,which shows creditability of numerical simulation methods presented.Key words: External flow field Passing Numerical simulation Side force coefficient

  18. Analysis of large effective electric fields of weakly polar molecules for electron electric-dipole-moment searches

    Science.gov (United States)

    Sunaga, A.; Abe, M.; Hada, M.; Das, B. P.

    2017-01-01

    Combined experimental and theoretical studies on the electric dipole moment of the electron (eEDM) can probe energy scales of a few TeV to PeV. The possible existence of the eEDM gives rise to an experimentally observed energy shift, which is proportional to the effective electric field (Eeff) of a target molecule. Hence, an analysis of the quantities that enhance Eeff is necessary to identify suitable molecules for eEDM searches. In the context of such searches, it is generally believed that a molecule with larger electric polarization also has a larger value of Eeff. However, our Dirac-Fock and relativistic coupled-cluster singles and doubles calculations show that the hydrides of Yb and Hg have larger Eeff than those of fluorides, even though their polarizations are smaller. This is due to significant mixing of valence s and p orbitals of the heavy atom in the molecules. This mixing has been attributed to the energy differences of the valence atomic orbitals and the overlap of the two atomic orbitals based on the orbital interaction theory.

  19. Stochastic method for calculating the ground-state one-body density matrix of trapped Bose particles in one dimension

    Science.gov (United States)

    Buchman, Omri; Baer, Roi

    2017-09-01

    The one-body density matrix (OBDM) is a fundamental contraction of the Bose-Einstein condensate wave function, encapsulating its one-body properties. It serves as a major analysis tool with which the condensed component of the density can be identified. Despite its cardinal importance, calculating the ground-state OBDM of trapped interacting bosons is a challenge and to date OBDM calculations have been published only for homogeneous systems or for trapped weakly interacting bosons. In this paper we discuss an approach for computing the OBDM based on a double-walker diffusion Monte Carlo random walk coupled with a stochastic permanent calculation. We here describe the method and study some of its statistical convergence and properties applying it to some model systems.

  20. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229Th

    CERN Document Server

    Beck, B R; Beiersdorfer,1 P; Brown, G V; Moody, J K; Wu, C Y; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2010-01-01

    We have made an improved estimate of the 229mTh isomer energy. The new value 7.8(5) eV includes an estimate of spectral contamination due to the out-of-band E2 transition from the 42.43-keV 7/2+ member of the [633] ground state band to the 3/2+ [631] 229mTh bandhead. We estimate a 2% branching ratio for this unobserved transition in the 42.43-keV 7/2+ [633] deexcitation. The excitation of the 229mTh level is increased from the previously reported value of 7.6(5) eV to the new value of 7.8(5) eV when this branch is included in the analysis.

  1. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh

    Energy Technology Data Exchange (ETDEWEB)

    Beck, B R; Wu, C; Beiersdorfer, P; Brown, G V; Becker, J A; Moody, K J; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2009-07-16

    We have made an improved estimate of the {sup 229m}Th isomer energy. The new value, 7.8(5) eV, includes an estimate of possible spectral contamination effects due to the out-of-band E2 transition from the 42.43-keV 7/2+ member of the [633] ground state band to the 3/2+ [631] {sup 229m}Th bandhead and so a weak and unresolved transition a few eV different in energy. We estimate a 2% branching ratio for this unobserved transition in the 42.43-keV 7/2+ [633] deexcitation. The excitation of the {sup 229m}Th level is increased from the previously reported value of 7.6(5) eV to the new best value of 7.8(5) eV when this branch is included in the analysis.

  2. Construction of the ground state in nonrelativistic QED by continuous flows

    Science.gov (United States)

    Bach, Volker; Könenberg, Martin

    For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection P by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct P=limP as the limit of a continuously differentiable family ()t⩾0 of ground state projections of infrared regularized Hamiltonians H. Using the ODE solved by this family of projections, we show that the norm ‖P‖ of their derivative is integrable in t which in turn yields the convergence of P by the fundamental theorem of calculus.

  3. Ground State Properties of New Element Z = 113 and Its Alpha Decay Chain

    Institute of Scientific and Technical Information of China (English)

    TAI Fei; CHEN Ding-Han; XU Chang; REN Zhong-Zhou

    2005-01-01

    @@ We investigate the ground state properties of the new element 278113 and of the α-decay chain with different models, where the new element Z = 113 has been produced at RIKEN in Japan by cold-fusion reaction [Morita et al.J.Phys.Soc.Jpn.73 (2004) 2593].The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model.Theoretical half-lives also reasonably agree with the data.Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278113.The common points and differences among different models are compared and discussed.

  4. Energy of ground state in B-B'-U-Hubbard model in approximation of static fluctuations

    CERN Document Server

    Mironov, G I

    2002-01-01

    To explain some features of CuO sub 2 base high-temperature superconductors (HTSC) one should take account of possibility of electron transfer to the crystalline structure mode next to the nearest one. It terms of approximation of static fluctuations one calculated the energy of ground state in two-dimensional B-B'-U Hubbard model. Lattice is assumed to consist of two sublattices formed by various type atoms. The calculation results of ground state energy are compared with the precise solution for one-dimensional Hubbard model derived previously. Comparison of the precise and the approximated solutions shows that approximation of static fluctuations describes adequately behavior of the Hubbard studied model within both weak and strong correlation ranges

  5. Influence of free carriers on exciton ground states in quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Klochikhin, A.A. [Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation); Nuclear Physics Institute, 350000 St. Petersburg (Russian Federation); Kochereshko, V.P., E-mail: vladimir.kochereshko@mail.ioffe.ru [Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation); Spin Optics Laboratory, St. Petersburg State University, 198904 St. Petersburg (Russian Federation); Tatarenko, S. [CEA-CNRS Group “Nanophysique et Semiconducteurs”, Institut Néel, CNRS and Universite Joseph Fourier, 25 Avenue des Martyrs, 38042 Grenoble (France)

    2014-10-15

    The influence of free carriers on the ground state of the exciton at zero magnetic field in a quasi-two-dimensional quantum well that contains a gas of free electrons is considered in the framework of the random phase approximation. The effects of the exciton–charge-density interaction and the inelastic scattering processes due to the electron–electron exchange interaction are taken into account. The effect of phase-space filling is considered using an approximate approach. The results of the calculation are compared with the experimental data. - Highlights: • We discussed the effect of free carriers on the exciton ground state in quantum wells. • The processes of exciton–electron scattering become the most important for excitons in doped QWs. • The direct Coulomb scattering can be neglected. • The most important becomes the exchange inelastic exciton–electron scattering.

  6. VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES

    Institute of Scientific and Technical Information of China (English)

    WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN

    2001-01-01

    Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.

  7. Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)

    Institute of Scientific and Technical Information of China (English)

    Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia

    2006-01-01

    In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.

  8. Search for $^{12}$C+$^{12}$C clustering in $^{24}$Mg ground state

    Indian Academy of Sciences (India)

    B N JOSHI; ARUN K JAIN; D C BISWAS; B V JOHN; Y K GUPTA; L S DANU; R P VIND; G K PRAJAPATI; S MUKHOPADHYAY; A SAXENA

    2017-02-01

    In the backdrop of many models, the heavy cluster structure of the ground state of $^{24}$Mg has been probed experimentally for the first time using the heavy cluster knockout reaction $^{24}$Mg($^{12}$C, $^{212}$C)$^{12}$C in thequasifree scattering kinematic domain. In the ($^{12}$C, $^{212}$C) reaction, the direct $^{12}$C-knockout cross-section was found to be very small. Finite-range knockout theory predictions were much larger for ($^{12}$C, 212C) reaction,indicating a very small $^{12}$C−$^{12}$C clustering in $^{24}$Mg(g.s.). Our present results contradict most of the proposed heavy cluster ($^{12}$C+$^{12}$C) structure models for the ground state of $^{24}$Mg.

  9. Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules

    CERN Document Server

    Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen

    2016-01-01

    We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.

  10. Candidates for Long Lived High-K Ground States in Superheavy Nuclei

    CERN Document Server

    Jachimowicz, P; Skalski, J

    2015-01-01

    On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...

  11. Ground state energy of a non-integer number of particles with δ attractive interactions

    Science.gov (United States)

    Brunet, Éric; Derrida, Bernard

    2000-04-01

    We show how to define and calculate the ground state energy of a system of quantum particles with δ attractive interactions when the number of particles n is non-integer. The question is relevant to obtain the probability distribution of the free energy of a directed polymer in a random medium. When one expands the ground state energy in powers of the interaction, all the coefficients of the perturbation series are polynomials in n, allowing to define the perturbation theory for non-integer n. We develop a procedure to calculate all the cumulants of the free energy of the directed polymer and we give explicit, although complicated, expressions of the first three cumulants.

  12. Ground state correlations and mean-field in $^{16}O$, 2

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.

    2000-01-01

    We continue the investigations of the $^{16}$O ground state using the coupled-cluster expansion [$\\exp({\\bf S})$] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for $^{16}$O is also computed.

  13. Lower ground state due to counter-rotating wave interaction in trapped ion system

    CERN Document Server

    Liu, T; Feng, M

    2007-01-01

    We consider a single ion confined in a trap under radiation of two traveling waves of lasers. In the strong-excitation regime and without the restriction of Lamb-Dicke limit, the Hamiltonian of the system is similar to a driving Jaynes-Cummings model without rotating wave approximation (RWA). The approach we developed enables us to present a complete eigensolutions, which makes it available to compare with the solutions under the RWA. We find that, the ground state in our non-RWA solution is energically lower than the counterpart under the RWA. If we have the ion in the ground state, it is equivalent to a spin dependent force on the trapped ion. Discussion is made for the difference between the solutions with and without the RWA, and for the relevant experimental test, as well as for the possible application in quantum information processing.

  14. Universal Wave-Function Overlap and Universal Topological Data from Generic Gapped Ground States.

    Science.gov (United States)

    Moradi, Heidar; Wen, Xiao-Gang

    2015-07-17

    We propose a way-universal wave-function overlap-to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data might fully characterize the topological orders with a gapped or gapless boundary. For nonchiral topological orders in (2+1)D, these universal topological data consist of two matrices S and T, which generate a projective representation of SL(2,Z) on the degenerate ground state Hilbert space on a torus. For topological orders with a gapped boundary in higher dimensions, these data constitute a projective representation of the mapping class group MCG(M^{d}) of closed spatial manifold M^{d}. For a set of simple models and perturbations in two dimensions, we show that these quantities are protected to all orders in perturbation theory. These overlaps provide a much more powerful alternative to the topological entanglement entropy and allow for more efficient numerical implementations.

  15. Ground States and Excited States in a Tunable Graphene Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    WANG Lin-Jun; CAO Gang; TU Tao; LI Hai-Ou; ZHOU Cheng; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping

    2011-01-01

    We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system. We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.%@@ We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system.We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams.The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.

  16. Ground states of bilayered and extended t-J-U models

    Energy Technology Data Exchange (ETDEWEB)

    Voo, Khee-Kyun, E-mail: kkvoo@mail.oit.edu.tw

    2015-09-04

    The ground states of bilayered and extended t-J-U models are investigated with renormalized mean field theory. The trial wave functions are Gutzwiller projected Hartree–Fock states, and the site double occupancies are variational parameters. It is found that a spontaneous interlayer phase separation (PS) may arise in bilayers. In electron–hole doping asymmetric systems, the propensity for PS is stronger in electron doped bands. Via a PS, superconductivity can survive to lower doping densities, and antiferromagnetism in electron doped systems may survive to higher doping densities. The result is related to the superconducting cuprates. - Highlights: • Ground states in doped bilayered t-J-U models are studied. • Variational wave functions are Gutzwiller projected wave functions. • Site double occupancies are variational parameters. • Spontaneous interlayer phase separation may occur in bilayers. • Stronger tendency toward phase separation in electron doped bilayers.

  17. Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection

    Science.gov (United States)

    Stadler, P.; Belzig, W.; Rastelli, G.

    2016-11-01

    We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the inelastic Andreev reflections which drive the resonator to a nonequilibrium state. For small coupling, we obtain that vibration-assisted reflections can occur through two distinct interference paths. The interference determines the ratio between the rates of absorption and emission of vibrational energy quanta. We show that ground-state cooling of the mechanical oscillator can be achieved for many of the oscillator's modes simultaneously or for single modes selectively, depending on the experimentally tunable coupling to the superconductor.

  18. ON THE RADIAL GROUND STATE OFP-LAPLACIAN EQUATION WITH GRADIENT TERM PERTURBATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,authors consider the existence,uniqueness and nonexistence of the radial ground state to the following p-Laplacian equation:△pu+uq-|Dulσ=0,x ∈Rn,where 2≤pground state to the above p-Laplacian equation.

  19. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    By the density-functional calculation we investigate the ground-state properties of Bose-Fermi mixture confined in one-dimensional harmonic traps. The homogeneous mixture of bosons and polarized fermions with contact interaction can be exactly solved by the Bethe-ansatz method. After giving the exact formula of ground state energy density, we employ the local-density approximation to determine the density distribution of each component. It is shown that with the increase in interaction, the total density distribution evolves to Fermi-like distribution and the system exhibits phase separation between two components when the interaction is strong enough but finite. While in the infinite interaction limit both bosons and fermions display the completely same Fermi-like distributions and phase separation disappears.

  20. The ground state of medium-heavy nuclei with non central forces

    CERN Document Server

    Fabrocini, A

    1997-01-01

    We study microscopically the ground state properties of 16O and 40Ca nuclei within correlated basis function theory. A truncated version of the realistic Urbana v14 (U14) potential, without momentum dependent terms, is adopted with state dependent correlations having spin, isospin and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are used to evaluate one- and two-body densities and ground state energy. The results are in good agreement with the available variational MonteCarlo data, providing a first substantial check for the accuracy of the cluster expansion method with state dependent correlations. The finite nuclei treatment of non central interactions and correlations has, at least, the same level of accuracy as in infinite nuclear matter. The binding energy for the full U14+TNI interaction is computed, addressing its small momentum dependent contributions in local density approximation. The nuclei are underbound by about 1 MeV per nucleon. Further e...

  1. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  2. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  3. Ground-State Phase Diagram of S = 2 Heisenberg Chains with Alternating Single-Site Anisotropy

    Science.gov (United States)

    Hida, Kazuo

    2014-03-01

    The ground-state phase diagram of S = 2 antiferromagnetic Heisenberg chains with coexisting uniform and alternating single-site anisotropies is investigated by the numerical exact diagonalization and density matrix renormalization group methods. We find the Haldane, large-D, Néel, period-doubled Néel, gapless spin fluid, quantized and partial ferrimagnetic phases. The Haldane phase is limited to the close neighborhood of the isotropic point. Within numerical accuracy, the transition from the gapless spin-fluid phase to the period-doubled Néel phase is a direct transition. Nevertheless, the presence of a narrow spin-gap phase between these two phases is suggested on the basis of the low-energy effective theory. The ferrimagnetic ground state is present in a wide parameter range. This suggests the realization of magnetized single-chain magnets with a uniform spin magnitude by controlling the environment of each magnetic ion without introducing ferromagnetic interactions.

  4. Roton dipole moment

    OpenAIRE

    Mineev, V. P.

    2009-01-01

    The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...

  5. Redefining the political moment

    Directory of Open Access Journals (Sweden)

    James Arvanitakis

    2011-07-01

    Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.

  6. Ground-state solution for a class of biharmonic equations including critical exponent

    Science.gov (United States)

    Liu, Hongliang; Chen, Haibo

    2015-12-01

    In this paper, we study the following biharmonic equations Δ^2 u = λ{|u|^{2^{astast}(s)-2}u/|x|^s} + β a(x)|u|^{r-2}u,quad xin {{R}}^N. Under some suitable assumptions of {λ}, {β} and {a(x)}, the existence of ground-state solution and nonexistence of nontrivial solution are obtained by using variational methods. Moreover, the phenomenon of concentration of solutions is also explored.

  7. The role of correlation in the ground state energy of confined helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  8. Ground state Lamb-shift of heavy hydrogen-like ions: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th., E-mail: t.stoehlker@gsi.de; Beyer, H. F.; Gumberidze, A.; Kumar, A.; Liesen, D.; Reuschl, R.; Spillmann, U.; Trassinelli, M. [GSI Darmstadt (Germany)

    2006-09-15

    We present the current status in experimental investigations of the heaviest hydrogen-like systems at the Experimental Storage Ring (ESR) at GSI Darmstadt. Together with the most recent theoretical predictions the present experimental result provides a test of the leading quantum electrodynamical (QED) contributions on a percent level. In addition, the planned future experimental studies and related developments devoted to high-resolution spectroscopy of the ground-state in high-Z hydrogen-like systems are reviewed.

  9. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  10. Ground state spin 0$^+$ dominance of many-body systems with random interactions and related topics

    CERN Document Server

    Arima, A; Zhao, Y M

    2003-01-01

    In this talk we shall show our recent results in understanding the spin$^{\\rm parity}$ 0$^+$ ground state (0 g.s.) dominance of many-body systems. We propose a simple approach to predict the spin $I$ g.s. probabilities which does not require the diagonalization of a Hamiltonian with random interactions. Some findings related to the 0 g.s. dominance will also be discussed.

  11. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  12. Diagrammatic perturbation theory applied to the ground state of the water molecule

    Science.gov (United States)

    Silver, D. M.; Wilson, S.

    1977-01-01

    The diagrammatic many-body perturbation theory is applied to the ground state of the water molecule within the algebraic approximation. Using four different basis sets, the total energy, the equilibrium OH bond length, and the equilibrium HOH bond angle are examined. The latter is found to be a particularly sensitive test of the convergence of perturbation expansions. Certain third-order results, which incorporate all two-, three-, and four-body effects, show evidence of good convergence properties.

  13. Ground-State Bands of Fm and No Isotopes in Cluster Model

    Institute of Scientific and Technical Information of China (English)

    XU Chang; REN Zhong-Zhou

    2006-01-01

    We investigate the ground-state rotational bands of nuclei with Z ≥ 100 using cluster model proposed by Buck et al. [Phys. Rev. Lett. 94 (2005) 202501]. The core-cluster decomposition of each nucleus is determined by the corresponding electric quadrupole transition strength B(E2 : 2+ → 0+). The theoretical spectra of fermium and nobelium isotopes are compared with available experimental data. Good agreement between model and data is obtained.

  14. A centred, elongated "ferric tetrahedron" with an S= 15/2 spin ground state.

    Science.gov (United States)

    Tabernor, James; Jones, Leigh F; Heath, Sarah L; Muryn, Chris; Aromi, Guillem; Ribas, Joan; Brechin, Euan K; Collison, David

    2004-04-07

    The reaction of anhydrous FeCl(3) with 1H-benzotriazole-1-methanol (Bta-CH(2)OH) in MeOH produces the pentanuclear complex [Fe(5)O(2)(OMe)(2)(Bta)(4)(BtaH)(MeOH)(5)Cl(5)], containing a distorted tetrahedron of four Fe ions centred on a fifth. The central Fe is antiferromagnetically coupled to the peripheral Fe ions resulting in an S= 15/2 spin ground state.

  15. Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    CERN Document Server

    Bisconti, C; Có, G; Fabrocini, A

    2006-01-01

    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.

  16. Ground state and orbital stability for the NLS equation on a general starlike graph with potentials

    Science.gov (United States)

    Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2017-08-01

    We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of δ-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (L 2-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, H 1 sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.

  17. Stable π-Extended p -Quinodimethanes: Synthesis and Tunable Ground States

    KAUST Repository

    Zeng, Zebing

    2014-12-18

    © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. p-Quinodimethane (p-QDM) is a highly reactive hydrocarbon showing large biradical character in the ground state. It has been demonstrated that incorporation of the p-QDM moiety into an aromatic hydrocarbon framework could lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. On the other hand, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. Therefore, the synthesis of stable π-extended p-QDMs is very challenging. In this Personal Account we will briefly discuss different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties, including two types of polycyclic hydrocarbons: (1) tetrabenzo-Tschitschibabin\\'s hydrocarbons, and (2) tetracyano-rylenequinodimethanes. We will discuss how the aromaticity, substituents and steric hindrance play important roles in determining their ground states and properties. Incorporation of the p-quinodimethane moiety into aromatic hydrocarbon frameworks can lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. Furthermore, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. In this Personal Account, different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties are briefly discussed, including the roles of aromaticity, substituents and steric hindrance.

  18. Ground-State Ionization Potentials for Lithium through Neon Isoelectronic Sequences with Z=37-82

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; JIANG Gang; ZHAO Qian

    2006-01-01

    The ground-state ionization potentials of different isoelectronic sequences are calculated systemically with the multi-configuration Dirac-Fock method.The relativistic corrections,Breit and QED effects are included in the calculation.These results are compared with the scanty existing theoretical and experimental data in the literature.Analytical expressions are obtained for expressing our theoretical data along the different sequences.

  19. Massless ground state for a compact SU(2 matrix model in 4D

    Directory of Open Access Journals (Sweden)

    Lyonell Boulton

    2015-09-01

    Full Text Available We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2 matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  20. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  1. Eigenfunctions of Five-Qubit XX Chain and Ground State Concurrence

    Institute of Scientific and Technical Information of China (English)

    LING Yin-Sheng

    2008-01-01

    Use Jordan-Wigner transformation the eigenstates and eigenenergies of five qubits XX chain including external magnetic field are obtained. The concurrences Co,1 and C0,2 of ground state are obtained. For the ferromagnetic,when [((√)5-1)/2]|J|

  2. Creation of ultracold $^{87}$RbCs molecules in the rovibrational ground state

    CERN Document Server

    Molony, Peter K; Ji, Zhonghua; Lu, Bo; Köppinger, Michael P; Sueur, C Ruth Le; Blackley, Caroline L; Hutson, Jeremy M; Cornish, Simon L

    2014-01-01

    We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be $h c \\times 3811.576(1)$ cm$^{-1}$ and the $|\

  3. Generalized Klein-Gordon models: Behavior around the ground state condensate

    Science.gov (United States)

    Kuetche, Victor K.

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  4. Generalized Klein-Gordon models: behavior around the ground state condensate.

    Science.gov (United States)

    Kuetche, Victor K

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  5. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  6. Ground-state diagrams for lattice-gas models of catalytic CO oxidation

    Directory of Open Access Journals (Sweden)

    I.S.Bzovska

    2007-01-01

    Full Text Available Based on simple lattice models of catalytic carbon dioxide synthesis from oxygen and carbon monoxide, phase diagrams are investigated at temperature T=0 by incorporating the nearest-neighbor interactions on a catalyst surface. The main types of ground-state phase diagrams of two lattice models are classified describing the cases of clean surface and surface containing impurities. Nonuniform phases are obtained and the conditions of their existence dependent on the interaction parameters are established.

  7. Ground-state energy of the electron liquid in ultrathin wires.

    Science.gov (United States)

    Fogler, Michael M

    2005-02-11

    The ground-state energy and the density correlation function of the electron liquid in a thin one-dimensional wire are computed. The calculation is based on an approximate mapping of the problem with a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for modestly thin wires.

  8. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    Science.gov (United States)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  9. Systematic study of α preformation probability of nuclear isomeric and ground states

    Science.gov (United States)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  10. Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state

    Science.gov (United States)

    Ren, Zhongzhou; Xu, Chang

    2005-09-01

    We generalize the formulas of spontaneous fission half-lives of even-even nuclei in their ground state to both the case of odd nuclei and the case of fission isomers [Phys. Rev. C 71 (2005) 014309]. The spontaneous fission half-lives of odd- A nuclei and of odd-odd nuclei in the ground state are calculated by Swiatecki's formula, by its generalized form, and by a new formula where the blocking effect of unpaired nucleon on the half-lives has been taken into account with different mechanisms. By introducing a blocking factor or a generalized seniority in the formulas of the half-lives of even-even nuclei, we can reasonably reproduce the experimental fission half-lives of odd- A nuclei and of odd-odd nuclei with the same parameters used in ground state of even-even nuclei. For spontaneous fission of the isomers in transuranium nuclei the new formula can be simplified into a three-parameter formula and the isomeric half-lives can be well reproduced by the formula. The new formula of the isomeric half-lives is as good as Metag's formula of fission isomers. The half-lives of isomers from these formulas are very accurate and therefore these formulas can give reliable predictions for half-lives of new isomers of neighboring nuclei.

  11. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Science.gov (United States)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  12. Three-body correlations in the ground-state decay of 26O

    CERN Document Server

    Kohley, Z; Christian, G; DeYoung, P A; Finck, J E; Frank, N; Luther, B; Lunderberg, E; Jones, M; Mosby, S; Smith, J K; Spyrou, A; Thoennessen, M

    2015-01-01

    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body...

  13. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2

    Science.gov (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    2015-03-01

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  14. Antiferromagnetic ground state with pair-checkerboard order in FeSe

    Science.gov (United States)

    Cao, Hai-Yuan; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao

    2015-01-01

    A monolayer FeSe thin film grown on SrTiO3(001) (STO) shows the sign of Tc>77 K , which is higher than the Tc record of 56 K for bulk FeAs-based superconductors. However, little is known about the magnetic ground state of FeSe, which should be closely related to its unusual superconductivity. Previous studies presume the collinear stripe antiferromagnetic (AFM) state as the ground state of FeSe, the same as that in FeAs superconductors. Here we find a magnetic order named the "pair-checkerboard AFM" as the magnetic ground state of tetragonal FeSe. The pair-checkerboard order results from the interplay between the nearest-, next-nearest, and unnegligible next-next-nearest neighbor magnetic exchange couplings of Fe atoms. The monolayer FeSe in pair-checkerboard order shows an unexpected insulating behavior with a Dirac-cone-like band structure related to the specific orbital order of the dx z and dy z characters of Fe atoms, which could explain the recently observed insulator-superconductor transition. The present results cast insights on the magnetic ordering in FeSe monolayer and its derived superconductors.

  15. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  16. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  17. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  18. Moment-to-Moment Emotions during Reading

    Science.gov (United States)

    Graesser, Arthur C.; D'Mello, Sidney

    2012-01-01

    Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…

  19. Dipole moment determination of 4-[N-(5,6,7,8-tetrahydroisoquinolinium-5-ylidene)methyl]-N,N-dialkylaniline iodides in solution.

    Science.gov (United States)

    Jędrzejewska, Beata; Pietrzak, Marek

    2011-09-01

    Electronic absorption and fluorescence spectra of eight hemicyanine dyes were recorded at room temperature in several solvents of different polarity. The spectral data were analyzed using the theory of solvatochromism, based on a dielectric continuum description of the solvent and the classical Onsager cavity model. They were used to evaluate the excited state dipole moment using methods applied by McRae, Lippert, Mataga and Bakhshiev. DFT calculations were carried out to estimate the ground state dipole moment and Onsager cavity radius. The difference in the excited and ground state dipole moments (μe-μg) of the molecule under study is positive. It means that the excited states of the dyes are more polar than the ground state. The increase in dipole moments upon excitation is explained in terms of the nature of the excited state and its resonance structures.

  20. Push-Pull Type Oligo(N-annulated perylene)quinodimethanes: Chain Length and Solvent-Dependent Ground States and Physical Properties.

    Science.gov (United States)

    Zeng, Zebing; Lee, Sangsu; Son, Minjung; Fukuda, Kotaro; Burrezo, Paula Mayorga; Zhu, Xiaojian; Qi, Qingbiao; Li, Run-Wei; Navarrete, Juan T López; Ding, Jun; Casado, Juan; Nakano, Masayoshi; Kim, Dongho; Wu, Jishan

    2015-07-08

    Research on stable open-shell singlet diradicaloids recently became a hot topic because of their unique optical, electronic, and magnetic properties and promising applications in materials science. So far, most reported singlet diradicaloid molecules have a symmetric structure, while asymmetric diradicaloids with an additional contribution of a dipolar zwitterionic form to the ground state were rarely studied. In this Article, a series of new push-pull type oligo(N-annulated perylene)quinodimethanes were synthesized. Their chain length and solvent-dependent ground states and physical properties were systematically investigated by various experimental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device, Raman spectroscopy, and electrochemistry. It was found that with extension of the chain length, the diradical character increases while the contribution of the zwitterionic form to the ground state becomes smaller. Because of the intramolecular charge transfer character, the physical properties of this push-pull system showed solvent dependence. In addition, density functional theory calculations on the diradical character and Hirshfeld charge were conducted to understand the chain length and solvent dependence of both symmetric and asymmetric systems. Our studies provided a comprehensive understanding on the fundamental structure- and environment-property relationships in the new asymmetric diradicaloid systems.