WorldWideScience

Sample records for ground-state homonuclear alkali-metal

  1. Photoabsorption by ground-state alkali-metal atoms.

    Science.gov (United States)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  2. Collisions of alkali-metal atoms Cs and Rb in the ground state. Spin exchange cross sections

    Science.gov (United States)

    Kartoshkin, V. A.

    2016-09-01

    Collisions of alkali-metal atoms 133Cs and 85Rb in the ground state are considered in the energy interval of 10-4-10-2 au. Complex cross sections of the spin exchange, which allow one to calculate the processes of polarization transfer and the relaxation times, as well as the magnetic resonance frequency shifts caused by spin exchange Cs-Rb collisions, are obtained.

  3. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  4. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  5. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  6. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  7. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  8. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  9. Upgrading platform using alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. Upgrading platform using alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  11. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  12. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  13. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  14. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  15. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    Science.gov (United States)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  16. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  17. Nanosized alkali-metal-doped ethoxotitanate clusters.

    Science.gov (United States)

    Chen, Yang; Trzop, Elzbieta; Makal, Anna; Sokolow, Jesse D; Coppens, Philip

    2013-05-06

    The synthesis and crystallographic characterization of alkali-metal-doped ethoxotitanate clusters with 28 and 29 Ti atoms as well as a new dopant-free Ti28 cluster are presented. The light-metal-doped polyoxotitanate clusters in which the alkali-metal atom is the critical structure-determining component are the largest synthesized so far. Calculations show that doping with light alkali atoms narrows the band gap compared with the nondoped crystals but does not introduce additional energy levels within the band gap.

  18. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  19. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  20. Removal of Retired Alkali Metal Test Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  1. Unraveling the absorption spectra of alkali metal atoms attached to helium nanodroplets.

    Science.gov (United States)

    Bünermann, Oliver; Droppelmann, Georg; Hernando, Alberto; Mayol, Ricardo; Stienkemeier, Frank

    2007-12-13

    The absorption spectra of the first electronic exited state of alkali metal atoms on helium nanodroplets formed of both 4He and 3He isotopes were studied experimentally as well as theoretically. In the experimental part new data on the 2palkali metal atoms with helium nanodroplets, a model calculation was performed. New helium density profiles as well as a refined model allowed us to achieve good agreement with the experimental findings. For the first time the red-shifted intensities in the lithium and sodium spectra are explained in terms of enhanced binding configurations in the excited state displaced spatially from the ground state configurations.

  2. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  3. Controlled in-situ dissolution of an alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  4. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  5. The 4843 Alkali Metal Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  6. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  7. Superconductivity in alkali-metal-doped picene.

    Science.gov (United States)

    Mitsuhashi, Ryoji; Suzuki, Yuta; Yamanari, Yusuke; Mitamura, Hiroki; Kambe, Takashi; Ikeda, Naoshi; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru; Kawasaki, Naoko; Maniwa, Yutaka; Kubozono, Yoshihiro

    2010-03-04

    Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides such as LaO(1-x)F(x)FeAs (ref. 3). In the case of organic superconductors, however, no new material system with a high superconducting transition temperature (T(c)) has been discovered in the past decade. Here we report that intercalating an alkali metal into picene, a wide-bandgap semiconducting solid hydrocarbon, produces metallic behaviour and superconductivity. Solid potassium-intercalated picene (K(x)picene) shows T(c) values of 7 K and 18 K, depending on the metal content. The drop of magnetization in K(x)picene solids at the transition temperature is sharp (<2 K), similar to the behaviour of Ca-intercalated graphite. The T(c) of 18 K is comparable to that of K-intercalated C(60) (ref. 4). This discovery of superconductivity in K(x)picene shows that organic hydrocarbons are promising candidates for improved T(c) values.

  8. Estimating the hydration enthalpies of neutral alkali metal atoms.

    Science.gov (United States)

    Stace, A J

    2006-10-26

    Using existing data on the ionization energies of alkali metal atoms in small clusters of water, a thermodynamic cycle is proposed from which the hydration enthalpies of the neutral metal atoms can be estimated. Where comparisons are possible, the results are in reasonable agreement with those obtained using both experimental and ab initio methods. Application of the thermodynamic cycle to neutral alkali metal atoms solvated in ammonia yields solvation enthalpies that are significantly lower than those obtained for water.

  9. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  10. Alkali-metal azides interacting with metal-organic frameworks.

    Science.gov (United States)

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored.

  11. Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites

    Institute of Scientific and Technical Information of China (English)

    Pei Yu; Yong Shen Chua; Hujun Cao; Zhitao Xiong; Guotao Wu; Ping Chen

    2014-01-01

    Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals, i.e.,-23 kJ/molH2 for LiOH-LiH, 55.34 kJ/molH2 for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150◦C; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molH2 , and the corresponding entropy was ca. 101.23 J/(molH2 ·K), so the temperature for releasing 1.0 bar H2 was as high as 518◦C, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be 57.87 kJ/mol, showing good kinetic properties.

  12. Electronic ground state of Ni$_2^+$

    CERN Document Server

    Zamudio-Bayer, V; Bülow, C; Leistner, G; Terasaki, A; Issendorff, B v; Lau, J T

    2016-01-01

    The $^{4}\\Phi_{9/2}$ ground state of the Ni$_2^+$ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of $7.4 \\pm 0.2$ K was achieved by buffer gas cooling of the molecular ion. The contribution of the magnetic dipole term to the x-ray magnetic circular dichroism spin sum rule amounts to $7\\, T_z = 0.17 \\pm 0.06$ $\\mu_B$ per atom, approximately 11 \\% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of $3d$ transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  13. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  14. Interaction of alkali-metal overlayers with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Hrbek, J.; Xu, G.; Sham, T.K.; Shek, M.L.

    1989-05-01

    The interaction of oxygen with alkali metals (Li, Na, K, and Cs) was studied with valence and core-level photoemission (PE) using synchrotron radiation and by multiple mass thermal desorption (TDS). During a stepwise coadsorption of oxygen at 80 K, an increase in the emission intensity, a linewidth broadening, and a negative binding-energy shift of alkali-metal core levels is observed. Two stages of oxygen adsorption are identified in PE and TDS. In the low O/sub 2/ exposure range, an oxide species is formed; at higher exposures, peroxide and superoxide species are observed in Na, K, and Cs. The potassium--oxygen interaction is discussed in detail.

  15. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  16. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  17. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation.

    Science.gov (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T

    2013-10-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  18. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  19. Pair potential trend of alkali metals under external pressure

    Science.gov (United States)

    Rahman, S. M. Mujibur

    1987-09-01

    Structural phase stability of certain alkali metals under external pressure is investigated by looking at their pair potential trend. The effective pair potentials occurring in the real space representation of the band structure contribution relevant to a second-order theory are calculated by using an appropriate dielectric function and a simple empty-core pseudopotential. The relative positions of the neighboring atoms with respect to the minima in the pair potentials uphold a qualitative picture of the phase stability in these systems.

  20. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  2. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  3. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    Science.gov (United States)

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  4. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  5. Theoretical determination of the alkali-metal superoxide bond energies

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  6. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  7. Chemical compatibility of structural materials in alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  8. Integrated oil production and upgrading using molten alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  9. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  10. Periodic DFT approaches to crystalline alkali metal azides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The energy bands, electronic structures andrelationship between structures and properties of the crys-talline alkali metal azides, LiN3, α-NaN3 and KN3, are investigated at the DFT-B3LYP level. The crystalline bulks arepredicted to be insulator, speculated from their band gaps ofca. 0.23-0.25 a.u. and from their level frontier bands. Theatomic overlaps and electron densities show that the metalsand the azides are combined by ionic bonds. The crystal lat-tice energies, being corrected for the basis set superpositionerrors, are -852.30, -771.45 and - 614.78 kJ @ mol-1 for LiN3,α-NaN3 and KN3 respectively. These values are similar tothose by Gray's approximate method. The frontier crystalorbital mainly consists of the atomic orbital of the terminalnitrogen of azides. The contribution of the metallic orbital tothe LUMO is very small. The electron transition from theHOMO to the LUMO is difficult to occur. Hence all the al-kali metal azides are expected to be insensitive explosives,according to the "principle of easiest electron transition".

  11. Core-level photoemission from alkali metals on Ru(001)

    Energy Technology Data Exchange (ETDEWEB)

    Shek, M. (Department of Physics, Hunter College of The City University of New York, New York, New York 10021 (USA)); Hrbek, J. (Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000 (USA)); Sham, T.K. (Department of Chemistry, University of Western Ontario, London, Ontario, Canada NA65B7 (Canada)); Xu, G. (Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000 (USA))

    1990-02-15

    We report soft-x-ray photoemission results on the core-level binding energies of Li, Na, K, and Cs adsorbed on Ru(001). For all four alkali metals, the saturated alkali-metal--Ru interface core level and the second- (surface-) layer core-level binding energies differ by as much as 0.85--1.25 eV. Surface versus bulklike core-level shifts are reported for Li, K, and Cs, which are 0.55 eV for Li and {similar to}0.25 eV for the other two. For increasing coverages of Li, Na, and K in direct contact with Ru, there are significant decreases in the core-level binding energies, the total shift ranging from {similar to}{minus}1.25 eV for Li to {similar to}{minus}0.80 eV for K; the shift for Cs is small and the reasons for the deviation are discussed. A comparison between our observations and the prediction from the thermodynamic model of Johannson and Martensson is also given.

  12. Revisiting the Zintl-Klemm concept: alkali metal trielides.

    Science.gov (United States)

    Wang, Fei; Miller, Gordon J

    2011-08-15

    To enhance understanding of the Zintl-Klemm concept, which is useful for characterizing chemical bonding in semimetallic and semiconducting valence compounds, and to more effectively rationalize the structures of Zintl phases, we present a partitioning scheme of the total energy calculated on numerous possible structures of the alkali metal trielides, LiAl, LiTl, NaTl, and KTl, using first-principles quantum mechanical calculations. This assessment of the total energy considers the relative effects of covalent, ionic, and metallic interactions, all of which are important to understand the complete structural behavior of Zintl phases. In particular, valence electron transfer and anisotropic covalent interactions, explicitly employed by the Zintl-Klemm concept, are often in competition with isotropic, volume-dependent metallic and ionic interaction terms. Furthermore, factors including relativistic effects, electronegativity differences, and atomic size ratios between the alkali metal and triel atoms can affect the competition by enhancing or weakening one of the three energetic contributors and thus cause structural variations. This partitioning of the total energy, coupled with analysis of the electronic density of states curves, correctly predicts and rationalizes the structures of LiAl, LiTl, NaTl, and KTl, as well as identifies a pressure-induced phase transition in KTl from its structure, based on [Tl(6)](6-) distorted octahedra, to the double diamond NaTl-type. © 2011 American Chemical Society

  13. Alkali-metalated forms of thiacalix[4]arenes.

    Science.gov (United States)

    Zeller, Jürgen; Radius, Udo

    2006-11-13

    The alkali metal salts [TCALi4] (1), [TCANa4] (2), and [TCALK4] (3) of fully deprotonated p-tert-butyltetrathiacalix[4]arene (H(4)TCA) are readily available from the reactions of thiacalix[4]arene and n-BuLi, NaH, or KH as deprotonating reagents. Crystals of the sodium salts 2 and the potassium salt 3 suitable for X-ray diffraction were obtained in the form of the pyridine solvates [(TCA)2Na8.8py] (2.8py) and [(TCA)2K(8).8py] (3.8py). These molecules are dimers in the solid state but are structurally not related. In addition, the reaction of H(4)TCA and lithium hydroxide afforded the structurally characterized complex [(TCA)Li5(OH).4THF] (4). The molecular structure of 4 as well as the structures of 2.8py and 3.8py reveal a close relationship to the corresponding alkali metal salts of the calix[4]arenes.

  14. Heterometallic aluminates: alkali metals trapped by an aluminium aryloxide claw.

    Science.gov (United States)

    Muñoz, M Teresa; Cuenca, Tomás; Mosquera, Marta E G

    2014-10-14

    A series of heterometallic aluminium-alkali metal species [AlMMe2{2,6-(MeO)2C6H3O}2]n have been isolated for lithium, sodium and potassium. These compounds can be generated by the reaction of [AlMe2{2,6-(MeO)2C6H3O}]2 with the metallated phenol [M{2,6-(MeO)2C6H3O}]n or through the reaction of the mixture of AlMe3 and the appropriate alkali metal alkyl base with two equivalents of 2,6-dimethoxyphenol. In the heterometallic species obtained, the {AlMe2{2,6-(MeO)2C6H3O}2}(-) moiety is observed and could be described as a claw which fixes the alkali ion by the phenoxide oxygen atoms while the methoxy groups help to stabilize their coordination sphere. All compounds have been characterized by NMR spectroscopy and X-ray diffraction methods. Catalytic studies reveal that these compounds are active in ring-opening polymerization of L-lactide.

  15. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  16. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    . The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  17. Vibrational Cooling of Photoassociated Homonuclear Cold Molecules

    Science.gov (United States)

    Passagem, Henry; Ventura, Paulo; Tallant, Jonathan; Marcassa, Luis

    2015-05-01

    In this work, we produce vibrationally cold homonuclear Rb molecules using spontaneous optical pumping. The vibrationally cooled molecules are produced in three steps. In the first step, we use a photoassociation laser to produce molecules in high vibrational levels of the singlet ground state. Then in a second step, a 50 W broadband laser at 1071 nm, which bandwidth is about 2 nm, is used to transfer the molecules to lower vibrational levels via optical pumping through the excited state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels below ν = 35 . The molecules can be further cooled using a broadband light source near 685 nm. In order to obtain such broadband source, we have used a 5 mW superluminescent diode, which is amplified in a tapered amplifier using a double pass configuration. After the amplification, the spectrum is properly shaped and we end up with about 90 mW distributed in the 682-689 nm range. The final vibrational distribution is probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm operating at 4KHz. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  18. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    Science.gov (United States)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  19. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  20. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  1. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  2. Zintl cluster chemistry in the alkali-metal-gallium systems

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Robert [Iowa State Univ., Ames, IA (United States)

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  3. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    Science.gov (United States)

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4).

  4. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  5. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  6. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  7. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  8. Alkali Metal-incorporated Mesoporous Smectites:Crystallinity and Textural Properties

    Institute of Scientific and Technical Information of China (English)

    HE Yan-feng; Shinichiro Fujita; Nobuhiro Iwasa; Bhalchandra M. Bhanage; Masahiko Arai

    2003-01-01

    A series of mesoporous smectite-like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure.

  9. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  10. Calculated Pressure Induced BCC-FCC Phase Transitions in Alkali Metals

    OpenAIRE

    DAĞISTANLI, Hamdi; MUTLU, R. Haluk

    2008-01-01

    The partial occupation numbers and density of states (DOS), and the total DOS at the Fermi level are calculated as a function of reduced atomic volume for bcc and fcc alkali metals employing the linear-muffin-tin-orbital (LMTO) method. By means of the abrupt changes obtained in the partial and total DOS values at the Fermi level, good agreement with regard to experiment were found in predicting the bcc-fcc transition volumes of the alkali metals.

  11. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    OpenAIRE

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  12. Alkali-metal-supported bismuth polyhedra-principles and theoretical studies.

    Science.gov (United States)

    Monakhov, Kirill Yu; Linti, Gerald; Wolters, Lando P; Bickelhaupt, F Matthias

    2011-06-20

    We have quantum chemically investigated the structure, stability, and bonding mechanism in highly aggregated alkali-metal salts of bismuthanediide anions [RBi](2-) using relativistic density functional theory (DFT, at ZORA-BP86/TZ2P) in combination with a quantitative energy decomposition analysis (EDA). Our model systems are alkali-metal-supported bismuth polyhedra [(RBi)(n)M(2n-4)](4-) with unique interpenetrating shells of a bismuth polyhedron and an alkali-metal superpolyhedron. Furthermore, we have analyzed the trianionic inclusion complexes [M'@{(RBi)(n)M(2n-4)}](3-) involving an additional endohedral alkali-metal ion M'. The main objective is to assist the further development of synthetic approaches toward this class of compounds. Our analyses led to electron-counting rules relating, for example, the number of bonding orbitals (N(bond)) of the cage molecules [(RBi)(n)M(2n+Q)](Q) to the number of bismuth atoms (n(Bi)), alkali-metal atoms (n(M)), and net charge Q as N(bond) = n(Bi) + n(M) - Q (R = one-electron donor ligand; M = alkali metal; n = 4-12; Q = -4, -6, -8). Finally, on the basis of our findings, we predict the next members in the 5-fold symmetrical row of alkali-metallobismaspheres with a macroicosahedral arrangement.

  13. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  14. Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds

    Science.gov (United States)

    Purewal, Justin

    Adsorption occurs whenever a solid surface is exposed to a gas or liquid, and is characterized by an increase in fluid density near the interface. Adsorbents have drawn attention in the current effort to engineer materials that store hydrogen at high densities within moderate temperature and pressure regimes. Carbon adsorbents are a logical choice as a storage material due to their low costs and large surface areas. Unfortunately, carbon adsorbents suffer from a low binding enthalpy for H2 (about 5 kJ mol-1), well below the 15 to 18 kJ mol-1) that is considered optimal for hydrogen storage systems. Binding interactions can be increased by the following methods: (1) adjusting the graphite interplanar separation with a pillared structure, and (2) introducing dopant species that interact with H2 molecules by strong electrostatic forces. Graphite intercalation compounds are a class of materials that contain both pillared structures and chemical dopants, making them an excellent model system for studying the fundamentals of hydrogen adsorption in nanostructured carbons. Pressure-composition-temperature diagrams of the MC24(H 2)x graphite intercalation compounds were measured for M = (K, Rb, Cs). Adsorption enthalpies were measured as a function of H2 concentration. Notably, CsC24 had an average adsorption enthalpy of 14.9 kJ mol-1), nearly three times larger than that of pristine graphite. The adsorption enthalpies were found to be positively correlated with the alkali metal size. Adsorption capacities were negatively correlated with the size of the alkali metal. The rate of adsorption is reduced at large H2 compositions, due to the effects of site-blocking and correlation on the H2 diffusion. The strong binding interaction and pronounced molecular-sieving behavior of KC24 is likely to obstruct the translational diffusion of adsorbed H2 molecules. In this work, the diffusion of H2 adsorbed in KC24 was studied by quasielastic neutron scattering measurements and molecular

  15. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  16. Assessment of alkali metal coolants for the ITER blanket

    Science.gov (United States)

    Natesan, K.; Reed, C. B.; Mattas, R. F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The blanket comparison and selection study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  17. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    Science.gov (United States)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  18. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  19. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor.

    Science.gov (United States)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-20

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  20. Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions

    CERN Document Server

    McGuyer, B H

    2013-01-01

    Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.

  1. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    Science.gov (United States)

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  2. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  3. Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets

    Science.gov (United States)

    Hayakawa, Shigeo

    2017-01-01

    High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy. This narrow internal energy distribution can be attributed to electron transfer by Landau–Zener potential crossing between the precursor ion and an alkali metal atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of more than 10−14 cm2 was estimated for high-energy electron transfer dissociation (HE-ETD). Doubly protonated phosphorylated peptides obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions. Whereas doubly charged fragment ions resulting from CAD were dominant in the case of the Xe target, singly charged fragment ions resulting from ETD were dominant with the Cs target. HE-ETD using the Cs target provided all of the z-type ions by N–Cα bond cleavage without the loss of the phosphate groups. The results demonstrate that HE-ETD with an alkali metal target allowed the position of phosphorylation and the amino acid sequence of peptides with post translational modifications (PTM) to be determined. PMID:28966899

  4. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  5. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.

  6. Direct observation of charge-transfer-to-solvent (CTTS) reactions: Ultrafast dynamics of the photoexcited alkali metal anion sodide (Na-)

    Science.gov (United States)

    Barthel, Erik R.; Martini, Ignacio B.; Schwartz, Benjamin J.

    2000-06-01

    Charge-transfer-to-solvent (CTTS) transitions have been the subject of a great deal of interest recently because they represent the simplest possible charge transfer reaction: The CTTS electron transfer from an atomic ion to a cavity in the surrounding solvent involves only electronic degrees of freedom. Most of the work in this area, both experimental and theoretical, has focused on aqueous halides. Experimentally, however, halides make a challenging choice for studying the CTTS phenomenon because the relevant spectroscopic transitions are deep in the UV and because the charge-transfer dynamics can be monitored only indirectly through the appearance of the solvated electron. In this paper, we show that these difficulties can be overcome by taking advantage of the CTTS transitions in solutions of alkali metal anions, in particular, the near-IR CTTS band of sodide (Na-) in tetrahydrofuran (THF). Using femtosecond pump-probe techniques, we have been able to spectroscopically separate and identify transient absorption contributions not only from the solvated electron, but also from the bleaching dynamics of the Na- ground state and from the absorption of the neutral sodium atom. Perhaps most importantly, we also have been able to directly observe the decay of the Na-* excited CTTS state, providing the first direct measure of the electron transfer rate for any CTTS system. Taken together, the data at a variety of pump and probe wavelengths provide a direct test for several kinetic models of the CTTS process. The model which best fits the data assumes a delayed ejection of the electron from the CTTS excited state in ˜700 fs. Once ejected, a fraction of the electrons, which remain localized in the vicinity of the neutral sodium parent atom, recombine on a ˜1.5-ps time scale. The fraction of electrons that recombine depends sensitively on the choice of excitation wavelength, suggesting multiple pathways for charge transfer. The spectrum of the neutral sodium atom, which

  7. Investigations on organogermanium compounds XI. Preparation and structure of trialkylgermyl alkali metal compounds in hexamethylphosphoric triamide (HMPT)

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    In this paper a full report is given of our investigations into the preparation of trialkylgermyl alkali metal compounds. The most satisfactory route to these compounds involves the cleavage of hexaalkyldigermanes with alkali metals in HMPT at room temperature. The structure, thermal stability and

  8. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach. For antipro...

  9. Absorption Spectroscopy of Rubidium in an Alkali Metal Dispenser Cell and Bleached Wave Analysis

    Science.gov (United States)

    2015-03-26

    resulted in a transmission too low below the detection limit of the photodiodes. When the current ceased, the spectrum almost immediately returned to a...absorption spectrum of a rubidium alkali metal dispenser (AMD) cell was obtained in order to determine the system’s suitability for use in a diode ...18 8. Cell Pressure vs. Required Current .............................................................................. 20 9. Time vs. Rubidium

  10. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  11. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  12. Cations in a Molecular Funnel: Vibrational Spectroscopy of Isolated Cyclodextrin Complexes with Alkali Metals

    NARCIS (Netherlands)

    Gamez, F.; Hurtado, P.; Hortal, A. R.; Martinez-Haya, B.; G. Berden,; Oomens, J.

    2013-01-01

    The benchmark inclusion complexes formed by -cyclodextrin (CD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative CD-M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry,

  13. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  14. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    Science.gov (United States)

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  15. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  16. Ground state of 16O

    Science.gov (United States)

    Pieper, Steven C.; Wiringa, R. B.; Pandharipande, V. R.

    1990-01-01

    A variational method is used to study the ground state of 16O. Expectation values are computed with a cluster expansion for the noncentral correlations in the wave function; the central correlations and exchanges are treated to all orders by Monte Carlo integration. The expansion has good convergence. Results are reported for the Argonne v14 two-nucleon and Urbana VII three-nucleon potentials.

  17. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  18. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  19. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  20. Emission spectra of alkali-metal (K,Na,Li)-He exciplexes in cold helium gas

    Science.gov (United States)

    Enomoto, K.; Hirano, K.; Kumakura, M.; Takahashi, Y.; Yabuzaki, T.

    2004-01-01

    We have observed emission spectra of excimers and exciplexes composed of a light alkali-metal atom in the first excited state and 4He atoms [K*Hen (n=1-6), Na*Hen (n=1-4), and Li*Hen (n=1,2)] in cryogenic He gas (the temperature 2 Kalkali-metal atoms, the spectra for the different number of He atoms were well separated, so that their assignment could be made experimentally. Comparing with the spectra of K*Hen, we found that the infrared emission spectrum of the K atom excited in liquid He was from K*He6. To confirm the assignment, we have also carried out ab initio calculation of adiabatic potential curves and peak positions of the emission spectra of the exciplexes.

  1. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  2. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms.

    Science.gov (United States)

    Derevianko, Andrei

    2010-07-16

    In experiments with trapped atoms, atomic energy levels are shifted by the trapping optical and magnetic fields. Regardless of this strong perturbation, precision spectroscopy may be still carried out using specially crafted, "magic" trapping fields. Finding these conditions for particularly valuable microwave transitions in alkali-metal atoms has so far remained an open challenge. Here I demonstrate that the microwave transitions in alkali-metal atoms may be indeed made impervious to both trapping laser intensity and fluctuations of magnetic fields. I consider driving multiphoton transitions between the clock levels and show that these "doubly magic" conditions are realized at special values of trapping laser wavelengths and fixed values of relatively weak magnetic fields. This finding has implications for precision measurements and quantum information processing with qubits stored in hyperfine manifolds.

  3. An alternative picture of alkali-metal-mediated metallation: cleave and capture chemistry.

    Science.gov (United States)

    Mulvey, Robert E

    2013-05-21

    This perspective article takes an alternative look at alkali-metal-mediated chemistry (exchange of a relatively inert C-H bond for a more reactive C-metal bond by a multicomponent reagent usually containing an alkali metal and a less electropositive metal such as magnesium or zinc). It pictures that the cleavage of selected C-H bonds can be accompanied by the capturing of the generated anion by the multi (Lewis acid)-(Lewis base) character of the residue of the bimetallic base. In this way small atoms or molecules (hydrides, oxygen-based anions) as well as sensitive organic anions (of substituted aromatic compounds, ethers or alkenes) can be captured. Cleave and capture reactions which occur in special positions on the organic substrate are also included.

  4. Examination of Solubility Models for the Determination of Transition Metals within Liquid Alkali Metals

    Directory of Open Access Journals (Sweden)

    Jeremy Isler

    2016-06-01

    Full Text Available The experimental solubility of transition metals in liquid alkali metal was compared to the modeled solubility calculated using various equations for solubility. These equations were modeled using the enthalpy calculations of the semi-empirical Miedema model and various entropy calculations. The accuracy of the predicted solubility compared to the experimental data is more dependent on which liquid alkali metal is being examined rather than the transition metal solute examined. For liquid lithium the calculated solubility by the model was generally larger than experimental values, while for liquid cesium the modeling solubility was significantly smaller than the experimental values. For liquid sodium, potassium, and rubidium the experimental solubilities were within the range calculated by this study. Few data approached the predicted temperature dependence of solubility and instead most data exhibited a less pronounced temperature dependence.

  5. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  6. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  7. Viscosity, Thermal Conductivity and Thermal Diffusion Ratio of the Alkali Metal Vapours.

    OpenAIRE

    Fialho, Paulo; Ramires, Maria de Lurdes V.; João M. N. A. Fareleira; Nieto de Castro, Carlos A.

    1994-01-01

    Copyright © 1994 by Technomic Publishing Company, Inc. Proceedings of the Twenty-Second International Conference on Thermal Condutivity. Tempe, Arizona, November 7-10, 1993. The Subcommittee of Transport Properties of IUP AC started in 1982 a project with the objective of correlating and predicting the transport properties of the alkali metal vapours, in the temperature and pressure zones that are useful to the scientific and industrial uses. In a recent paper [1] the authors suggested ...

  8. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  9. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  10. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  11. Prospects for the formation of ultracold polar ground state KCs molecules via an optical process

    CERN Document Server

    Borsalino, D; Aymar, M; Luc-Koenig, E; Dulieu, O; Bouloufa-Maafa, N

    2015-01-01

    Heteronuclear alkali-metal dimers represent the class of molecules of choice for creating samples of ultracold molecules exhibiting an intrinsic large permanent electric dipole moment. Among them, the KCs molecule, with a permanent dipole moment of 1.92 Debye still remains to be observed in ultracold conditions. Based on spectroscopic studies available in the literature completed by accurate ab initio calculations, we propose several optical coherent schemes to create ultracold bosonic and fermionic KCs molecules in their absolute rovibrational ground level, starting from a weakly bound level of their electronic ground state manifold. The processes rely on the existence of convenient electronically excited states allowing an efficient stimulated Raman adiabatic transfer of the level population.

  12. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s

    Science.gov (United States)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc

    2016-01-01

    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  13. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media.

    Science.gov (United States)

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio

    2003-08-01

    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with jstability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  14. Coverage dependence of photoemission core levels of alkali-metal overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K.; Shek, M.; Xu, G.; Hrbek, J.

    1989-05-01

    Photoemission from alkali-metal core levels (Li 1s, Na 2s, K 3p, Cs 5p, and 4d) has been studied for different alkali-metal coverages on Ru(001) using synchrotron radiation from the Vacuum Ultraviolet (VUV) ring at the National Synchrotron Light Source (NSLS). The alkali atoms interacting directly with the Ru substrate show coverage-dependent binding-energy shifts towards the Fermi level, with the largest shift for Li (1.1 eV) and the smallest ones for K and Cs. At coverages > 1 monolayer (ML), the core-level shift between the second (surface) and the first (interface) layer is observed in all alkali overlayers. At ''thin'' multilayer coverages (/similar to/3 ML), all alkali overlayers exhibit three sets of core-level photoemission bands which are assigned to the interface, the immediate ''bulk,'' and the surface in increasing binding energy. At coverages >5 ML (''thick'' multilayer) all alkali metals exhibit bulklike properties and surface--atom core-level binding-energy shifts are observed in all cases.

  15. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  16. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    Science.gov (United States)

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space.

  17. Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-06-30

    Alkali metals are known to form dimers, trimers, and tetramers in their vapors. The mechanism and regularities of this phenomenon characterize the chemical behavior of the first group elements. We report ab initio molecular dynamics (AIMD) simulations of the alkali metal vapors and characterize their structural properties, including radial distribution functions and atomic cluster size distributions. AIMD confirms formation of Men, where n ranges from 2 to 4. High pressure sharply favors larger structures, whereas high temperature decreases their fraction. Heavier alkali metals maintain somewhat larger fractions of Me2, Me3, and Me4, relative to isolated atoms. A single atom is the most frequently observed structure in vapors, irrespective of the element and temperature. Due to technical difficulties of working with high temperatures and pressures in experiments, AIMD is the most affordable method of research. It provides valuable understanding of the chemical behavior of Li, Na, K, Rb, and Cs, which can lead to development of new chemical reactions involving these metals.

  18. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst

    Science.gov (United States)

    Du, Xuesen; Yang, Guangpeng; Chen, Yanrong; Ran, Jingyu; Zhang, Li

    2017-01-01

    Alkali metals are poisonous to the metal oxide catalyst for NO removal. The chemical configuration of alkali containing substance and interacting temperature can affect the poisoning profile. A computational method based on Frontier Molecular Orbital analysis was proposed to determine the reacting behavior of various alkali-containing substances with SCR catalyst. The results reveal that the poisoning reactivities of various substances can be ranked as: E (MOH) > E (M2SO4) > E(MCl) > E(MNO3) > E(MHSO4). The experimental activity tests of the catalysts calcined at stepped temperatures show that NaOH can react with the catalyst below 200 °C. NaCl and NaNO3 start to react with the catalyst at a temperature between 300 and 400 °C. Unlike MOH, MCl and MNO3, which can produce volatile or decomposable species for the anions after reacting with the catalyst, M2SO4 and MHSO4 will leave both cations and anions on the catalyst surface. The sulfate ions left on the catalyst can generate active acid sites for NH3 adsorption. The experimental results also show that Na2SO4 and NaHSO4 will not lower the NO conversion. The after-reaction influences of various alkali metals were studied using theoretical and experimental methods. The theoretical results show that the acidity decreases with doping of alkali metal. Experiments show a consistent result that the NO conversion decreases as undoped >LiCl > NaCl > KCl.

  19. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  20. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  1. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  2. Core-electron effect in state-selective electron capture collisions of highly charged ions with alkali-metal atom targets

    Energy Technology Data Exchange (ETDEWEB)

    Pascale, J. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules; Jacquet, E. [Caen Univ., 14 (France). Lab. de Spectroscopie Atomique

    1994-12-31

    We study both experimentally and theoretically the influence of the projectile core electrons on the single electron capture process, in medium-energy collisions of partially stripped ions with ground-state alkali-metal atom targets. The effect is clearly demonstrated in the final nl-distributions of the capture electron in Ar{sup 8+} - and Kr{sup 8+} - Li(2s) collisions, by comparisons of experimental data with three-body classical trajectory Monte-Carlo (CTMC) calculations performed for these ions, and also for Ne{sup 8+} and O{sup 8+}. The effect manifests itself by a significant population of low l-values which does not show up in the case of fully or nearly fully stripped ions; it is strongly energy dependent and vanishes at high energies. The CTMC calculations show also a clear influence of the core electrons on the m-distribution of a given final n-level. (authors). 15 refs., 4 figs., 2 tabs.

  3. Structures and heats of formation of simple alkali metal compounds: hydrides, chlorides, fluorides, hydroxides, and oxides for Li, Na, and K.

    Science.gov (United States)

    Vasiliu, Monica; Li, Shenggang; Peterson, Kirk A; Feller, David; Gole, James L; Dixon, David A

    2010-04-01

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for simple alkali metal compounds (hydrides, chlorides, fluorides, hydroxides and oxides) of Li, Na, and K from coupled cluster theory [CCSD(T)] calculations including core-valence correlation with the aug-cc-pwCVnZ basis set (n = D, T, Q, and 5). To accurately calculate the heats of formation, the following additional correction were included: scalar relativistic effects, atomic spin-orbit effects, and vibrational zero-point energies. For calibration purposes, the properties of some of the lithium compounds were predicted with iterative triple and quadruple excitations via CCSDT and CCSDTQ. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies were compared with all available experimental measurements and are in excellent agreement with high-quality experimental data. High-level calculations are required to correctly predict that K(2)O is linear and that the ground state of KO is (2)Sigma(+), not (2)Pi, as in LiO and NaO. This reliable and consistent set of calculated thermodynamic data is appropriate for use in combustion and atmospheric simulations.

  4. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  5. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  6. Direct surface charging and alkali-metal doping for tuning the interlayer magnetic order in planar nanostructures

    Science.gov (United States)

    Dasa, Tamene R.; Stepanyuk, Valeri S.

    2015-08-01

    The continuous reduction of magnetic units to ultrasmall length scales inspires efforts to look for a suitable means of controlling magnetic states. In this study, we show two surface charge alteration techniques for tuning the interlayer exchange coupling of ferromagnetic layers separated by paramagnetic spacers. Our ab initio study reveals that already a modest amount of extra charge can switch the mutual alignment of the magnetization from antiferromagnetic to ferromagnetic or vice versa. We also propose adsorption of alkali metals as an alternative way of varying the electronic and chemical properties of magnetic surfaces. Clear evidence is found that the interlayer magnetic order can be reversed by adsorbing alkali metals on the magnetic layer. Moreover, alkali-metal overlayers strongly enhance the perpendicular magnetic anisotropy in FePt thin films. These findings combined with atomistic spin model calculations suggest that the electronic or ionic way of surface charging can have a crucial role for magnetic hardening and spin state control.

  7. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  8. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  9. Subtask 12E1: Compatibility of structural materials in liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R.; Clark, R.W. [Argonne National Lab., IL (United States)

    1995-03-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures that are in the range of interest for the International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal environments. Candidate structural materials are being evaluated for their compatibility, interstitial-element transfer, and corrosion in liquid alkali-metal systems such as lithium and NaK. Type 316 stainless steel and V-5Cr-5Ti coupon specimens with and without prealuminizing treatment have been exposed to NaK and lithium environments of commercial purity for times up to 3768 h at temperatures between 300 and 400{degrees}C. 13 refs., 8 figs., 3 tabs.

  10. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  11. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  12. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  13. Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels

    CERN Document Server

    Vexiau, R; Aymar, M; Bouloufa-Maafa, N; Dulieu, O

    2015-01-01

    We have calculated the isotropic $C\\_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $X^1\\Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers \\textit{et.~al.}, Phys.~Rev.~A \\textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it i...

  14. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  15. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes.

    Science.gov (United States)

    Ramos, Patrícia; Santos, Agostinho; Pinto, Edgar; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2016-12-01

    The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus). Copyright © 2016 Elsevier GmbH. All

  16. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  17. Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

    Institute of Scientific and Technical Information of China (English)

    Wei ZENG; Zhi Hua MAO; Mi GONG; Chun Chun ZHANG; Sheng Ying QIN; Jun SU

    2003-01-01

    N-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of N-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

  18. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  19. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  20. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  1. Measurement scheme and analysis for weak ground state hyperfine transition moments through two-pathway coherent control

    CERN Document Server

    Choi, J

    2016-01-01

    We report our detailed analysis of a table-top system for the measurement of the weak-force-induced electric dipole moment of a ground state hyperfine transition carried out in an atomic beam geometry. We describe an experimental configuration of conductors for application of orthogonal r.f. and static electric fields, with cavity enhancement of the r.f. field amplitude, that allows confinement of the r.f. field to a region in which the static fields are uniform and well-characterized. We carry out detailed numerical simulations of the field modes, and analyze the expected magnitude of statistical and systematic limits to the measurement of this transition amplitude in atomic cesium. The combination of an atomic beam with this configuration leads to strong suppression of magnetic dipole contributions to the atomic signal. The application of this technique to the measurement of extremely weak transition amplitudes in other atomic systems, especially alkali metals, seems very feasible.

  2. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  3. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  4. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  5. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Belokoneva, E.L. [Moscow State Univ., Moscow (Russian Federation). Dept. of Crystallography and Crystal Chemistry

    2013-11-01

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  6. Alkali-metal electron spin density shift induced by a helium nanodroplet

    Science.gov (United States)

    Koch, Markus; Callegari, Carlo; Ernst, Wolfgang E.

    2010-04-01

    Helium (He) nanodroplets provide a cold and virtually unperturbing environment for the study of weakly bound molecules and van der Waals aggregates. High resolution microwave spectroscopy and the detection of electron spin transitions in doped He droplets have recently become possible. Measurements of hyperfine-resolved electron spin resonance in potassium (39K) and rubidium (85Rb) atoms on the surface of He droplets show small line shifts relative to the bare atoms. These shifts were recorded for all 2I + 1 components (I is the nuclear spin) of a transition at high accuracy for He droplets ranging in size from 1000 to 15,000 He atoms. Evaluation of the spectra yields the influence of the He environment on the electron spin density at the alkali-metal nucleus. A semi-empirical model is presented that shows good qualitative agreement with the measured droplet size dependent increase of Fermi contact interaction at the nuclei of dopant K and Rb.

  7. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    Science.gov (United States)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  8. An analytical model of Faraday rotation in hot alkali metal vapours

    CERN Document Server

    Kemp, Stefan L; Cornish, Simon L

    2011-01-01

    We report a thorough investigation into the absorptive and dispersive properties of hot caesium vapour, culminating in the development of a simple analytical model for off-resonant Faraday rotation. The model, applicable to all hot alkali metal vapours, is seen to predict the rotation observed in caesium, at temperatures as high as 115 $^{\\circ}$C, to within 1% accuracy for probe light detuned by greater than 2 GHz from the $D_{2}$ lines. We also demonstrate the existence of a weak probe intensity limit, below which the effect of hyperfine pumping is negligible. Following the identification of this regime we validate a more comprehensive model for the absorption and dispersion in the vicinity of the $D_{2}$ lines, implemented in the form of a computer code. We demonstrate the ability of this model to predict Doppler-broadened spectra to within 0.5% rms deviation for temperatures up to 50 $^{\\circ}$C.

  9. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  10. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides

    Science.gov (United States)

    Kim, Hyun; Han, Gang Hee; Yun, Seok Joon; Zhao, Jiong; Keum, Dong Hoon; Jeong, Hye Yun; Hue Ly, Thuc; Jin, Youngjo; Park, Ji-Hoon; Moon, Byoung Hee; Kim, Sung-Wng; Lee, Young Hee

    2017-09-01

    Synthesis of monolayer transition metal dichalcogenides (TMDs) via chemical vapor deposition relies on several factors such as precursor, promoter, substrate, and surface treatment of substrate. Among them, the use of promoter is crucial for obtaining uniform and large-area monolayer TMDs. Although promoters have been speculated to enhance adhesion of precursors to the substrate, their precise role in the growth mechanism has rarely been discussed. Here, we report the role of alkali metal promoter in growing monolayer TMDs. The growth occurred via the formation of sodium metal oxides which prevent the evaporation of metal precursor. Furthermore, the silicon oxide substrate helped to decrease the Gibbs free energy by forming sodium silicon oxide compounds. The resulting sodium metal oxide was anchored within such concavities created by corrosion of silicon oxide. Consequently, the wettability of the precursors to silicon oxide was improved, leading to enhance lateral growth of monolayer TMDs.

  11. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    Science.gov (United States)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  12. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    Science.gov (United States)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  13. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    Science.gov (United States)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  14. Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noel; Zhou, Wei; Janot, Raphael; Skripov, Alexander V.; Udovic, Terrence J.

    2016-09-29

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5, K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (..alpha..) and ordered (..beta..) phases for temperatures above and below about 200-250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order-disorder (..beta..-..alpha..) phase transition, and measurements upon cooling of the ..alpha..-phase revealed the known strong hysteresis for reversion back to the ..beta..-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH3- anions in the ..alpha..- and ..beta..-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. This dynamical result might provide some insights concerning the enthalpy-entropy compensation effect previously observed for these potentially promising hydrogen storage materials.

  15. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  16. Thermodynamic study of alkali metals release in pressurised fluidised-bed combustion and gasification of peat

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Backman, R.; Korhonen, M.

    1988-01-01

    A combined-cycle power generation system incorporating pressurised fluidised-bed combustion (PFBC) or gasification is considered a promising approach for electricity generation using solid fuels such as peat. In these systems, the high-pressure hot flue gas is expanded in a gas turbine. Peat contains sodium and potassium which are released in combustion and gasification. These are corrosive elements that can cause severe damage to the turbine blades if not suppressed. Multicomponent, multiphase equilibrium calculations were carried out for atmospheric and pressurised fluidised-bed operating conditions to determine the relative distribution of the two metals (Na and K) in the gas and condensed phases. Dependence of the alkali volatilisation on the operating temperature, pressure, the chlorine-content and the total alkali-content of the feedstock was studied. The results show that the alkali release in the vapour-phase could be much higher than acceptable to a gas turbine, particularly under gasification conditions. Hence the necessity to remove the volatilised alkali-metal compounds is more acute in gasification than in combustion. Both sodium and potassium are present as chlorides and to a lesser extent as hydroxides in the gas phase in both modes of operation (i.e. combustion and gasification). However, whereas under combustion conditions both metals seem to condense as sulphates (Na/sub 2/SO4 and K/sub 2/SO4), in gasification, chlorides and carbonates dominate in the condensed phase. The alkali-metals volatilisation shows strong dependence on the operating pressure of the system as well as on the chlorine-content of the feedstock. It decreases markedly with the former but increases sharply with the latter.

  17. On the ground state of metallic hydrogen

    Science.gov (United States)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  18. A global approach to ground state solutions

    Directory of Open Access Journals (Sweden)

    Philip Korman

    2008-08-01

    Full Text Available We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  19. A global approach to ground state solutions

    OpenAIRE

    2008-01-01

    We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  20. The X1Σ +g ground state of Mg2 studied by Fourier-transform spectroscopy

    Science.gov (United States)

    Knöckel, H.; Rühmann, S.; Tiemann, E.

    2013-03-01

    The A^1Σ u^+ - X^1Σ g^+ UV spectrum of Mg2 has been investigated with high resolution Fourier-transform spectroscopy. Mg2 vapor was created in a heat pipe. Various spectroscopic methods have been employed, such as conventional absorption spectroscopy with light from a broad band lamp and laser-induced fluorescence. The high resolution of the Fourier-transform spectrometer, together with computer aided evaluation methods of the spectra, yields precise transition frequencies. The new data and data available from earlier investigations are applied in direct potential fits of lower and upper electronic states. Various representations of potential energy curves for the ground state X^1Σ g^+ have been employed and their benefits in terms of smallest number of parameters are discussed. Scattering lengths are derived for the homonuclear isotopologues and compared with previous results.

  1. UV-visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Lim, Keon-Hee; Kim, Kyongjun; Kim, Seonjo; Park, Si Yun; Kim, Hyungjun; Kim, Youn Sang

    2013-06-04

    Solution-processed and alkali metals, such as Li and Na, are introduced in doped amorphous zinc tin oxide (ZTO) semiconductor TFTs, which show better electrical performance, such as improved field effect mobility, than intrinsic amorphous ZTO semiconductor TFTs. Furthermore, by using spectroscopic UV-visible analysis we propose a comprehensive technique for monitoring the improved electrical performance induced by alkali metal doping in terms of the change in optical properties. The change in the optical bandgap supported by the Burstein-Moss theory could successfully show a mobility increase that is related to interstitial doping of alkali metal in ZTO semiconductors.

  2. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.

    Science.gov (United States)

    Um, Ik-Hwan; Shin, Young-Hee; Lee, Seung-Eun; Yang, Kiyull; Buncel, Erwin

    2008-02-01

    We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, kobsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO-; (2) for the P=S compound 2a, KOEt > EtO- > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO(-) > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K(+) for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K(+), which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO(-) and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory).

  3. Ground states for nonuniform periodic Ising chains

    Science.gov (United States)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  4. Room temperature inorganic ``quasi-molten salts`` as alkali-metal electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, K.; Zhang, S.; Angell, C.A. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry

    1996-11-01

    Room temperature inorganic liquids of high ionic conductivity have been prepared by reacting Lewis acid AlCl with sulfonyl chlorides. The mechanism is not clear at this time since a crystal structure study of the 1:1 complex with CH{sub 3}SO{sub 2}Cl (T{sub m} = 30 C) is not consistent with a simple chloride transfer to create AlClO{sub 4}{sup {minus}} anions. The liquid is in a state somewhere between ionic and molecular. A new term quasi-molten salt is adopted to describe this state. A comparably conducting liquid can be made using BCL{sub 3} in place of AlCl{sub 3}. Unlike their organic counterparts based on ammonium cations (e.g., pyridinium or imidazolium) which reduce in the presence of alkali metals, this inorganic class of cation shows great stability against electrochemical reduction (ca. {minus}1.0 V vs. Li{sup +}/Li), with the useful consequence that reversible lithium and sodium metal deposition/stripping can be supported. The electrochemical window for these quasi-salts with AlCl{sub 3} ranges up to 5.0 V, and their room temperature conductivities exceed 10{sup {minus}4} S/cm. They dissolve lithium and sodium tetrachloroaluminates up to mole fraction {approximately} 0.6 at 100 C and intermediate compositions are permanently stable at ambient. The resultant lithium or sodium salt solutions exhibit electrochemical windows of 4.5--5.0 V vs. Li{sup +}/Li or Na{sup +}/Na and show room temperature conductivities of 10{sup {minus}3.0}--10{sup {minus}2.5} S/cm. In preliminary charge/discharge tests, the cell Li/``quasi-ionic liquid electrolyte``/Li{sub 1+x}Mn{sub 2}O{sub 4} showed a discharge capacity of ca. 110 mAh/(g of cathode) and sustained 80% of the initial capacity after 60 cycles, indicating that these quasi-molten salt-based electrolytes are promising candidates for alkali-metal batteries.

  5. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  6. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  7. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    )imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure....... In Chapter 3 we present the results of our work with third row (3d) transition metal ions and their complexes. Specifically, in section 2.1 we report a series of complexes synthesized using a tripodal hexadentate Schiff-base ligand. The ligand demonstrates the ability to form mononuclear or trinuclear...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  8. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  9. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  10. Shifts in the ESR spectra of alkali-metal atoms (Li, Na, K, Rb) on helium nanodroplets.

    Science.gov (United States)

    Hauser, Andreas W; Gruber, Thomas; Filatov, Michael; Ernst, Wolfgang E

    2013-03-18

    He-droplet-induced changes of the hyperfine structure constants of alkali-metal atoms are investigated by a combination of relativistically corrected ab initio methods with a simulation of the helium density distribution based on He density functional theory. Starting from an accurate description of the variation of the hyperfine structure constant in the M-He diatomic systems (M=Li, Na, K, Rb) as a function of the interatomic distance we simulate the shifts induced by droplets of up to 10,000 (4)He atoms. All theoretical predictions for the relative shifts in the isotropic hyperfine coupling constants of the alkali-metal atoms attached to helium droplets of different size are then tied to a single, experimentally derived parameter of Rb.

  11. Ab initio quantum Monte Carlo study of the binding of a positron to alkali-metal hydrides.

    Science.gov (United States)

    Kita, Yukiumi; Maezono, Ryo; Tachikawa, Masanori; Towler, Mike D; Needs, Richard J

    2011-08-07

    Quantum Monte Carlo methods are used to investigate the binding of a positron to the alkali-metal hydrides, XH (X = Na and K). We obtain positron affinities for the NaH and KH molecules of 1.422(10) eV and 2.051(39) eV, respectively. These are considerably larger than the previous results of 1.035 eV and 1.273 eV obtained from multireference single- and double-excitation configuration interaction calculations. Together with our previous results for [LiH;e(+)] [Y. Kita et al., J. Chem. Phys. 131, 134310 (2009)], our study confirms the strong correlation between the positron affinity and dipole moment of alkali-metal hydrides.

  12. Probing the location and distribution of paramagnetic centers in alkali metal-loaded zeolites through (7)Li MAS NMR.

    Science.gov (United States)

    Terskikh, Victor V; Ratcliffe, Christopher I; Ripmeester, John A; Reinhold, Catherine J; Anderson, Paul A; Edwards, Peter P

    2004-09-15

    The nature and surroundings of lithium cations in lithium-exchanged X and A zeolites following loading with the alkali metals Na, K, Rb, and Cs have been studied through (7)Li solid-state NMR spectroscopy. It is demonstrated that the lithium in these zeolites is stable with respect to reduction by the other alkali metals. Even though the lithium cations are not directly involved in chemical interactions with the excess electrons introduced in the doping process, the corresponding (7)Li NMR spectra are extremely sensitive to paramagnetic species that are located inside the zeolite cavities. This sensitivity makes (7)Li NMR a useful probe to study the formation, distribution, and transformation of such species.

  13. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    Science.gov (United States)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  14. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  15. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  16. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  17. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  18. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-08-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XHn-1(-) ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G

    2000-01-01

    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  20. Silicon halide-alkali metal flames as a source of solar grade silicon

    Science.gov (United States)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  1. Quantum control of the hyperfine-coupled electron and nuclear spins in alkali-metal atoms

    Science.gov (United States)

    Merkel, Seth T.; Jessen, Poul S.; Deutsch, Ivan H.

    2008-08-01

    We study quantum control of the full hyperfine manifold in the ground-electronic state of alkali-metal atoms based on applied radio frequency and microwave fields. Such interactions should allow essentially decoherence-free dynamics and the application of techniques for robust control developed for NMR spectroscopy. We establish the conditions under which the system is controllable in the sense that one can generate an arbitrary unitary map on the system. We apply this to the case of Cs133 with its d=16 dimensional Hilbert space of magnetic sublevels in the 6S1/2 state, and design control wave forms that generate an arbitrary target state from an initial fiducial state. We develop a generalized Wigner function representation for this space consisting of the direct sum of two irreducible representations of SU(2), allowing us to visualize these states. The performance of different control scenarios is evaluated based on the ability to generate a high-fidelity operation in an allotted time with the available resources. We find good operating points commensurate with modest laboratory requirements.

  2. Atomic many-body effects and Lamb shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  3. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  4. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  5. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  6. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  7. Faraday effect in alkali-metal vapors in a strong bichromatic field of laser light

    Science.gov (United States)

    Karagodova, T. Ya.; Kuptsova, A. V.

    2002-04-01

    Results of a numerical study of the Faraday effect arising upon propagation of the light beams with the frequencies ω L1 (resonant to the nS 1/2- nP 1/2, 3/2 transitions) and ω L2 (resonant to the nP 1/2, 3/2-( n+2) S 1/2 transitions) through alkali-metal vapors are presented. Characteristics of the magneto-optical rotation spectra at each of the frequencies are strongly affected by the second intense radiation field resonant to the adjacent transition. When the atoms interact with two strong light waves, resonant to adjacent transitions, and with a magnetic field, the shape of the Faraday rotation spectra depends on the energy shifts of the atomic states that arise due to the dynamic Stark effect and the Zeeman effect (the Paschen-Back or an intermediate-type effect), as well as due to the difference of populations of these states caused by the interaction of the atoms with the fields. The results obtained show that in the frequency selection method, based on the resonance Faraday effect, the frequency of the generated narrow-band beam can be tuned by the intensity of the strong wave, resonant to the transition between the excited states.

  8. Universal ultracold collision rates for polar molecules of two alkali-metal atoms.

    Science.gov (United States)

    Julienne, Paul S; Hanna, Thomas M; Idziaszek, Zbigniew

    2011-11-14

    Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision rates are determined by universal quantum dynamics at very long range compared to the chemical bond length. We calculate the universal rate constants for reaction of the reactive dimers in their ground vibrational state v = 0 and for vibrational quenching of non-reactive dimers with v ≥ 1. Using the known dipole moments and estimated van der Waals coefficients of each species, we calculate electric field dependent loss rate constants for collisions of molecules tightly confined to quasi-two-dimensional geometry by a one-dimensional optical lattice. A simple scaling relation of the quasi-two-dimensional loss rate constants with dipole strength, trap frequency and collision energy is given for like bosons or like fermions. It should be possible to stabilize ultracold dimers of any of these species against destructive collisions by confining them in a lattice and orienting them with an electric field of less than 20 kV cm(-1).

  9. Exchange-correlation interaction and AO-hybridization of alkali-metal atomic clusters.

    Science.gov (United States)

    Liu, Xuan; Ito, Haruhiko; Torikai, Eiko

    2013-09-19

    The structure of alkali-metal atomic clusters is optimized with B3P86 hybrid functional for the highest spin state as well as with B3LYP hybrid functional for the lowest spin state. A dramatic change from plane to solid occurs in the highest spin state when the number of constituent atoms is four. The binding, exchange, and correlation energies are evaluated for both the highest and lowest spin states. Next, we explore the dependence of the exchange and correlation energies on the binding energy. The exchange energy contributes to the formation of the highest spin clusters, whereas the correlation energy contributes to the formation of the lowest spin clusters. The highest spin clusters are most stable when the exchange energy is a minimum. Then, to see why the ferromagnetic bond among spin-aligned identical atoms arises against Pauli exclusion principle, we estimate the mixing ratio of p orbitals in molecular orbitals. The s-p hybridization increases the binding energy in absolute value due to the extensive overlap of molecular orbitals and leads to generation of the highest spin clusters.

  10. Recent Advances In Alkali Metal Thermoelectric Converter (AMTEC) Electrode Performance And Modeling

    Science.gov (United States)

    Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Cole, T.

    1988-04-01

    The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta"-alumina solid electrolyte (BASE). It has been operated at a device efficiency of 19% and at power densities near 1.0 W/cm2. This paper describes progress on the remaining scien-tific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with over-lying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/cm2 for hundreds of hours. Recent modeling results show that at least 0.7 W/cm2 can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, co-sputtered platinum/tungsten, has demon-strated 0.8 W/cm2 for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/cm2 will enable high efficiency (near 20%) space power systems.

  11. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  12. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    Science.gov (United States)

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  13. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  14. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  15. Alkali metal salts of formazanate ligands: diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone.

    Science.gov (United States)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-12-28

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available for bonding with the alkali metal. The potassium salt K[PhNNC(p-tol)NNPh]·2THF (1-K) is dimeric in the solid state and even in THF solution, as a result of the K atom bridging via interaction with a terminal N atom and the aromatic ring of a second unit. Conversely, for the compounds Na[MesNNC(CN)NNMes]·2THF (2-Na) and Na[PhNNC((t)Bu)NNPh] (3-Na) polymeric and hexameric structures are found in the solid state respectively. The preference for binding the alkali metal through internal N atoms (1-K and 2-Na) to give a 4-membered chelate, or via internal/external N atoms (5-membered chelate in 3-Na), contrasts with the 6-membered chelate mode observed in our recently reported formazanate zinc complexes.

  16. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed.

  17. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  18. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  19. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  20. Thermal ground state and nonthermal probes

    CERN Document Server

    Grandou, Thierry

    2015-01-01

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  1. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  2. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  3. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  4. Ground states for the fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2013-05-01

    Full Text Available In this article, we show the existence of ground state solutions for the nonlinear Schrodinger equation with fractional Laplacian $$ (-Delta ^alpha u+ V(xu =lambda |u|^{p}uquadhbox{in $mathbb{R}^N$ for $alpha in (0,1$}. $$ We use the concentration compactness principle in fractional Sobolev spaces $H^alpha$ for $alpha in (0,1$. Our results generalize the corresponding results in the case $alpha =1$.

  5. Rapid and efficient synthesis of alkali metal-C[sub 60] compounds in liquid ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Buffinger, D.R.; Ziebarth, R.P.; Stenger, V.A.; Recchia, C.; Pennington, C.H. (Ohio State Univ., Columbus, OH (United States))

    1993-10-06

    The reaction of stoichiometric amounts of alkali metals with C[sub 60] in liquid ammonia provides a rapid and quantitative route to M[sub x]C[sub 60] superconductors (M[sub x] = K[sub 3]/, Rb[sub 3]/, CsRb[sub 2], RbCs[sub 2], KRbCs). Annealing of the samples for 24-48 h at 375[degrees]C is required to obtain large superconducting fractions. [sup 13]C and [sup 87]Rb NMR line shapes are reported for Rb[sub 3]C[sub 60]. The [sup 13]C line shapes show the degree of rotational motion of the C[sub 60] ions varies considerably from sample to sample and is dependent on the method of preparation and subsequent heat treatment. A correlation between the degree of rotational motion and the superconducting fraction is noted and attributed to the amount of disorder in the sample. [sup 87]Rb NMR shows three peaks indicating that Rb[sub 3]C[sub 60] actually contains three different cation sites, rather than the two suggested by X-ray powder diffraction data. The third site is occupied by approximately 15% of the Rb ions in Rb[sub 3]C[sub 60] and is shown to be a subset of the tetrahedral sites in the cubic close-packed C[sub 60] lattice. Although the exact nature of the distortion required to produce the third site is unknown, it appears to be unrelated to the orientations of the C[sub 60] ions creating the site. 18 refs., 2 figs.

  6. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    Science.gov (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  7. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    Science.gov (United States)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  8. Electrical breakdown experiments with application to alkali metal thermal-to-electric converters

    Energy Technology Data Exchange (ETDEWEB)

    Momozaki, Y.; El-Genk, M.S. [The University of New Mexico, Albuquerque, NM (United States). Institute for Space and Nuclear Power Studies and Department of Chemical and Nuclear Engineering

    2003-04-01

    Electrical breakdown in alkali metal thermal-to-electric converters (AMTECs) limits the number of solid electrolytes that could be connected in series and, hence, the output voltage. Experiments are conducted to measure the DC electrical breakdown voltage in cesium vapor between two planar molybdenum electrodes, 1.6 cm in diameter, separated by a 0.5 mm gap, and relate the results to potential electrical breakdown on the cathode side of AMTECs. Two sets of experiments are conducted. In the first set, in which the electrodes are kept at 560 and 650 K and the cesium pressure varied from 0.71 to 29 Pa, when the cooler electrode is positively biased, breakdown occurs at {approx}500 V. When the cooler electrode is negatively biased, breakdown occurs at 700 V. In the second set of experiments, in which the electrodes are held at 625 and 1100 K and the cesium pressure varied from 1.7 to 235 Pa, when the cooler electrode is positively biased, the breakdown voltage is <4 V but in excess of 400 V when the cooler electrode is negatively biased. Because the first ionization potential (3.89 V) and the ionization rate constant of cesium are lower and higher, respectively, than for sodium (5.14 V) and potassium (4.34 V) vapors, the DC electrical breakdown voltage in AMTECs with either a potassium or a sodium working fluid is expected to be higher than measured in this work for cesium vapor. In such converters, the wall should be negatively biased relative to the highest voltage cathode in order to avoid electrical breakdown up to 400 V, or even higher. (author)

  9. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  10. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry.

    Science.gov (United States)

    Nanita, Sergio C; Sokol, Ewa; Cooks, R Graham

    2007-05-01

    Serine solutions containing salts of alkali metals yield magic number clusters of the type (Ser(4)+C)(+), (Ser(8)+C)(+), (Ser(12)+C)(+), and (Ser(17)+2C)(+2) (where C = Li(+), Na(+), K(+), Rb(+), or Cs(+)), in relative abundances which are strongly dependent on the cation size. Strong selectivity for homochirality is involved in the formation of serine tetramers cationized by K(+), Rb(+), and Cs(+). This is also the case for the octamers cationized by the smaller alkalis but there is a strong preference for heterochirality in the octamers cationized by the larger alkali cations. Tandem mass spectrometry shows that the octamers and dodecamers cationized by K(+), Rb(+), and Cs(+) dissociate mainly by the loss of Ser(4) units, suggesting that the neutral tetramers are the stable building blocks of the observed larger aggregates, (Ser(8)+C)(+) and (Ser(12)+C)(+). Remarkably, although the Ser(4) units are formed with a strong preference for homochirality, they aggregate further regardless of their handedness and, therefore, with a preference for the nominally racemic 4D:4L structure and an overall strong heterochiral preference. The octamers cationized by K(+), Rb(+), or Cs(+) therefore represent a new type of cluster ion that is homochiral in its internal subunits, which then assemble in a random fashion to form octamers. We tentatively interpret the homochirality of these tetramers as a consequence of assembly of the serine molecules around a central metal ion. The data provide additional evidence that the neutral serine octamer is homochiral and is readily cationized by smaller ions.

  11. Electronic Ground State of Higher Acenes

    CERN Document Server

    Jiang, De-en

    2007-01-01

    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic grou...

  12. Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    V.H.Rane; S.T.Chaudhari; V.R.Choudhary

    2008-01-01

    Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca = 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm3·g-1·h-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.

  13. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    Science.gov (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  14. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    Science.gov (United States)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  15. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow

    Energy Technology Data Exchange (ETDEWEB)

    R. Fahmi; A.V. Bridgwater; L.I. Darvell; J.M. Jones; N. Yates; S. Thain; I.S. Donnison [Aston University, Birmingham (United Kingdom). Bio-Energy Research Group, Chemical Engineering and Applied Chemistry

    2007-07-15

    The effect of alkali metals on the thermal degradation of biomass during combustion and pyrolysis has been investigated for 19 Lolium and Festuca grass varieties. These samples have been grown under the same conditions, but has been genetically mutated to give varying lignin contents in the range 2-6% measured by Klason. These grasses also have a high alkali metal content resulting in a high ash content. In order to compare the Lolium and Festuca grasses willow chip and switchgrass were also studied to act as a reference fuels. All samples were subjected to different washing conditions to investigate the effect of decreasing the metal content. The resulting biomass samples were studied for pyrolysis characteristics using thermogravimetric analysis (TGA) and pyrolysis gas chromatography-mass spectrometry (pyroprobe-GC/MS) and for combustion characteristics by TGA. A strong catalytic effect of metals, particularly potassium, was observed in both pyrolysis and combustion. Also, it was found that as the lignin content increases, the metal content (especially potassium and sodium) decreases. Furthermore, the char yield from pyrolysis (measured at 773 K from TGA pyrolysis traces) increases as metals increase, and hence char yield increases as the lignin content decreases. Py-GCMS showed that peak intensities varied for untreated and treated samples; in particular the levoglucosan yield is higher and the hydroxyacetaldehyde yield is lower for treated (low metal content) samples. This supports previous work mechanisms by Liden et al. in which alkali metals promote an ionic route that favours ring-scission and hydroxyacetaldehyde formation. 13 refs., 10 figs., 4 tabs.

  16. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions.

  18. Formation of alkali-metal nanoparticles in alkali-silicate glasses under electron irradiation and thermal processing

    Science.gov (United States)

    Bochkareva, E. S.; Sidorov, A. I.; Ignat'ev, A. I.; Nikonorov, N. V.; Podsvirov, O. A.

    2017-02-01

    Experiments and numerical simulation show that the irradiation of alkali-containing glasses using electrons at an energy of 35 keV and the subsequent thermal processing at a temperature above the vitrification point lead to the formation of spherical metal (lithium, sodium, and potassium) nanoparticles with oxide sheaths that exhibit plasmon resonances in the visible spectral range. Glasses containing two alkali metals exhibit mutual effect of metals on the formation of nanoparticles with two compositions due to the difference of ion radii and mobilities of metal ions.

  19. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism.

    Science.gov (United States)

    Moriyama, Katsuhiko; Takemura, Misato; Togo, Hideo

    2014-07-03

    A bromide-catalyzed oxidation of alcohols was developed which proceeded in the presence of an alkali metal bromide and an oxidant under mild conditions. The reaction involved an organic-molecule-free oxidation using KBr and Oxone and a Brønsted acid assisted oxidation using KBr and aqueous H2O2 solution to provide a broad range of carbonyl compounds in high yields. Moreover, the bromide-catalyzed oxidation of primary alcohols enabled the divergent synthesis of carboxylic acids and aldehydes under both reaction conditions in the presence of TEMPO. A possible catalytic mechanism was suggested on the basis of various mechanistic studies.

  20. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  1. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-09-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach.

  2. Adsorption of superfluid 4He films on planar heavy-alkali metals studied with the Orsay-Trento density functional

    Science.gov (United States)

    Szybisz, Leszek

    2003-04-01

    The wetting of planar surfaces of alkali metals (Cs, Rb, K, and Na) by superfluid 4He films at T=0 K is theoretically studied. Calculations have been carried out by using the Orsay-Trento nonlocal density functional and the adsorption potential of Chizmeshya-Cole-Zaremba. Surface tensions and contact angles are determined for several approximations. We find that the conclusion on the wetting of an Rb substrate is sensible to the gradient-gradient term in the functional and the softness of the He-metal interaction.

  3. Syntheses and Structures of Alkali Metal Rare Earth Polyphosphates CsLn(PO3)4 (Ln = La, Ce)

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; CHENG Wen-Dan; ZHANG Hao; WU Dong-Sheng; ZHAO Dan

    2008-01-01

    Alkali metal-rare earth polyphosphates, CsLn(PO3)4 (Ln = La, Ce), were synthesized by the high temperature solution reaction and studied by single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group P21 (Z = 2) and feature infinite PO4 spiral chains linked with neighboring CsO10 and LnO8 polyhedra. In addition, theoretically calculated energy band structure and density of states (DOS) by the density functional theory(DFT) predict that the solid-state compound CsLa(PO3)4 possesses insulative character.

  4. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...... equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface...

  5. Superimposed particles in 1D ground states

    Energy Technology Data Exchange (ETDEWEB)

    Sueto, Andras, E-mail: suto@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-01-21

    For a class of nonnegative, range-1 pair potentials in one-dimensional continuous space we prove that any classical ground state of lower density {>=}1 is a tower-lattice, i.e. a lattice formed by towers of particles the heights of which can differ only by 1, and the lattice constant is 1. The potential may be flat or may have a cusp at the origin; it can be continuous, but its derivative has a jump at 1. The result is valid on finite intervals or rings of integer length and on the whole line.

  6. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  7. Study of complexation between two 1,3-alternate calix[4]crown derivatives and alkali metal ions by electrospray ionization mass spectrometry and density functional theory calculations

    Science.gov (United States)

    Shamsipur, Mojtaba; Allahyari, Leila; Fasihi, Javad; Taherpour, Avat (Arman); Asfari, Zuhair; Valinejad, Azizollah

    2016-03-01

    Complexation of two 1,3-alternate calix[4]crown ligands with alkali metals (K+, Rb+ and Cs+) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and density functional theory calculations. The binding selectivities of the ligands and the binding constants of their complexes in solution have been determined using the obtained mass spectra. Also the percentage of each formed complex species in the mixture of each ligand and alkali metal has been experimentally evaluated. For both calix[4]crown-5 and calix[4]crown-6 ligands the experimental and theoretical selectivity of their alkali metal complexes found to follow the trend K+ > Rb+ > Cs+. The structures of ligands were optimized by DFT-B3LYP/6-31G method and the structures of complexes were obtained by QM-SCF-MO/PM6 method and discussed in the text.

  8. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)

    2014-05-01

    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  9. Modulation of the work function of fullerenes C{sub 60} and C{sub 70} by alkali-metal adsorption: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hong [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Xu, Shunfu, E-mail: xushunfu2009@gmail.com [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Liu, Weihui [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Li, Chun [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yuan, Guang, E-mail: yuanguang@ouc.edu.cn [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Research Institute of Electronics, University of Shizuoka, Hamamasu 432-8011 (Japan); Mimura, Hitenori [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2013-11-15

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C{sub 60} and C{sub 70} was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C{sub 60} and C{sub 70} decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C{sub 60} and C{sub 70}. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C{sub 60} and C{sub 70}.

  10. XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions

    Science.gov (United States)

    Saáedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Zak, Ali Khorsand; Cheraghizade, Mohsen; Mahmoudian, M. R.; Baghchesara, Mohammad Amin; Dezaki, Abbas Shirmardi

    2016-05-01

    The present work is a study about a relationship between X-ray photoelectron spectrometer (XPS) results and photocurrent intensity of alkali-metals-elements doped ZnO nanoparticles, which is carried out under visible illumination conditions. The nanoparticles were synthesized by a simple sol-gel method. Structure and morphology studies of the NPs were carried out by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The effect of doping on the optical band-gap was investigated by using UV-visible spectrometer. The absorption peak of the doped ZnO NPs was red-shifted with respect to that of the undoped ZnO NPs. After that, the photocurrent application of the products was examined under a white light source at 2 V bias. The photocurrent results showed that, the current intensity of the ZnO NPs was increased by doping materials. However, K-doped ZnO NPs showed the highest photocurrent intensity. Finally, a discussion was carried out about the obtained photocurrent results by the O-1s spectra of the XPS of the samples. Our results suggest that the alkali-metals-doped ZnO NPs exhibit considerable promise for highly sensitive visible-light photodetectors.

  11. Synthesis and exchange properties of sulfonated poly(phenylene sulfide) with alkali metal ions in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Son, Won Keun [Chungnam National Univ., Taejon (Korea, Republic of); Kim, Sang Hern [Taejon National Univ., Taejon (Korea, Republic of); Park, Soo Gil [Chungbuk National Univ., Cheongju (Korea, Republic of)

    2001-01-01

    Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio)phenyl] sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% SO{sub 3}-H{sub 2}SO{sub 4}) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations (Li{sup +}, Na{sup +}, and K{sup +}) and SPPS ion exchanger in organic solvents such as in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction (K{sub eq}) also increased in the order of Li{sup +}, Na{sup +}, and K{sup +}. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

  12. Distribution and uptake of {sup 137}Cs in relation to alkali metals in a perhumid montane forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jhchao@mx.nthu.edu.tw; Chiu, C.Y. [Research Center for Biodiversity, Academia Sinica, Taipei 11529, Taiwan (China); Lee, H.P. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2008-10-15

    We determined the content of radiocesium ({sup 137}Cs) and alkali metals in soils, plants (2 ferns, a shrub and moss) and rainwater collected in an undisturbed forest ecosystem. The {sup 137}Cs activity and the isotopic ratio of {sup 137}Cs/Cs in the samples were used to interpret the distribution and uptake of {sup 137}Cs and the alkali metals in plants. As a whole, the {sup 137}Cs in plants was assimilated together with K but was not dependent on Cs. Different adaptations of fern species collected in ecological niches cause them to have different {sup 137}Cs/Cs ratios. Diplopterygium glaucum is distributed at the edges of the forest; it usually has shallow organic layers, and the root takes up more stable Cs from mineral layers, leading to lower {sup 137}Cs/Cs ratios than that in the understory Plagiogyria formosana and Rhododendron formosanum species. The steady supply of stable Cs through the uptake by D. glaucum from deep soils may gradually dilute the {sup 137}Cs concentration and thus explain the lower {sup 137}Cs/Cs ratio in the fern samples. The {sup 137}Cs is predicted to be proportional to the Cs content across plant species in the biological cycle once isotopic equilibrium is attained.

  13. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect.

    Science.gov (United States)

    Samsonowicz, M; Regulska, E; Lewandowski, W

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions. The vibrational FT-IR (in KBr and ATR techniques) and (1)H and (13)C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg→Ba were compared with series of univalent metal Li→Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  14. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  15. Molecular dynamics evidence for alkali-metal rattling in the β-pyrochlores, AOs2O6 (A = K, Rb, Cs).

    Science.gov (United States)

    Shoko, E; Peterson, V K; Kearley, G J

    2013-11-27

    We have used ab initio molecular dynamics simulations validated against inelastic neutron scattering data to study alkali-metal dynamics in the β-pyrochlore osmates AOs2O6 (A=K, Rb, Cs) at 300 K to gain insight into the microscopic nature of rattling dynamics in these materials. Our results provide new evidence at the microscopic level for rattling dynamics: (1) the elemental magnitude spectra calculated from the MD show a striking dominance by the alkali metals at low energies indicating weak coupling to the cage, (2) the atomic root-mean-square displacements for the alkali metals are significantly larger than for the other atoms, e.g., 25% and 150% larger than O and Os, respectively, in KOs2O6, and (3) motions of the alkali metals are weakly correlated to the dynamics in their immediate environment, e.g. K in KOs2O6 is 6 times less sensitive to its local environment than Os, indicating weak bonding of the K. There is broadening of the elemental spectra of the alkali metals from Cs to K corresponding to a similar broadening of the local potential around these atoms as determined from potential of mean-force calculations. This feature of the spectra is partly explained by the well-known increase in the relative cage volume with decreasing atomic size of the alkali metal. We find that for the smallest rattler in this series (K) the larger relative cage volume allows this atom freedom to explore a large space inside the cage leading to vibration at a broader range of frequencies, hence a broader spectrum. Thus, since K is considered the best rattler in this series, these findings suggest that a significant feature of a good rattler is the ability to vibrate at several different but closely spaced frequencies.

  16. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms--a new hope.

    Science.gov (United States)

    Soldán, Pavel; Zuchowski, Piotr S; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  17. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  18. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  19. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  20. Nonlinear pressure shifts of alkali-metal atoms in inert gases.

    Science.gov (United States)

    Gong, F; Jau, Y-Y; Happer, W

    2008-06-13

    Precise measurements show that the microwave resonance frequencies of ground-state Rb or Cs atoms have a nonlinear dependence on the pressure of the buffer gases Ar and Kr. No nonlinearities were observed in the gases He or N(2). These observations strongly suggest that the nonlinearities are due to the van der Waals molecules that form in Ar and Kr, but not in He or N(2). The nonlinear part of the shifts is largest in the pressure range of a few tens of torr, similar to the operating pressures of gas-cell atomic clocks. The observed shifts are very well described by a simple function, parametrized by the effective three-body formation rate of molecules and by the effective product of the collisionally limited lifetime times the shift of the hyperfine coupling coefficient in the molecule.

  1. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  2. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    , V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge...

  3. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  4. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  5. Thickness and optical constants calculation for chalcogenide-alkali metal Se80Te8(NaCl)12 thin film

    Science.gov (United States)

    Abd-Elrahman, M. I.; Abu-Sehly, A. A.; Bakier, Y. M.; Hafiz, M. M.

    2017-09-01

    Chalcogenide-alkali metal semiconducting thin films of four different thicknesses of Se80Te8(NaCl)12 are deposited from bulk by thermal evaporation technique. The crystallinity of the film improves with increasing of thickness as indicated by the recorded X-ray diffraction patterns. The transmission and reflection spectra are measured in the wavelength range of the incident photons from 250 to 2500 nm. The thickness and optical constants of the films are calculated based on Swanepeol method using the interference patterns appeared in the transmission spectra. It is found that the films have absorption mechanism which is an indirect allowed transition. The effect of the film thickness on the refractive index and the high-frequency dielectric constant are studied. With increasing the film thickness, both the absorption coefficient and high-frequency dielectric constant increase while the single-oscillator energy, optical band gap and extinction coefficient decrease.

  6. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    Energy Technology Data Exchange (ETDEWEB)

    Rahier, A. [Studie Centrum Voor Kernenergie (SCK-CEN), Boeretang, Mol (Belgium)]. E-mail: arahier@sckcen.be; Mesrobian, G. [Euro Chlor, Brussels (Belgium)]. E-mail: guy.mesrobian@wanadoo.fr

    2006-07-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  7. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    Science.gov (United States)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  8. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K

    Directory of Open Access Journals (Sweden)

    Liqing He

    2015-11-01

    Full Text Available Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K synthesized by sintering of MBH4 (M = Li, Na, K and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4n. Thermal decomposition of M2B12H12 indicates multistep pathways accompanying the formation of H-deficient monomers M2B12H12−x containing the icosahedral B12 skeletons and is followed by the formation of (M2B12Hzn polymers. The decomposition behaviors are different with the in situ formed M2B12H12 during the dehydrogenation of metal borohydrides.

  9. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions.

    Science.gov (United States)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-13

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca(2+), Li(+), Na(+), NH4(+)) at concentrations up to 25 mM. This material can be combined further with disposable chips, demonstrating its promise as an effective ion-selective sensing component for practical applications.

  10. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  12. The Trapping and Cooling of Alkalis Metal Atoms%碱金属原子的囚禁与冷却

    Institute of Scientific and Technical Information of China (English)

    邓海明; 李璋

    2012-01-01

      描述了如何利用激光以及磁场构建光学粘胶、激光阱、磁阱、磁光阱等实现对碱金属的囚禁与冷却,旨在明晰的呈现BEC实验实现的关键技术、物理原理以及各种装置的优缺点。%  This essay describes how to use laser and magnetic field to construct optical molasses ,laser trap ,mag-netic trap and magneto -optical trap to trap and cool alkali-metal atoms .It presents clearly the key experimental technologies of Bose-Einstein condensate ,the physical principle and the relative advantages and disadvantages of different equipments .

  13. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets.

    Science.gov (United States)

    Pifrader, Alexandra; Allard, Olivier; Auböck, Gerald; Callegari, Carlo; Ernst, Wolfgang E; Huber, Robert; Ancilotto, Francesco

    2010-10-28

    Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n+1)p←ns transition of K, Rb, and Cs (n=4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

  14. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  15. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  16. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  17. Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes

    Science.gov (United States)

    King, David M.; Cleaves, Peter A.; Wooles, Ashley J.; Gardner, Benedict M.; Chilton, Nicholas F.; Tuna, Floriana; Lewis, William; McInnes, Eric J. L.; Liddle, Stephen T.

    2016-12-01

    Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin-orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin-orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin-orbit coupled states, and show measurement of UV...UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field.

  18. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  19. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  20. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  1. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  2. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  3. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO2 utilizing pinacolborane at r.t. and 1 atm CO2, with the combination of [Ru(CNCBn)(CO)2(H)][PF6] and KOCO2(t)Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  4. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B. [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305–764 (Korea, Republic of); Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-08-22

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.

  5. Tris-[8]annulenyl Isocyanurate Trianion Triradical and Hexa-anion from the Alkali Metal Reduction of [8]Annulenyl Isocyanate.

    Science.gov (United States)

    Peters, Steven J; Klen, Joseph R

    2015-06-05

    The solution phase alkali metal reduction of [8]annulenyl isocyanate (C8H7NCO) yields an EPR spectrum, which reveals electron couplings to seven protons and only one nitrogen. Although this strongly suggested that the C8H7NCO anion radical was generated, experiments on the oxidized product reveal the actual reduced species to be tris-[8]annulenyl isocyanurate. Unlike the previously studied phenyl isocyanurate anion radical, the unpaired electron(s) is now localized within an [8]annulenyl moiety. Further exposure to metal results in the formation of an equilibrium mixture of trianion triradical and trianion radical species. The cyclotrimerization to form the isocyanurate is proposed to be driven by a reactive C8H7NCO dianion, which is produced from the large equilibrium disproportionation of the anion radical. Exhaustive reduction of the tris-[8]annulenyl isocyanurate with potassium in THF generates the first-ever observed hexa-anion of an isocyanurate. NMR analysis reveals that the polarity of the carbonyl bonds within this hexa-anion is augmented and is caused by the close proximity of K(+) ions, which are tightly ion paired to the three [8]annulenyl dianion rings. These preliminary studies on the reduction of C8H7NCO suggest that polymeric materials (e.g., polyisocyanates) made from this isocyanate might exhibit unique properties.

  6. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  7. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  8. Effect of charge density in chain extension reactions involving complexes of 4, 4'-diaminodiphenylmethane and various alkali metal salts

    Science.gov (United States)

    Deshmukh, Subrajeet; Carrasquillo, Katherine; Tsai, Fang Chang; Wu, Lina; Hsu, Shaw Ling; University of Massachusetts Amherst Team

    Controlling the reaction of methylene diphenyl diisocyanate (MDI)-terminated polyester prepolymer and 4, 4'-diaminodiphenylmethane (MDA) is extremely important in many large scale applications. The ion-diamine complex has the advantage of blocking the instantaneous reaction between the diamine and isocyanate from taking place until it is released at elevated temperatures. We synthesized complexes of MDA with various alkali metal salts. These complexes create a barrier between the diamine and isocyanate thus preventing the premature reaction. We compared the complexes in terms of their dissociation and the subsequent curing with the prepolymer. Charge density had a tremendous effect. DSC showed that Na complexes dissociated at a lower temperature and needed less energy to dissociate than the Li complexes. The effect of change in cation on complex dissociation was more pronounced compared to the change in anion. Also, the ionic liquid introduced greatly altered the dissociation behavior. Temperature and time resolved IR spectroscopy was used to monitor the urea and NH band. By DSC and IR, we showed that NaCl complex is best suited for the curing of prepolymer with regards to curing temperature and energy.

  9. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    Science.gov (United States)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  10. Effect of semicore banding on heavy-alkali-metal lattice constants: Corrections to the frozen-core approximation

    Science.gov (United States)

    Yang, L. H.; Smith, A. P.; Benedek, R.; Koelling, D. D.

    1993-06-01

    Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treatment of the outermost p-shell electrons as Bloch states yielded lattice constants 2-3 % larger than those obtained within the frozen-core approximation (including the partial core correction of Louie, Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy between local-density functional theory and experiment. Predicted bulk moduli are 30-50 % larger than measured values, within either treatment. The band dispersion of the semicore states (with bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron-conduction-electron hybridization rather than direct core-core overlap. The semicore density of states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding band.

  11. A curious interplay in the films of N-heterocyclic carbene Pt(II) complexes upon deposition of alkali metals.

    Science.gov (United States)

    Makarova, Anna A; Grachova, Elena V; Niedzialek, Dorota; Solomatina, Anastasia I; Sonntag, Simon; Fedorov, Alexander V; Vilkov, Oleg Yu; Neudachina, Vera S; Laubschat, Clemens; Tunik, Sergey P; Vyalikh, Denis V

    2016-05-06

    The recently synthesized series of Pt(II) complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned Pt(II) complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination Pt(II) centre to Pt(0) and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the Pt(II) complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  12. First-principles study of a double-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiaobing; Yu Weiyang; Tang Biyu [Key Laboratory of Low Dimensional Materials and Application Technology of the Ministry of Education, Department of Physics, Xiangtan University, Hunan Province, 411105 (China)], E-mail: tangbiyu@gxu.edu.cn

    2008-11-05

    Metal borohydrides have been attracting great interest as potential candidates for use as advanced hydrogen storage materials because of their high gravimetric hydrogen densities. In the present study, first-principles calculations have been performed for the newly reported dual-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}, using density functional theory (DFT) within the generalized gradient approximation and the projected augmented wave method. LiK(BH{sub 4}){sub 2} is found to have an orthorhombic structure in the space group Pnma (No 62) with nearly ideal tetrahedral shape. It is an insulating material having a DFT-calculated wide band gap of 6.08 eV. Analysis of the electronic structure shows an ionic interaction between metal cations and (BH{sub 4}){sup -} and the covalent B-H interaction within the (BH{sub 4}){sup -} tetrahedron. The enthalpy of the formation reaction from primary elements is calculated and found to be -449.8 kJ mol{sup -1}. The decomposition temperature (T{sub dec}) of LiK(BH{sub 4}){sub 2} lies between those of LiBH{sub 4} and KBH{sub 4}, which suggests that the hydrogen decomposition temperature of metal borohydrides can be precisely adjusted by the appropriate combination of cations.

  13. Temperature-Dependent Electrical Conductivity Measurements on Hydrated and Alkali-metal Intercalated Zeolite LTA and FAU

    Science.gov (United States)

    Yumoto, Kenji; Suzuki, Yoshinori; Wada, Noboru

    2007-03-01

    Zeolite LTA and FAU films were made from zeolite powders using a hydrothermal method. Electrical conductivity measurement were performed on the zeolite films in temperature range between 180 K and 430 K, using an LCR meter with the sweeping frequency varied from 20 to 1 MHz and drawing the Cole-Cole plots. The resistivities of both hydrated LTA and FAU zeolites increased with increasing the sample temperature from RT to 430 K, which might be caused by loss of water molecules from the pores of zeolite crystals. Also, the resistivities increased with decreasing the sample temperature from RT to 180 K, probably caused by freezing of water molecules in the zeolite. When the dehydrated zeolite samples were intercalated with alkali metals (Rb and K), the resistivities of the samples did not vary much at RT. However, the resistivities of the intercalated zeolite films decreased drastically by four orders of magnitude when the sample temperature was varied from RT to 180 K. We speculate that the dynamics of alkali atoms in the zeolite pores (electron-phonon scattering) may be responsible for the drastic change in the electrical conductivity.

  14. Thermodynamics of small alkali metal halide cluster ions: comparison of classical molecular simulations with experiment and quantum chemistry.

    Science.gov (United States)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip; Nezbeda, Ivo; Chialvo, Ariel A

    2015-01-22

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  15. Influence of alkali metal superoxides on structure, electronic, and optical properties of Be12O12 nanocage: Density functional theory study

    Science.gov (United States)

    Raoof Toosi, Ali; Shamlouei, Hamid Reza; Hesari, Asghar Mohammadi

    2016-09-01

    The effect of alkali metal superoxides M3O (M = Li, Na, K) on the electronic and optical properties of a Be12O12 nanocage was studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The energy gaps (Eg) of all configurations were calculated. Generally, the adsorption of alkali metal superoxides on the Be12O12 nanocage causes a decrease of Eg. Electric dipole moment μ, polarizability α, and static first hyperpolarizability β were calculated and it was shown that the adsorption of alkali metal superoxides on Be12O12 increases its polarizability. It was found that the absorption of M3O on Be12O12 nanocluster improves its nonlinear optical properties. The highest first hyperpolarizability (β ≈ 214000 a.u.) is obtained in the K3O-Be12O12 nanocluster. The TD-DFT calculations were performed to investigate the origin of the first hyperpolarizabilities and it was shown that a higher first hyperpolarizability belongs to the structure that has a lower transition energy.

  16. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  17. Partial alkali-metal ion extraction from K0.8(Li0.27Ti1.73)O4 using PTFE as an extraction reagent.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2014-10-21

    The alkali-metal ion extraction ability of an inert material, polytetrafluoroethylene (PTFE; empirical formula CF2), was clarified by characterizing a partially alkali-metal ion-extracted layered compound, K0.8(Li0.27Ti1.73)O4. Washing K0.8(Li0.27Ti1.73)O4 in water extracts only 44% of the interlayer K(+) and no intralayer Li(+); on the other hand, 53% of the interlayer K(+) and approximately 10% of the intralayer Li(+) ions were extracted from K0.8(Li0.27Ti1.73)O4 by the reaction with PTFE at 350 °C under flowing Ar. A systematic decrease in the lattice parameters a and c along the intralayer directions and an increase in b along the interlayer direction were observed, consistent with the alkali-metal ion deintercalation amount as a function of the reaction temperatures and the reacted PTFE amounts. After the reaction with K0.8(Li0.27Ti1.73)O4 : CF2 = 1 : 0.6 in mol, the lattice parameter b increased to 1.5607(3) nm from 1.5522(2) of the pristine K0.8(Li0.27Ti1.73)O4, and this change in the lattice parameter was approximately one order of magnitude larger than those in a and c.

  18. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  19. 异核碱金属原子间的三体相互作用系数%Three-body dispersion coefficients for heteronuclear alkali-metal atoms

    Institute of Scientific and Technical Information of China (English)

    谢柏东; 黄时中

    2013-01-01

    By utilizing the model potential for alkali-metal atoms and the variationally stable method, the three-body dispersion coefficients for heteronuclear interactions of the alkali-metal atoms are calculated for the first time. In order to illustrate the reliability of the calculated results, the multipolar polarizabil-ities of the alkali-metal atoms are also calculated and compared with those of the previous calculations and experimental data. The results show that the present three-body dispersion coefficients are reliable.%利用碱金属原子的模型势和稳定变分法,首次计算了异核碱金属原子间的三体相互作用系数.为了说明计算结果的精度,同时计算了碱金属原子的电多级极化率.与其他作者的理论数据和有关实验数据的比较表明,本文所得到的异核碱金属原子间的三体相互作用系数是可靠的.

  20. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  1. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION

    Institute of Scientific and Technical Information of China (English)

    张建; 唐先华; 张文

    2014-01-01

    This article is concerned with the nonlinear Dirac equations Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  2. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  3. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  4. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  5. Asymptotic behavior of subradiant states in homonuclear diatomic molecules

    CERN Document Server

    McGuyer, Bart H; Iwata, Geoffrey Z; Tarallo, Marco G; Skomorowski, Wojciech; Moszynski, Robert; Zelevinsky, Tanya

    2014-01-01

    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in the formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Transition mechanisms that are strictly forbidden for atoms become allowed just below the dissociation asymptote due to new selection rules associated with the subradiant states. Here we directly probe deeply subradiant states in ultracold diatomic strontium molecules and characterize their properties near the intercombination atomic asymptote via optical spectroscopy of doubly-forbidden transitions with intrinsic quality factors exceeding 10^(13). This precision measurement of subradiance is made possible by tightly trapping the molecules in a state-insensitive optical lattice and ach...

  6. Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations.

    Science.gov (United States)

    Gatti, Carlo; Ottonello, Giulio; Richet, Pascal

    2012-08-23

    The stabilizing effect of alkali and alkaline-earth metal ions on the oxygen donors of four- and six-membered faujausite-like rings has been calculated in terms of Kohn-Sham core-level (O1s) energy shifts with respect to these same complexes without cations. The results confirm and complement earlier investigations by Vayssilov and co-workers where Na(+) and K(+) were the only complexing cations. The oxygen donor centers in six-membered rings are stabilized by -3.6 ± 0.4, -3.9 ± 0.5, -7.3 ± 0.1, and -7.6 ± 0.2 eV by K(+), Na(+), Ca(2+), and Mg(2+) adions, respectively. The energy shifts are even greater for four-membered rings where the stabilization effects attain -3.7 ± 0.1, -4.1 ± 0.1, -8.1 ± 0.1, and -9.0 ± 0.1 eV, respectively. These effects are also observed on the low-lying σ-bonding and antibonding molecular orbitals (MOs) of the oxygen framework, but in a less systematic fashion. Clear relationships with the core-level shifts are found when the effects of alkali metal complexation are evaluated through electron localization/delocalization indices, which are defined in terms of the whole wave function and not just of the individual orbitals. Complexation with cations not only involves a small but significant electron sharing of the cation with the oxygen atoms in the ring but also enhances electron exchange among oxygen atoms while reducing that between the O atoms and the Si or Al atoms bonded to them. Such changes slightly increase from Na to K and from Mg to Ca, whereas they are significantly enhanced for alkaline-earth metals relative to alkali metals. With respect to Al-free complexes, Si/Al substitution and cation charge compensation generally enhance electron delocalization among the O atoms, except between those that are linked through an Al atom, and cause either an increased or a decreased Si-O ionicity (smaller/higher electron exchange) depending on the position of O in the chain relative to the Al atom(s). The generally increased

  7. Comparison of dissociation mechanism between collisionally activated dissociation and charge inversion using alkali metal targets for chlorophenol isomers

    Science.gov (United States)

    Hayakawa, Shigeo; Kawamura, Yoshiaki; Takahashi, Yutaka

    2005-11-01

    Chlorinated aromatic compounds are well-known environmental pollutants whose toxicities depend dramatically on the chlorine substitution pattern, making differentiation of chlorophenol isomers important for environmental analysis. Collisionally activated dissociation (CAD) spectra and charge inversion spectra of ortho-, meta-, and para-chlorophenols (ClC6H4OH) and their partially deuterated forms (ClC6H4OD) were measured using alkali metal targets. The peaks associated with C6H4O+ and C5H5Cl+ ions observed in the CAD spectra result from the loss of HCl and CO fragments, respectively, after the re-arrangement of the hydroxyl hydrogen atom. The peaks associated with C6H4OH- and ClC6H4O- ions observed in the charge inversion spectra result from Cl loss and from hydroxyl bond dissociation, respectively. Isomeric differentiation is possible based on the clear differences observed in the relative intensities of these pairs of peaks. Although the intensities of the peaks associated with C6H4O+ relative to those of C5H5Cl+ in the CAD spectra are independent of the target species, the intensities of the peaks associated with C6H4OH- relative to those of ClC6H4O- in the charge inversion spectra are target dependent. The isomeric dependence of the positive ion distribution patterns in the CAD spectra is proposed to be due to the differences in the rate of the hydrogen atom re-arrangement process. In contrast, the isomeric dependence of the negative ion distribution patterns in the charge inversion spectra is attributed to differences in the bond strength involved in the direct dissociation process in the neutral intermediate species.

  8. Quench of a symmetry-broken ground state

    Science.gov (United States)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  9. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    Science.gov (United States)

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  10. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  11. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  12. Analysis of ground state in random bipartite matching

    CERN Document Server

    Shi, Gui-Yuan; Liao, Hao; Zhang, Yi-Cheng

    2015-01-01

    In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some intrinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.

  13. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Directory of Open Access Journals (Sweden)

    S. Torquato

    2015-05-01

    Full Text Available It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded long-ranged pair potentials (similar to Friedel oscillations have classical ground states that are (counterintuitively disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space R^{d} is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility that apply to any ground-state ensemble as a function of ρ in any d, and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g_{2}(r and structure factor S(k must obey for any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit by exploiting an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g_{2}(r and S(k are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive

  14. Ground states of the SU(N) Heisenberg model.

    Science.gov (United States)

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  15. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  16. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Science.gov (United States)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  17. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  18. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Y., E-mail: baba.yuji@jaea.go.jp; Shimoyama, I.; Hirao, N.

    2016-10-30

    Highlights: • Total-reflection XPS for Na, Rb, and Cs on micaceous oxide were measured. • Detection limit of 100 pg cm{sup −2} was achieved in Cs, corresponding to 200 Bq of {sup 137}Cs (t{sub 1/2} = 30.2 y). • Cs sorbed in micaceous oxides is found ionically bonded with oxygen atoms. - Abstract: In order to determine the chemical states of radioactive cesium ({sup 137}Cs or {sup 134}Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm{sup −2} can be detected by TR-XPS. This amount corresponds to about 200 Bq of {sup 137}Cs (t{sub 1/2} = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  19. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  20. Crystal Structure and Topological Aspects of the High-Temperature Phases of the Alkali-metal Oxalates M-2 C2O4(M= K,Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Dinnebier,R.; Vensky, S.; Jensen, M.; Hanson, J.

    2005-01-01

    The high-temperature phases of the alkali-metal oxalates M{sub 2}[C{sub 2}O{sub 4}] (M=K, Rb, Cs), and their decomposition products M{sub 2}[CO{sub 3}] (M=K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *{alpha}-K{sub 2}[C{sub 2}O{sub 4}], *{alpha}-Rb{sub 2}[C{sub 2}O{sub 4}], *{alpha}-Cs{sub 2}[C{sub 2}O{sub 4}], {alpha}-K{sub 2}[CO{sub 3}], *{alpha}-Rb{sub 2}[CO{sub 3}], and *{alpha}-Cs{sub 2}[CO{sub 3}] in space group P6{sub 3}/mmc; *{beta}-Rb{sub 2}[C{sub 2}O{sub 4}], *{beta}-Cs{sub 2}[C{sub 2}O{sub 4}], *{beta}-Rb{sub 2}[CO{sub 3}], and *{beta}-Cs{sub 2}[CO{sub 3}] in Pnma; {gamma}-Rb{sub 2}[C{sub 2}O{sub 4}], {gamma}-Cs[C{sub 2}O{sub 4}], {gamma}-Rb{sub 2}[CO{sub 3}], and {gamma}-Cs{sub 2}[CO{sub 3}] in P2{sub 1}/c; and {delta}-K{sub 2}[C{sub 2}O{sub 4}] and {delta}-Rb{sub 2}[C{sub 2}O{sub 4}] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB{sub 2} family, and adopt either the AlB{sub 2} or the Ni{sub 2}In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M{sub 2}[CO{sub 3}] (M=K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed.

  1. Distance Measurements between Homonuclear Spins in Rotating Solids

    Science.gov (United States)

    Weintraub, O.; Vega, S.; Hoelger, C.; Limbach, H. H.

    The effective Hamiltonian of the "simple excitation for the dephasing of the rotational-echo amplitudes" (SEDRA) experiment has been derived. This experiment enables the determination of the strength of the dipolar interaction of a homonuclear spin pair in a solid, rotating at the magic angle, and thus provides a way to measure internuclear distances. The dipolar decay of the rotational-echo amplitudes of powder samples, generated by a set of π pulses, is measured together with the echo decay that is not influenced by the dipolar interaction. The latter is measured by the transverse-echo SEDRA experiment that refocuses the SEDRA decay. The Floquet theory approach is utilized to evaluate the effective Hamiltonians that describe the behavior of the spin systems. The influence of the chemical-shift anisotropy parameters of the interacting spins on the effective SEDRA Hamiltonian is also discussed. Results of Δ S/ S0 SEDRA experiments on the 15N spin pair in solid 3(5)-methyl-5(3) -phenylpyrazole- 15N 2 are shown and compared with exact calculations. The data suggest a nuclear distance between the nitrogen atoms of 1.385 ± 0.025 Å.

  2. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    CERN Document Server

    Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...

  3. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    Science.gov (United States)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0 application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  4. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  5. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality of...

  6. Borromean ground state of fermions in two dimensions

    DEFF Research Database (Denmark)

    G. Volosniev, A.; V. Fedorov, D.; S. Jensen, A.;

    2014-01-01

    -body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states...

  7. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  8. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  9. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  10. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  11. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.;

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...

  12. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  13. Intensity-modulated polarizabilities and magic trapping of alkali-metal and divalent atoms in infrared optical lattices

    Science.gov (United States)

    Topcu, Turker; Derevianko, Andrei

    2014-05-01

    Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.

  14. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  15. Novel Alkali-Metal Coordination in Phenoxides: Powder Diffraction Results on C(6)H(5)OM (M = Li, Na, K, Rb, Cs).

    Science.gov (United States)

    Dinnebier, R. E.; Pink, Maren; Sieler, J.; Stephens, P. W.

    1997-07-30

    We report the ab initio structure solutions of C(6)H(5)OM (M = K, Rb, Cs) by high-resolution powder X-ray diffraction. The compounds, which are of interest for reactions of the Kolbe-Schmitt type, are isostructural. The crystal structures are orthorhombic, space group Pna2(1), Z = 12, with lattice parameters (a, b, c in Å) 14.1003(1), 17.9121(1), and 7.16475(1) for the K compound, 14.4166(2), 18.2028(2), and 7.4009(1) for the Rb compound, and 14.8448(2), 18.5070(2), and 7.6306(1) for the Cs compound. They have a chain structure [M([6])] along the crystallographic c axis. This is a very unusual arrangement in which two different alkali-metal coordination spheres are observed: a distorted octahedron and a 3-fold oxygen coordination. In the latter, the 3-fold-coordinated unsaturated alkali metals additionally show weak interactions with phenyl rings. We also give powder patterns for the compounds with M = Li, Na. The former crystallizes in the monoclinic space group P2(1)/a with lattice parameters a = 22.594 Å, b = 4.7459 Å, c= 10.053 Å, and beta = 97.82 degrees with Z = 8, but no structure solution was possible. The powder pattern for the Na phenolate is in agreement with the earlier single-crystal structure.

  16. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  17. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  18. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  19. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  20. Borromean ground state of fermions in two dimensions

    Science.gov (United States)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2014-09-01

    The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body Borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of Borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a Borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the Borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.

  1. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  2. Cluster expansion for ground states of local Hamiltonians

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  3. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  4. Non-uniform ground state for the Bose gas

    OpenAIRE

    2000-01-01

    We study the ground state, sum a_X |X>, of N hard-core bosons on a finite lattice in configuration space, X={x_1,...,x_N}. All a_X being positive, the ratios a_X / sum a_Y can be interpreted as probabilities P_a (X). Let E denote the energy of the ground state and B_X the number of nearest-neighbor particle-hole pairs in the configuration X. We prove the concentration of P_a to X's with B_X in a sqrt(|E|)-neighborhood of |E|, show that the average of a_X over configurations with B_X=n increas...

  5. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  6. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  7. EIT ground-state cooling of long ion strings

    CERN Document Server

    Lechner, R; Hempel, C; Jurcevic, P; Lanyon, B P; Monz, T; Brownnutt, M; Blatt, R; Roos, C F

    2016-01-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  8. Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.

  9. Cluster expansion for ground states of local Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)

    2016-08-15

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  10. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  11. Terahertz spectroscopy of ground state HD18O

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  12. Three Alkali-Metal-Gold-Gallium Systems. Ternary Tunnel Structures and Some Problems with Poorly Ordered Cations

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.

    2012-06-27

    Six new intermetallic compounds have been characterized in the alkali metal (A = Na, Rb, Cs)–gold–gallium systems. Three isostructural compounds with the general composition A0.55Au2Ga2, two others of AAu3Ga2 (A = Rb, Cs), and the related Na13Au41.2Ga30.3 were synthesized via typical high-temperature reactions and their crystal structures determined by single-crystal X-ray diffraction analysis: Na0.56(9)Au2Ga2 (I, I4/mcm, a = 8.718(1) Å, c = 4.857(1) Å, Z = 4), Rb0.56(1)Au2Ga2 (II, I4/mcm, a = 8.950(1) Å, c = 4.829(1) Å, Z = 4), Cs0.54(2)Au2Ga2 (III, I4/mcm, a = 9.077(1) Å, c = 4.815(1) Å, Z = 4), RbAu3Ga2 (IV, Pnma, a = 13.384(3) Å, b = 5.577(1) Å, c = 7.017(1) Å, Z = 4), CsAu3Ga2 (V, Pnma, a = 13.511(3) Å, b = 5.614(2) Å, c = 7.146(1) Å, Z = 4), Na13Au41.2(1)Ga30.3(1) (VI, P6 mmm, a = 19.550(3) Å, c = 8.990(2) Å, Z = 2). The first three compounds (I–III) are isostructural with tetragonal K0.55Au2Ga2 and likewise contain planar eight-member Au/Ga rings that stack along c to generate tunnels and that contain varying degrees of disordered Na–Cs cations. The cation dispositions are much more clearly and reasonably defined by electron density mapping than through least-squares refinements with conventional anisotropic ellipsoids. Orthorhombic AAu3Ga2 (IV, V) are ordered ternary Rb and Cs derivatives of the SrZn5 type structure, demonstrating structural variability within the AAu3Ga2 family. All attempts to prepare an isotypic “NaAu3Ga2” were not successful, but yielded only a similar composition Na13Au41.2Ga30.3 (NaAu3.17Ga2.33) (VI) in a very different structure with two types of cation sites. Crystal orbital Hamilton population (COHP) analysis obtained from tight-binding electronic structure calculations for idealized I–IV via linear muffin-tin-orbital (LMTO) methods emphasized the major contributions of heteroatomic Au–Ga bonding to the structural stability of these compounds. The relative minima (pseudogaps) in the DOS curves for IV

  13. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  14. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  15. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  16. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  17. Reduced M(atrix) theory models: ground state solutions

    CERN Document Server

    López, J L

    2015-01-01

    We propose a method to find exact ground state solutions to reduced models of the SU($N$) invariant matrix model arising from the quantization of the 11-dimensional supermembrane action in the light-cone gauge. We illustrate the method by applying it to lower dimensional toy models and for the SU(2) group. This approach could, in principle, be used to find ground state solutions to the complete 9-dimensional model and for any SU($N$) group. The Hamiltonian, the supercharges and the constraints related to the SU($2$) symmetry are built from operators that generate a multicomponent spinorial wave function. The procedure is based on representing the fermionic degrees of freedom by means of Dirac-like gamma matrices, as was already done in the first proposal of supersymmetric (SUSY) quantum cosmology. We exhibit a relation between these finite $N$ matrix theory ground state solutions and SUSY quantum cosmology wave functions giving a possible physical significance of the theory even for finite $N$.

  18. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  19. Mixed configuration ground state in iron(II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-23

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  20. Alternative ground states enable pathway switching in biological electron transfer

    Science.gov (United States)

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  1. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  2. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  3. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  4. Atomic arrangement and electron band structure of Si(1 1 1)-ß-\\sqrt{3}\\times \\sqrt{3} -Bi reconstruction modified by alkali-metal adsorption: ab initio study

    Science.gov (United States)

    Eremeev, S. V.; Chukurov, E. N.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the {{T}4} sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  5. Atomic arrangement and electron band structure of Si(1 1 1)-ß-√3 x √3-Bi reconstruction modified by alkali-metal adsorption: ab initio study.

    Science.gov (United States)

    Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A

    2015-08-05

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  6. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  7. Alkali metal non-stoichiometric effects in (K{sub 0.5}Na{sub 0.5})NbO{sub 3} based piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. C.; Yeo, H. G.; Cho, J. H.; Sung, Y. S.; Kim, M. H.; Song, T. K.; Kim, S. S. [Changwon National University, Changwon (Korea, Republic of); Choi, B. C. [Pukyung National University, Busan (Korea, Republic of); Choi, K. S. [Sunchon National University, Sunchon, Chonnam (Korea, Republic of)

    2010-01-15

    Alkali-metal-excess lead-free 0.93(K{sub 0.5}Na{sub 0.5}){sub (1+x)}NbO{sub 3}-0.07LiNbO{sub 3} (KNNL) piezoelectric ceramics were prepared by using a solid state reaction. The contents of both K and Na were simultaneously controlled to 4 mol% excess. From X-ray diffraction and temperature-dependent dielectric constant measurements, a polymorphic phase transition (PPT) between the tetragonal and orthorhombic phases was observed by changing the stoichiometry of x. With increasing (K+Na) content, the PPT temperature increased, but the Curie temperature decreased. The highest piezoelectric constant was 189 pC/N for x = 0.01, where the PPT temperature was around room temperature.

  8. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  9. Complete Series of Alkali-Metal M(BH3NH2BH2NH2BH3) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents.

    Science.gov (United States)

    Owarzany, Rafał; Fijalkowski, Karol J; Jaroń, Tomasz; Leszczyński, Piotr J; Dobrzycki, Łukasz; Cyrański, Michał K; Grochala, Wojciech

    2016-01-04

    We report a new efficient way of synthesizing high-purity hydrogen-rich M(BH3NH2BH2NH2BH3) salts (M = Li, Na, K, Rb, Cs). The solvent-mediated metathetic synthesis applied here uses precursors containing bulky organic cations and weakly coordinating anions. The applicability of this method permits the entire series of alkali-metal M(BH3NH2BH2NH2BH3) salts (M = Li, Na, K, Rb, Cs) to be obtained, thus enabling their comparative analysis in terms of crystal structures and hydrogen-storage properties. A novel polymorphic form of Verkade's base (C18H39N4PH)(BH3NH2BH2NH2BH3) precursor was also characterized structurally. For all compounds, we present a comprehensive structural, spectroscopic, and thermogravimetric characterization (PXRD, NMR, FTIR, Raman, and TGA/DSC/MS).

  10. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    Science.gov (United States)

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported.

  11. Ground State Correlations and the Multiconfiguration Mixing Method

    CERN Document Server

    Pillet, N; Van Giai, N; Berger, J F; Giai, Nguyen Van

    2004-01-01

    We study the convergence properties of a truncation scheme in describing the ground state properties of a many-particle system of fermions. The model wave function is built within a multiconfiguration mixing approach where the many-body wave function is described as a superposition of multiparticle-multihole configurations constructed upon a Slater determinant. The convergence properties of physical quantities such as correlation energies and single-particle occupation probabilities in terms of the increasing number of particle-hole configurations are investigated for the case of an exactly solvable pairing hamiltonian.

  12. Ground-state spin of {sup 59}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Koester, U.; Aeystoe, J. [CERN, Geneva (Switzerland). EP Div.; Fedoseyev, V.; Mishin, V. [Rossijskaya Akademiya Nauk, Troitsk (Russian Federation). Inst. Spektroskopii; Huikari, J.; Jokinen, A.; Nieminen, A.; Peraejaervi, K. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Knipper, A.; Walter, G. [Institute de Recherches Subatomiques, 67 - Strasbourg (France)

    2001-02-01

    Beta-decay of {sup 59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured {beta}-decay rates the ground-state spin and parity are proposed to be J{sup {pi}} = 5/2{sup -}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line. (orig.)

  13. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  14. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M

    2012-01-01

    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  15. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  16. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  17. Fate of the Superconducting Ground State on the Moyal Plane

    CERN Document Server

    Basu, Prasad; Vaidya, Sachindeo

    2009-01-01

    It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is {\\it smaller} compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt.

  18. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    Science.gov (United States)

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  19. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  20. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  1. Uniqueness of ground states of some coupled nonlinear Schrodinger systems and their application

    OpenAIRE

    MA,LI; Lin ZHAO

    2007-01-01

    We establish the uniqueness of ground states of some coupled nonlinear Schrodinger systems in the whole space. We firstly use Schwartz symmetrization to obtain the existence of ground states for a more general case. To prove the uniqueness of ground states, we use the radial symmetry of the ground states to transform the systems into an ordinary differential system, and then we use the integral forms of the system. More interestingly, as an application of our uniqueness results, we derive a s...

  2. Various disordered ground states and 1/3 magnetization-plateau-like behavior in the S =1/2 Ti3 + kagome lattice antiferromagnets Rb2NaTi3F12 , Cs2NaTi3F12 , and Cs2KTi3F12

    Science.gov (United States)

    Goto, Masato; Ueda, Hiroaki; Michioka, Chishiro; Matsuo, Akira; Kindo, Koichi; Yoshimura, Kazuyoshi

    2016-09-01

    We have investigated the crystal structure and magnetic properties of three kagome lattice antiferromagnets, Rb2Na Ti3F12 , Cs2Na Ti3F12 , and Cs2K Ti3F12 , using single crystals. These compounds represent a S =1 /2 kagome system consisting of magnetic Ti3 + ions, which is expected to have negligibly small Dzyaloshinsky-Moriya interaction. The structural analyses revealed that each of the three compounds has a slightly distorted kagome lattice. The distortion of the kagome lattice becomes small as the ionic radii of constituent alkali metals increase. All three compounds have nearly the same Weiss temperature of -45 K, and the ground states are disordered and strongly depend on the distortion. The ground states of Rb2Na Ti3F12 , Cs2Na Ti3F12 , and Cs2K Ti3F12 are found to be a two-component state including approximately 1/3 nearly free spins, a gapless disordered state, and a gapped disordered state, respectively. Our experimental results suggest that the ground state of the ideal S =1 /2 Heisenberg kagome lattice antiferromagnet is gapped. In addition, the magnetization curves of Cs2Na Ti3F12 and Cs2K Ti3F12 show anomalies at approximately 1/3 of the full magnetic moment of Ti3 +, which are a notable observation of signs of the theoretically proposed 1/3 magnetization plateau in S =1 /2 kagome antiferromagnets.

  3. Ground state for CH2 and symmetry for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Wen-Lang; Ruan Wen; Jiang Gang; Zhu Zheng-He

    2008-01-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, I.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) I.e. CH4→CH2+H2, is forbidden and the decomposition type (2) I.e. CH4→CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  4. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  5. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  6. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    Science.gov (United States)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  7. Spatial competition of the ground states in 1111 iron pnictides

    Science.gov (United States)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  8. On the nature of the oligoacene ground state

    Science.gov (United States)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  9. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  10. Third-order perturbation theory for van der Waals interaction coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Tang Liyan; Shi Tingyun [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Yan Zongchao [Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia)

    2011-11-15

    The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C{sub 9}/R{sup 9} interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C{sub 9} coefficient are given for the homonuclear alkali-metal dimers. The size of the C{sub 9}:C{sub 3} dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C{sub 11} and C{sub 13} coefficients between two helium atoms and lithium atoms in their ground states are also given.

  11. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Leon, H., E-mail: hleon@imre.oc.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, Zapata e/ Mazon y G. Vedado, 10400 La Habana (Cuba)

    2013-02-15

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112{sup Macron }] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: Black-Right-Pointing-Pointer Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. Black-Right-Pointing-Pointer Numerical results are presented for distorted fcc [001] structures. Black-Right-Pointing-Pointer The lowest energy of a system depends on how the tetragonal distortion is achieved. Black-Right-Pointing-Pointer A striped phase with magnetization in the [112{sup Macron }] direction is the

  12. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  13. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  14. Ground-state rotational constants of 12CH 3D

    Science.gov (United States)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  15. LABS problem and ground state spin glasses system

    Science.gov (United States)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  16. Ground state structures and properties of small hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    R Prasad

    2003-01-01

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon atoms. We find that in the case of a compact and closed silicon cluster hydrogen bonds to the silicon cluster from outside. To understand the structural evolutions and properties of silicon cluster due to hydrogenation, we have studied the cohesive energy and first excited electronic level gap of clusters as a function of hydrogenation. We find that first excited electronic level gap of Si and SiH fluctuates as function of size and this may provide a first principle basis for the short-range potential fluctuations in hydrogenated amorphous silicon. The stability of hydrogenated silicon clusters is also discussed.

  17. Ground-state correlations within a nonperturbative approach

    Science.gov (United States)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  18. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  19. Eigenvectors in the superintegrable model II: ground-state sector

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yang, Helen; Perk, Jacques H H [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)], E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu

    2009-09-18

    In 1993, Baxter gave 2{sup m{sub Q}} eigenvalues of the transfer matrix of the N-state superintegrable chiral Potts model with the spin-translation quantum number Q, where m{sub Q} = lfloor(NL - L - Q)/Nrfloor. In our previous paper we studied the Q = 0 ground-state sector, when the size L of the transfer matrix is chosen to be a multiple of N. It was shown that the corresponding {tau}{sub 2} matrix has a degenerate eigenspace generated by the generators of r = m{sub 0} simple sl{sub 2} algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators E{sup {+-}}{sub m} and H{sub m} for m = 1, ..., r. Moreover, the corresponding 2{sup r} eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of H{sub m}.

  20. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  1. Theoretical study on thermal decomposition of azoisobutyronitrile in ground state

    Institute of Scientific and Technical Information of China (English)

    SUN Chengke; ZHAO Hongmei; LI Zonghe

    2004-01-01

    The thermal decomposition mechanisms of azoisobutyronitrile (AIBN) in the ground state have been investigated systematically. Based on the potential energy surfaces (PES) of various possible dissociation paths obtained using the semiempirical AM1 method with partial optimization, the density function theory B3LYP/6-311G* method was employed to optimize the geometric parameters of the reactants, the intermediates, the products and the transition states,which were further confirmed by the vibrational analysis. The obtained results show that the reaction process of the two-bond (three-body) simultaneous cleavage Me2(CN)C-N=Nleading to the reaction proceeding in the former pathway. The calculation results were consistent with all the experimental facts.

  2. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  3. 基于光谱吸收法的碱金属原子配比检测方法研究%Measurement of Mole Ratio for Alkali Metal Mixture by Using Spectral Absorption Method

    Institute of Scientific and Technical Information of China (English)

    邹升; 张红; 陈瑶; 陈熙源

    2015-01-01

    The ratio of alkali metal mixture is one of the most important parameters in gauge head belonging to the ultra‐sensitiv‐ity inertial measurement equipment ,which is required to detect precisely .According to the feature that ratio of alkali metal is re‐lated to alkali metal vapor density ,the theory of optical depth is used to detect the ratio of alkali metal in the present article .The result shows that the data got by the theory of optical depth compared with empirical formula differs at three orders of magni‐tude ,which can’t ensure the accuracy .By changing the data processing method ,model between spectral absorption rate and temperature in cell is established .The temperature in alkali metal cell is calibrated by spectral absorption rate .The ratio of alkali metal atoms in the cell is analyzed by calculating the alkali density with empirical formula .The computational error is less than 10% .%碱金属混合物原子配比是超高灵敏惯性测量装置表头的重要参数,需精确测量。针对碱金属配比与碱金属蒸汽密度相关的特点,提出运用光深理论检测碱金属配比。结果表明:受多种因素影响,光深理论得到的碱金属蒸汽密度与饱和蒸汽压经验公式计算的结果相差3个数量级,无法保证碱金属配比的测量精度;改变数据处理方法,建立光谱吸收率与气室内部温度的映射模型,运用光谱吸收率标定碱金属气室内部温度,通过碱金属饱和蒸汽压经验公式计算气室内部碱金属原子的配比,多组数据分析表明:检测误差在10%以内。

  4. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  5. Perfect Echo HMQC: Sensitivity and Resolution Enhancement by Broadband Homonuclear Decoupling

    CERN Document Server

    Baishya, Bikash; Dey, Krishna Kishor

    2013-01-01

    Homonuclear 1H-1H J-modulation leads to J-multiplets in F1 dimension of 2D 1H-13C HMQC spectra. This hampers unambiguous signal assignment for overcrowded 13C spectra. Broadband homonuclear decoupling has been achieved in the indirect t1 evolution period by incorporating blocks of perfect echo. This method enhances resolution and sensitivity of 2D 1H-13C HMQC spectra. The results on Cyclosporine demonstrate that the method is very efficient for -13CH2 groups, though partial sensitivity and resolution enhancements have also been observed for -13CH and -13CH3 groups. Interpretation of the result based on product operator formalism is also given.

  6. Selective measurements of long-range homonuclear J-couplings in solid-state NMR.

    Science.gov (United States)

    Thureau, Pierre; Mollica, Giulia; Ziarelli, Fabio; Viel, Stéphane

    2013-06-01

    We demonstrate here that the principle of frequency-selective spin-echoes can be extended to the measurements of long-range homonuclear scalar J-couplings in the solid-state. Singly or doubly frequency-selective pulses were used to generate either a J-modulated experiment (S) or a reference experiment (S0). The combination of these two distinct experiments provides experimental data that, in favorable cases, are insensitive to incoherent relaxation effects, and which can be used to estimate long-range homonuclear J-couplings in multiple spin-systems. The concept is illustrated in the case of a uniformly (13)C and (15)N labeled sample of L-histidine, where the absolute value of homonuclear J-couplings between two spins separated by one, two or three covalent bonds are measured. Moreover, we show that a (2)J((15)N-C-(15)N) coupling as small as 0.9 Hz can be precisely measured with the method presented here.

  7. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations

    Science.gov (United States)

    Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

  8. The Research Progress of Determination Method for Impurities in High Purity Alkali Metal Salt%高纯碱金属盐中杂质测定方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓辉

    2011-01-01

    高纯碱金属盐的纯度对其应用有很大影响,痕量杂质元素含量的严格控制和准确测定非常重要.本文对高纯碱金属盐中的杂质分析方法(原子吸收光谱法、分光光度法、电感耦合等离子体光谱法、电感耦合等离子体质谱法、离子色谱法等)进行了综述.%The purity of high purity alkali metal salt effects the application a lot. The strictly control and accurate determination of trace impurity is very important. The analysis methods (atomic absorption spectrometry, spectrophotometry, ICP-AES, ICP-MS, ion chromatography) for impurities in high purity alkali metal salt are summarized in this paper.

  9. Ground-state properties of neutron-rich Mg isotopes

    CERN Document Server

    Watanabe, Shin; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2014-01-01

    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by ?ne-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of defor...

  10. Continuous Vibrational Cooling of Ground State Rb2

    Science.gov (United States)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  11. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  13. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and "Paranormal" Reactivity in a Single Tritopic Molecule.

    Science.gov (United States)

    Martínez-Martínez, Antonio J; Fuentes, M Ángeles; Hernán-Gómez, Alberto; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2015-11-16

    Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6-tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N-heterocyclic carbene (NHC) IPr [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Remarkably, magnesiation of IPr occurs at the para-position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr(2-). Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr(-) monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali-metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC.

  14. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  15. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    Science.gov (United States)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  16. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  17. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  18. Exact many-electron ground states on diamond and triangle Hubbard chains

    OpenAIRE

    2008-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fu...

  19. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    Science.gov (United States)

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  20. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

    Directory of Open Access Journals (Sweden)

    Eduardo Mattei

    2013-11-01

    Full Text Available We introduce a Hamiltonian for two interacting su(2 spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight. Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian.

  1. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  2. Revised Iterative Solution of Ground State of Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin

    2005-01-01

    The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.

  3. Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-03-01

    Full Text Available This article concerns the ground state solutions of nonlinear fractional Schrodinger equations involving critical growth. We obtain the existence of ground state solutions when the potential is not a constant and not radial. We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity condition on the nonlinearity.

  4. Ground state correlations and mean field using the exp(S) method

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-01-01

    This document gives a detailed account of the terms used in the computation of the ground state mean field and the ground state correlations. While the general approach to this description is given in a separate paper (nucl-th/9802029) we give here the explicite expressions used.

  5. The study of magnetization of the spin systm in the ground state

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Wang Xi-Kun; Zhao Qiang

    2006-01-01

    Within the framework of the effective-field theory with self-spin correlations and the differential operator technique,the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied.The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.

  6. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  7. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  8. Local reversibility and entanglement structure of many-body ground states

    CERN Document Server

    Kuwahara, Tomotaka; Amico, Luigi; Vedral, Vlatko

    2015-01-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are ...

  9. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.

  10. New Empirical Potential Energy Functions for the Heavier Homonuclear Rare Gas Pairs: {Ne}_2, {Ar}_2, {Kr}_2, and {Xe}_2

    Science.gov (United States)

    Myatt, Philip Thomas; Baker, Matthew T.; Kang, Ju-Hee; Escobar Moya, Andres; McCourt, Frederick R. W.; Le Roy, Robert J.

    2016-06-01

    The many decades of work on determining accurate analytic pair potentials for rare gas dimers from experimental data focussed largely on the use of bulk non-ideal gas and collisional properties, with the use of spectroscopic data being somewhat of an afterthought, for testing the resulting functions. This was a natural result of experimental challenges, as the very weak binding of ground-state rare gas pairs made high resolution spectroscopy a relatively late arrival as a practical tool in this area. However, we believe that it is now time for a comprehensive reassessment. Following up on a preliminary report at this meeting five years ago, this paper describes work to determine a new generation of empirical potential energy functions for the four heavier (i.e., not involving He) homonuclear rare gas pairs from direct fits to all available spectroscopic, pressure virial, and acoustic virial coefficient data, with the resulting functions being `tuned' by comparisons with available thermal transport property data: viscosity, mass diffusion and thermal diffusion, and thermal conductivity data, and tested against the best available ab initio potentials. The resulting functions are everywhere smooth and differentiable to all orders, incorporate the correct (damped) theoretical inverse-power long-range behaviour, and have sensible short-range extrapolation behaviour. R.J. Le Roy, C.J.W. Mackie, P. Chandrasekhar and K.M. Sentjens, ``Accurate New Potential Energy Functions From Spectroscopic and Virial Coefficient Data for the Ten Rare Gas Pairs formed from Ne, Ar, Kr and Xe, paper MF03 at the 66th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 13-17 (2011).

  11. Zeroth order quantum coherences and preparation of pseudopure state in homonuclear dipolar coupling spin systems

    CERN Document Server

    Furman, G B

    2006-01-01

    Dynamics of zeroth order quantum coherences and preparation of the pseudopure states in homonuclear systems of dipolar coupling spins is closely examined. It has been shown an extreme important role of the non-diagonal part of zeroth order coherence in construction of the pseudopure state. Simulations of the preparation process of pseudopure states with the real molecular structures (a rectangular (-chloro- -nitrobenzene molecule), a chain (hydroxyapatite molecule), a ring (benzene molecule), and a double ring (cyclopentane molecule)) open the way to experimental testing of the obtained results.

  12. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  13. Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Curtarolo, Stefano

    2012-02-01

    Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt, and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

  14. Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange

    Science.gov (United States)

    Washburn, Kathryn E.; Cheng, Yuesheng

    2017-05-01

    The mechanism behind surface relaxivity within organic porosity in shales has been an unanswered question. Here, we present results that confirm the existence of intermolecular homonuclear dipolar coupling between solid and liquid phases in sedimentary organic matter. Transverse magnetization exchange measurements were performed on an organic-rich shale saturated with liquid hydrocarbon. Liquid and solid constituents were identified through both sample resaturation and through their T1/T2 ratios. Extensive cross peaks are observed in the T2-T2 exchange spectra between the solid and liquid constituents, indicating an exchange of magnetization between the two phases. This result cannot arise from physical molecular diffusion, and the dissolution energies are too high for chemical exchange, such that the magnetization exchange must arise from intermolecular homonuclear dipolar coupling. These results both confirm a possible source of surface relaxivity in organic matter and emphasize caution in the use of standard porous media interpretations of relaxation results in shales because of coupling between different magnetization environments.

  15. Solid-state Hadamard NMR spectroscopy: simultaneous measurements of multiple selective homonuclear scalar couplings.

    Science.gov (United States)

    Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh

    2015-02-01

    Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining (1)JCC and (3)JCC values in (13)C6l-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids.

  16. Spectra edited by relative signs of homonuclear couplings of low abundance nuclei.

    Science.gov (United States)

    Blechta, Vratislav; Kurfürst, Milan; Schraml, Jan

    2012-02-01

    The proposed homonuclear coupling sign edited (HCSE) experiment can detect signed homonuclear couplings between low abundant nuclei like (13)C, (29)Si and (15)N in linear spin systems, that is, in systems where two nuclei are coupled by the measured coupling, and one of them is coupled by a second coupling to a nucleus of different kind. The third nucleus is usually high abundant hydrogen. Two spectra are measured during the HCSE experiment. Their weighed sum and difference yield two other spectra, one containing peaks coupled only by positive measured couplings and the other having peaks coupled by negative measured couplings. The usual E.COSY-type experiment requires all three couplings in the three spin system (triangular spin system) and not only two couplings as the HCSE experiment. The experiment was successfully tested on known carbon-carbon and silicon-silicon two bond couplings. A set of six simple siloxanes with |(2) J(Si-O-Si)| couplings ranging from 0.5 to 9.0 Hz was measured for the first time, and all the couplings were found to be positive.

  17. A remark on ground state of boundary Izergin-Korepin model

    CERN Document Server

    Kojima, Takeo

    2011-01-01

    We study the ground state of the boundary Izergin-Korepin model. The boundary Izergin-Korepin model is defined by so-called $R$-matrix and $K$-matrix for $U_q(A_2^{(2)})$ which satisfy Yang-Baxter equation and boundary Yang-Baxter equation respectively. The ground state associated with identity $K$-matrix $K(z)=id$ was constructed in earlier study [Yang and Zhang, Nucl.Phys.B596,495-(2001)]. We construct the free field realization of the ground state associated with nontrivial diagonal $K$-matrix.

  18. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  19. Direct production of ultracold rovibronic ground state LiRb molecules through photoassociation and spontaneous decay

    CERN Document Server

    Stevenson, I C; Chen, Y P; Elliott, D S

    2016-01-01

    We report a newly observed photoassociation resonance in $^7$Li-$^{85}$Rb, a mixed $2(1) - 4(1)$ excited state, that spontaneously decays to the rovibronic ground state. This resonance between ultracold Li and Rb is the strongest ground state molecule-forming photoassociation line observed in LiRb, and forms deeply bound $X \\: ^1\\Sigma^+$ molecules in large numbers. The production rate of the $v=0 \\ J=0$ rovibrational ground state is $\\sim 1.5 \\times 10^{4}$ molecules/s.

  20. Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali-metal oxalates M2[C2O4] (M=K, Rb, Cs).

    Science.gov (United States)

    Dinnebier, Robert E; Vensky, Sascha; Jansen, Martin; Hanson, Jonathan C

    2005-02-04

    The high-temperature phases of the alkali-metal oxalates M2[C2O4] (M = K, Rb, Cs), and their decomposition products M2[CO3] (M = K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *alpha-K2[C2O4], *alpha-Rb2[C2O4], *alpha-Cs2[C2O4], alpha-K2[CO3], *alpha-Rb2[CO3], and *alpha-Cs2[CO3] in space group P6(3)/mmc; *beta-Rb2[C2O4], *beta-Cs2[C2O4], *beta-Rb2[CO3], and *beta-Cs2[CO3] in Pnma; gamma-Rb2[C2O4], gamma-Cs[C2O4], gamma-Rb2[CO3], and gamma-Cs2[CO3] in P2(1)/c; and delta-K2[C2O4] and delta-Rb2[C2O4] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB2 family, and adopt either the AlB2 or the Ni2In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M2[CO3] (M = K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed.

  1. Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs complexes with 4-aminophenylarsonic acid

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2017-02-01

    Full Text Available The structures of the alkali metal (K, Rb and Cs complex salts with 4-aminophenylarsonic acid (p-arsanilic acid manifest an isotypic series with the general formula [M2(C6H7AsNO32(H2O3], with M = K {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dipotassium], [K2(C6H7AsNO32(H2O3], (I}, Rb {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Rb2(C6H7AsNO32(H2O3], (II}, and Cs {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Cs2(C6H7AsNO32(H2O3], (III}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water molecule, with the two hydrogen p-arsanilate ligands and the second water molecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I to eight-coordinate in both (II and (III, with overall M—O bond-length ranges of 2.694 (5–3.009 (7 (K, 2.818 (4–3.246 (4 (Rb and 2.961 (9–3.400 (10 Å (Cs. The additional three bonds in (II and (III are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100 are generated through a number of bridging bonds involving the water molecules (including hydrogen-bonding interactions, as well as through the arsanilate O atoms. These layers are linked across [100] through amine N—H...O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures.

  2. Perovskite alkali metal samarium borohydrides

    DEFF Research Database (Denmark)

    Møller, Kasper T; Jørgensen, Mathias; Fogh, Alexander S

    2017-01-01

    A new synthesis method of samarium borohydride, Sm(BH4)2, using tetrahydrofuran borane, THF-BH3, and samarium hydride, SmH2, has been demonstrated and verified. The synthesised Sm(BH4)2 was mechanochemically treated with MBH4, M = K, Rb, Cs. Initially, the formation of KSm(BH4)3 is observed while...... cycles of hydrogen release and uptake, the storage capacity was 1.0 wt% for KSm(BH4)3 and 0.84 wt% for RbSm(BH4)3 and CsSm(BH4)3.......A new synthesis method of samarium borohydride, Sm(BH4)2, using tetrahydrofuran borane, THF-BH3, and samarium hydride, SmH2, has been demonstrated and verified. The synthesised Sm(BH4)2 was mechanochemically treated with MBH4, M = K, Rb, Cs. Initially, the formation of KSm(BH4)3 is observed while...

  3. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Institute of Scientific and Technical Information of China (English)

    YANG Kai-Hua; TIAN Guang-Shan; HAN Ru-Qi

    2003-01-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model.However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models.

  4. Efficient sympathetic motional ground-state cooling of a molecular ion

    CERN Document Server

    Wan, Yong; Wolf, Fabian; Schmidt, Piet O

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.

  5. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  6. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  7. Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems

    CERN Document Server

    Kennedy, Ricardo

    2014-01-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d+1)-dimensional system in symmetry class s+1. This relation gives a new vantage point on topological insulators and superconductors.

  8. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  9. Vacuum polarization screening corrections to the ground state energy of two-electron ions

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1997-01-01

    Vacuum polarization screening corrections to the ground state energy of two-electron ions are calculated in the range $Z=20-100$. The calculations are carried out for a finite nucleus charge distribution.

  10. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  11. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  12. Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.

  13. Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED

    CERN Document Server

    Amour, L

    2010-01-01

    We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.

  14. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  15. Universal Wave Function Overlap and Universal Topological Data from Generic Gapped Ground States

    OpenAIRE

    2014-01-01

    We propose a way -- universal wave function overlap -- to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data should fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological orders in 2+1D, this universal topological data consist of two matrices, $S$ and $T$, which generate a projective representation of $SL(2,\\mathbb Z)$ on the degenerate ground state Hilbert space on ...

  16. Relationship Between the Shape of Suspension Particle and Ground State Structure of Electrorheological Solid

    Institute of Scientific and Technical Information of China (English)

    WU Feng; HE Pei; CHEN Zu-Yao; JIANG Wan-Quan

    2000-01-01

    The effect of the shape of suspension particle in electrorheological (ER) fluid on the ground state structure of ER solid is discussed. The results of computation show that the ground state structure will change with the shape of suspension particle. This phenomenon is a kind of phase transitions that takes the shape factors of suspension particle as tuning parameters. The variation-value of interaction energy of the lattice structure of ER solid with the shape factors of suspension particle is sometimes noticeable.

  17. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  18. Patterns of the ground states in the presence of random interactions: nucleon systems

    CERN Document Server

    Zhao, Y M; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and $\\alpha$ clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of $\\alpha$-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a sec...

  19. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    Science.gov (United States)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  20. Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium

    Science.gov (United States)

    Uhl, Werner

    This review is focused on the synthesis and the reactivity of tetrahedral organoelement clusters of the heavier elements of third main-group aluminium, gallium, and indium, which have been known for about a decade. They possess the elements in an unusually low oxidation state of +1 and have direct element-element interactions between their four constituents. Each cluster atom is further attached to one terminal and in most cases a bulky organic substituent, which prevents disproportionation by steric shielding. The synthesis of these compounds succeeds by different methods such as the reduction of suitable organoelement(III) halides with alkali metals and magnesium or the treatment of element(I) halides with lithium organyls. They are deeply coloured, and their bonding situation may best be described by delocalized molecular orbitals. They show a singular chemical reactivity, which results in the formation of many secondary products possessing unprecedented structures and properties. The synthesis of organoelement subhalides still containing the elements in low oxidation states is discussed in more detail in the second part of this review. These compounds are easily accessible by the careful oxidation of the clusters with halogen donors such as hexachloroethane or with AlX3/X2 mixtures. They produce dimers via halogen bridges, but in certain cases monomers were observed even for the solid state. They are very effective starting compounds for secondary reactions and the generation of new products containing the elements in unusual oxidation states by salt-elimination reactions, for instance.

  1. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. 氢原子能级与碱金属原子能级的比较研究%Comparative Studying of Hydrogen Atomic Energy Level and Alkali Metal Atomic Energy Level

    Institute of Scientific and Technical Information of China (English)

    王建伟; 蒲小芹

    2014-01-01

    The article by Bohr theory and The analysis of forces method, considered the interaction of different sit-uation, hydrogen atoms with alkali metal atomic energy level structure have been analyzed, and the numerical cal-culation, energy level diagram have been drawn out., Hydrogen energy and alkali metal atomic energy level were compared, by using the method of comparative study on the similarities and differences are found out.%运用玻尔理论及受力分析的方法,考虑相互作用的不同情况,分析了氢原子与碱金属原子能级结构,并进行了数值计算,画出了能级结构图。再运用比较研究的方法对氢原子能级与碱金属原子能级进行比较,找出其相同点及不同点。

  3. Mechanism of Effect of Copper and Alkali Metal on Properties of Varistor Ceramics%铜和碱金属影响压敏陶瓷性能的机理

    Institute of Scientific and Technical Information of China (English)

    曹全喜; 籍聪麟; 周晓华; 高锦秀

    2001-01-01

    从对ZnO和SrTiO3的晶体结构参数的计算出发,论述了铜和碱金属原子在这两种晶体中所处的位置。实验结果证实,同一种原子在不同的材料中可以起不同的作用。文章还讨论了这些杂质对压敏陶瓷的压敏电压、电容量、有效相对介电系数影响的机理。%According to the crystal structures of ZnO and SrTiO3,the positions of copper atoms and alkali metal atoms in the ceramic materials are discussed.It is shown as experiment result that the same atoms could have different roles in different crystal structures.The mechanism that copper atoms and alkali metal atoms have effects on breakdown voltage,capacitance and effective relative pemrmittivity of varistor ceramics are researched in the paper.

  4. A multinuclear solid-state NMR study of alkali metal ions in tetraphenylborate salts, M[BPh4] (M = Na, K, Rb and Cs): what is the NMR signature of cation-pi interactions?

    Science.gov (United States)

    Wu, Gang; Terskikh, Victor

    2008-10-16

    We report a multinuclear solid-state ( (23)Na, (39)K, (87)Rb, (133)Cs) NMR study of tetraphenylborate salts, M[BPh 4] (M = Na, K, Rb, Cs). These compounds are isostructural in the solid state with the alkali metal ion surrounded by four phenyl groups resulting in strong cation-pi interactions. From analyses of solid-state NMR spectra obtained under stationary and magic-angle spinning (MAS) conditions at 11.75 and 21.15 T, we have obtained the quadrupole coupling constants, C Q, and the chemical shift tensor parameters for the alkali metal ions in these compounds. We found that the observed quadrupole coupling constant for M (+) in M[BPh 4] is determined by a combination of nuclear quadrupole moment, Sternheimer antishielding factor, and unit cell dimensions. On the basis of a comparison between computed paramagnetic and diamagnetic contributions to the total chemical shielding values for commonly found cation-ligand interactions, we conclude that cation-pi interactions give rise to significantly lower paramagnetic shielding contributions than other cation-ligand interactions. As a result, highly negative chemical shifts are expected to be the NMR signature for cations interacting exclusively with pi systems.

  5. Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Cluster [Au7 Ag8 (C≡C(t) Bu)12 ]().

    Science.gov (United States)

    Wang, Yu; Su, Haifeng; Ren, Liting; Malola, Sami; Lin, Shuichao; Teo, Boon K; Häkkinen, Hannu; Zheng, Nanfeng

    2016-11-21

    The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡C(t) Bu)12 ](+) are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [Mn Ag8-n Au7 (C≡C(t) Bu)12 ](+) clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [Cun Ag8 Au7-n (C≡C(t) Bu)12 ](+) clusters (n=1-6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near-IR region (λmax =818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na(+) ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium-substituted derivatives. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    Science.gov (United States)

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  7. Coherence Transfer in Dipolar-Coupled Homonuclear Spin Systems in Solids Rotating at the Magic Angle

    Science.gov (United States)

    Weintraub, O.; Vega, S.; Hoelger, C.; Limbach, H. H.

    Two routes for the exploitation of the t-SEDRA pulse scheme, which induces coherence transfer in dipolar-coupled homonuclear spin systems in rotating samples, are demonstrated and discussed. This sequence is utilized to deduce intramolecular connectivities by creating an initial coherence of one spin only, applying the t-SEDRA sequence, and monitoring the signal enhancement of the coupled spin. Probing the signal amplitude variations of the two spins and comparing them to simulations can also yield molecular distances. Using 2D spectroscopy, t-SEDRA can also be utilized to establish spin correlations. In this case, the t-SEDRA sequence is applied during the mixing time of a 2D dipolar-correlation experiment. These two approaches are demonstrated by performing 15N CPMAS NMR experiments on a 15N-doubly labeled sample of 3(5)-methyl-5(3)-phenylpyrazole.

  8. Asynchronous symmetry-based sequences for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kong Ooi; Ernst, Matthias, E-mail: madhu@tifr.res.in, E-mail: maer@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Rajeswari, M. [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Madhu, P. K., E-mail: madhu@tifr.res.in, E-mail: maer@ethz.ch [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075 (India)

    2015-02-14

    We show a theoretical framework, based on triple-mode Floquet theory, to analyze recoupling sequences derived from symmetry-based pulse sequences, which have a non-vanishing effective field and are not rotor synchronized. We analyze the properties of one such sequence, a homonuclear double-quantum recoupling sequence derived from the C7{sub 2}{sup 1} sequence. The new asynchronous sequence outperforms the rotor-synchronized version for spin pairs with small dipolar couplings in the presence of large chemical-shift anisotropy. The resonance condition of the new sequence is analyzed using triple-mode Floquet theory. Analytical calculations of second-order effective Hamiltonian are performed to compare the efficiency in suppressing second-order cross terms. Experiments and numerical simulations are shown to corroborate the results of the theoretical analysis.

  9. Photodetachment of a Homo-Nuclear Linear Tetra-Atomic Negative Molecular Ion

    Institute of Scientific and Technical Information of China (English)

    A. Rahman; Iftikhar Ahmad; A. Afaq; H. J. Zhao

    2012-01-01

    The photodetachment of a homo-nuclear linear tetra-atomic negative molecular ion is studied theoretically for an arbitrary laser polarization.An expression for the total cross section is obtained by using an extended version of the two center model,where each center acts as a source of coherent photodetached-electron waves.Strong oscillations on observation plane,placed at a large distance from the ion,are observed.The amplitude of these oscillations is maximum when the laser polarization is parallel to the molecular axis.Furthermore,the amplitude decreases as the angle between the laser polarization and molecular axis increases and consequently vanishes when they are perpendicular to each other.It is also found that if the distance between the adjacent centers is very small or very large,then the ampplitude of oscillations is negligibly small.%The photodetachment of a homo-nuclear linear tetra-atomic negative molecular ion is studied theoretically for an arbitrary laser polarization. An expression for the total cross section is obtained by using an extended version of the two center model, where each center acts as a source of coherent photodetached-electron waves. Strong oscillations on observation plane, placed at a large distance from the ion, are observed. The amplitude of these oscillations is maximum when the laser polarization is parallel to the molecular axis. Furthermore, the amplitude decreases as the angle between the laser polarization and molecular axis increases and consequently vanishes when they are perpendicular to each other. It is also found that if the distance between the adjacent centers is very small or very large, then the amplitude of oscillations is negligibly small.

  10. Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts%碱金属化合物催化同时合成碳酸二甲酯和聚对苯二甲酸乙二醇酯

    Institute of Scientific and Technical Information of China (English)

    张丹; 王庆印; 姚洁; 王越; 曾毅; 王公应

    2007-01-01

    Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carried out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3: 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.

  11. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    Science.gov (United States)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  12. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Thomas K.

    2001-09-10

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication and testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be

  13. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  14. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  15. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  16. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    Science.gov (United States)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  17. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  18. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  19. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    Science.gov (United States)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  20. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  1. Tree based machine learning framework for predicting ground state energies of molecules

    Science.gov (United States)

    Himmetoglu, Burak

    2016-10-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16 242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials informatics.

  2. Precision study of ground state capture in the 14N(p,gamma)15O reaction

    CERN Document Server

    Marta, M; Gyurky, Gy; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Kunz, R; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2008-01-01

    The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

  3. Tree based machine learning framework for predicting ground state energies of molecules

    CERN Document Server

    Himmetoglu, Burak

    2016-01-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16,242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials inform...

  4. First-principles study on saturated adsorption of alkali metal atoms on silicene%硅烯饱和吸附碱金属原子的第一性原理研究∗

    Institute of Scientific and Technical Information of China (English)

    黄艳平; 袁健美; 郭刚; 毛宇亮

    2015-01-01

    基于密度泛函理论的第一性原理计算,研究了硅烯饱和吸附碱金属元素原子的稳定性、微观几何结构和电子性质,并与纯硅烯及其饱和氢化结构进行了对比分析.研究发现复合物SiX (X =Li, Na, K, Rb)的形成能都是负的,相对于纯硅烯来说可以稳定存在. Bader电荷分析表明,电荷从碱金属原子转移至硅原子.从成键方式来看,硅烯与氢原子形成共价键,而与碱金属原子之间形成的键主要是离子性成键,但还存在部分共价关联成分.能带计算表明,锂原子饱和吸附在硅烯形成的复合物SiLi是直接带隙的半导体,带隙大小为0.34 eV.其他碱金属饱和吸附在硅烯上形成的复合物都表现为金属性.%Based on density functional first-principles calculations, we study the stability, micro-geometry, and electronic properties of alkali metal atoms adsorbed on silicene, and perform the comparison between pure and hydrogen-saturated silicenes. We found that all the formation energies of SiX (X = Li, Na, K and Rb) are negative, indicating that the relative structural stability of these new compounds is higher than silicene. Bader charge analysis shows that electric charge is transferred from Si atoms to H atoms in SiH compound, but in SiX the direction of charge transfer is opposite, i.e., the charge is transferred from alkali metal atoms to Si atoms. From the viewpoint of chemical bonding, it can be regarded that valence bond is formed between Si atoms and H atoms, and the bonds between Si and alkali metal atoms are mainly ionic, but there exists covalent contribution. From the band structure calculations, it is also found that the new type compound SiLi is a semiconductor with a direct band gap of 0.34 eV; however, all the other compounds of SiX(X =Na, K and Rb) exhibit metallic property.

  5. Ground-State Transition in a Two-Dimensional Frenkel-Kontorova Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; ZHENG Zhi-Gang

    2011-01-01

    The ground state of a generalized Frenkel-Kontorova model with a transversaJ degree of freedom is studied. When the coupling strength, K, and the frequency of & single-Atom vibration in the transversaJ direction, ωou are increased, the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensionai ground state is θ≠1//q.%The ground state of a generalized Frenkel-Kontorova model with a transversal degree of freedom is studied.When the coupling strength,K,and the frequency of a single-atom vibration in the transversal direction,ωoy,are increased,the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one.This transition can manifest in different ways.Furthermore,we find that the prerequisite of a two-dimensional ground state is θ ≠ 1/q.In recent years,the Frenkel-Kontorova (FK) model has been applied to a variety of physical systems,such as adsorbed monolayers,[1,2] Josephsonjunction arrays,[3-5] tribology[6-8] and charge-density waves.[9,10] Experimental and large-scale simulation data at the nanoscale have become available,and more complicated FK-type models have been investigated using simulations of molecular dynamics.[11

  6. v-representability and density functional theory. [for nonrelativistic electrons in nondegenerate ground state

    Science.gov (United States)

    Kohn, W.

    1983-01-01

    It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

  7. First-principles prediction of a ground state crystal structure of magnesium borohydride.

    Science.gov (United States)

    Ozolins, V; Majzoub, E H; Wolverton, C

    2008-04-04

    Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.

  8. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  9. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  10. Universal crossover from ground-state to excited-state quantum criticality

    Science.gov (United States)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  11. Preparing ground States of quantum many-body systems on a quantum computer.

    Science.gov (United States)

    Poulin, David; Wocjan, Pawel

    2009-04-03

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  12. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  13. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  14. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  15. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  16. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  17. Boundedness and convergence of perturbed corrections for helium-like ions in ground states

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun-Hui; Hai Wen-Hua; Zhao Cheng-Lin; Luo Xiao-Bing

    2008-01-01

    Applying the improved Rayleigh-Schr(o)dinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations,we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity.It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable,and the corresponding perturbation series is convergent.The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.

  18. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  19. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  20. Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang

    2008-01-01

    The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.

  1. Exact spin-cluster ground states in a mixed diamond chain

    Science.gov (United States)

    Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo

    2009-09-01

    The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.

  2. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  3. High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning.

    Science.gov (United States)

    Madhu, P K

    2009-02-01

    High-resolution NMR spectroscopy of (1)H spins in the solid state is normally rendered difficult due to the strong homonuclear (1)H-(1)H dipolar couplings. Even under very high-speed magic-angle spinning (MAS) at ca. 60-70kHz, these couplings are not completely removed. An appropriate radiofrequency pulse scheme is required to average out the homonuclear dipolar interactions in combination with MAS to get high-resolution (1)H NMR spectrum in solid state. Several schemes have been introduced in the recent past with a variety of applications also envisaged. Development of some of these schemes has been made possible with a clear understanding of the underlying spin physics based on bimodal Floquet theory. The utility of these high-resolution pulse schemes in combination with MAS has been demonstrated for spinning speeds of 10-65kHz in a range of (1)H Larmor frequencies from 300 to 800MHz.

  4. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    Energy Technology Data Exchange (ETDEWEB)

    Kulminskaya, Natalia; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear {sup 13}C–{sup 13}C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear {sup 13}C–{sup 13}C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

  5. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V. [Tomsk State University (Russian Federation)

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  6. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    Science.gov (United States)

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  7. 双层石墨烯吸附碱金属原子的第一性原理研究%First-principles study of alkali metal adsorptions on bilayer graphene

    Institute of Scientific and Technical Information of China (English)

    杨绍斌; 李思南; 唐树伟; 沈丁; 孙闻; 董伟

    2016-01-01

    基于密度泛函的第一性原理方法,研究了Li、Na、K和Rb碱金属原子吸附在双层石墨烯( BLG)表面的吸附能、迁移行为、电子性能。研究发现,Li和Na原子在BLG表面吸附易形成团簇,K和Rb原子能够分散吸附。碱金属原子在BLG表面的扩散能垒随原子半径的增加而减小。碱金属原子吸附使电子部分转移至BLG,使体系Fermi能级贯穿导带,表现出金属性。电荷密度差和电荷转移的分析表明,Li、Na、K和Rb与BLG表面以离子键结合。%Using the first-principles method based on the density functional theory, the adsorption energies, migration processes and electronic properties for the Li, Na, K and Rb adsorbed on the bilayer graphene ( BLG) were calculated. The calculated adsorption energies indicate that both Li and Na atoms tend to aggregate into clusters, and the K and Rb atoms can dispersive on the BLG. The energy barriers for alkali-metal atoms migra-tion decrease with the increasing of the atomic radius. The adsorption systems exhibit metallic character since the Fermi level shifts up into the conduction band due to the electrons transfer from adatoms to the BLG. Analysis of the charge density differences and electronic structures of these adsorption systems shows that ionic bond takes place between the alkali-metal atoms ( Li, Na, K and Rb) and the BLG.

  8. Magnetostriction-driven ground-state stabilization in 2H perovskites

    Science.gov (United States)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  9. On the ground state energy of the delta-function Fermi gas

    Science.gov (United States)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  10. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...

  11. Fourier-transform spectroscopy of Sr2 and revised ground-state potential

    Science.gov (United States)

    Stein, A.; Knöckel, H.; Tiemann, E.

    2008-10-01

    Precise potentials for the ground-state XΣg+1 and the minimum region of the excited state 2Σu+1 of Sr2 are derived by high-resolution Fourier-transform spectroscopy of fluorescence progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at 950°C . A change of the rotational assignment by four units compared to an earlier work [G. Gerber , J. Chem. Phys. 81, 1538 (1984)] is needed for a consistent description leading to a significant shift of the potentials toward longer interatomic distances. The huge amount of ground-state data derived for the three different isotopomers Sr288 , Sr86Sr88 , and Sr87Sr88 (almost 60% of all excisting bound rovibrational ground-state levels for the isotopomer Sr288 ) fixes this assignment beyond a doubt. The presented ground-state potential is derived from the observed transitions for the radial region from 4to11Å ( 9cm-1 below the asymptote) and is extended to the long-range region by the use of theoretical dispersion coefficients together with already available photoassociation data. New estimations of the scattering lengths for the complete set of isotopic combinations are derived by mass scaling with the derived potential. The data set for the excited state 2Σu+1 was sufficient to derive a potential energy curve around the minimum.

  12. Theoretical Studies on Thermal Decomposition of Benzoyl Peroxide in Ground State

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-ke; YANG Si-ya; LIN Xue-fei; MA Si-yu; LI Zong-he

    2003-01-01

    Systematic studies of the thermal decomposition mechanism of benzoyl peroxide(BPO) in ground state, leading to various intermediates, products and the potential energy surface(PES) of possible dissociation reactions were made computationally. The structures of the transition states and the activation energies for all the paths causing the formation of the reaction products mentioned above were calculated by the AM1 semi-empirical method. This method is shown to to be one predict correctly the preferred pathway for the title reaction. It has been found that in ground state, the thermal decomposition of benzoyl peroxide has two kinds of paths. The first pathway PhC(O)O-OC(O)Ph→PhC(O)O*→Ph*+CO2 produces finally phenyl radicals and carbon dioxide. And the second pathway PhC(O)OO-C(O)Ph→PhC(O)OO*+PhC(O)*→PhC(O)*+O2→Ph*+CO+O2, via which the reaction takes place only in two steps, produces oxygen and PhC(O)* radicals, and the further thermal dissociation of PhC(O)* is quite difficult because of the high activation energy in ground state. The calculated activation energies and reaction enthalpies are in good agreement with the experimental values. The research results also show that also the thermal dissociation process of the two bonds or the three bonds for the benzoyl peroxide doesn′t take place in ground state.

  13. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  14. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  15. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  16. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  17. The preformation probability inside Alpha-emitters having different ground state spin-parity than daughters

    CERN Document Server

    Seif, W M; Refaie, A I

    2015-01-01

    The ground-state spin and parity of a formed daughter in the radioactive Alpha-emitter is expected to influence the preformation probability of the Alpha and daughter clusters inside it. We investigate the Alpha and daughter preformation probability inside odd-A and doubly-odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground-state to ground-state unfavored decays. This is to extract precise information about the effect of the difference in the ground states spin-parity of the involved nuclei far away any influences from the excitation energy if the decays are coming from isomeric states. The calculations are done for 161 Alpha-emitters, with Z=65-112 and N=84-173, in the framework of the extended cluster model, with WKB penetrability and assault frequency. We used a Hamiltonian energy density scheme based on Skyrme-SLy4 interaction to compute the interaction potential. The Alpha plus cluster preformation probability is extracted from the calculat...

  18. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  19. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  20. Ground-state and Pairing Properties of Pr Isotopes in RMF Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The ground-state and pairing properties of Pr (Z=59) isotopes have been investigated in therelativistic mean-field (RMF). The pairing correlation is studied in Bardeen-Cooper-Schrieffer (BCS) approximation and the pairingforces are taken to be isospin dependent. The ’blocking’ method is adopted to deal with unpaired odd