WorldWideScience

Sample records for ground-state born-oppenheimer potential

  1. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    Science.gov (United States)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  2. Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots.

    Science.gov (United States)

    Mustroph, Heinz

    2016-09-05

    The concept of a potential-energy surface (PES) is central to our understanding of spectroscopy, photochemistry, and chemical kinetics. However, the terminology used in connection with the basic approximations is variously, and somewhat confusingly, represented with such phrases as "adiabatic", "Born-Oppenheimer", or "Born-Oppenheimer adiabatic" approximation. Concerning the closely relevant and important Franck-Condon principle (FCP), the IUPAC definition differentiates between a classical and quantum mechanical formulation. Consequently, in many publications we find terms such as "Franck-Condon (excited) state", or a vertical transition to the "Franck-Condon point" with the "Franck-Condon geometry" that relaxes to the excited-state equilibrium geometry. The Born-Oppenheimer approximation and the "classical" model of the Franck-Condon principle are typical examples of misused terms and lax interpretations of the original theories. In this essay, we revisit the original publications of pioneers of the PES concept and the FCP to help stimulate a lively discussion and clearer thinking around these important concepts.

  3. Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential

    CERN Document Server

    Stegeby, Henrik; Karlsson, Hans O; Lindh, Roland; Froelich, Piotr

    2012-01-01

    The problem of proton-antiproton motion in the ${\\rm H}$--${\\rm \\bar{H}}$ system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system.

  4. Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz

    CERN Document Server

    Pohl, Vincent

    2016-01-01

    The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...

  5. Electronic Flux Density beyond the Born-Oppenheimer Approximation.

    Science.gov (United States)

    Schild, Axel; Agostini, Federica; Gross, E K U

    2016-05-19

    In the Born-Oppenheimer approximation, the electronic wave function is typically real-valued and hence the electronic flux density (current density) seems to vanish. This is unfortunate for chemistry, because it precludes the possibility to monitor the electronic motion associated with the nuclear motion during chemical rearrangements from a Born-Oppenheimer simulation of the process. We study an electronic flux density obtained from a correction to the electronic wave function. This correction is derived via nuclear velocity perturbation theory applied in the framework of the exact factorization of electrons and nuclei. To compute the correction, only the ground state potential energy surface and the electronic wave function are needed. For a model system, we demonstrate that this electronic flux density approximates the true one very well, for coherent tunneling dynamics as well as for over-the-barrier scattering, and already for mass ratios between electrons and nuclei that are much larger than the true mass ratios.

  6. Universal steps in quantum dynamics with time-dependent potential-energy surfaces: Beyond the Born-Oppenheimer picture

    Science.gov (United States)

    Albareda, Guillermo; Abedi, Ali; Tavernelli, Ivano; Rubio, Angel

    2016-12-01

    It was recently shown [G. Albareda et al., Phys. Rev. Lett. 113, 083003 (2014)], 10.1103/PhysRevLett.113.083003 that within the conditional decomposition approach to the coupled electron-nuclear dynamics, the electron-nuclear wave function can be exactly decomposed into an ensemble of nuclear wave packets effectively governed by nuclear conditional time-dependent potential-energy surfaces (C-TDPESs). Employing a one-dimensional model system, we show that for strong nonadiabatic couplings the nuclear C-TDPESs exhibit steps that bridge piecewise adiabatic Born-Oppenheimer potential-energy surfaces. The nature of these steps is identified as an effect of electron-nuclear correlation. Furthermore, a direct comparison with similar discontinuities recently reported in the context of the exact factorization framework allows us to draw conclusions about the universality of these discontinuities, viz., they are inherent to all nonadiabatic nuclear dynamics approaches based on (exact) time-dependent potential-energy surfaces.

  7. The rotational spectra, potential function, Born-Oppenheimer breakdown, and hyperfine structure of GeSe and GeTe

    Science.gov (United States)

    Giuliano, Barbara M.; Bizzocchi, Luca; Sanchez, Raquel; Villanueva, Pablo; Cortijo, Vanessa; Sanz, M. Eugenia; Grabow, Jens-Uwe

    2011-08-01

    The pure rotational spectra of 18 and 21 isotopic species of GeSe and GeTe have been measured in the frequency range 5-24 GHz using a Fabry-Pérot-type resonator pulsed-jet Fourier-transform microwave spectrometer. Gaseous samples of both chalcogenides were prepared by a combined dc discharge/laser ablation technique and stabilized in supersonic jets of Ne. Global multi-isotopologue analyses of the derived rotational data, together with literature high-resolution infrared data, produced very precise Dunham parameters, as well as rotational constant Born-Oppenheimer breakdown (BOB) coefficients (δ01) for Ge, Se, and Te. A direct fit of the same datasets to an appropriate radial Hamiltonian yielded analytic potential-energy functions and BOB radial functions for the X1Σ+ electronic state of both GeSe and GeTe. Additionally, the electric quadrupole and magnetic hyperfine interactions produced by the nuclei 73Ge, 77Se, and 125Te were observed, yielding much improved quadrupole coupling constants and first determinations of the spin-rotation parameters.

  8. Rotational spectra, potential function, Born Oppenheimer breakdown and magnetic shielding of SiSe and SiTe

    Science.gov (United States)

    Giuliano, Barbara M.; Bizzocchi, Luca; Grabow, Jens-Uwe

    2008-09-01

    The pure rotational spectra of 18 isotopic species of SiSe (8) and SiTe (10) have been measured in their X1Σ + electronic state with a pulsed-jet resonator Fourier transform microwave spectrometer. The molecules were prepared by a combined DC discharge/laser ablation technique and stabilised in a supersonic jet of Ar. Global multi-isotopologue analyses yielded spectroscopic Dunham parameters Y01, Y11, Y21, Y31 and Y02 for both species, as well as effective Born-Oppenheimer breakdown (BOB) coefficients δ01 for Si, Se and Te. A direct fit of the same data sets to an appropriate radial Hamiltonian yielded analytic potential energy functions and BOB radial functions for the X1Σ + electronic state of both SiSe and SiTe. Additionally, the magnetic hyperfine interactions produced by the uneven mass number A nuclei 29Si, 77Se and 125Te were observed, yielding first determinations of the corresponding nuclear spin-rotation coupling constants.

  9. The rotational spectra, potential function, Born-Oppenheimer breakdown, and magnetic shielding of SnSe and SnTe.

    Science.gov (United States)

    Bizzocchi, Luca; Giuliano, Barbara M; Hess, Mareike; Grabow, Jens-Uwe

    2007-03-21

    The pure rotational spectra of 27 isotopic species of SnSe and SnTe have been measured in the frequency range of 5-24 GHz using a Fabry-Perot-type resonator pulsed-jet Fourier-transform microwave spectrometer. Gaseous samples of both chalcogenides were prepared by laser ablation of suitable target rods and were stabilized in supersonic jets of Ar. Global multi-isotopolog analyses of all available high-resolution data produced spectroscopic Dunham parameters Y01, Y11, Y21, Y31, Y02, and Y12 for both species, as well as Born-Oppenheimer breakdown (BOB) coefficients delta01 for Sn, Se, and Te. A direct fit of the same data sets to an appropriate radial Hamiltonian yielded analytic potential energy functions and BOB radial functions for the X 1Sigma+ electronic state of both SnSe and SnTe. Additionally, the magnetic hyperfine interaction produced by the dipolar nuclei 119Sn, 117Sn, 77Se, and 125Te was observed, yielding first determinations of the corresponding spin-rotation coupling constants.

  10. Pure rotational spectra of PbSe and PbTe: potential function, Born-Oppenheimer breakdown, field shift effect and magnetic shielding.

    Science.gov (United States)

    Giuliano, Barbara M; Bizzocchi, Luca; Cooke, Stephen; Banser, Deike; Hess, Mareike; Fritzsche, Juliane; Grabow, Jens-Uwe

    2008-04-21

    The pure rotational spectra of 41 isotopic species of PbSe and PbTe have been measured in their X 1Sigma+ electronic state with a resonator pulsed-jet Fourier transform microwave spectrometer. The molecules were prepared by laser ablation of suitable target rods and stabilised in supersonic jets of noble gas. Global multi-isotopologue analyses yielded spectroscopic Dunham parameters Y01, Y11, Y21, Y31, Y02, and Y12 for both species, as well as effective Born-Oppenheimer breakdown (BOB) coefficients delta01 for Pb, Se and Te. Unusual large values of the BOB parameters for Pb have been rationalized in terms of finite nuclear size (field shift) effect. A direct fit of the same data sets to an appropriate radial Hamiltonian yielded analytic potential energy functions and BOB radial functions for the X 1Sigma+ electronic state of both PbSe and PbTe. Additionally, the magnetic hyperfine interactions produced by the uneven mass number A nuclei 207Pb, 77Se, 123Te, and 125Te were observed, yielding first determinations of the corresponding nuclear spin-rotation coupling constants.

  11. Higher-order symplectic Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders [Los Alamos National Laboratory; Bock, Nicolas [Los Alamos National Laboratory; Challacombe, Matt [Los Alamos National Laboratory; Odell, Anders [RIT; Delin, Anna [RIT; Johansson, Borje [RIT

    2009-01-01

    The extended Lagrangian formulation of time-reversible Born-Oppenheimer molecular dynamics (TR-BOMD) enables the use of geometric integrators in the propagation of both the nuclear and the electronic degrees of freedom on the Born-Oppenheimer potential energy surface. Different symplectic integrators up to the 6th order have been adapted and optimized to TR-BOMD in the framework of ab initio self-consistent-field theory. It is shown how the accuracy can be significantly improved compared to a conventional Verlet integration at the same level of computational cost, in particular for the case of very high accuracy requirements.

  12. Notes On The Born-Oppenheimer Approach In A Closed Dynamical System

    OpenAIRE

    Datta, Dhurjati Prasad

    1997-01-01

    The various recent studies on the applications of the Born-Oppenheimer approach in a closed gravity matter system is examined. It is pointed out that the Born-Oppenheimer approach in the absence of an a priori time is likely to yield potentially new results.

  13. On the mass of atoms in molecules: Beyond the Born-Oppenheimer approximation

    CERN Document Server

    Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe

    2016-01-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires to include the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue still is not solved in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an a...

  14. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems

    CERN Document Server

    Flick, Johannes; Ruggenthaler, Michael; Rubio, Angel

    2016-01-01

    In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer bet...

  15. Computation of Raman Spectra from Density Matrix Linear Response Theory in Extended Lagrangian Born-Oppenheimer Molecular Dynamics

    Science.gov (United States)

    Niklasson, Anders; Coe, Joshua; Cawkwell, Marc

    2011-06-01

    Linear response calculations based on density matrix perturbation theory [A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] have been developed within a self-consistent tight-binding method for extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett., 100, 123004 (2008)]. Besides the nuclear coordinates, extended auxiliary electronic degrees of freedom are added to the regular Born-Oppenheimer Lagrangian, both for the electronic ground state and response densities. This formalism enables highly efficient, on-the-fly, analytic computations of the polarizability autocorrelation functions and the Raman spectra during energy conserving Born-Oppenheimer molecular dynamics trajectories. We will illustrate these capabilities via time-resolved Raman spectra computed during explicit, reactive molecular dynamics simulations of the shock compression of methane, benzene, tert-butylacetylene. Comparisons will be made with experimental results where possible.

  16. On Corrections to the Born-Oppenheimer Approximation

    CERN Document Server

    Kerley, Gerald I

    2013-01-01

    This report presents a new approach for treating the coupling of electrons and nuclei in quantum mechanical calculations for molecules and condensed matter. It includes the standard "Born-Oppenheimer approximation" as a special case but treats both adiabatic and non-adiabatic corrections using perturbation theory. The adiabatic corrections include all terms that do not explicitly involve the nuclear wavefunctions, so that the nuclei move on a single electronic potential surface. The non-adiabatic corrections, which allow the nuclei to move on more than one potential surface, include coupling between the electronic and nuclear wavefunctions. The method is related to an approach first proposed by Born and Huang, but it differs in the methodology and in the definition of the electronic wavefunctions and potential surfaces. A simple example is worked out to illustrate the mechanics of the technique. The report also includes a review of previous work.

  17. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene

    Science.gov (United States)

    Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco

    2007-03-01

    The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.

  18. Entanglement in the Born-Oppenheimer Approximation

    CERN Document Server

    Izmaylov, Artur F

    2016-01-01

    The role of electron-nuclear entanglement on the validity of the Born-Oppenheimer (BO) approximation is investigated. While nonadiabatic couplings generally lead to entanglement and to a failure of the BO approximation, surprisingly the degree of electron-nuclear entanglement is found to be uncorrelated with the degree of validity of the BO approximation. This is because while the degree of entanglement of BO states is determined by their deviation from the corresponding states in the crude BO approximation, the accuracy of the BO approximation is dictated, instead, by the deviation of the BO states from the exact electron-nuclear states. In fact, in the context of a minimal avoided crossing model, extreme cases are identified where an adequate BO state is seen to be maximally entangled, and where the BO approximation fails but the associated BO state remains approximately unentangled. Further, the BO states are found to not preserve the entanglement properties of the exact electron-nuclear eigenstates, and t...

  19. Retardation Effects and the Born-Oppenheimer Approximation: Theory of Tunneling Ionization of Molecules Revisited

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2013-01-01

    We show that retardation in adjusting an electronic state to an instantaneous internuclear configuration caused by the finiteness of the electron’s velocity breaks the validity of the Born-Oppenheimer (BO) approximation at large electron-nuclei distances. This applies even to the ground state....... As a result, the BO approximation in the theory of tunneling ionization of molecules breaks down at sufficiently weak fields. We also show that to account for nuclear motion the weak-field asymptotic expansion for the tunneling ionization rate must be restructured. The predictions for the rate using the BO...

  20. Non-Born-Oppenheimer calculations of the HD molecule in a strong magnetic field

    Science.gov (United States)

    Adamowicz, Ludwik; Tellgren, Erik I.; Helgaker, Trygve

    2015-10-01

    An effective variational non-Born-Oppenheimer method is applied to calculate the ground state of the HD molecule in a strong magnetic field. The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Orbital basis sets are used for the deuteron, the proton, and the electrons. Based on the calculated expectation values, it is determined that, with increasing field strength, the bond length decreases and the alignment of the molecule with the field increases.

  1. Small-amplitude limit of the nuclear Born-Oppenheimer method

    Energy Technology Data Exchange (ETDEWEB)

    Zettili, N. (Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 (Saudi Arabia) Institut de Physique, Universite de Blida, Blida (Algeria))

    1995-04-01

    We examine here how the nuclear Born-Oppenheimer (NBO) method describes the collective dynamics of nuclei undergoing small-amplitude oscillations around the equilibrium state. After specifying the NBO trial wave function, and assuming that the intrinsic state is not very different from the Hartree-Fock (HF) ground state, we show that the NBO method yields the random phase approximation (RPA) equations. We then derive an expression for the ground state energy. This expression, which contains zero-point energy correction terms, is smaller than the static HF energy. Next, we derive the correlated ground state energy and then show that it is identical with the corresponding expressions obtained from the generator-coordinate method, from the properly quantized adiabatic time-dependent Hartree-Fock approach, and from the RPA.

  2. Deviations from Born-Oppenheimer mass scaling in spectroscopy and ultracold molecular physics

    CERN Document Server

    Lutz, Jesse J

    2016-01-01

    We investigate Born-Oppenheimer breakdown (BOB) effects (beyond the usual mass scaling) for the electronic ground states of a series of homonuclear and heteronuclear alkali-metal diatoms, together with the Sr$_2$ and Yb$_2$ diatomics. Several widely available electronic structure software packages are used to calculate the leading contributions to the total isotope shift for commonly occurring isotopologs of each species. Computed quantities include diagonal Born-Oppenheimer corrections (mass shifts) and isotopic field shifts. Mass shifts dominate for light nuclei up to and including K, but field shifts contribute significantly for Rb and Sr and are dominant for Yb. We compare the {\\em ab initio} mass-shift functions for Li$_2$, LiK and LiRb with spectroscopically derived ground-state BOB functions from the literature. We find good agreement in the values of the functions for LiK and LiRb at their equilibrium geometries, but significant disagreement with the shapes of the functions for all 3 systems. The diff...

  3. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2013-12-01

    Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.

  4. The Nuclear Born Oppenheimer Method and Nuclear Rotations

    OpenAIRE

    Zettili, Nouredine

    2009-01-01

    We deal here with the application of the Nuclear Born Oppenheimer (NBO) method to the description of nuclear rotations. As an edifying illustration, we apply the NBO formalism to study the rotational motion of nuclei which are axially-symmetric and even, but whose shells are not closed. We focus, in particular, on the derivation of expressions for the rotational energy and for the moment of inertia. Additionally, we examine the connection between the NBO method and the self-consistent crankin...

  5. Retardation Effects and the Born-Oppenheimer Approximation: Theory of Tunneling Ionization of Molecules Revisited

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2013-01-01

    We show that retardation in adjusting an electronic state to an instantaneous internuclear configuration caused by the finiteness of the electron’s velocity breaks the validity of the Born-Oppenheimer (BO) approximation at large electron-nuclei distances. This applies even to the ground state....... As a result, the BO approximation in the theory of tunneling ionization of molecules breaks down at sufficiently weak fields. We also show that to account for nuclear motion the weak-field asymptotic expansion for the tunneling ionization rate must be restructured. The predictions for the rate using the BO...... approximation and the asymptotic expansion are compared with numerical results for a one-dimensional three-body system modeling a diatomic molecule, with both electronic and nuclear motions treated exactly....

  6. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    Science.gov (United States)

    Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe

    2017-07-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can serve as input for the

  7. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    Science.gov (United States)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  8. Metal cluster structures and properties from Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Calaminici, Patrizia, E-mail: pcalamin@cinvestav.mx; Köster, Andreas M., E-mail: pcalamin@cinvestav.mx; Vásquez-Pérez, José Manuel, E-mail: pcalamin@cinvestav.mx; Martínez, Gabriel Ulises Gamboa, E-mail: pcalamin@cinvestav.mx [Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-01-22

    Density functional theory (DFT) Born-Oppenheimer molecular dynamics (BOMD) simulations of metal clusters are presented. The calculations have been performed with the deMon2k [1] code employing all-electron basis sets and local and non-local functionals. The capability to perform reasonable long (∼ 100 ps) first-principle BOMD simulations in order to explore potential energy landscape of metallic clusters will be presented [2,3]. The evolution of the cluster structures and properties, such as polarizability and heat capacity, with temperature is discussed.

  9. The Nuclear Born Oppenheimer Method and Nuclear Rotations

    Science.gov (United States)

    Zettili, Nouredine

    2008-10-01

    In this presentation, we want to discuss how to apply the Nuclear Born Oppenheimer (NBO) formalism to the description of nuclear rotations. This application will be illustrated on nuclei that are axially-symmetric and even (but non-closed shell). We will focus, in particular, on the derivation of expressions for the energy and for the moment of inertia. In addition, we will examine the connection of the NBO method with the self-consistent cranking model. We will compare the moment of inertia generated by the NBO method with the Thouless-Valantin formula and hence establish a connection between the NBO method and the large body of experimental data.

  10. Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.

    Science.gov (United States)

    Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo

    2013-04-30

    Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors.

  11. On the inclusion of the diagonal Born-Oppenheimer correction in surface hopping methods

    CERN Document Server

    Gherib, Rami; Ryabinkin, Ilya G; Izmaylov, Artur F

    2016-01-01

    The diagonal Born-Oppenheimer correction (DBOC) stems from the diagonal second derivative coupling term in the adiabatic representation, and it can have an arbitrary large magnitude when a gap between neighbouring Born-Oppenheimer (BO) potential energy surfaces (PESs) is closing. Nevertheless, DBOC is typically neglected in mixed quantum-classical methods of simulating nonadiabatic dynamics (e.g., fewest-switch surface hopping (FSSH) method). A straightforward addition of DBOC to BO PESs in the FSSH method, FSSH+D, has been shown to lead to numerically much inferior results for models containing conical intersections. More sophisticated variation of the DBOC inclusion, phase-space surface-hopping (PSSH) was more successful than FSSH+D but on model problems without conical intersections. This work comprehensively assesses the role of DBOC in nonadiabatic dynamics of two electronic state problems and the performance of FSSH, FSSH+D, and PSSH methods in variety of one- and two-dimensional models. Our results sho...

  12. The Nuclear Born Oppenheimer Method and Nuclear Rotations

    CERN Document Server

    Zettili, Nouredine

    2009-01-01

    We deal here with the application of the Nuclear Born Oppenheimer (NBO) method to the description of nuclear rotations. As an edifying illustration, we apply the NBO formalism to study the rotational motion of nuclei which are axially-symmetric and even, but whose shells are not closed. We focus, in particular, on the derivation of expressions for the rotational energy and for the moment of inertia. Additionally, we examine the connection between the NBO method and the self-consistent cranking (SCC) model. Finally, we compare the moment of inertia generated by the NBO method with the Thouless-Valantin formula and hence establish a connection between the NBO method and the large body of experimental data.

  13. Validity of the nuclear Born-Oppenheimer method

    Energy Technology Data Exchange (ETDEWEB)

    Zettili, N.; Villars, F.M.H.

    1987-07-20

    The validity of the adiabatic nuclear Born-Oppenheimer (NBO) approximation method is investigated by means of an analytically solvable model. The NBO equation of collective motion derived, when this method is applied to the model, is shown to have the structure of a Schroedinger equation. The NBO energy spectrum is then obtained by numerical integration of this equation and compared with the analytic energy spectrum. We show that the NBO approximation is very accurate in the description of the system's eigenstates. The time-dependent Hartree-Fock (TDHF) results, obtained in a previous publication for the solvable model, are compared with their NBO counterparts. We find that, although both methods describe the system's states very well, the NBO approximation is more accurate in the adiabatic domain.

  14. Nuclear Rotations and the Born-Oppenheimer Approximation

    Science.gov (United States)

    Zettili, Nouredine

    2011-10-01

    We deal here with the application of the Nuclear Born Oppenheimer (NBO) method to the description of nuclear rotations. As an edifying illustration, we apply the NBO formalism to study the rotational motion of nuclei which are axially-symmetric and even, but whose shells are not closed. We focus, in particular, on the derivation of expressions for the rotational energy and for the moment of inertia. Additionally, we examine the connection between the NBO method and the self-consistent cranking (SCC) model. Finally, we compare the moment of inertia generated by the NBO method with the Thouless-Valantin formula and hence establish a connection between the NBO method and the large body of experimental data.

  15. Validity of the nuclear Born-Oppenheimer method

    Science.gov (United States)

    Zettili, Nouredine; Villars, Felix M. H.

    1987-07-01

    The validity of the adiabatic nuclear Born-Oppenheimer (NBO) approximation method is investigated by means of an analytically solvable model. The NBO equation of collective motion derived, when this method is applied to the model, is shown to have the structure of a Schrödinger equation. The NBO energy spectrum is then obtained by numerical integration of this equation and compared with the analytic energy spectrum. We show that the NBO approximation is very accurate in the description of the system's eigenstates. The time-dependent Hartree-Fock (TDHF) results, obtained in a previous publication for the solvable model, are compared with their NBO counterparts. We find that, although both methods describe the system's states very well, the NBO approximation is more accurate in the adiabatic domain.

  16. Coulomb-Born-Oppenheimer approximation in Ps-H scattering

    Indian Academy of Sciences (India)

    Hasi Ray

    2006-02-01

    To improve the Coulomb-Born approximation (CBA) theory of ionization in positronium (Ps) and atom scattering, the effect of exchange is introduced. The nine-dimensional exchange amplitude for ionization of Ps in Ps-H scattering is reduced to a two-dimensional integral using the present Coulomb-Born-Oppenheimer approximation (CBOA). The methodology is extremely useful to evaluate ionization parameters for different target systems and for different types of ionization processes. It is then applied to evaluate the Ps-ionization cross-section and to estimate the effect of exchange on Ps-ionization in Ps-H system. We establish the importance of exchange at lower energy region.

  17. Born--Oppenheimer decomposition for quantum fields on quantum spacetimes

    CERN Document Server

    Giesel, Kristina; Thiemann, Thomas

    2009-01-01

    Quantum Field Theory on Curved Spacetime (QFT on CS) is a well established theoretical framework which intuitively should be a an extremely effective description of the quantum nature of matter when propagating on a given background spacetime. If one wants to take care of backreaction effects, then a theory of quantum gravity is needed. It is now widely believed that such a theory should be formulated in a non-perturbative and therefore background independent fashion. Hence, it is a priori a puzzle how a background dependent QFT on CS should emerge as a semiclassical limit out of a background independent quantum gravity theory. In this article we point out that the Born-Oppenheimer decomposition (BOD) of the Hilbert space is ideally suited in order to establish such a link, provided that the Hilbert space representation of the gravitational field algebra satisfies an important condition. If the condition is satisfied, then the framework of QFT on CS can be, in a certain sense, embedded into a theory of quantu...

  18. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.

    Science.gov (United States)

    Diestler, D J

    2013-06-01

    Intuition suggests that a molecular system in the electronic ground state Φ0 should exhibit an electronic flux density (EFD) in response to the motion of its nuclei. If that state is described by the Born-Oppenheimer approximation (BOA), however, a straightforward calculation of the EFD yields zero, since the electrons are in a stationary state, regardless of the state of the nuclear motion. Here an alternative pathway to a nonzero EFD from a knowledge of only the BOA ground-state wave function is proposed. Via perturbation theory a complete set of approximate vibronic eigenfunctions of the whole Hamiltonian is generated. If the complete non-BOA wave function is expressed in the basis of these vibronic eigenfunctions, the ground-state contribution to the EFD is found to involve a summation over excited states. Evaluation of this sum through the so-called "average excitation energy approximation" produces a nonzero EFD. An explicit formula for the EFD for the prototypical system, namely, oriented H2+ vibrating in the electronic ground state, is derived.

  19. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  20. Revised Born-Oppenheimer approach and a multielectron reprojection method for inelastic collisions

    CERN Document Server

    Belyaev, Andrey K

    2010-01-01

    The quantum reprojection method within the standard adiabatic Born-Oppenheimer approach is derived for multielectron collision systems. The method takes nonvanishing asymptotic nonadiabatic couplings into account and distinguishes asymptotic currents in molecular state and in atomic state channels, leading to physically consistent and reliable results. The method is demonstrated for the example of low-energy inelastic Li+Na collisions, for which the conventional application of the standard adiabatic Born-Oppenheimer approach fails and leads to paradoxes such as infinite inelastic cross sections.

  1. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    Science.gov (United States)

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion

  2. Born-Oppenheimer approximation of quantized cavity-atom system and localization control of atomic tunneling

    Institute of Scientific and Technical Information of China (English)

    孙昌璞

    1995-01-01

    The generalized Born-Oppenheimer approximation theory is applied to the localization control of state tunneling of a two-level atom in a cavity field with single mode. The nonadiabatic effect of tunneling of atomic chiral states in coherent cavity field is analyzed quantitatively and the condition for realizing localization is given strictly. Besides, the influence of variation in temperature on tunneling of atomic state is discussed.

  3. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  4. Born-Oppenheimer approximation in EFT and quarkonium hybrids

    Directory of Open Access Journals (Sweden)

    Castellà Jaume Tarrús

    2017-01-01

    Full Text Available We report on the results of [1] for the calculations of quarkonium hybrids. We have developed and Effective Field Theory (EFT for quarkonium hybrids that systematically incorporates an expansion with respect to the adiabatic limit. We matched the potentials in our EFT to the static energies computed on the lattice. We discuss our results and compare them with direct lattice calculations and possible experimental candidates.

  5. Born-Oppenheimer description of two atoms in a combined oscillator and lattice trap

    DEFF Research Database (Denmark)

    Sørensen, Ole Søe; Mølmer, Klaus

    2012-01-01

    We analyze the quantum states of two identical bosons in a combined harmonic oscillator and periodic lattice trap in one spatial dimension. In the case of tight-binding and only nearest-neighbor tunneling, the equations of motion are conveniently represented in the momentum representation. We sho...... that in the case of strong attraction between the particles, the different time scales of relative and center-of-mass motions validate a separation of the problem similar to the Born-Oppenheimer approximation applied in the description of electronic and nuclear motions in molecules....

  6. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  7. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation.

    Science.gov (United States)

    Parkhill, John A; Markovich, Thomas; Tempel, David G; Aspuru-Guzik, Alan

    2012-12-14

    In this work, we develop an approach to treat correlated many-electron dynamics, dressed by the presence of a finite-temperature harmonic bath. Our theory combines a small polaron transformation with the second-order time-convolutionless master equation and includes both electronic and system-bath correlations on equal footing. Our theory is based on the ab initio Hamiltonian, and is thus well-defined apart from any phenomenological choice of basis states or electronic system-bath coupling model. The equation-of-motion for the density matrix we derive includes non-markovian and non-perturbative bath effects and can be used to simulate environmentally broadened electronic spectra and dissipative dynamics, which are subjects of recent interest. The theory also goes beyond the adiabatic Born-Oppenheimer approximation, but with computational cost scaling such as the Born-Oppenheimer approach. Example propagations with a developmental code are performed, demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system. An untransformed version of the theory is also presented to treat more general baths and larger systems.

  8. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation

    CERN Document Server

    Parkhill, John A; Tempel, David G; Aspuru-Guzik, Alan

    2012-01-01

    In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing th...

  9. Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization.

    Science.gov (United States)

    Souvatzis, Petros; Niklasson, Anders M N

    2013-12-07

    We present an efficient general approach to first principles molecular dynamics simulations based on extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The reduction of the optimization requirement reduces the computational cost to a minimum, but without causing any significant loss of accuracy or long-term energy drift. The optimization-free first principles molecular dynamics requires only one single diagonalization per time step, but is still able to provide trajectories at the same level of accuracy as "exact," fully converged, Born-Oppenheimer molecular dynamics simulations. The optimization-free limit of extended Lagrangian Born-Oppenheimer molecular dynamics therefore represents an ideal starting point for robust and efficient first principles quantum mechanical molecular dynamics simulations.

  10. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  11. Validity of the small-amplitude limit of the nuclear Born-Oppenheimer method

    Energy Technology Data Exchange (ETDEWEB)

    Zettili, Nouredine (Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 (Saudi Arabia) Institut de Physique, Universite de Blida, Blida (Algeria))

    1994-08-22

    We examine here the validity of the small-amplitude limit of the nuclear Born-Oppenheimer (NBO) method by testing it on an analytically solvable model. To gain additional quantitative insight into its accuracy, we provide a comparison of its results with those of the small-amplitude limit of the time-dependent Hartree-Fock (TDHF) when applied to this model. A comparison of the exact, the random-phase approximation (RPA), and the NBO results reveals that the NBO energy is lower than its RPA counterpart and is in very good agreement with the exact spectrum. We also provide a quantitative assessment of the effects the approximations involved in the NBO method have on the results. We show that, when corrections to these approximations are considered, the NBO energy spectrum becomes much more accurate. ((orig.))

  12. Electric Transition Dipole Moment in pre-Born-Oppenheimer Molecular Structure Theory

    CERN Document Server

    Simmen, Benjamin; Reiher, Markus

    2014-01-01

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed with explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The complete derivation and the calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated via translationally invariant integral expressions. As a numerical example the electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrati...

  13. Understanding molecular harmonic emission at relatively long intense laser pulses: Beyond the Born-Oppenheimer approximation

    CERN Document Server

    Ahmadi, H; Maghari, A

    2016-01-01

    The underlying physics behind the molecular harmonic emission in relatively long sin$^2$-like laser pulses is investigated. We numerically solved the full-dimensional electronic time-dependent Schr\\"{o}dinger equation beyond the Born-Oppenheimer approximation for simple molecular ion H$_2^+$. The occurrence and the effect of electron localization, non-adiabatic redshift and spatially asymmetric emission are evaluated to understand better complex patterns appearing in the high-order harmonic generation (HHG) spectrum. Results show that the complex patterns in the HHG spectrum originate mainly from a non-adiabatic response of the molecule to the rapidly changing laser field and also from a spatially asymmetric emission along the polarization direction. The effect of electron localization on the HHG spectrum was not observed as opposed to what is reported in the literature.

  14. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    CERN Document Server

    Fang, Jun; Song, Haifeng; Wang, Han

    2016-01-01

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choice...

  15. Elimination of the Translational Kinetic Energy Contamination in pre-Born-Oppenheimer Calculations

    CERN Document Server

    Simmen, Benjamin; Reiher, Markus

    2012-01-01

    In this paper we present a simple strategy for the elimination of the translational kinetic energy contamination of the total energy in pre-Born--Oppenheimer calculations carried out in laboratory-fixed Cartesian coordinates (LFCCs). The simple expressions for the coordinates and the operators are thus preserved throughout the calculations, while the mathematical form and the parametrisation of the basis functions are chosen so that the translational and rotational invariances are respected. The basis functions are constructed using explicitly correlated Gaussian functions (ECGs) and the global vector representation. First, we observe that it is not possible to parametrise the ECGs so that the system is at rest in LFCCs and at the same time the basis functions are square-integrable with a non-vanishing norm. Then, we work out a practical strategy to circumvent this problem by making use of the properties of the linear transformation between the LFCCs and translationally invariant and center-of-mass Cartesian ...

  16. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.

  17. Revised Iterative Solution of Ground State of Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin

    2005-01-01

    The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.

  18. Coherence-Controlled Nonadiabatic Dynamics via State-Space Decomposition: A Consistent Way To Incorporate Ehrenfest and Born-Oppenheimer-Like Treatments of Nuclear Motion.

    Science.gov (United States)

    Tao, Guohua

    2016-11-03

    Accurately describing nuclear motion is crucial in electronically nonadiabatic dynamics simulations. In this work, a coherence-controlled (CC) approach is proposed based on the mapping between the classical state space and the full electronic matrix and that between the decomposed state space and different nuclear dynamics that allows nuclear motion to properly follow either Ehrenfest dynamics in the coherence domain or Born-Oppenheimer-like dynamics in the single-state domain in a consistent manner. This new method is applied to several benchmark models involving nonadiabatic transitions in two-state or three-state systems, and the obtained results are in excellent agreement with exact quantum calculations. As a generalization of the recently developed symmetrical quasiclassical approach and the augmented image (AI) version of the multistate trajectory approach, the proposed method is extremely efficient and numerically stable. Therefore, it has great potential for implementation in nonadiabatic molecular dynamics simulations for realistic complex systems, such as materials and biological molecules.

  19. Computation of the electronic flux density in the Born-Oppenheimer approximation.

    Science.gov (United States)

    Diestler, D J; Kenfack, A; Manz, J; Paulus, B; Pérez-Torres, J F; Pohl, V

    2013-09-12

    A molecule in the electronic ground state described in the Born–Oppenheimer approximation (BOA) by the wave function ΨBO = Φ0χ0 (where Φ0 is the time-independent electronic energy eigenfunction and χ0 is a time-dependent nuclear wave packet) exhibits a nonzero nuclear flux density, whereas it always displays zero electronic flux density (EFD), because the electrons are in a stationary state. A hierarchical approach to the computation of the EFD within the context of the BOA, which utilizes only standard techniques of quantum chemistry (to obtain Φ0) and quantum dynamics (to describe the evolution of χ0 on the ground-state potential energy surface), provides a resolution of this puzzling, nonintuitive result. The procedure is applied to H2(+) oriented parallel with the z-axis and vibrating in the ground state (2)Σg(+). First, Φ0 and χ0 are combined by the coupled-channels technique to give the normally dominant z-component of the EFD. Imposition of the constraints of electronic continuity, cylindrical symmetry of Φ0 and two boundary conditions on the EFD through a scaling procedure yields an improved z-component, which is then used to compute the complementary orthogonal ρ-component. The resulting EFD agrees with its highly accurate counterpart furnished by a non-BOA treatment of the system.

  20. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution.

    Science.gov (United States)

    Andermatt, Samuel; Cha, Jinwoong; Schiffmann, Florian; VandeVondele, Joost

    2016-07-12

    In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state Born-Oppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution.

  1. The Nuclear Born-Oppenheimer Method Applied to Nuclear Collective Motion

    Science.gov (United States)

    Zettili, Nouredine; Boukahil, Abdelkrim

    We deal with the application of the nuclear Born-Oppenheimer (NBO) method to the study of nuclear collective motion. In particular, we look at the description of nuclear rotations and vibrations. The collective operators are specified within the NBO method only to the extent of identifying the type of collective degrees of freedom we intend to describe; the operators are then determined from the dynamics of the system. To separate the collective degrees of freedom into rotational and vibrational terms, we transform the collective tensor operator from the lab fixed frame of reference to the frame defined by the principal axes of the system; this transformation diagonalizes the tensor operator. We derive a general expression for the NBO mean energy and show that it contains internal, collective and coupling terms. Then, we specify the approximations that need to be made in order to establish a connection between Bohr's collective model and the NBO method. We show that Bohr's collective Hamiltonian can be recovered from the NBO Hamiltonian only after adopting some rather crude approximations. In addition, we try to understand, in light of the NBO approach, why Bohr's collective model gives the wrong inertial parameters. We show that this is due to two major reasons: the ad hoc selection of the collective degrees of freedom within the context of Bohr's collective model and the unwarranted neglect of several important terms from the Hamiltonian.

  2. Non-Born-Oppenheimer self-consistent field calculations with cubic scaling

    Energy Technology Data Exchange (ETDEWEB)

    Moncada, Felix, E-mail: areyesv@unal.edu.co [Departamento de Quimica, Universidad Nacional de Colombia, Av. Cra. 30 45-03, Bogota (Colombia); Posada, Edwin [Departamento de Quimica, Universidad Nacional de Colombia, Av. Cra. 30 45-03, Bogota (Colombia); Flores-Moreno, Roberto [Departamento de Quimica, Universidad de Guadalajara, Blvd. Marcelino Garcia Barragan 1421, Guadalajara Jal., C.P. 44430 (Mexico); Reyes, Andres [Departamento de Quimica, Universidad Nacional de Colombia, Av. Cra. 30 45-03, Bogota (Colombia)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer It is possible to perform cubic-scaling Non-Born-Oppenheimer calculations. Black-Right-Pointing-Pointer The errors introduced by the approximations used in this methodology are small. Black-Right-Pointing-Pointer This method makes possible calculations of molecules with more than a hundred atoms. - Abstract: An efficient nuclear molecular orbital methodology is presented. This approach combines an auxiliary density functional theory for electrons (ADFT) and a localized Hartree product (LHP) representation for the nuclear wave function. A series of test calculations conducted on small molecules exposed that energy and geometry errors introduced by the use of ADFT and LHP approximations are small and comparable to those obtained by the use of electronic ADFT. In addition, sample calculations performed on (HF){sub n} chains disclosed that the combined ADFT/LHP approach scales cubically with system size (n) as opposed to the quartic scaling of Hartree-Fock/LHP or DFT/LHP methods. Even for medium size molecules the improved scaling of the ADFT/LHP approach resulted in speedups of at least 5x with respect to Hartree-Fock/LHP calculations. The ADFT/LHP method opens up the possibility of studying nuclear quantum effects on large size systems that otherwise would be impractical.

  3. Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups

    Science.gov (United States)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-07-01

    In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall "coherent state" transform for compact Lie groups G, which we prove for G = U(1)n and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ2d are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.

  4. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  5. Insight into selected reactions in low-temperature dimethyl ether combustion from Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Andersen, Amity; Carter, Emily A

    2006-02-02

    Dimethyl ether is under consideration as an alternative diesel fuel. Its combustion chemistry is as yet ill-characterized. Here we use Born-Oppenheimer molecular dynamics (BOMD) based on DFT-B3LYP forces to investigate the short-time dynamics of selected features of the low-temperature dimethyl ether (DME) oxidation potential energy surface. Along the chain propagation pathway, we run BOMD simulations from the transition state involving the decomposition of (*)CH(2)OCH(2)OOH to two CH(2)=O and an (*)OH radical. We predict that formaldehyde C-O stretch overtones are excited, consistent with laser photolysis experiments. We also predict that O-H overtones are excited for the (*)OH formed from (*)CH(2)OCH(2)OOH dissociation. We also investigate short-time dynamics involved in chain branching. First, we examine the isomerization transition state of (*)OOCH(2)OCH(2)OOH --> HOOCH(2)OCHOOH. The latter species is predicted to be a short-lived metastable radical that decomposes within 500 fs to hydroperoxymethyl formate (HPMF; HOOCH(2)OC(=O)H) and the first (*)OH of chain branching. The dissociation of HOOCH(2)OCHOOH exhibits non-RRKM behavior in its lifetime profile, which may be due to conformational constraints or slow intramolecular vibrational energy transfer (IVR) from the nascent H-O bond to the opposite end of the radical, where O-O scission occurs to form HPMF and (*)OH. In a few trajectories, we see HOOCH(2)OCHOOH recross back to (*)OOCH(2)OCH(2)OOH because the isomerization is endothermic, with only an 8 kcal/mol barrier to recrossing. Therefore, some inhibition of chain-branching may be due to recrossing. Second, trajectories run from the transition state leading to the direct decomposition of HPMF (an important source of the second (*)OH radical in chain branching) to HCO, (*)OH, and HC(=O)OH show that these products can recombine to form many other possible products. These products include CH(2)OO + HC(=O)OH, H(2)O + CO + HC(=O)OH, HC(=O)OH + HC(=O)OH, and HC

  6. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  7. A Simple Volcano Potential with an Analytic, Zero-Energy, Ground State

    CERN Document Server

    Nieto, Michael Martin

    2000-01-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  8. Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of complex explicitly correlated Gaussian functions

    Science.gov (United States)

    Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik

    2017-06-01

    In our previous work S. Bubin et al., Chem. Phys. Lett. 647, 122 (2016), 10.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.

  9. Fourier-transform spectroscopy of Sr2 and revised ground-state potential

    Science.gov (United States)

    Stein, A.; Knöckel, H.; Tiemann, E.

    2008-10-01

    Precise potentials for the ground-state XΣg+1 and the minimum region of the excited state 2Σu+1 of Sr2 are derived by high-resolution Fourier-transform spectroscopy of fluorescence progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at 950°C . A change of the rotational assignment by four units compared to an earlier work [G. Gerber , J. Chem. Phys. 81, 1538 (1984)] is needed for a consistent description leading to a significant shift of the potentials toward longer interatomic distances. The huge amount of ground-state data derived for the three different isotopomers Sr288 , Sr86Sr88 , and Sr87Sr88 (almost 60% of all excisting bound rovibrational ground-state levels for the isotopomer Sr288 ) fixes this assignment beyond a doubt. The presented ground-state potential is derived from the observed transitions for the radial region from 4to11Å ( 9cm-1 below the asymptote) and is extended to the long-range region by the use of theoretical dispersion coefficients together with already available photoassociation data. New estimations of the scattering lengths for the complete set of isotopic combinations are derived by mass scaling with the derived potential. The data set for the excited state 2Σu+1 was sufficient to derive a potential energy curve around the minimum.

  10. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  11. Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)

    Institute of Scientific and Technical Information of China (English)

    Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia

    2006-01-01

    In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.

  12. Ground-State Ionization Potentials for Lithium through Neon Isoelectronic Sequences with Z=37-82

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; JIANG Gang; ZHAO Qian

    2006-01-01

    The ground-state ionization potentials of different isoelectronic sequences are calculated systemically with the multi-configuration Dirac-Fock method.The relativistic corrections,Breit and QED effects are included in the calculation.These results are compared with the scanty existing theoretical and experimental data in the literature.Analytical expressions are obtained for expressing our theoretical data along the different sequences.

  13. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  14. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  15. Ground state and orbital stability for the NLS equation on a general starlike graph with potentials

    Science.gov (United States)

    Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2017-08-01

    We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of δ-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (L 2-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, H 1 sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.

  16. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  17. Born Oppenheimer Molecular Dynamics calculation of the νO-H IR spectra for acetic acid cyclic dimers

    Science.gov (United States)

    El Amine Benmalti, Mohamed; Krallafa, Abdelghani; Gaigeot, Marie-Pierre

    2015-01-01

    Both ab initio molecular dynamics simulations based on the Born-Oppenheimer approach calculations and a quantum theoretical model are used in order to study the IR spectrum of the acetic acid dimer in the gas phase. The theoretical model is taking into account the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two vO-H modes and the quantum direct and indirect relaxation. The IR spectra obtained from DFT-based molecular dynamics is compared with our theoretical lineshape and with experiment. Note that in a previous work we have shown that our approach reproduces satisfactorily the main futures of the IR experimental lineshapes of the acetic acid dimer [Mohamed el Amine Benmalti, Paul Blaise, H. T. Flakus, Olivier Henri-Rousseau, Chem Phys, 320(2006) 267-274.].

  18. The nuclear displacement operator and formulation of the Born couplings of molecular Born-Oppenheimer wave functions

    Science.gov (United States)

    Zhang, Yongfeng; Porter, Richard N.

    1988-04-01

    The nuclear displacement operator (NDO) for Born-Oppenheimer electronic wave functions (BOEWF) is introduced and some recurrence formulas are obtained. The formulas for Born couplings and higher derivatives of BOEWF with respect to nuclear coordinates are derived from very general considerations and relations among these quantities are given. The series form, exponential, and integral forms of the NDO are exhibited. Particularly, it is proven that for the two-state systems the NDO has a very simple form by which it is convenient to study two-state dynamical processes. It is shown that the NDO satisfies a differential equation which is analogous to that for the time-evolution operator in the presence of a time-dependent perturbation. The physical meanings of these two operators are compared. It is demonstrated that the NDO is uniquely determined by the vector Born coupling matrix, and that the nuclear motion may be analyzed in terms of a local non-Abelian gauge transformation.

  19. Analytical Potential Energy Function for the Ground State X1∑+ of Lanthanum Monofluoride

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin-Hong; SHANG Ren-Cheng

    2003-01-01

    The equilibrium geometry, harmonic frequency and bond dissociation energy of lanthanum monofluoride have been calculated using Density-Functional Theory (DFT), post-HF methods MP2 and CCSD(T) with the energyconsistent relativistic effective core potentials. The possible electronic state and reasonable dissociation limit of the ground state of LaF are determined based on atomic and molecular reaction statics. Potential energy curve scans for the ground state X 1∑+ have been performed at B3LYP and CCSD(T) levels, due to their better results of harmonic frequency and bond dissociation energy. We find that the potential energy calculated with CCSD(T) is about 0.6 eV larger than the bond dissociation energy, when the internuclear distance is as large as 0.8 nm. The problem that single-reference ab initio methods do not meet dissociation limit during calculations of lanthanide heavy-metal elements is analyzed. We propose the calculation scheme to derive the analytical Murrell-Sorbie potential energy function. Vibrotational spectroscopic constants Be, ωe, ωeχe, αe, βe, De and He obtained by the standard Dunham treatment coincide well with the results of rotational analyses on spectroscopic experiments.

  20. Born-Oppenheimer Molecular Dynamics Study on Proton Dynamics of Strong Hydrogen Bonds in Aspirin Crystals, with Emphasis on Differences between Two Crystal Forms.

    Science.gov (United States)

    Brela, Mateusz Z; Wójcik, Marek J; Witek, Łukasz J; Boczar, Marek; Wrona, Ewa; Hashim, Rauzah; Ozaki, Yukihiro

    2016-04-28

    In this study, the proton dynamics of hydrogen bonds for two forms of crystalline aspirin was investigated by the Born-Oppenheimer molecular dynamics (BOMD) method. Analysis of the geometrical parameters of hydrogen bonds using BOMD reveals significant differences in hydrogen bonding between the two crystalline forms of aspirin, Form I and Form II. Analysis of the trajectory for Form I shows spontaneous proton transfer in cyclic dimers, which is absent in Form II. Quantization of the O-H stretching modes allows a detailed discussion on the strength of hydrogen-bonding interactions. The focal point of our study is examination of the hydrogen bond characteristics in the crystal structure and clarification of the influence of hydrogen bonding on the presence of the two crystalline forms of aspirin. In the BOMD method, thermal motions were taken into account. Solving the Schrödinger equation for the snapshots of 2D proton potentials, extracted from MD, gives the best agreement with IR spectra. The character of medium-strong hydrogen bonds in Form I of aspirin was compared with that of weaker hydrogen bonds in aspirin Form II. Two proton minima are present in the potential function for the hydrogen bonds in Form I. The band contours, calculated by using one- and two-dimensional O-H quantization, reflect the differences in the hydrogen bond strengths between the two crystalline forms of aspirin, as well as the strong hydrogen bonding in the cyclic dimers of Form I and the medium-strong hydrogen bonding in Form II.

  1. Stereodirectional Origin of anti-Arrhenius Kinetics for a Tetraatomic Hydrogen Exchange Reaction: Born-Oppenheimer Molecular Dynamics for OH + HBr.

    Science.gov (United States)

    Coutinho, Nayara D; Aquilanti, Vincenzo; Silva, Valter H C; Camargo, Ademir J; Mundim, Kleber C; de Oliveira, Heibbe C B

    2016-07-14

    Among four-atom processes, the reaction OH + HBr → H2O + Br is one of the most studied experimentally: its kinetics has manifested an unusual anti-Arrhenius behavior, namely, a marked decrease of the rate constant as the temperature increases, which has intrigued theoreticians for a long time. Recently, salient features of the potential energy surface have been characterized and most kinetic aspects can be considered as satisfactorily reproduced by classical trajectory simulations. Motivation of the work reported in this paper is the investigation of the stereodirectional dynamics of this reaction as the prominent reason for the peculiar kinetics: we started in a previous Letter ( J. Phys. Chem. Lett. 2015 , 6 , 1553 - 1558 ) a first-principles Born-Oppenheimer "canonical" molecular dynamics approach. Trajectories are step-by-step generated on a potential energy surface quantum mechanically calculated on-the-fly and are thermostatically equilibrated to correspond to a specific temperature. Here, refinements of the method permitted a major increase of the number of trajectories and the consideration of four temperatures -50, +200, +350, and +500 K, for which the sampling of initial conditions allowed us to characterize the stereodynamical effect. The role is documented of the adjustment of the reactants' mutual orientation to encounter the entrance into the "cone of acceptance" for reactivity. The aperture angle of this cone is dictated by a range of directions of approach compatible with the formation of the specific HOH angle of the product water molecule; and consistently the adjustment is progressively less effective the higher the kinetic energy. Qualitatively, this emerging picture corroborates experiments on this reaction, involving collisions of aligned and oriented molecular beams, and covering a range of energies higher than the thermal ones. The extraction of thermal rate constants from this molecular dynamics approach is discussed and the systematic

  2. Existence and Concentration of Ground States of Coupled Nonlinear Schr(o)dinger Equations with Bounded Potentials

    Institute of Scientific and Technical Information of China (English)

    Gongming WEI

    2008-01-01

    A 2-coupled nonlinear Schr(o)dinger equations with bounded varying potentials and strongly attractive interactions is considered.When the attractive interaction is strong enough,the existence of a ground state for sufficiently small Planck constant is proved.As the Planck constant approaches zero,it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.

  3. Analytical potential energy function for the ground state (~X1A1) of hydrogen isotopic D2O molecule

    Institute of Scientific and Technical Information of China (English)

    RUAN Wen; LUO WenLang; ZHANG Li; ZHU ZhengHe

    2009-01-01

    The present work is to construct the potential energy function of Isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer ap-proximation, in which the nuclear motions (translational, rotational and vibration motions) are not in-cluded, therefore, its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics (AMRS), the reasonable dissociation limits of D2O(~X1A1) are determined, its equilibrium geometry and dissociation energy are calculated by den-sity-functional theory (DFT) B3lyp, and then, using the many-body expansion method the potential en-ergy function of D2O (~X1A1) Is obtained for the first time. The potential contours are drawn, in which It is found that the reactive channel D + OD→D2O has no threshold energy, so it is a free radical reaction. But the reactive channel O + DD→D2P has a saddle point. The study of collision for D2O (~X1A1) is under way.

  4. Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

    Science.gov (United States)

    Sanz-Vicario, José Luis; Pérez-Torres, Jhon Fredy; Moreno-Polo, Germán

    2017-08-01

    We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.

  5. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited

    Science.gov (United States)

    Thiel, Linda; Hotop, Hartmut; Meyer, Wilfried

    2003-11-01

    We present the results of large-scale CCSD(T) calculations on the potential energy curves for the ground states of LiHg, NaHg, and KHg. In these calculations, the Hg20+ core is simulated by a pseudopotential which has been adjusted to reproduce experimental excitation and ionization energies of the Hg atom at the coupled-cluster level. Moreover, we apply a weighted multiproperty fitting procedure to determine reliable potentials for LiHg, NaHg, and KHg which reproduce the available experimental results. In the case of LiHg, this best-fit potential is based solely on experimental data and its agreement with our calculated potential supports our computational procedure. For NaHg and KHg the experimental data had to be complemented by theoretical results in order to fix a best-fit potential. Our potentials and those proposed previously are evaluated by comparing calculated scattering cross sections and vibrational energy levels with the available experimental data.

  6. Many-body Expanded Analytical Potential Energy Function for Ground State PuOH Molecule

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; GAO Tao; ZHU Zheng-He

    2006-01-01

    Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (4∑+, 6∑+, 8∑+) for three structures of PuOH molecule were optimized. The results show that the ground state is X6∑+of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O=0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.

  7. The ground state of long-range Schrodinger equations and static $q\\bar{q}$ potential

    CERN Document Server

    Beccaria, Matteo; Pallara, Diego

    2016-01-01

    Motivated by the recent results in arXiv:1601.05679 about the quark-antiquark potential in $\\mathcal N=4$ SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schr\\"odinger operators $-\\frac{d^{2}}{dx^{2}}+\\lambda\\,V(x)$ with long-range potential $V(x)$. In particular, we consider even potentials obeying $\\int_{\\mathbb R}dx\\, V(x)<0$ with large $x$ asymptotics $V\\sim -a/x^{2}-b/x^{3}+\\cdots$. The associated Schr\\"odinger operator is known to admit a bound state for $\\lambda\\to 0^{+}$, but the binding energy is rigorously non-analytic at $\\lambda=0$. Its asymptotic expansion starts at order $\\mathcal O(\\lambda)$, but contains higher corrections $\\lambda^{n}\\,\\log^{m}\\lambda$ with all $0\\le m\\le n-1$ and standard Rayleigh-Schr\\"odinger perturbation theory fails order by order in $\\lambda$. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at $\\mathcal O(\\lambda^{3})...

  8. Ground State Energy of the One-Dimensional Discrete Random Schr\\"{o}dinger Operator with Bernoulli Potential

    CERN Document Server

    Bishop, Michael

    2011-01-01

    In this paper, we show the that the ground state energy of the one-dimensional Discrete Random Schr\\"{o}dinger Operator with Bernoulli Potential is controlled asymptotically as the system size N goes to infinity by the random variable, $\\ell_N$ the length the longest consecutive sequence of sites on the lattice with potential equal to zero. Specifically, we will show that with probability one the limit as the system size goes to infinity the ratio of the ground state energy with the energy of a half-sine wave converges to one.

  9. A Priori Estimation of the Resolvent on Approximation of Born-Oppenheimer

    Directory of Open Access Journals (Sweden)

    Sabria B. Mentri

    2007-01-01

    Full Text Available In this study, we estimate the resolvent of the two bodies Shrodinger operator perturbed by a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method, we first distorted it and then reduced it to a diagonal matrix. We considered a case where two energy levels cross in the classical forbidden region. Under the assumption that the second energy level admits a non degenerate point well and virial conditions on the others levels, a good estimate of the resolvent were observed.

  10. Mass distribution of fission fragments within the Born-Oppenheimer approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)

    2017-03-15

    The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)

  11. Positive and ground state solutions for the critical Klein-Gordon-Maxwell system with potentials

    CERN Document Server

    Carriao, Paulo C; Miyagaki, Olimpio H

    2010-01-01

    In this paper we study a class of Klein-Gordon-Maxwell system when the nonlinearity exhibits critical growth. First we prove both existence and ground state solutions for this system with a periodic potencial V, and then we show the existence in the case that a nonperiodic potencial V is introduced.

  12. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  13. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.

    Science.gov (United States)

    Zhang, G; Stillinger, F H; Torquato, S

    2013-10-01

    Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with appreciably less symmetry, including those in which the particles have different local structural environments. These challenging target configurations demanded that we modify previous inverse optimization techniques. In particular, we first find local minima of a candidate enthalpy surface and determine the enthalpy difference ΔH between such inherent structures and the target structure. Then we determine the lowest positive eigenvalue λ(0) of the Hessian matrix of the enthalpy surface at the target configuration. Finally, we maximize λ(0)ΔH so that the target structure is both locally stable and globally stable with respect to the inherent structures. Using this modified optimization technique, we have designed short-range radial pair potentials that stabilize the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-dimensional structure of the CaF(2) crystal inhabited by a single-particle species. We verify our results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component systems with short-range radial pair potentials can counterintuitively self-assemble into crystal ground states with low symmetry and different local structural environments. Finally, we present general principles that offer

  14. Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations.

    Science.gov (United States)

    Jaeqx, Sander; Oomens, Jos; Cimas, Alvaro; Gaigeot, Marie-Pierre; Rijs, Anouk M

    2014-04-01

    Vibrational spectroscopy provides an important probe of the three-dimensional structures of peptides. With increasing size, these IR spectra become very complex and to extract structural information, comparison with theoretical spectra is essential. Harmonic DFT calculations have become a common workhorse for predicting vibrational frequencies of small neutral and ionized gaseous peptides. Although the far-IR region (IR spectra of peptides. Here, Born-Oppenheimer molecular dynamics (BOMD) is applied to predict the far-IR signatures of two γ-turn peptides. Combining experiments and simulations, far-IR spectra can provide structural information on gas-phase peptides superior to that extracted from mid-IR and amide A features.

  15. Vibrational Spectra and Potential Energy Surface for Electronic Ground State of Jet-Cooled Molecule S2O

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The vibration states of transition molecule S2O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups U1(4) U2(4). We get all the vibration spectra of S2O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm-1. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S2O in the electronic ground state.

  16. Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bonatsos, Dennis; Lenis, D.; Minkov, N.; Petrellis, D.; Raychev, P.P.; Terziev, P.A

    2004-03-25

    Davidson potentials of the form {beta}{sup 2}+{beta}{sub 0}{sup 4}/{beta}{sup 2}, when used in the original Bohr Hamiltonian for {gamma}-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum L the value of {beta}{sub 0} at which the derivative of the energy ratio R{sub L}=E(L)/E(2) with respect to {beta}{sub 0} has a sharp maximum, the collection of R{sub L} values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.

  17. Ground State Bands of the E(5) and X(5) Critical Symmetries Obtained from Davidson Potentials through a Variational Procedure

    CERN Document Server

    Bonatsos, D; Minkov, N; Petrellis, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis

    2004-01-01

    Davidson potentials of the form $\\beta^2 +\\beta_0^4/\\beta^2$, when used in the original Bohr Hamiltonian for $\\gamma$-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum $L$ the value of $\\beta_0$ at which the derivative of the energy ratio $R_L=E(L)/E(2)$ with respect to $\\beta_0$ has a sharp maximum, the collection of $R_L$ values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy ...

  18. EOMCC over excited state Hartree-Fock solutions (ESHF-EOMCC: An efficient approach for the entire ground state potential energy curves of higher-order bonds

    Directory of Open Access Journals (Sweden)

    Y. Sajeev

    2015-08-01

    Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

  19. Theoreticalstudy of the structure and analytic potential energy function for the ground state of the PO2 molecule

    Institute of Scientific and Technical Information of China (English)

    Zeng Hui; Zhao Jun

    2012-01-01

    In this paper,the energy,equilibrium geometry,and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP,B3P86,CCSD(T),and QCISD(T) methods in conjunction with the 6-311++G(3df,3pd) and cc-pVTZ basis sets.A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df,3pd) method can give better energy calculation results for the PO2 molecule.It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1.The equilibrium parameters of the structure are Rp-O =0.1465 nm,∠OPO =134.96°,and the dissociation energy is Ed =19.218 eV.The bent vibrational frequency v1 =386 cm-1,symmetric stretching frequency v2 =1095 cm-1,and asymmetric stretching frequency v3 =1333 cm-1 are obtained.On the basis of atomic and molecular reaction statics,a reasonable dissociation limit for the ground state of the PO2 molecule is determined.Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory.The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  20. Effects of exchange-correlation potentials in density functional descriptions of ground-state and photoionization of fullerenes

    Science.gov (United States)

    Choi, Jinwoo; Chang, Eonho; Anstine, Dylan M.; Chakraborty, Himadri

    2016-05-01

    We study the ground state properties of C60 and C240 molecules in a spherical frame of local density approximation (LDA). Within this mean-field theory, two different approximations to the exchange-correlation (xc) functional are used: (i) The Gunnerson-Lundqvist parametrization augmented by a treatment to correct for the electron self-interaction and (ii) the van Leeuwen and Baerends (LB94) model potential that inclusively restores electron's asymptotic properties. Results show differences in the ground-state potential, level energies and electron densities between the two xc choices. We then use the ground structure to find the excited and ionized states of the systems and calculate dipole single-photoionization cross sections in a time-dependent LDA method that incorporates linear-response dynamical correlations. Comparative effects of the choices of xc on collective plasmon and single-excitation Auger resonances as well as on geometry driven cavity oscillations are found significant. The work is supported by the NSF, USA.

  1. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  2. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    Energy Technology Data Exchange (ETDEWEB)

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  3. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, Thibault, E-mail: thibault.delahaye@univ-reims.fr; Rey, Michaël, E-mail: michael.rey@univ-reims.fr; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation); Szalay, Péter G. [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  4. Atomic size zone interaction potential between two ground-state cold atoms

    CERN Document Server

    Wang, Zhaoying; Wu, Yunhan

    2016-01-01

    The complex-source-point model are already used in the exact solution for the urtrashort pulse and nonparaxial beam. In this letter we have used the complex-source-point model to deduce the interaction potential equation for the separation R between two atoms which is comparable with the size of the atoms. We show the result and the characteristics of the numerical calculation. Since the singular point around R=0 is removed by using the complex-source-point model, so that we can obtain the result force around R=0. With the decreasing of the distance between two atoms, the force switches from the electromagnetic force to the strong force by use our equation.

  5. Ground State Correlations Using exp(S) Method for the Argonne-v18 Potential.

    Science.gov (United States)

    Heisenberg, Jochen; Mihaila, Bogdan

    1997-04-01

    We use the Argonne-v18 potential together with the phenomenological three-nucleon interaction to do the calculation of the mean-field single particle wave functions and the correlation operator S for ^16O. Our correlation operator includes the contributions from up to 4p4h terms. From the three-nucleon interaction we include only those terms that can be written as a density dependent two-body term. We present a breakdown of the contributions to the binding from the two- and the three-body interactions. The one- and the two-body densities for ^16O are presented. Effects of the center-of-mass correction on the charge density and form factor are also discussed.

  6. Probing Lewis Acid-Base Interactions with Born-Oppenheimer Molecular Dynamics: The Electronic Absorption Spectrum of p-Nitroaniline in Supercritical CO2.

    Science.gov (United States)

    Cabral, Benedito J Costa; Rivelino, Roberto; Coutinho, Kaline; Canuto, Sylvio

    2015-07-02

    The structure and dynamics of p-nitroaniline (PNA) in supercritical CO2 (scCO2) at T = 315 K and ρ = 0.81 g cm(-3) are investigated by carrying out Born-Oppenheimer molecular dynamics, and the electronic absorption spectrum in scCO2 is determined by time dependent density functional theory. The structure of the PNA-scCO2 solution illustrates the role played by Lewis acid-base (LA-LB) interactions. In comparison with isolated PNA, the ν(N-O) symmetric and asymmetric stretching modes of PNA in scCO2 are red-shifted by -17 and -29 cm(-1), respectively. The maximum of the charge transfer (CT) absorption band of PNA in scSCO2 is at 3.9 eV, and the predicted red-shift of the π → π* electronic transition relative to the isolated gas-phase PNA molecule reproduces the experimental value of -0.35 eV. An analysis of the relationship between geometry distortions and excitation energies of PNA in scCO2 shows that the π → π* CT transition is very sensitive to changes of the N-O bond distance, strongly indicating a correlation between vibrational and electronic solvatochromism driven by LA-LB interactions. Despite the importance of LA-LB interactions to explain the solvation of PNA in scCO2, the red-shift of the CT band is mainly determined by electrostatic interactions.

  7. Effects of the Born-Oppenheimer approximation in the electronic band structure of MgB{sub 2} and ZrB{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Vivien; Rosner, Helge [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2011-07-01

    Electronic band structure calculations are routinely applied to many problems in chemistry and physics. The methods rely on a number of approximations, where the treatment of exchange and correlation is a very prominent issue, probably the most prominent in the development of new density functionals in the framework of density functional theory (DFT). The present work highlights effects that arise from the more fundamental Born-Oppenheimer approximation. Based on this approximation, the original problem - the quantum-mechanical description of matter consisting of nuclei and electrons - is decomposed into a nuclear and an electronic problem, the latter of which is treated by electronic band structure methods. Utilizing the most common density functionals, the local density approximation (LDA) and the generalized gradient approximation (GGA), we observe deviations between experimental and theoretical de Haas van Alphen (dHvA) frequencies for MgB{sub 2} and ZrB{sub 2} that can be consistently understood by electron-phonon coupling effects, which the theory is lacking. The explanation is based on a highly accurate computation of dHvA frequencies indicating an electron-phonon coupling-induced shift of the electronic bands.

  8. The ground state of long-range Schrödinger equations and static qoverline{q} potential

    Science.gov (United States)

    Beccaria, Matteo; Metafune, Giorgio; Pallara, Diego

    2016-05-01

    Motivated by the recent results in arXiv:1601.05679 URL"/> about the quark-antiquark potential in {N} = 4 SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schrödinger operators -d^2/d{x^2}+λ V(x) with long-range potential V ( x). In particular, we consider even potentials obeying ∫ ℝ dx V( x) < 0 with large x asymptotics V ˜ - a/x 2 - b/x 3 + · · · . The associated Schrödinger operator is known to admit a bound state for λ → 0+, but the binding energy is rigorously non-analytic at λ = 0. Its asymptotic expansion starts at order {O} (λ), but contains higher corrections λ n log m λ with all 0 ≤ m ≤ n - 1 and standard Rayleigh-Schrödinger perturbation theory fails order by order in λ. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at {O} (λ3) in terms of quadratures. The method is tested on a soluble potential that is fully under control, and on various non-soluble cases as well. A supersymmetric case, arising in the study of the quark-antiquark potential in {N} = 6 ABJ(M) theory, is also exploited to provide a further non-trivial consistency check. Our analytical results confirm at third order a remarkable exponentiation of the leading infrared logarithms, first noticed in {N} = 4 SYM where it may be proved by Renormalization Group arguments. We prove this interesting feature at all orders at the level of the Schrödinger equation for general potentials in the considered class.

  9. The ground state of long-range Schrödinger equations and static qq̄ potential

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy); Metafune, Giorgio [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); Pallara, Diego [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-05-06

    Motivated by the recent results in http://arxiv.org/abs/1601.05679 about the quark-antiquark potential in N=4 SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schrödinger operators −((d{sup 2})/(dx{sup 2}))+λ V(x) with long-range potential V(x). In particular, we consider even potentials obeying ∫{sub ℝ}dx V(x)<0 with large x asymptotics V∼−a/x{sup 2}−b/x{sup 3}+⋯. The associated Schrödinger operator is known to admit a bound state for λ→0{sup +}, but the binding energy is rigorously non-analytic at λ=0. Its asymptotic expansion starts at order O(λ), but contains higher corrections λ{sup n} log{sup m} λ with all 0≤m≤n−1 and standard Rayleigh-Schrödinger perturbation theory fails order by order in λ. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at O(λ{sup 3}) in terms of quadratures. The method is tested on a soluble potential that is fully under control, and on various non-soluble cases as well. A supersymmetric case, arising in the study of the quark-antiquark potential in N=6 ABJ(M) theory, is also exploited to provide a further non-trivial consistency check. Our analytical results confirm at third order a remarkable exponentiation of the leading infrared logarithms, first noticed in N=4 SYM where it may be proved by Renormalization Group arguments. We prove this interesting feature at all orders at the level of the Schrödinger equation for general potentials in the considered class.

  10. Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 先晖; 谢代前

    1997-01-01

    A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A’)→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.

  11. The ground state of the ${\\rm H}_3^+$ molecular ion: a physics behind

    CERN Document Server

    Turbiner, A V

    2012-01-01

    Five physics mechanisms of interaction leading to binding of the ${\\rm H}_3^+$ molecular ion are identified, realized in a form of variational trial functions and their respective total energies are calculated. Each of them provides subsequently the most accurate approximation for the Born-Oppenheimer (BO) ground state energy among (two-three-seven)-parametric trial functions being correspondingly, H$_2$-molecule plus proton (two variational parameters), H$_2^+$-ion plus H-atom (three variational parameters) and generalized Guillemin-Zener (seven variational parameters). These trial functions are chosen following a criterion of physical adequacy, they include the electronic correlation in the exponential form $\\sim\\exp{(\\gamma r_{12})}$, where $\\gamma$ is a variational parameter. Superpositions of two different mechanisms of binding are investigated and a particular one, which is a generalized Guillemin-Zener plus H$_2$-molecule plus proton (ten variational parameters), provides the total energy at the equili...

  12. Five Electronic State Beyond Born-Oppenheimer Equations and Their Applications to Nitrate and Benzene Radical Cation.

    Science.gov (United States)

    Mukherjee, Soumya; Mukherjee, Bijit; Adhikari, Satrajit

    2017-08-24

    We present explicit form of Adiabatic to Diabatic Transformation (ADT) equations and expressions of non-adiabatic coupling terms (NACTs) for a coupled five-state electronic manifold in terms of ADT angles between electronic wave functions. ADT matrices eliminate the numerical instability arising from singularity of NACTs and transform the adiabatic Schrödinger equation to its diabatic form. Two real molecular systems NO3 and C6H6(+) (Bz(+)) are selectively chosen for the demonstration of workability of those equations. We examine the NACTs among the lowest five electronic states of the NO3 radical [X̃(2)A2(') (1(2)B2), Ã(2)E″ (1(2)A2 and 1(2)B1) and B̃(2)E' (1(2)A1 and 2(2)B2)], in which all types of non-adiabatic interactions, that is, Jahn-Teller (JT) interactions, Pseudo Jahn-Teller (PJT) interactions, and accidental conical intersections (CIs) are present. On the other hand, lowest five electronic states of Bz(+) [X̃(2)E1g (1(2)B3g and 1(2)B2g), B̃(2)E2g (1(2)Ag and 1(2)B1g), and C̃(2)A2u (1(2)B1u)] depict similar kind of complex feature of non-adiabatic effects. For NO3 radical, the two components of degenerate in-plane asymmetric stretching mode are taken as a plane of nuclear configuration space (CS), whereas in case of Bz(+), two pairs are chosen: One is the pair of components of degenerate in-plane asymmetric stretching mode, and the other one is constituted with one of the components each from out-of-plane degenerate bend and in-plane degenerate asymmetric stretching modes. We calculate ab initio adiabatic potential energy surfaces (PESs) and NACTs among the lowest five electronic states at the CASSCF level using MOLPRO quantum chemistry package. Subsequently, the ADT is performed using those newly developed equations to validate the positions of the CIs, evaluate the ADT angles and construct smooth, symmetric, and continuous diabatic PESs for both the molecular systems.

  13. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  14. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quad-ratic Terms in Non-commutative Two Dimensional Real Spaces and Phases

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...

  15. Ground-State Energy as a Simple Sum of Orbital Energies in Kohn-Sham Theory: A Shift in Perspective through a Shift in Potential

    CERN Document Server

    Levy, Mel

    2016-01-01

    It is observed that the exact interacting ground-state electronic energy of interest may be obtained directly, in principle, as a simple sum of orbital energies when a universal density-dependent term is added to $w\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$, the familiar Hartree plus exchange-correlation component in the Kohn-Sham effective potential. The resultant shifted potential, $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$, actually changes less on average than $w\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ when the density changes, including the fact that $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ does not undergo a discontinuity when the number of electrons increases through an integer. Thus the approximation of $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ represents an alternative direct approach for the approximation of the ground-state energy and density.

  16. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  17. Ground state of 16O

    Science.gov (United States)

    Pieper, Steven C.; Wiringa, R. B.; Pandharipande, V. R.

    1990-01-01

    A variational method is used to study the ground state of 16O. Expectation values are computed with a cluster expansion for the noncentral correlations in the wave function; the central correlations and exchanges are treated to all orders by Monte Carlo integration. The expansion has good convergence. Results are reported for the Argonne v14 two-nucleon and Urbana VII three-nucleon potentials.

  18. Effects of a dimple potential on the ground-state properties of a quasi-one-dimensional Bose–Einstein condensate with two- and three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, Elife Ö.

    2015-04-01

    The ground state of a quasi-one-dimensional interacting Bose gas confined by a harmonic plus Gaussian dimple potential is studied within the variational approach and also Gross–Pitaevskii mean-field approximation. The effect of the superimposed dimple trap on the order parameter, the chemical and effective potentials of the system is analyzed for repulsive and attractive two- as well as three-body interactions between the particles. The results obtained from both methods show that the characteristics of the trap such as the width and depth of the dimple affect the corresponding ground state properties of the system in a qualitatively similar way to the repulsive and attractive interatomic interactions, respectively. - Highlights: • We study the effects of a dimple potential on a quasi-1D Bose-Einstein condensate. • We used variational and Gross-Pitaevskii mean-field approaches. • The width of the dimple affects the system similarly to repulsive interaction. • The depth of the dimple affects the system similarly to attractive interaction.

  19. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  20. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  1. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-04-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+..gamma../sup 0/)(ar/sup 2/+V/sub 0/ ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant ..cap alpha../sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.

  2. Ground State Energy Calculations of Isoelectronic Series of He in Double-Zeta Approximation Using Coulomb Potential with Noninteger Indices

    Institute of Scientific and Technical Information of China (English)

    GUSEINOV I.Israfil; AKSU Hüseyin

    2008-01-01

    @@ Using formulae for one-and two-electron integrals of Coulomb interaction potential fk(r)=r-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of Ψa-exponential-type orbitals(a=1,0,-1,-2,…),we perform the calculations for isoelectronic series of the He atom containing nuclear charges from 2 to 10,where k=1-μ(-1<μ<0).For this purpose we have used the dogble-zeta approximation,the configuration interaction and coupled-cluster methods employing the integer-n Slater-type orbitals as basis sets.It is demonstrated that the results of calculations obtained are better than the numerical Hartree-Fock values.

  3. Liberation of H2 from (o-C6H4Me)3P—H(+) + (-)H—B(p-C6F4H)3 ion-pair: A transition-state in the minimum energy path versus the transient species in Born-Oppenheimer molecular dynamics

    Science.gov (United States)

    Pu, Maoping; Heshmat, Mojgan; Privalov, Timofei

    2017-07-01

    Using Born-Oppenheimer molecular dynamics (BOMD) with density functional theory, transition-state (TS) calculations, and the quantitative energy decomposition analysis (EDA), we examined the mechanism of H2-liberation from LB—H(+) + (-)H—LA ion-pair, 1, in which the Lewis base (LB) is (o-C6H4Me)3P and the Lewis acid (LA) is B(p-C6F4H)3. BOMD simulations indicate that the path of H2 liberation from the ion-pair 1 goes via the short-lived transient species, LB⋯H2⋯LA, which are structurally reminiscent of the TS-structure in the minimum-energy-path describing the reversible reaction between H2 and (o-C6H4Me)3P/B(p-C6F4H)3 frustrated Lewis pair (FLP). With electronic structure calculations performed on graphics processing units, our BOMD data-set covers more than 1 ns of evolution of the ion-pair 1 at temperature T ≈ 400 K. BOMD simulations produced H2-recombination events with various durations of H2 remaining fully recombined as a molecule within a LB/LA attractive "pocket"—from very short vibrational-time scale to time scales in the range of a few hundred femtoseconds. With the help of perturbational approach to trajectory-propagation over a saddle-area, we directly examined dynamics of H2-liberation. Using EDA, we elucidated interactions between the cationic and anionic fragments in the ion-pair 1 and between the molecular fragments in the TS-structure. We have also considered a model that qualitatively takes into account the potential energy characteristics of H—H recombination and H2-release plus inertia of molecular motion of the (o-C6H4Me)3P/B(p-C6F4H)3 FLP.

  4. MCSCF/CI ground state potential energy surface, dipole moment function, and gas phase vibrational frequencies for the nitrogen dioxide positive ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D.G.

    1980-05-01

    The ground state potential energy surface for the nitrogen dioxide positive ion, NO/sup +//sub 2/X /sup 1/..sigma../sup +//sub g/(..sigma../sup +/,A/sub 1/,A'), has been scanned with a correlated wave function to obtain directly, for the first time, the gas phase equilibrium geometry, force constants, vibrational frequencies, and dipole moment function. The wave function for this scan was constructed from a double-zeta plus polarization one-electron basis with a 12 configuration MCSCF determination of the orbital basis for a full valence /sup 1/..sigma../sup +//sub g/ configuration interaction expansion. The calculated equilibrium bond length is 1.12 A. The vibrational frequencies are computed to be ..nu../sub 1/=1514, ..nu../sub 2/=679, and ..nu../sub 3/=2614 cm/sup -1/ The present ab initio results differ significantly from crystalline spectroscopic studies and are, thus, the best values available for the gas phase vibrational frequencies. The dipole moment function is nonzero at the ..sigma../sup +/, A/sub 1/, and A' geometries included in the potential surface scan, and is obtained here to provide for the future a priori calculation of the infrared band intensities.

  5. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    Science.gov (United States)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  6. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  7. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  8. The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential

    Science.gov (United States)

    Liu, Yan; Zhang, Su-Ying

    2016-09-01

    The ground states of two-component miscible Bose-Einstein condensates (BECs) confined in a rotating annular trap are obtained by using the Thomas-Fermi (TF) approximation method. The ground state density distribution of the condensates experiences a transition from a disc shape to an annulus shape either when the angular frequency increases and the width and the center height of the trap are fixed, or when the width and the center height of the trap increase and the angular frequency is fixed. Meantime the numerical solutions of the ground states of the trapped two-component miscible BECs with the same condition are obtained by using imaginary-time propagation method. They are in good agreement with the solutions obtained by the TF approximation method. The ground states of the trapped two-component immiscible BECs are also given by using the imaginary-time propagation method. Furthermore, by introducing a normalized complex-valued spinor, three kinds of pseudospin textures of the BECs, i.e., giant skyrmion, coaxial double-annulus skyrmion, and coaxial three-annulus skyrmion, are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 91430109 and 11404198), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  9. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  10. Interpolation of multi-sheeted multi-dimensional potential-energy surfaces via a linear optimization procedure.

    Science.gov (United States)

    Opalka, Daniel; Domcke, Wolfgang

    2013-06-14

    Significant progress has been achieved in recent years with the development of high-dimensional permutationally invariant analytic Born-Oppenheimer potential-energy surfaces, making use of polynomial invariant theory. In this work, we have developed a generalization of this approach which is suitable for the construction of multi-sheeted multi-dimensional potential-energy surfaces exhibiting seams of conical intersections. The method avoids the nonlinear optimization problem which is encountered in the construction of multi-sheeted diabatic potential-energy surfaces from ab initio electronic-structure data. The key of the method is the expansion of the coefficients of the characteristic polynomial in polynomials which are invariant with respect to the point group of the molecule or the permutation group of like atoms. The multi-sheeted adiabatic potential-energy surface is obtained from the Frobenius companion matrix which contains the fitted coefficients. A three-sheeted nine-dimensional adiabatic potential-energy surface of the (2)T2 electronic ground state of the methane cation has been constructed as an example of the application of this method.

  11. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H-(NH3) and NH4-

    Science.gov (United States)

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J.; Li, Jun; Guo, Hua; Continetti, Robert E.

    2016-06-01

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4- represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H-(NH3) ion-dipole complex and the NH4- DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  12. Superimposed particles in 1D ground states

    Energy Technology Data Exchange (ETDEWEB)

    Sueto, Andras, E-mail: suto@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-01-21

    For a class of nonnegative, range-1 pair potentials in one-dimensional continuous space we prove that any classical ground state of lower density {>=}1 is a tower-lattice, i.e. a lattice formed by towers of particles the heights of which can differ only by 1, and the lattice constant is 1. The potential may be flat or may have a cusp at the origin; it can be continuous, but its derivative has a jump at 1. The result is valid on finite intervals or rings of integer length and on the whole line.

  13. Non-adiabatic effects within a single thermally-averaged potential energy surface: Thermal expansion and reaction rates of small molecules

    CERN Document Server

    Alonso, J L; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-01-01

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born--Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accomodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equibrium distribution for the electronic part. With the help of this effective potential, we show that thermally-activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn$_2$, where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction rate const...

  14. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  15. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  16. Refined ab initio intermolecular ground-state potential energy surface for the He-C2H2 van der Waals complex

    DEFF Research Database (Denmark)

    Fernández, Berta; Henriksen, Christian; Farrelly, David

    2013-01-01

    , are fitted to a 15-parameter analytic function. The potential is characterised by minima of-24.21 cm-1 at distances between the rare gas atom and the C2H2 centre of mass of 4.3453 Å, and with the complex in a linear configuration. At intermediate distances the surface is rather similar to that developed...

  17. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  18. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    Science.gov (United States)

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  19. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  20. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    Science.gov (United States)

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm(-1) and the barrier for the double-proton transfer on the PES is 2848 cm(-1), in good agreement with the directly-calculated ab initio value of 2853 cm(-1). The zero-point vibrational energy of 15 337 ± 7 cm(-1) is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm(-1), which is roughly twice the experimental value. The tunneling splittings of (DCOOH)2 and (DCOOD)2 from one to three mode calculations are, as expected, smaller than that for (HCOOH)2 and consistent with experiment.

  1. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  2. On the ground state of metallic hydrogen

    Science.gov (United States)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  3. A global approach to ground state solutions

    Directory of Open Access Journals (Sweden)

    Philip Korman

    2008-08-01

    Full Text Available We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  4. A global approach to ground state solutions

    OpenAIRE

    2008-01-01

    We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  5. Investigating the ground-state rotamers of n-propylperoxy radical

    Science.gov (United States)

    Hoobler, Preston R.; Turney, Justin M.; Schaefer, Henry F.

    2016-11-01

    The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol-1 above GG), trans-gauche (0.44 kcal mol-1), gauche'-gauche (0.47 kcal mol-1), and trans-trans (0.57 kcal mol-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm-1 for the GG structure) also has a significant IR intensity, 19.6 km mol-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged rg,0K bond lengths, accounting for zero-point vibrations present within the molecule.

  6. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Directory of Open Access Journals (Sweden)

    S. Torquato

    2015-05-01

    Full Text Available It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded long-ranged pair potentials (similar to Friedel oscillations have classical ground states that are (counterintuitively disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space R^{d} is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility that apply to any ground-state ensemble as a function of ρ in any d, and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g_{2}(r and structure factor S(k must obey for any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit by exploiting an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g_{2}(r and S(k are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive

  7. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Science.gov (United States)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  8. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  9. Ground states for nonuniform periodic Ising chains

    Science.gov (United States)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  10. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  11. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  12. Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-03-01

    Full Text Available This article concerns the ground state solutions of nonlinear fractional Schrodinger equations involving critical growth. We obtain the existence of ground state solutions when the potential is not a constant and not radial. We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity condition on the nonlinearity.

  13. Local reversibility and entanglement structure of many-body ground states

    CERN Document Server

    Kuwahara, Tomotaka; Amico, Luigi; Vedral, Vlatko

    2015-01-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are ...

  14. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  15. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  16. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  17. Thermal ground state and nonthermal probes

    CERN Document Server

    Grandou, Thierry

    2015-01-01

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  18. Electronic ground state of Ni$_2^+$

    CERN Document Server

    Zamudio-Bayer, V; Bülow, C; Leistner, G; Terasaki, A; Issendorff, B v; Lau, J T

    2016-01-01

    The $^{4}\\Phi_{9/2}$ ground state of the Ni$_2^+$ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of $7.4 \\pm 0.2$ K was achieved by buffer gas cooling of the molecular ion. The contribution of the magnetic dipole term to the x-ray magnetic circular dichroism spin sum rule amounts to $7\\, T_z = 0.17 \\pm 0.06$ $\\mu_B$ per atom, approximately 11 \\% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of $3d$ transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  19. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  20. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  1. Ground states for the fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2013-05-01

    Full Text Available In this article, we show the existence of ground state solutions for the nonlinear Schrodinger equation with fractional Laplacian $$ (-Delta ^alpha u+ V(xu =lambda |u|^{p}uquadhbox{in $mathbb{R}^N$ for $alpha in (0,1$}. $$ We use the concentration compactness principle in fractional Sobolev spaces $H^alpha$ for $alpha in (0,1$. Our results generalize the corresponding results in the case $alpha =1$.

  2. Electronic Ground State of Higher Acenes

    CERN Document Server

    Jiang, De-en

    2007-01-01

    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic grou...

  3. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  4. Alternative ground states enable pathway switching in biological electron transfer

    Science.gov (United States)

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  5. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...... equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface...

  6. Nuclear Rotations and the Born--Oppenheimer Method

    Science.gov (United States)

    Zettili, Nouredine

    2009-10-01

    We want to discuss the study of nuclear rotations and collective motion within the context of the nuclear Born--Oppenheirmer (NBO) method--a truly quantum mechanical method. As an illustration, we apply the NBO method to study permanently deformed (non-spherical) nuclei; in particular, we study nuclei that are axially-symmetric and even, but with non-closed shells. In the presentation, we focus on the derivation of formal expressions for the energy and for the moment of inertia. Using trial functions in which the intrinsic structure is described in a mean-field approximation, we then show that the NBO formalism yields the Thouless-Valantin formula for the moment of inertia and that this moment of inertia increases with angular momentum, in agreement with experimental data. We show that the NBO formalism is well equipped to describe low-lying as well as high lying rotational states. Additionally, we establish a connection between the NBO method and the self-consistent Cranking (SCC) model, which is known to be successful in reproducing vast amounts of experimental data ranging from low-lying rotational states to high angular momentum states.

  7. On the Born-Oppenheimer approximation of diatomic molecular resonances

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, André, E-mail: andre.martinez@unibo.it; Sordoni, Vania, E-mail: vania.sordoni@unibo.it [Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 40127 Bologna (Italy)

    2015-10-15

    We give a new reduction of a general diatomic molecular Hamiltonian, without modifying it near the collision set of nuclei. The resulting effective Hamiltonian is the sum of a smooth semiclassical pseudodifferential operator (the semiclassical parameter being the inverse of the square-root of the nuclear mass) and a semibounded operator localised in the elliptic region corresponding to the nuclear collision set. We also study its behaviour on exponential weights and give several applications where molecular resonances appear and can be well located.

  8. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  9. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  10. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  11. Alpha decay of even-even nuclei in the region 78{<=}Z{<=}102 to the ground state and excited states of daughter nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.co [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India); Sahadevan, Sabina; Joseph, Jayesh George [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)

    2011-01-15

    Alpha half lives, branching ratios and hindrance factors of even-even nuclei in the range 78{<=}Z{<=}102 from ground state to ground state and ground state to excited states of daughter nuclei are computed using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half life values and branching ratios are compared with experimental data and they are in good agreement. The standard deviation of half life and branching ratio are 0.79 and 0.94 respectively. It is found that the standard deviation of branching ratio for the ground state to ground state transition is only 0.25 and it increases as we move to the higher excited states which are due to the effect of nuclear structure. It is evident from the study that our ground state decay model is apt for describing not only the ground state to ground state decay but also decay to excited state.

  12. Hartree–Fock variational bounds for ground state energy of chargeless fermions with finite magnetic moment in the presence of a hard core potential: A stable ferromagnetic state

    Indian Academy of Sciences (India)

    Sudhanshu S Jha; S D Mahanti

    2007-05-01

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities when the average interparticle distance 0 becomes small compared to the magnetic length m ≡ 22/ħ2, a ferromagnetic state with spheroidal occupation function ↑ $(\\vec{k})$, involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards infinite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants cm ≡ (03/2) is not very smallcompared to 1.

  13. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  14. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  15. Potential energy curves for the interaction of Ag(5s) and Ag(5p) with noble gas atoms

    CERN Document Server

    Loreau, J; Dalgarno, A

    2013-01-01

    We investigate the interaction of ground and excited states of a silver atom with noble gases (NG), including helium. Born-Oppenheimer potential energy curves are calculated with quantum chemistry methods and spin-orbit effects in the excited states are included by assuming a spin-orbit splitting independent of the internuclear distance. We compare our results with experimentally available spectroscopic data, as well as with previous calculations. Because of strong spin-orbit interactions, excited Ag-NG potential energy curves cannot be fitted to Morse-like potentials. We find that the labeling of the observed vibrational levels has to be shifted by one unit.

  16. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  17. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  18. Ground state structures and properties of small hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    R Prasad

    2003-01-01

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon atoms. We find that in the case of a compact and closed silicon cluster hydrogen bonds to the silicon cluster from outside. To understand the structural evolutions and properties of silicon cluster due to hydrogenation, we have studied the cohesive energy and first excited electronic level gap of clusters as a function of hydrogenation. We find that first excited electronic level gap of Si and SiH fluctuates as function of size and this may provide a first principle basis for the short-range potential fluctuations in hydrogenated amorphous silicon. The stability of hydrogenated silicon clusters is also discussed.

  19. Ground-state correlations within a nonperturbative approach

    Science.gov (United States)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  20. Theoretical study on thermal decomposition of azoisobutyronitrile in ground state

    Institute of Scientific and Technical Information of China (English)

    SUN Chengke; ZHAO Hongmei; LI Zonghe

    2004-01-01

    The thermal decomposition mechanisms of azoisobutyronitrile (AIBN) in the ground state have been investigated systematically. Based on the potential energy surfaces (PES) of various possible dissociation paths obtained using the semiempirical AM1 method with partial optimization, the density function theory B3LYP/6-311G* method was employed to optimize the geometric parameters of the reactants, the intermediates, the products and the transition states,which were further confirmed by the vibrational analysis. The obtained results show that the reaction process of the two-bond (three-body) simultaneous cleavage Me2(CN)C-N=Nleading to the reaction proceeding in the former pathway. The calculation results were consistent with all the experimental facts.

  1. v-representability and density functional theory. [for nonrelativistic electrons in nondegenerate ground state

    Science.gov (United States)

    Kohn, W.

    1983-01-01

    It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

  2. Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang

    2008-01-01

    The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.

  3. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  4. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  5. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  6. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  7. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  8. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  9. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION

    Institute of Scientific and Technical Information of China (English)

    张建; 唐先华; 张文

    2014-01-01

    This article is concerned with the nonlinear Dirac equations Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  10. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  11. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  12. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  13. Quench of a symmetry-broken ground state

    Science.gov (United States)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  14. Theoretical Studies on Thermal Decomposition of Benzoyl Peroxide in Ground State

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-ke; YANG Si-ya; LIN Xue-fei; MA Si-yu; LI Zong-he

    2003-01-01

    Systematic studies of the thermal decomposition mechanism of benzoyl peroxide(BPO) in ground state, leading to various intermediates, products and the potential energy surface(PES) of possible dissociation reactions were made computationally. The structures of the transition states and the activation energies for all the paths causing the formation of the reaction products mentioned above were calculated by the AM1 semi-empirical method. This method is shown to to be one predict correctly the preferred pathway for the title reaction. It has been found that in ground state, the thermal decomposition of benzoyl peroxide has two kinds of paths. The first pathway PhC(O)O-OC(O)Ph→PhC(O)O*→Ph*+CO2 produces finally phenyl radicals and carbon dioxide. And the second pathway PhC(O)OO-C(O)Ph→PhC(O)OO*+PhC(O)*→PhC(O)*+O2→Ph*+CO+O2, via which the reaction takes place only in two steps, produces oxygen and PhC(O)* radicals, and the further thermal dissociation of PhC(O)* is quite difficult because of the high activation energy in ground state. The calculated activation energies and reaction enthalpies are in good agreement with the experimental values. The research results also show that also the thermal dissociation process of the two bonds or the three bonds for the benzoyl peroxide doesn′t take place in ground state.

  15. The preformation probability inside Alpha-emitters having different ground state spin-parity than daughters

    CERN Document Server

    Seif, W M; Refaie, A I

    2015-01-01

    The ground-state spin and parity of a formed daughter in the radioactive Alpha-emitter is expected to influence the preformation probability of the Alpha and daughter clusters inside it. We investigate the Alpha and daughter preformation probability inside odd-A and doubly-odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground-state to ground-state unfavored decays. This is to extract precise information about the effect of the difference in the ground states spin-parity of the involved nuclei far away any influences from the excitation energy if the decays are coming from isomeric states. The calculations are done for 161 Alpha-emitters, with Z=65-112 and N=84-173, in the framework of the extended cluster model, with WKB penetrability and assault frequency. We used a Hamiltonian energy density scheme based on Skyrme-SLy4 interaction to compute the interaction potential. The Alpha plus cluster preformation probability is extracted from the calculat...

  16. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    Science.gov (United States)

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  17. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    Science.gov (United States)

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  18. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  19. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  20. Analysis of ground state in random bipartite matching

    CERN Document Server

    Shi, Gui-Yuan; Liao, Hao; Zhang, Yi-Cheng

    2015-01-01

    In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some intrinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.

  1. Ground states of the SU(N) Heisenberg model.

    Science.gov (United States)

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  2. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  3. Candidates for Long Lived High-K Ground States in Superheavy Nuclei

    CERN Document Server

    Jachimowicz, P; Skalski, J

    2015-01-01

    On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...

  4. Classical and quantum filaments in the ground state of trapped dipolar Bose gases

    Science.gov (United States)

    Cinti, Fabio; Boninsegni, Massimo

    2017-07-01

    We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.

  5. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality of...

  6. Borromean ground state of fermions in two dimensions

    DEFF Research Database (Denmark)

    G. Volosniev, A.; V. Fedorov, D.; S. Jensen, A.;

    2014-01-01

    -body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states...

  7. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  8. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  9. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  10. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.;

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...

  11. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  12. Generalized Klein-Gordon models: Behavior around the ground state condensate

    Science.gov (United States)

    Kuetche, Victor K.

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  13. Generalized Klein-Gordon models: behavior around the ground state condensate.

    Science.gov (United States)

    Kuetche, Victor K

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  14. VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES

    Institute of Scientific and Technical Information of China (English)

    WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN

    2001-01-01

    Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.

  15. The ground state of medium-heavy nuclei with non central forces

    CERN Document Server

    Fabrocini, A

    1997-01-01

    We study microscopically the ground state properties of 16O and 40Ca nuclei within correlated basis function theory. A truncated version of the realistic Urbana v14 (U14) potential, without momentum dependent terms, is adopted with state dependent correlations having spin, isospin and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are used to evaluate one- and two-body densities and ground state energy. The results are in good agreement with the available variational MonteCarlo data, providing a first substantial check for the accuracy of the cluster expansion method with state dependent correlations. The finite nuclei treatment of non central interactions and correlations has, at least, the same level of accuracy as in infinite nuclear matter. The binding energy for the full U14+TNI interaction is computed, addressing its small momentum dependent contributions in local density approximation. The nuclei are underbound by about 1 MeV per nucleon. Further e...

  16. Systematic study of α preformation probability of nuclear isomeric and ground states

    Science.gov (United States)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  17. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  18. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  19. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  20. Borromean ground state of fermions in two dimensions

    Science.gov (United States)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2014-09-01

    The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body Borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of Borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a Borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the Borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.

  1. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  2. Cluster expansion for ground states of local Hamiltonians

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  3. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  4. Non-uniform ground state for the Bose gas

    OpenAIRE

    2000-01-01

    We study the ground state, sum a_X |X>, of N hard-core bosons on a finite lattice in configuration space, X={x_1,...,x_N}. All a_X being positive, the ratios a_X / sum a_Y can be interpreted as probabilities P_a (X). Let E denote the energy of the ground state and B_X the number of nearest-neighbor particle-hole pairs in the configuration X. We prove the concentration of P_a to X's with B_X in a sqrt(|E|)-neighborhood of |E|, show that the average of a_X over configurations with B_X=n increas...

  5. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  6. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  7. EIT ground-state cooling of long ion strings

    CERN Document Server

    Lechner, R; Hempel, C; Jurcevic, P; Lanyon, B P; Monz, T; Brownnutt, M; Blatt, R; Roos, C F

    2016-01-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  8. Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.

  9. Cluster expansion for ground states of local Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)

    2016-08-15

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  10. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  11. Terahertz spectroscopy of ground state HD18O

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  12. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field.

    Science.gov (United States)

    Lim, Fong Yin; Bao, Weizhu

    2008-12-01

    We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of a third normalization condition, together with two physical constraints on the conservation of total mass and conservation of total magnetization. Different treatments of the Zeeman energy terms are found to yield different numerical accuracies and stabilities. Numerical comparison between different numerical schemes is made, and the best scheme is identified. The numerical scheme is then applied to compute the condensate ground state in a harmonic plus optical lattice potential, and the effect of the periodic potential, in particular to the relative population of each hyperfine component, is investigated through comparison to the condensate ground state in a pure harmonic trap.

  13. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  14. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  15. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  16. Reduced M(atrix) theory models: ground state solutions

    CERN Document Server

    López, J L

    2015-01-01

    We propose a method to find exact ground state solutions to reduced models of the SU($N$) invariant matrix model arising from the quantization of the 11-dimensional supermembrane action in the light-cone gauge. We illustrate the method by applying it to lower dimensional toy models and for the SU(2) group. This approach could, in principle, be used to find ground state solutions to the complete 9-dimensional model and for any SU($N$) group. The Hamiltonian, the supercharges and the constraints related to the SU($2$) symmetry are built from operators that generate a multicomponent spinorial wave function. The procedure is based on representing the fermionic degrees of freedom by means of Dirac-like gamma matrices, as was already done in the first proposal of supersymmetric (SUSY) quantum cosmology. We exhibit a relation between these finite $N$ matrix theory ground state solutions and SUSY quantum cosmology wave functions giving a possible physical significance of the theory even for finite $N$.

  17. Mixed configuration ground state in iron(II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-23

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  18. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  19. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  20. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  1. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  2. Study of some electronics properties of new superconductor Sr2VO3FeAs in ground state

    Directory of Open Access Journals (Sweden)

    M Majidiyan

    2010-09-01

    Full Text Available In this paper, some electronics properties of new superconductor Sr2VO3FeAs, such as density of states, band structure, density of electron cloud and bound lengths in the ground state have been calculated. According to N(Ef in ground state CV/T value has been estimated. The calculations were performed in the framework of density functional theory (DFT, using the full potential linearized augmented plane wave (FP-LAPW method with the general gradient approximation (GGA.

  3. First principles molecular dynamics without self-consistent field optimization

    CERN Document Server

    Souvatzis, Petros

    2013-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) costruction are required in each integration time step. The proposed dy- namics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents an ideal starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents ...

  4. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...

  5. Ground State Correlations and the Multiconfiguration Mixing Method

    CERN Document Server

    Pillet, N; Van Giai, N; Berger, J F; Giai, Nguyen Van

    2004-01-01

    We study the convergence properties of a truncation scheme in describing the ground state properties of a many-particle system of fermions. The model wave function is built within a multiconfiguration mixing approach where the many-body wave function is described as a superposition of multiparticle-multihole configurations constructed upon a Slater determinant. The convergence properties of physical quantities such as correlation energies and single-particle occupation probabilities in terms of the increasing number of particle-hole configurations are investigated for the case of an exactly solvable pairing hamiltonian.

  6. Ground-state spin of {sup 59}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Koester, U.; Aeystoe, J. [CERN, Geneva (Switzerland). EP Div.; Fedoseyev, V.; Mishin, V. [Rossijskaya Akademiya Nauk, Troitsk (Russian Federation). Inst. Spektroskopii; Huikari, J.; Jokinen, A.; Nieminen, A.; Peraejaervi, K. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Knipper, A.; Walter, G. [Institute de Recherches Subatomiques, 67 - Strasbourg (France)

    2001-02-01

    Beta-decay of {sup 59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured {beta}-decay rates the ground-state spin and parity are proposed to be J{sup {pi}} = 5/2{sup -}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line. (orig.)

  7. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  8. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M

    2012-01-01

    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  9. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  10. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  11. Fate of the Superconducting Ground State on the Moyal Plane

    CERN Document Server

    Basu, Prasad; Vaidya, Sachindeo

    2009-01-01

    It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is {\\it smaller} compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt.

  12. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    Science.gov (United States)

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  13. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  14. Photoabsorption by ground-state alkali-metal atoms.

    Science.gov (United States)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  15. Uniqueness of ground states of some coupled nonlinear Schrodinger systems and their application

    OpenAIRE

    MA,LI; Lin ZHAO

    2007-01-01

    We establish the uniqueness of ground states of some coupled nonlinear Schrodinger systems in the whole space. We firstly use Schwartz symmetrization to obtain the existence of ground states for a more general case. To prove the uniqueness of ground states, we use the radial symmetry of the ground states to transform the systems into an ordinary differential system, and then we use the integral forms of the system. More interestingly, as an application of our uniqueness results, we derive a s...

  16. Ground state for CH2 and symmetry for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Wen-Lang; Ruan Wen; Jiang Gang; Zhu Zheng-He

    2008-01-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, I.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) I.e. CH4→CH2+H2, is forbidden and the decomposition type (2) I.e. CH4→CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  17. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  18. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  19. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    Science.gov (United States)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  20. Spatial competition of the ground states in 1111 iron pnictides

    Science.gov (United States)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  1. On the nature of the oligoacene ground state

    Science.gov (United States)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  2. The ground state of the D=11 supermembrane and matrix models on compact regions

    CERN Document Server

    Boulton, L; Restuccia, A

    2015-01-01

    We establish a general framework for the analysis of boundary value problems at zero energy of matrix models on compact regions. This allows us to prove existence and uniqueness of ground state wavefunctions for the mass operator of the D=11 regularized supermembrane theory (and therefore the N=16 supersymmetric matrix model) on a ball of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.

  3. Ground State Correlations Using exp(S) Method for the ^16O Nucleus.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    1998-04-01

    We use the Argonne-v18 potential together with a phenomenological three-nucleon interaction to do the calculation of the mean-field single particle wave functions and the correlation operator describing the ground state of the ^16O nucleus. Our correlation operator includes the contributions from up to 4p4h terms. We present a breakdown of the contributions to the binding from the two- and the three-body interactions. The one- and the two-body densities for ^16O are presented. Effects of the center-of-mass correction on the charge density and form factor are also discussed.

  4. The ground state of the D = 11 supermembrane and matrix models on compact regions

    Science.gov (United States)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2016-09-01

    We establish a general framework for the analysis of boundary value problems of matrix models at zero energy on compact regions. We derive existence and uniqueness of ground state wavefunctions for the mass operator of the D = 11 regularized supermembrane theory, that is the N = 16 supersymmetric SU (N) matrix model, on balls of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.

  5. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Leon, H., E-mail: hleon@imre.oc.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, Zapata e/ Mazon y G. Vedado, 10400 La Habana (Cuba)

    2013-02-15

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112{sup Macron }] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: Black-Right-Pointing-Pointer Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. Black-Right-Pointing-Pointer Numerical results are presented for distorted fcc [001] structures. Black-Right-Pointing-Pointer The lowest energy of a system depends on how the tetragonal distortion is achieved. Black-Right-Pointing-Pointer A striped phase with magnetization in the [112{sup Macron }] direction is the

  6. Ground-state rotational constants of 12CH 3D

    Science.gov (United States)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  7. LABS problem and ground state spin glasses system

    Science.gov (United States)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  8. Eigenvectors in the superintegrable model II: ground-state sector

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yang, Helen; Perk, Jacques H H [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)], E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu

    2009-09-18

    In 1993, Baxter gave 2{sup m{sub Q}} eigenvalues of the transfer matrix of the N-state superintegrable chiral Potts model with the spin-translation quantum number Q, where m{sub Q} = lfloor(NL - L - Q)/Nrfloor. In our previous paper we studied the Q = 0 ground-state sector, when the size L of the transfer matrix is chosen to be a multiple of N. It was shown that the corresponding {tau}{sub 2} matrix has a degenerate eigenspace generated by the generators of r = m{sub 0} simple sl{sub 2} algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators E{sup {+-}}{sub m} and H{sub m} for m = 1, ..., r. Moreover, the corresponding 2{sup r} eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of H{sub m}.

  9. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  10. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  11. Ground-State Properties of Charged Bosons Confined in a One-Dimensional Harmonic Double-Well Trap: Diffusion Monte Carlo Calculations

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; TANG Yi

    2007-01-01

    The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually, the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition,by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.

  12. Thermodynamic framework for the ground state of a simple quantum system

    Science.gov (United States)

    Souza, Andre M. C.; Nobre, Fernando D.

    2017-01-01

    The ground state of a two-level system (associated with probabilities p and 1 -p , respectively) defined by a general Hamiltonian H ̂=Ĥ0+λ V ̂ is studied. The simple case characterized by λ =0 , whose Hamiltonian Ĥ0 is represented by a diagonal matrix, is well established and solvable within Boltzmann-Gibbs statistical mechanics; in particular, it follows the third law of thermodynamics, presenting zero entropy (SBG=0 ) at zero temperature (T =0 ). Herein it is shown that the introduction of a perturbation λ V ̂ (λ >0 ) in the Hamiltonian may lead to a nontrivial ground state, characterized by an entropy S [p ] (with S [p ] ≠SBG[p ] ), if the Hermitian operator V ̂ is represented by a 2 ×2 matrix, defined by nonzero off-diagonal elements V12=V21=-z , where z is a real positive number. Hence, this new term in the Hamiltonian, presenting V12≠0 , may produce physically significant changes in the ground state, and especially, it allows for the introduction of an effective temperature θ (θ ∝λ z ), which is shown to be a parameter conjugated to the entropy S . Based on this, one introduces an infinitesimal heatlike quantity, δ Q =θ d S , leading to a consistent thermodynamic framework, and by proposing an infinitesimal form for the first law, a Carnot cycle and thermodynamic potentials are obtained. All results found are very similar to those of usual thermodynamics, through the identification T ↔θ , and particularly the form for the efficiency of the proposed Carnot Cycle. Moreover, S also follows a behavior typical of a third law, i.e., S →0 , when θ →0 .

  13. Estimation of length scale of RS II-$p$ braneworld model through perturbations in Helium's atom ground state energy

    CERN Document Server

    Garrido, Nephtali

    2012-01-01

    We put to the test an effective three-dimensional electrostatic potential, obtained effectively by considering an electrostatic source inside a (5+$p$)-dimensional braneworld scenario with $p$ compact and one infinite spacial extra dimensions in the RS II-$p$ model, for $p=1$ and $p=2$. This potential is regular at the source and matches the standard Coulomb potential outside a neighborhood. We use variational and perturbative approximation methods to calculate corrections to the ground energy of the Helium atom modified by this potential, by making use of a 6 and 39-parameter trial wave function of Hylleraas type for the ground state. These corrections to the ground-state energy are compared with experimental data for Helium atom in order to set bounds for the extra dimensions length scale. We find that these bounds are less restrictive than the ones obtained by Morales et. al. through a calculation using the Lamb shift in Hydrogen.

  14. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation

    CERN Document Server

    Dohnal, Tomas; Plum, Michael; Reichel, Wolfgang

    2012-01-01

    We consider the problem of verifying the existence of $H^1$ ground states of the 1D nonlinear Schr\\"odinger equation for an interface of two periodic structures: $$-u" +V(x)u -\\lambda u = \\Gamma(x) |u|^{p-1}u \\ {on} \\R$$ with $V(x) = V_1(x), \\Gamma(x)=\\Gamma_1(x)$ for $x\\geq 0$ and $V(x) = V_2(x), \\Gamma(x)=\\Gamma_2(x)$ for $x1$. The article [T. Dohnal, M. Plum and W. Reichel, "Surface Gap Soliton Ground States for the Nonlinear Schr\\"odinger Equation," \\textit{Comm. Math. Phys.} \\textbf{308}, 511-542 (2011)] provides in the 1D case an existence criterion in the form of an integral inequality involving the linear potentials $V_{1},V_2$ and the Bloch waves of the operators $-\\tfrac{d^2}{dx^2}+V_{1,2}-\\lambda$. We choose here the classes of piecewise constant and piecewise linear potentials $V_{1,2}$ and check this criterion for a set of parameter values. In the piecewise constant case the Bloch waves are calculated explicitly and in the piecewise linear case verified enclosures of the Bloch waves are computed ...

  15. QED calculation of the ground-state energy of berylliumlike ions

    CERN Document Server

    Malyshev, A V; Glazov, D A; Tupitsyn, I I; Shabaev, V M; Plunien, G

    2014-01-01

    \\textit{Ab initio} QED calculations of the ground-state binding energies of berylliumlike ions are performed for the wide range of the nuclear charge number: $Z=18-96$. The calculations are carried out in the framework of the extended Furry picture starting with three different types of the screening potential. The rigorous QED calculations up to the second order of the perturbation theory are combined with the third- and higher-order electron-correlation contributions obtained within the Breit approximation by the use of the large-scale configuration-interaction Dirac-Fock-Sturm method. The effects of nuclear recoil and nuclear polarization are taken into account. The ionization potentials are obtained by subtracting the binding energies of the corresponding lithiumlike ions. In comparison with the previous calculations the accuracy of the binding energies and the ionization potentials is significantly improved.

  16. Quantum spin liquid ground states of the Heisenberg-Kitaev model on the triangular lattice

    Science.gov (United States)

    Kos, Pavel; Punk, Matthias

    2017-01-01

    We study quantum disordered ground states of the two-dimensional Heisenberg-Kitaev model on the triangular lattice using a Schwinger boson approach. Our aim is to identify and characterize potential gapped quantum spin liquid phases that are stabilized by anisotropic Kitaev interactions. For antiferromagnetic Heisenberg and Kitaev couplings and sufficiently small spin S , we find three different symmetric Z2 spin liquid phases, separated by two continuous quantum phase transitions. Interestingly, the gap of elementary excitations remains finite throughout the transitions. The first spin liquid phase corresponds to the well-known zero-flux state in the Heisenberg limit, which is stable with respect to small Kitaev couplings and develops 120∘ order in the semiclassical limit at large S . In the opposite Kitaev limit, we find a different spin liquid ground state, which is a quantum disordered version of a magnetically ordered state with antiferromagnetic chains, in accordance with results in the classical limit. Finally, at intermediate couplings, we find a spin liquid state with unusual spin correlations. Upon spinon condensation, this state develops Bragg peaks at incommensurate momenta in close analogy to the magnetically ordered Z2 vortex crystal phase, which has been analyzed in recent theoretical works.

  17. The thermodynamic and ground state properties of the TIP4P water octamer.

    Science.gov (United States)

    Asare, E; Musah, A-R; Curotto, E; Freeman, David L; Doll, J D

    2009-11-14

    Several stochastic simulations of the TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)] water octamer are performed. Use is made of the stereographic projection path integral and the Green's function stereographic projection diffusion Monte Carlo techniques, recently developed in one of our groups. The importance sampling for the diffusion Monte Carlo algorithm is obtained by optimizing a simple wave function using variational Monte Carlo enhanced with parallel tempering to overcome quasiergodicity problems. The quantum heat capacity of the TIP4P octamer contains a pronounced melting peak at 160 K, about 50 K lower than the classical melting peak. The zero point energy of the TIP4P water octamer is 0.0348+/-0.0002 hartree. By characterizing several large samples of configurations visited by both guided and unguided diffusion walks, we determine that both the TIP4P and the SPC [H. J. C. Berendsen, J. P. Postma, W. F. von Gunsteren, and J. Hermans, (Intermolecular Forces, Reidel, 1981). p. 331] octamer have a ground state wave functions predominantly contained within the D(2d) basin of attraction. This result contrasts with the structure of the global minimum for the TIP4P potential, which is an S(4) cube. Comparisons of the thermodynamic and ground-state properties are made with the SPC octamer as well.

  18. Dynamics of a Ground-State Cooled Ion Colliding with Ultracold Atoms

    Science.gov (United States)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-12-01

    Ultracold atom-ion mixtures are gaining increasing interest due to their potential applications in ultracold and state-controlled chemistry, quantum computing, and many-body physics. Here, we studied the dynamics of a single ground-state cooled ion during few, to many, Langevin (spiraling) collisions with ultracold atoms. We measured the ion's energy distribution and observed a clear deviation from the Maxwell-Boltzmann distribution, characterized by an exponential tail, to a power-law distribution best described by a Tsallis function. Unlike previous experiments, the energy scale of atom-ion interactions is not determined by either the atomic cloud temperature or the ion's trap residual excess-micromotion energy. Instead, it is determined by the force the atom exerts on the ion during a collision which is then amplified by the trap dynamics. This effect is intrinsic to ion Paul traps and sets the lower bound of atom-ion steady-state interaction energy in these systems. Despite the fact that our system is eventually driven out of the ultracold regime, we are capable of studying quantum effects by limiting the interaction to the first collision when the ion is initialized in the ground state of the trap.

  19. Ground-state properties of two-dimensional quantum fluid helium and hydrogen mixtures

    CERN Document Server

    Um, C I; Oh, H G

    1998-01-01

    Using a variational Jastrow wavefunction extended to include a three-body correlation function and a hypernetted chain scheme with the contributions of elementary diagrams, we analyze the ground-state energies and the structural properties of two-dimensional H- sup 4 He and H sub 2 - sup 4 He mixtures. The mixtures are in equilibrium at a lower density compared to a pure sup 4 He system because of the large zero-point energies of the hydrogen atom and molecule. We evaluate the lowering of the ground-state energies as a function of the impurity concentration and total density of mixtures. Comparing the result with boson sup 3 He- sup 4 He mixtures, we show that the shifts of energy mainly come from the difference of the zero-point energies of the impurities rather than from the interatomic potentials.We also analyze the enthalpies to study the miscibility and conclude that boson-boson mixtures are completely phase separated in their equilibria.

  20. Kinetic energy partition method applied to ground state helium-like atoms.

    Science.gov (United States)

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  1. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Júnior, D. S., E-mail: damiao.vieira@ifsudestemg.edu.br [Departamento Acadêmico de Matemática, Física e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Câmpus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Leonel, S. A., E-mail: sidiney@fisica.ufjf.br; Dias, R. A., E-mail: radias@fisica.ufjf.br; Toscano, D., E-mail: danilotoscano@fisica.ufjf.br; Coura, P. Z., E-mail: pablo@fisica.ufjf.br; Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  2. Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels

    CERN Document Server

    Vexiau, R; Aymar, M; Bouloufa-Maafa, N; Dulieu, O

    2015-01-01

    We have calculated the isotropic $C\\_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $X^1\\Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers \\textit{et.~al.}, Phys.~Rev.~A \\textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it i...

  3. A self-consistent GW approach to the van der Waals potential for a helium dimer.

    Science.gov (United States)

    Shoji, Toru; Kuwahara, Riichi; Ono, Shota; Ohno, Kaoru

    2016-09-21

    van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results.

  4. Ground-state properties of neutron-rich Mg isotopes

    CERN Document Server

    Watanabe, Shin; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2014-01-01

    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by ?ne-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of defor...

  5. Continuous Vibrational Cooling of Ground State Rb2

    Science.gov (United States)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  6. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  7. The X1Σ +g ground state of Mg2 studied by Fourier-transform spectroscopy

    Science.gov (United States)

    Knöckel, H.; Rühmann, S.; Tiemann, E.

    2013-03-01

    The A^1Σ u^+ - X^1Σ g^+ UV spectrum of Mg2 has been investigated with high resolution Fourier-transform spectroscopy. Mg2 vapor was created in a heat pipe. Various spectroscopic methods have been employed, such as conventional absorption spectroscopy with light from a broad band lamp and laser-induced fluorescence. The high resolution of the Fourier-transform spectrometer, together with computer aided evaluation methods of the spectra, yields precise transition frequencies. The new data and data available from earlier investigations are applied in direct potential fits of lower and upper electronic states. Various representations of potential energy curves for the ground state X^1Σ g^+ have been employed and their benefits in terms of smallest number of parameters are discussed. Scattering lengths are derived for the homonuclear isotopologues and compared with previous results.

  8. ELECTRONIC STRUCTURE FOR THE GROUND STATE OF T1H FROM RELATIVISTIC MULTICONFIGURATION SCF CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, P.A.; Pitzer, K.S.

    1980-07-01

    The dissociation curve for the ground state of TlH was computed using a relativistic {omega}-{omega} coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac-Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite the large spin-orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl{sup +}H{sup -}) with about 0.3 extra electron charge on the hydrogen.

  9. Nuclear level densities with pairing and self-consistent ground-state shell effects

    CERN Document Server

    Arnould, M

    1981-01-01

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).

  10. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    Science.gov (United States)

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  11. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  12. Exact many-electron ground states on diamond and triangle Hubbard chains

    OpenAIRE

    2008-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fu...

  13. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    Science.gov (United States)

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  14. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

    Directory of Open Access Journals (Sweden)

    Eduardo Mattei

    2013-11-01

    Full Text Available We introduce a Hamiltonian for two interacting su(2 spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight. Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian.

  15. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  16. A highly accurate {\\it ab initio} potential energy surface for methane

    CERN Document Server

    Owens, Alec; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-01-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art \\textit{ab initio} theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include: core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of $^{12}$CH$_4$ reproduced with a root-mean-square error of $0.70{\\,}$cm$^{-1}$. The computed \\textit{ab initio} equilibrium C{--}H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as $J$ (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the e...

  17. A generalized force-modified potential energy surface for mechanochemical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gopinath, E-mail: Gopinath.Subramanian@usm.edu [School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39402 (United States); Mathew, Nithin [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Leiding, Jeff [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-10-07

    We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G{sup ∗∗} level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules are blueshifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point.

  18. Accurate internuclear potential energy functions for the ground electronic states of NeH+ and ArH+

    Science.gov (United States)

    Coxon, John A.; Hajigeorgiou, Photos G.

    2016-12-01

    All pure rotational and vibrational-rotational spectroscopic line positions available on the ground X1Σ+ electronic states of the rare gas hydride cations NeH+ and ArH+ have been employed in weighted least-squares direct fits to the potential energy functions, together with auxiliary functions describing breakdown of the Born-Oppenheimer approximation. All radial functions are represented by compact analytical models, and the spectroscopic line positions are reproduced to within the associated experimental uncertainties by the quantum-mechanical eigenvalues of the derived Hamiltonians. The potential energy functions are constrained to approach the theoretical radial behavior at long-range. Accurate vibrational term values and rotational and centrifugal distortion constants are provided for all stable isotopologues of NeH+ and ArH+ included in the least-squares fits.

  19. Triplet-singlet conversion in ultracold Cs$_2$ and production of ground state molecules

    CERN Document Server

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier

    2010-01-01

    We propose a process to convert ultracold metastable Cs$_2$ molecules in their lowest triplet state into (singlet) ground state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled $A^{1}\\Sigma_{u}^{+} \\sim b ^{3}\\Pi_{u}$ states. Using spectroscopic data and accurate quantum chemistry calculations for Cs$_2$ potential curves and transition dipole moments, we show that this process has a high rate and competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  20. Inelastic collisions of ultracold triplet Rb$_\\textbf{2}$ molecules in the rovibrational ground state

    CERN Document Server

    Drews, Björn; Jachymski, Krzysztof; Idziaszek, Zbigniew; Denschlag, Johannes Hecker

    2016-01-01

    Exploring inelastic and reactive collisions on the quantum level is a main goal of the developing field of ultracold chemistry. We present first experimental studies of inelastic collisions of metastable ultracold triplet molecules in the vibrational ground state. The measurements are performed with nonpolar Rb$_2$ dimers which are prepared in precisely-defined quantum states and trapped in an array of quasi-1D potential tubes. We investigate collisions of molecules in the lowest triplet energy level where any inelastic process requires a relaxation to the singlet state. These are compared to two sets of collision experiments, carried out either with triplet molecules that have two quanta of rotational angular momentum or with vibrationally highly excited Feshbach molecules. We find no evidence for suppression of the inelastic collisions due to the necessary spin-flip, shedding light on this so far unsettled issue. For each of the molecular states studied here, we extract the decay rate constant and compare t...

  1. Ground state energy of excitons in quantum dot treated variationally via Hylleraas-like wavefunction

    Institute of Scientific and Technical Information of China (English)

    S.(S)akiro(g)lu; (U). Do(g)an; A. Yildlz; K. Akgüng(o)r; H. Epik; Y. Ergün; H. San; (I).S(o)kmen

    2009-01-01

    In this work,the effects of quantum confinement on the ground state energy of a correlated electron-hole pair in a spherical and in a disc-like quantum dot have been investigated as a function of quantum dot size.Under parabolic confinement potential and within effective mass approximation Ritz's variational method is applied to Hylleraas-like trial wavefunction.An efficient method for reducing the main effort of the calculation of terms like rkeh exp(-λreh)is introduced.The main contribution of the present work is the introduction of integral transforms which provide the calculation of expectation value of energy and the related matrix elements to be done analytically over single-particle coordinates instead of Hylleraas coordinates.

  2. The Nuclear Born--Oppenheimer Method Applied to Nuclear Collective Motion*

    Science.gov (United States)

    Zettili, Nouredine

    2002-04-01

    We deal here with the application of the nuclear Born--Oppenheirmer (NBO) method to the study of nuclear collective motion. In particular, we look at the description of nuclear rotations and vibrations. The collective operators are specified within the NBO method only to the extent of identifying the type of collective degrees of freedom we intend to describe; the operators are then determined from the dynamics of the system. To separate the collective degrees of freedom into rotational and vibrational terms, we transform the collective tensor operator from the lab fixed frame of reference to the frame defined by the principal axes of the system; this transformation diagonalizes the tensor operator. We derive a general expression for the NBO mean energy and show that it contains internal, collective and coupling terms. Then, we specify the approximations that need to be made in order to establish a connection between Bohr's collective model and the NBO method. We show that Bohr's collective Hamiltonian can be recovered from the NBO Hamiltonian only after adopting some rather crude approximations. In addition, we try to understand, in light of the NBO approach, why Bohr's collective model gives the wrong inertial parameters. We show that this is due to two major reasons: the ad hoc selection of the collective degrees of freedom within the context of Bohr's collective model and the unwarranted neglect of several important terms from the Hamiltonian. *Supported by a research grant from Jacksonville State University.

  3. Validity of the small-amplitude limit of the nuclear Born-Oppenheimer method

    Science.gov (United States)

    Zettili, Nouredine

    1994-08-01

    We examine here the validity of the small-amplitude limit of the nuclear Born-Op-penheimer (NBO) method by testing it on an analytically solvable model. To gain additional quantitative insight into its accuracy, we provide a comparison of its results with those of the small-amplitude limit of the time-dependent Hartree-Fock (TDHF) when applied to this model. A comparison of the exact, the random-phase approximation (RPA), and the NBO results reveals that the NBO energy is lower than its RPA counterpart and is in very good agreement with the exact spectrum. We also provide a quantitative assessment of the effects the approximations involved in the NBO method have on the results. We show that, when corrections to these approximations are considered, the NBO energy spectrum becomes much more accurate.

  4. Ground state correlations and mean field using the exp(S) method

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-01-01

    This document gives a detailed account of the terms used in the computation of the ground state mean field and the ground state correlations. While the general approach to this description is given in a separate paper (nucl-th/9802029) we give here the explicite expressions used.

  5. The study of magnetization of the spin systm in the ground state

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Wang Xi-Kun; Zhao Qiang

    2006-01-01

    Within the framework of the effective-field theory with self-spin correlations and the differential operator technique,the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied.The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.

  6. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  7. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  8. Kinetically blocked stable heptazethrene and octazethrene: Closed-shell or open-shell in the ground state?

    KAUST Repository

    Li, Yuan

    2012-09-12

    Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ(2)) were determined for HZ-TIPS (σ(2)max = 920 GM at 1250 nm) and OZ-TIPS (σ(2)max = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals. © 2012 American Chemical Society.

  9. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  10. Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Curtarolo, Stefano

    2012-02-01

    Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt, and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

  11. Ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni in the unitary-model-operator approach

    CERN Document Server

    Miyagi, Takayuki; Okamoto, Ryoji; Otsuka, Takaharu

    2015-01-01

    We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.

  12. Nodal sets for ground-states of Schroedinger operators with zero magnetic field in non simply connected domains

    Energy Technology Data Exchange (ETDEWEB)

    Helffer, B. [Paris-11 Univ., 91 - Orsay (France). Dept. de Mathematiques; Hoffmann-Ostenhof, M. [Institut fuer Mathematik, Universitaet Wien, Strudthofgasse 4, A-1090 Wien (Austria); Hoffmann-Ostenhof, T. [Institut fuer Theoretische Chemie, Universitaet Wien, Waehringerstrasse 17, A-1090 Wien (Austria)]|[International Erwin Schroedinger Inst. for Mathematical Physics, Vienna (Austria); Owen, M.P. [International Erwin Schroedinger Inst. for Mathematical Physics, Vienna (Austria)

    1999-05-01

    We investigate nodal sets of magnetic Schroedinger operators with zero magnetic field, acting on a non-simply connected domain in R{sup 2}. For the case of circulation 1/2 of the magnetic vector potential around each hole in the region, we obtain a characterisation of the nodal set, and use this to obtain bounds on the multiplicity of the ground state. For the case of one hole and a fixed electric potential, we show that the first eigenvalue takes its highest value for circulation 1/2. (orig.) With 8 figs., 20 refs.

  13. A remark on ground state of boundary Izergin-Korepin model

    CERN Document Server

    Kojima, Takeo

    2011-01-01

    We study the ground state of the boundary Izergin-Korepin model. The boundary Izergin-Korepin model is defined by so-called $R$-matrix and $K$-matrix for $U_q(A_2^{(2)})$ which satisfy Yang-Baxter equation and boundary Yang-Baxter equation respectively. The ground state associated with identity $K$-matrix $K(z)=id$ was constructed in earlier study [Yang and Zhang, Nucl.Phys.B596,495-(2001)]. We construct the free field realization of the ground state associated with nontrivial diagonal $K$-matrix.

  14. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  15. Direct production of ultracold rovibronic ground state LiRb molecules through photoassociation and spontaneous decay

    CERN Document Server

    Stevenson, I C; Chen, Y P; Elliott, D S

    2016-01-01

    We report a newly observed photoassociation resonance in $^7$Li-$^{85}$Rb, a mixed $2(1) - 4(1)$ excited state, that spontaneously decays to the rovibronic ground state. This resonance between ultracold Li and Rb is the strongest ground state molecule-forming photoassociation line observed in LiRb, and forms deeply bound $X \\: ^1\\Sigma^+$ molecules in large numbers. The production rate of the $v=0 \\ J=0$ rovibrational ground state is $\\sim 1.5 \\times 10^{4}$ molecules/s.

  16. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Institute of Scientific and Technical Information of China (English)

    YANG Kai-Hua; TIAN Guang-Shan; HAN Ru-Qi

    2003-01-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model.However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models.

  17. Efficient sympathetic motional ground-state cooling of a molecular ion

    CERN Document Server

    Wan, Yong; Wolf, Fabian; Schmidt, Piet O

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.

  18. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  19. Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems

    CERN Document Server

    Kennedy, Ricardo

    2014-01-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d+1)-dimensional system in symmetry class s+1. This relation gives a new vantage point on topological insulators and superconductors.

  20. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  1. Vacuum polarization screening corrections to the ground state energy of two-electron ions

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1997-01-01

    Vacuum polarization screening corrections to the ground state energy of two-electron ions are calculated in the range $Z=20-100$. The calculations are carried out for a finite nucleus charge distribution.

  2. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  3. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  4. Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.

  5. Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED

    CERN Document Server

    Amour, L

    2010-01-01

    We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.

  6. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  7. Universal Wave Function Overlap and Universal Topological Data from Generic Gapped Ground States

    OpenAIRE

    2014-01-01

    We propose a way -- universal wave function overlap -- to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data should fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological orders in 2+1D, this universal topological data consist of two matrices, $S$ and $T$, which generate a projective representation of $SL(2,\\mathbb Z)$ on the degenerate ground state Hilbert space on ...

  8. Relationship Between the Shape of Suspension Particle and Ground State Structure of Electrorheological Solid

    Institute of Scientific and Technical Information of China (English)

    WU Feng; HE Pei; CHEN Zu-Yao; JIANG Wan-Quan

    2000-01-01

    The effect of the shape of suspension particle in electrorheological (ER) fluid on the ground state structure of ER solid is discussed. The results of computation show that the ground state structure will change with the shape of suspension particle. This phenomenon is a kind of phase transitions that takes the shape factors of suspension particle as tuning parameters. The variation-value of interaction energy of the lattice structure of ER solid with the shape factors of suspension particle is sometimes noticeable.

  9. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  10. Patterns of the ground states in the presence of random interactions: nucleon systems

    CERN Document Server

    Zhao, Y M; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and $\\alpha$ clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of $\\alpha$-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a sec...

  11. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    Science.gov (United States)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  12. Dynamics of a ground-state cooled ion colliding with ultra-cold atoms

    CERN Document Server

    Meir, Ziv; Ben-shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-01-01

    Ultra-cold atom-ion mixtures are gaining increasing interest due to their potential applications in quantum chemistry, quantum computing and many-body physics. The polarization potential between atoms and ions scales as 1/r^4 and extends to 100's of nm. This long length-scale interaction can form macroscopic objects while exhibiting quantum features such as Feshbach and shape resonances at sufficiently low temperatures. So far, reaching the quantum regime of atom-ion interaction has been impeded by the ion's excess micromotion (EMM) which sets a scale for the steady-state energy. In this work, we studied the dynamics of a ground-state cooled ion with negligible EMM during few, to many, Langevin (spiraling) collisions with ultra-cold atoms. We measured the energy distribution of the ion using both coherent (Rabi) and non-coherent (photon scattering) spectroscopy. We observed a clear deviation from a Maxwell-Boltzmann thermal distribution to a Tsallis energy distribution characterized by a power-law tail of hig...

  13. Macroscopic-microscopic calculations of ground state properties of superheavy nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-jun; Mao Ying-chen; REN Zhong-zhou

    2006-01-01

    We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94-118.The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data.The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and M(o)ller's are made.It is found that the calculated results also agree with M(o)ller's results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF)model and from Skyrme-Hatree-Fock(SHF) model.In addition,half-lives,deformations and shape coexistence are also investigated.The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.

  14. Three-body problem in 3D space: ground state, (quasi)-exact-solvability

    CERN Document Server

    Turbiner, Alexander V; Escobar-Ruiz, Adrian M

    2016-01-01

    We study aspects of the quantum and classical dynamics of a $3$-body system in 3D space with interaction depending only on mutual distances. The study is restricted to solutions in the space of relative motion which are functions of mutual distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories in the classical case are of this type. The quantum (and classical) system for which these states are eigenstates is found and its Hamiltonian is constructed. It corresponds to a three-dimensional quantum particle moving in a curved space with special metric. The kinetic energy of the system has a hidden $sl(4,R)$ Lie (Poisson) algebra structure, alternatively, the hidden algebra $h^{(3)}$ typical for the $H_3$ Calogero model. We find an exactly solvable three-body generalized harmonic oscillator-type potential as well as a quasi-exactly-solvable three-body sextic polynomial type potential.

  15. Calculation of the α-Particle Ground State

    Science.gov (United States)

    Viviani, M.; Kievsky, A.; Rosati, S.

    1995-01-01

    The correlated hyperspherical harmonic expansion method is used to calculate α-particle properties with a realistic Hamiltonian consisting of the Argonne V14 two-nucleon and Urbana model VIII three-nucleon potentials. The calculated binding energy, mass radius and wave percentages are close to the corresponding quantities obtained with Green's-function Monte-Carlo and Faddeev-Yakubovsky techniques.

  16. Configuration space Faddeev calculations. I. Triton ground state properties

    Science.gov (United States)

    Payne, G. L.; Friar, J. L.; Gibson, B. F.; Afnan, I. R.

    1980-08-01

    The formulation of Faddeev-type equations in configuration space is discussed. Numerical solutions are obtained using splines and the method of orthogonal collocation. Triton observables and wave-function probabilities are calculated for s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published triton results is made; our full five-channel results for the Reid soft-core potential are in excellent agreement with those obtained by Afnan and Birrell using separable expansion methods. NUCLEAR STRUCTURE 3H, Faddeev calculations configuration space.

  17. Configuration space Faddeev calculations. I. Triton ground-state properties

    Energy Technology Data Exchange (ETDEWEB)

    Payne, G.L.; Friar, J.L.; Gibson, B.F.; Afnan, I.R.

    1980-08-01

    The formulation of Faddeev-type equations in configuration space is discussed. Numerical solutions are obtained using splines and the method of orthogonal collocation. Triton observables and wave-function probabilities are calculated for s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published triton results is made; our full five-channel results for the Reid soft-core potential are in excellent agreement with those obtained by Afnan and Birrell using separable expansion methods.

  18. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    Science.gov (United States)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  19. On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics

    Directory of Open Access Journals (Sweden)

    Theodorus M. Nieuwenhuizen

    2016-04-01

    Full Text Available De la Peña 1980 and Puthoff 1987 show that circular orbits in the hydrogen problem of Stochastic Electrodynamics connect to a stable situation, where the electron neither collapses onto the nucleus nor gets expelled from the atom. Although the Cole-Zou 2003 simulations support the stability, our recent numerics always lead to self-ionisation. Here the de la Peña-Puthoff argument is extended to elliptic orbits. For very eccentric orbits with energy close to zero and angular momentum below some not-small value, there is on the average a net gain in energy for each revolution, which explains the self-ionisation. Next, an 1 / r 2 potential is added, which could stem from a dipolar deformation of the nuclear charge by the electron at its moving position. This shape retains the analytical solvability. When it is enough repulsive, the ground state of this modified hydrogen problem is predicted to be stable. The same conclusions hold for positronium.

  20. EFFECT OF DIELECTRIC CONSTANT ON THE EXCITON GROUND STATE ENERGY OF CdSe QUANTUM DOTS

    Institute of Scientific and Technical Information of China (English)

    HUI PING

    2000-01-01

    The B-spline technique is used in the calculation of the exciton ground state energy based on the effective mass approximation (EMA) model.The exciton is confined in CdSe microspherical crystallites with a finite-height potential wall (dots).In this approach,(a) the wave function is allowed to penetrate to the outside of the dots; (b) the dielectric constants of the quantum dot and the surrounding material are considered to be different; and (c) the dielectric constant of the dots are size-dependent.The exciton energies as functions of radii of the dots in the range 0.5-3.5nm are calculated and compared with experimental and previous theoretical data.The results show that: (1) The exciton energy is convergent as the radius of the dot becomes very small.(2) A good agreement with the experimental data better than other theoretical results is achieved.(3) The penetration (or leaking) of the wave function and the difference of the dielectric constants in different regions are necessary for correcting the Coulomb interaction energy and reproducing experimental data.(4) The EMA model with B-spline technique can describe the status of excition confined in quantum dot very well.

  1. Ground State Mass Spectrum for Scalar Diquarks with Bethe-Salpeter Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Gang; WAN Shao-Long; YANG Wei-Min

    2007-01-01

    In this article,we study the structures of the pseudoscalar mesons π,K and the scalar diquarks Ua,Da,Sa in the framework of the coupled rainbow Schwinger-Dyson equation and ladder Bethe-Salpeter equation with the confining effective potential.The u,d,s quarks have small current masses,and the renormalization is very large,the mass poles in the timelike region are absent which implements confinement naturally.The Bethe-Salpeter wavefunctions of the pseudoscalar mesons π,K,and the scalar diquarks Ua,Da,Sa have the same type (Gaussian type) momentum dependence,center around zero momentum and extend to the energy scale about q2 = 1 GeV2,which happens to be the energy scale for the chiral symmetry breaking,the strong interactions in the infrared region result in bound (or quasi-bound) states.The numerical results for the masses and decay constants of the π and K mesons can reproduce the experimental values,and the ground state masses of the scalar diquarks Ua,Da,Sa are consistent with the existing theoretical calculations.We suggest a new Lagrangian which may explain the uncertainty of the masses of the scalar diquarks.

  2. Alpha decay of {sup 184-224}Bi isotopes from the ground state and isomeric state

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Priyanka, B. [Kannur University, School of Pure and Applied Physics, Kerala (India)

    2013-12-15

    The {alpha} -decay half-lives for the favored and unfavored transitions of the isotopes of Bi (Z = 83) nuclei in the region 184 {<=}A {<=} 224, from both the ground state (g.s.) and the isomeric state (i.s.) have been studied systematically within the Coulomb and proximity potential model (CPPM). The half-lives have been evaluated using the experimental Q-values. The computed half-lives are compared with the experimental data and they are in good agreement. We have modified the assault frequency and redetermined the half-lives and they show a better agreement with the experimental value. The standard deviation of the logarithm of the half-life with the former assault frequency is found to be 1.234 and with the modified assault frequency, it is found to be 0.935. This reveals that the CPPM, with the modified deformation-dependent assault frequency is more apt for the alpha-decay studies. Using our model we could also demonstrate the influence of the N = 126, neutron shell closure in both parent and daughter nuclei on the alpha-decay half-lives. (orig.)

  3. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    Science.gov (United States)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-01

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler-Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the "pair amplitude" g(r), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow-Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree-Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation-dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density-density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings.

  4. Ground State and Collective Modes of Magnetic Dipoles Fixed on Two-Dimensional Lattice Sites

    Science.gov (United States)

    Feldmann, John; Kalman, Gabor; Hartmann, Peter; Rosenberg, Marlene

    2006-10-01

    In complex (dusty) plasmas the grains may be endowed with intrinsic dipole moments. We present here our results of theoretical calculations accompanied by and Molecular Dynamics simulation findings on the ground state configuration and on the collective modes mode spectrum of a system of magnetic dipoles, interacting via the magnetic dipole pair-dipole potential, fixed on two-dimensional (2D) lattice sites. In particular, we We study a family of lattices that can be characterized by two parameters: (parallelogram)---the aspect ratio, c/a, and the rhombic angle, phi. The The new collective modes of in the system associated with the dipole-dipole interaction are the angular oscillations (or wobbling) of the direction of the dipoles about their equilibrium configurations. We identify in-plane and out-of-plane modes and display their dispersions. Orders of magnitudes of the parameters of the system relevant to possible future experiments will be discussed. JD Feldmann, G J Kalman and M Rosenberg, J. Phys. A: Math. Gen. 39 (2006) 4549-4553

  5. Ground-state Properties of Inhomogeneous Graphene Sheets

    Science.gov (United States)

    Polini, Marco

    2009-03-01

    When inter-valley scattering is weak and gauge fields due to e.g. ripples are neglected, doped and gated graphene sheets can be described using an envelope-function Hamiltonian with a new sublattice pseudospin degree-of freedom, an ultrarelativistic massless-Dirac free-fermion term, a pseudospin scalar disorder potential, and a non-relativistic instantaneous Coulombic interaction term. There is considerable evidence from experiment that this simplified description of a honeycomb lattice of Carbon atoms is usually a valid starting point for theories of those observables that depend solely on the electronic properties of π-electrons near the graphene Dirac point [1]. Although the use of this model simplifies the physics considerably it still leaves us with a many-body problem without translational invariance, which we do not know how to solve. In this talk we present a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous scalar external potentials and electron-electron interactions on an equal footing [2]. The theory is able to account for the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene [3,4]. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments [5,6] reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets. [4pt] [1] A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007); A.K. Geim and A.H. MacDonald, Phys. Today 60, 35 (2007); A.H. Castro Neto, F. Guinea, N.M.R. Peres, K

  6. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  7. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  8. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: an application to water hexamer.

    Science.gov (United States)

    Georgescu, Ionuţ; Jitomirskaya, Svetlana; Mandelshtam, Vladimir A

    2013-11-28

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  9. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    Science.gov (United States)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  10. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  11. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    Science.gov (United States)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  12. Tree based machine learning framework for predicting ground state energies of molecules

    Science.gov (United States)

    Himmetoglu, Burak

    2016-10-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16 242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials informatics.

  13. Precision study of ground state capture in the 14N(p,gamma)15O reaction

    CERN Document Server

    Marta, M; Gyurky, Gy; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Kunz, R; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2008-01-01

    The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

  14. Tree based machine learning framework for predicting ground state energies of molecules

    CERN Document Server

    Himmetoglu, Burak

    2016-01-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16,242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials inform...

  15. Ground-State Transition in a Two-Dimensional Frenkel-Kontorova Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; ZHENG Zhi-Gang

    2011-01-01

    The ground state of a generalized Frenkel-Kontorova model with a transversaJ degree of freedom is studied. When the coupling strength, K, and the frequency of & single-Atom vibration in the transversaJ direction, ωou are increased, the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensionai ground state is θ≠1//q.%The ground state of a generalized Frenkel-Kontorova model with a transversal degree of freedom is studied.When the coupling strength,K,and the frequency of a single-atom vibration in the transversal direction,ωoy,are increased,the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one.This transition can manifest in different ways.Furthermore,we find that the prerequisite of a two-dimensional ground state is θ ≠ 1/q.In recent years,the Frenkel-Kontorova (FK) model has been applied to a variety of physical systems,such as adsorbed monolayers,[1,2] Josephsonjunction arrays,[3-5] tribology[6-8] and charge-density waves.[9,10] Experimental and large-scale simulation data at the nanoscale have become available,and more complicated FK-type models have been investigated using simulations of molecular dynamics.[11

  16. First-principles prediction of a ground state crystal structure of magnesium borohydride.

    Science.gov (United States)

    Ozolins, V; Majzoub, E H; Wolverton, C

    2008-04-04

    Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.

  17. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  18. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  19. Universal crossover from ground-state to excited-state quantum criticality

    Science.gov (United States)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  20. Preparing ground States of quantum many-body systems on a quantum computer.

    Science.gov (United States)

    Poulin, David; Wocjan, Pawel

    2009-04-03

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  1. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  2. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  3. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  4. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  5. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  6. Boundedness and convergence of perturbed corrections for helium-like ions in ground states

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun-Hui; Hai Wen-Hua; Zhao Cheng-Lin; Luo Xiao-Bing

    2008-01-01

    Applying the improved Rayleigh-Schr(o)dinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations,we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity.It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable,and the corresponding perturbation series is convergent.The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.

  7. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  8. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  9. Exact spin-cluster ground states in a mixed diamond chain

    Science.gov (United States)

    Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo

    2009-09-01

    The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.

  10. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  11. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  12. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Clark, Ian P; Towrie, Michael; van Thor, Jasper J

    2009-12-24

    Multipulse picosecond mid-infrared spectroscopy has been used to study photochemical reactions of the cyanobacterial phytochrome photoreceptor Cph1. Different photophysical schemes have been discussed in the literature to describe the pathways after photoexcitation, particularly, to identify reaction phases that are linked to photoisomerisation and electronic decay in the 1566-1772 cm(-1) region that probes C=C and C=O stretching modes of the tetrapyrrole chromophore. Here, multipulse spectroscopy is employed, where, compared to conventional visible pump-mid-infrared probe spectroscopy, an additional visible pulse is incorporated that interacts with populations that are evolving on the excited- and ground-state potential energy surfaces. The time delays between the pump and the dump pulse are chosen such that the dump pulse interacts with different phases in the reaction process. The pump and dump pulses are at the same wavelength, 640 nm, and are resonant with the Pr ground state as well as with the excited state and intermediates. Because the dump pulse additionally pumps the remaining, partially recovered, and partially oriented ground-state population, theory is developed for estimating the fraction of excited-state molecules. The calculations take into account the model-dependent ground-state recovery fraction, the angular dependence of the population transfer resulting from the finite bleach that occurs with linearly polarized intense femtosecond optical excitation, and the partially oriented population for the dump field. Distinct differences between the results from the experiments that use a 1 or a 14 ps dump time favor a branching evolution from S1 to an excited state or reconfigured chromophore and to a newly identified ground-state intermediate (GSI). Optical dumping at 1 ps shows the instantaneous induced absorption of a delocalized C=C stretching mode at 1608 cm(-1), where the increased cross section is associated with the electronic ground-state

  13. Theoretical study of the fragmentation pathways of norbornane in its doubly ionized ground state.

    Science.gov (United States)

    Knippenberg, Stefan; Hajgató, Balazs; François, Jean-Pierre; Deleuze, Michael S

    2007-10-25

    The potential energy surface of norbornane in its dicationic singlet ground state has been investigated in detail using density functional theory along with the nonlocal hybrid and gradient-corrected Becke three-parameter Lee-Yang-Parr functional (B3LYP) and the cc-pVDZ basis set. For the sake of more quantitative insight into the chemical reactions induced by double ionization of norbornane, this study was supplemented by a calculation of basic thermodynamic state functions coupled to a focal point analysis of energy differences obtained using correlation treatments and basis sets of improving quality, enabling an extrapolation of these energy differences at the CCSD(T) level in the limit of an asymptotically complete (cc-pV infinity Z) basis set. Our results demonstrate the likelihood of an ultrafast intramolecular rearrangement of the saturated hydrocarbon cage after a sudden removal of two electrons into a kinetically metastable five-membered cyclic C5H8+-CH+-CH3 intermediate, prior to a Coulomb explosion into C5H7+=CH2 and CH3+ fragments, which might explain a tremendous rise of electron-impact (e, 2e) ionization cross sections at electron binding energies around the double-ionization threshold. The first step is straightforward and strongly exothermic (DeltaH298 = -114.0 kcal mol-1). The second step is also exothermic (DeltaH298 = -10.2 kcal mol-1) but requires an activation enthalpy (DeltaH298) of 39.7 kcal/mol. The various factors governing the structure of this intermediate, such as electrostatic interactions, inductive effects, cyclic strains, and methylenic hyperconjugation interactions, are discussed in detail.

  14. Magnetostriction-driven ground-state stabilization in 2H perovskites

    Science.gov (United States)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  15. On the ground state energy of the delta-function Fermi gas

    Science.gov (United States)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  16. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...

  17. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  18. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  19. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  20. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  1. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  2. Ground-state and Pairing Properties of Pr Isotopes in RMF Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The ground-state and pairing properties of Pr (Z=59) isotopes have been investigated in therelativistic mean-field (RMF). The pairing correlation is studied in Bardeen-Cooper-Schrieffer (BCS) approximation and the pairingforces are taken to be isospin dependent. The ’blocking’ method is adopted to deal with unpaired odd

  3. Theoretical study of the ground state of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; van Duijnen, Piet Th.; van Loosdrecht, Paul H.M.; Broer, Ria

    2015-01-01

    In this paper we present a theoretical study of the nature of the ground state of the (EDO-TTF)(2)PF6 charge transfer salt by using ab initio quantum chemical theory for clusters in vacuum, for embedded clusters and for the periodic system. Exemplary for other organic charge transfer systems, we sho

  4. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  5. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  6. Laser cooling a neutral atom to the three-dimensional vibrational ground state of an optical tweezer

    CERN Document Server

    Kaufman, Adam M; Regal, Cindy A

    2012-01-01

    We report three-dimensional ground state cooling of a single neutral atom in an optical tweezer. After employing Raman sideband cooling for 33 ms, we measure via sideband spectroscopy a three-dimensional ground state occupation of ~90%. Ground state neutral atoms in optical tweezers will be instrumental in numerous quantum logic applications and for nanophotonic interfaces that require a versatile platform for storing, moving, and manipulating ultracold single neutral atoms.

  7. Evolution of the Hox gene complex from an evolutionary ground state.

    Science.gov (United States)

    Gehring, Walter J; Kloter, Urs; Suga, Hiroshi

    2009-01-01

    In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes

  8. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Science.gov (United States)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  9. Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction

    Indian Academy of Sciences (India)

    K P Santhosh; Antony Joseph

    2005-01-01

    Cluster decay of superdeformed 76,78,80Sr isotopes in their ground state are studied taking the Coulomb and proximity potential as the interacting barrier for the post-scission region. The predicted 1/2 values are found to be in close agreement with those values reported by the preformed cluster model (PCM). Our calculation shows that these nuclei are stable against both light and heavy cluster emissions. We studied the decay of these nuclei produced as an excited compound system in heavy-ion reaction. It is found that inclusion of excitation energy increases the decay rate (decreases 1/2 value) considerably and these nuclei become unstable against decay. These findings support earlier observation of Gupta et al based on PCM.

  10. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State

    Science.gov (United States)

    Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent

    2017-08-01

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  11. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    Science.gov (United States)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  12. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    Directory of Open Access Journals (Sweden)

    Logan D Andrews

    2013-07-01

    Full Text Available Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i was determined from pH dependencies of the binding of Pi and tungstate, a P(i analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the

  13. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  14. Properties of the ground state in a spin-2 transverse Ising model with the presence of a crystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 杜安; 张起

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field arestudied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phasediagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).

  15. Properties of the ground state in a spin—2 transverse Ising model with the presence of a srystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 等

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal of a crystal field are studied by using the effective-field theory with correlations,The longitudinal and transverse magnetizations,the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice(z=3).

  16. Construction of the ground state in nonrelativistic QED by continuous flows

    Science.gov (United States)

    Bach, Volker; Könenberg, Martin

    For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection P by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct P=limP as the limit of a continuously differentiable family ()t⩾0 of ground state projections of infrared regularized Hamiltonians H. Using the ODE solved by this family of projections, we show that the norm ‖P‖ of their derivative is integrable in t which in turn yields the convergence of P by the fundamental theorem of calculus.

  17. Ground State Properties of New Element Z = 113 and Its Alpha Decay Chain

    Institute of Scientific and Technical Information of China (English)

    TAI Fei; CHEN Ding-Han; XU Chang; REN Zhong-Zhou

    2005-01-01

    @@ We investigate the ground state properties of the new element 278113 and of the α-decay chain with different models, where the new element Z = 113 has been produced at RIKEN in Japan by cold-fusion reaction [Morita et al.J.Phys.Soc.Jpn.73 (2004) 2593].The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model.Theoretical half-lives also reasonably agree with the data.Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278113.The common points and differences among different models are compared and discussed.

  18. Electromagnetically-induced-transparency ground-state cooling of long ion strings

    Science.gov (United States)

    Lechner, Regina; Maier, Christine; Hempel, Cornelius; Jurcevic, Petar; Lanyon, Ben P.; Monz, Thomas; Brownnutt, Michael; Blatt, Rainer; Roos, Christian F.

    2016-05-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground-state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  19. Energy of ground state in B-B'-U-Hubbard model in approximation of static fluctuations

    CERN Document Server

    Mironov, G I

    2002-01-01

    To explain some features of CuO sub 2 base high-temperature superconductors (HTSC) one should take account of possibility of electron transfer to the crystalline structure mode next to the nearest one. It terms of approximation of static fluctuations one calculated the energy of ground state in two-dimensional B-B'-U Hubbard model. Lattice is assumed to consist of two sublattices formed by various type atoms. The calculation results of ground state energy are compared with the precise solution for one-dimensional Hubbard model derived previously. Comparison of the precise and the approximated solutions shows that approximation of static fluctuations describes adequately behavior of the Hubbard studied model within both weak and strong correlation ranges

  20. Influence of free carriers on exciton ground states in quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Klochikhin, A.A. [Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation); Nuclear Physics Institute, 350000 St. Petersburg (Russian Federation); Kochereshko, V.P., E-mail: vladimir.kochereshko@mail.ioffe.ru [Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation); Spin Optics Laboratory, St. Petersburg State University, 198904 St. Petersburg (Russian Federation); Tatarenko, S. [CEA-CNRS Group “Nanophysique et Semiconducteurs”, Institut Néel, CNRS and Universite Joseph Fourier, 25 Avenue des Martyrs, 38042 Grenoble (France)

    2014-10-15

    The influence of free carriers on the ground state of the exciton at zero magnetic field in a quasi-two-dimensional quantum well that contains a gas of free electrons is considered in the framework of the random phase approximation. The effects of the exciton–charge-density interaction and the inelastic scattering processes due to the electron–electron exchange interaction are taken into account. The effect of phase-space filling is considered using an approximate approach. The results of the calculation are compared with the experimental data. - Highlights: • We discussed the effect of free carriers on the exciton ground state in quantum wells. • The processes of exciton–electron scattering become the most important for excitons in doped QWs. • The direct Coulomb scattering can be neglected. • The most important becomes the exchange inelastic exciton–electron scattering.

  1. Ultracold Dipolar Gas of Fermionic 23Na40 K Molecules in Their Absolute Ground State.

    Science.gov (United States)

    Park, Jee Woo; Will, Sebastian A; Zwierlein, Martin W

    2015-05-22

    We report on the creation of an ultracold dipolar gas of fermionic 23Na40 K molecules in their absolute rovibrational and hyperfine ground state. Starting from weakly bound Feshbach molecules, we demonstrate hyperfine resolved two-photon transfer into the singlet X 1Σ+|v=0,J=0⟩ ground state, coherently bridging a binding energy difference of 0.65 eV via stimulated rapid adiabatic passage. The spin-polarized, nearly quantum degenerate molecular gas displays a lifetime longer than 2.5 s, highlighting NaK's stability against two-body chemical reactions. A homogeneous electric field is applied to induce a dipole moment of up to 0.8 D. With these advances, the exploration of many-body physics with strongly dipolar Fermi gases of 23Na40K molecules is within experimental reach.

  2. Relativistic analysis of nuclear ground state densities at 135 to 200 MeV

    Indian Academy of Sciences (India)

    M A Suhail; N Neeloffer; Z A Khan

    2005-12-01

    A relativistic analysis of p + 40Ca elastic scattering with different nuclear ground state target densities at 135 to 200 MeV is presented in this paper. It is found that the IGO densities are more consistent in reproducing the data over the energy range considered here. The reproduction of spin-rotation-function data with the simultaneous fitting of differential cross-section and analyzing power, and the appearance of wine-bottle-bottom shaped Re eff() in the transition energy region, sensitively depends on the input nuclear ground state densities and are not solely the relativistic characteristic signatures. We also found that the wine-bottle-bottom shaped Re eff() is preferred by the spin observables in the transition energy region (i.e. 181 MeV to 200 MeV).

  3. Search for $^{12}$C+$^{12}$C clustering in $^{24}$Mg ground state

    Indian Academy of Sciences (India)

    B N JOSHI; ARUN K JAIN; D C BISWAS; B V JOHN; Y K GUPTA; L S DANU; R P VIND; G K PRAJAPATI; S MUKHOPADHYAY; A SAXENA

    2017-02-01

    In the backdrop of many models, the heavy cluster structure of the ground state of $^{24}$Mg has been probed experimentally for the first time using the heavy cluster knockout reaction $^{24}$Mg($^{12}$C, $^{212}$C)$^{12}$C in thequasifree scattering kinematic domain. In the ($^{12}$C, $^{212}$C) reaction, the direct $^{12}$C-knockout cross-section was found to be very small. Finite-range knockout theory predictions were much larger for ($^{12}$C, 212C) reaction,indicating a very small $^{12}$C−$^{12}$C clustering in $^{24}$Mg(g.s.). Our present results contradict most of the proposed heavy cluster ($^{12}$C+$^{12}$C) structure models for the ground state of $^{24}$Mg.

  4. Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules

    CERN Document Server

    Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen

    2016-01-01

    We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.

  5. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  6. Ground state energy of a non-integer number of particles with δ attractive interactions

    Science.gov (United States)

    Brunet, Éric; Derrida, Bernard

    2000-04-01

    We show how to define and calculate the ground state energy of a system of quantum particles with δ attractive interactions when the number of particles n is non-integer. The question is relevant to obtain the probability distribution of the free energy of a directed polymer in a random medium. When one expands the ground state energy in powers of the interaction, all the coefficients of the perturbation series are polynomials in n, allowing to define the perturbation theory for non-integer n. We develop a procedure to calculate all the cumulants of the free energy of the directed polymer and we give explicit, although complicated, expressions of the first three cumulants.

  7. Ground state correlations and mean-field in $^{16}O$, 2

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.

    2000-01-01

    We continue the investigations of the $^{16}$O ground state using the coupled-cluster expansion [$\\exp({\\bf S})$] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for $^{16}$O is also computed.

  8. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  9. Lower ground state due to counter-rotating wave interaction in trapped ion system

    CERN Document Server

    Liu, T; Feng, M

    2007-01-01

    We consider a single ion confined in a trap under radiation of two traveling waves of lasers. In the strong-excitation regime and without the restriction of Lamb-Dicke limit, the Hamiltonian of the system is similar to a driving Jaynes-Cummings model without rotating wave approximation (RWA). The approach we developed enables us to present a complete eigensolutions, which makes it available to compare with the solutions under the RWA. We find that, the ground state in our non-RWA solution is energically lower than the counterpart under the RWA. If we have the ion in the ground state, it is equivalent to a spin dependent force on the trapped ion. Discussion is made for the difference between the solutions with and without the RWA, and for the relevant experimental test, as well as for the possible application in quantum information processing.

  10. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  11. Universal Wave-Function Overlap and Universal Topological Data from Generic Gapped Ground States.

    Science.gov (United States)

    Moradi, Heidar; Wen, Xiao-Gang

    2015-07-17

    We propose a way-universal wave-function overlap-to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data might fully characterize the topological orders with a gapped or gapless boundary. For nonchiral topological orders in (2+1)D, these universal topological data consist of two matrices S and T, which generate a projective representation of SL(2,Z) on the degenerate ground state Hilbert space on a torus. For topological orders with a gapped boundary in higher dimensions, these data constitute a projective representation of the mapping class group MCG(M^{d}) of closed spatial manifold M^{d}. For a set of simple models and perturbations in two dimensions, we show that these quantities are protected to all orders in perturbation theory. These overlaps provide a much more powerful alternative to the topological entanglement entropy and allow for more efficient numerical implementations.

  12. Ground States and Excited States in a Tunable Graphene Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    WANG Lin-Jun; CAO Gang; TU Tao; LI Hai-Ou; ZHOU Cheng; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping

    2011-01-01

    We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system. We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.%@@ We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system.We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams.The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.

  13. Ground states of bilayered and extended t-J-U models

    Energy Technology Data Exchange (ETDEWEB)

    Voo, Khee-Kyun, E-mail: kkvoo@mail.oit.edu.tw

    2015-09-04

    The ground states of bilayered and extended t-J-U models are investigated with renormalized mean field theory. The trial wave functions are Gutzwiller projected Hartree–Fock states, and the site double occupancies are variational parameters. It is found that a spontaneous interlayer phase separation (PS) may arise in bilayers. In electron–hole doping asymmetric systems, the propensity for PS is stronger in electron doped bands. Via a PS, superconductivity can survive to lower doping densities, and antiferromagnetism in electron doped systems may survive to higher doping densities. The result is related to the superconducting cuprates. - Highlights: • Ground states in doped bilayered t-J-U models are studied. • Variational wave functions are Gutzwiller projected wave functions. • Site double occupancies are variational parameters. • Spontaneous interlayer phase separation may occur in bilayers. • Stronger tendency toward phase separation in electron doped bilayers.

  14. Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection

    Science.gov (United States)

    Stadler, P.; Belzig, W.; Rastelli, G.

    2016-11-01

    We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the inelastic Andreev reflections which drive the resonator to a nonequilibrium state. For small coupling, we obtain that vibration-assisted reflections can occur through two distinct interference paths. The interference determines the ratio between the rates of absorption and emission of vibrational energy quanta. We show that ground-state cooling of the mechanical oscillator can be achieved for many of the oscillator's modes simultaneously or for single modes selectively, depending on the experimentally tunable coupling to the superconductor.

  15. ON THE RADIAL GROUND STATE OFP-LAPLACIAN EQUATION WITH GRADIENT TERM PERTURBATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,authors consider the existence,uniqueness and nonexistence of the radial ground state to the following p-Laplacian equation:△pu+uq-|Dulσ=0,x ∈Rn,where 2≤pground state to the above p-Laplacian equation.

  16. High-precision quadrupole moment reveals significant intruder component in 20 13 33Al ground state

    Science.gov (United States)

    Heylen, H.; De Rydt, M.; Neyens, G.; Bissell, M. L.; Caceres, L.; Chevrier, R.; Daugas, J. M.; Ichikawa, Y.; Ishibashi, Y.; Kamalou, O.; Mertzimekis, T. J.; Morel, P.; Papuga, J.; Poves, A.; Rajabali, M. M.; Stödel, C.; Thomas, J. C.; Ueno, H.; Utsuno, Y.; Yoshida, N.; Yoshimi, A.

    2016-09-01

    The electric quadrupole moment of the 20 13 33Al ground state, located at the border of the island of inversion, was obtained using continuous-beam β -detected nuclear quadrupole resonance (β -NQR). From the measured quadrupole coupling constant νQ=2.31 (4 ) MHz in an α -Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: 33Al>Qs 141 (3 ) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N =20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z ≥14 isotopes.

  17. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    By the density-functional calculation we investigate the ground-state properties of Bose-Fermi mixture confined in one-dimensional harmonic traps. The homogeneous mixture of bosons and polarized fermions with contact interaction can be exactly solved by the Bethe-ansatz method. After giving the exact formula of ground state energy density, we employ the local-density approximation to determine the density distribution of each component. It is shown that with the increase in interaction, the total density distribution evolves to Fermi-like distribution and the system exhibits phase separation between two components when the interaction is strong enough but finite. While in the infinite interaction limit both bosons and fermions display the completely same Fermi-like distributions and phase separation disappears.

  18. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  19. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  20. Ground-State Phase Diagram of S = 2 Heisenberg Chains with Alternating Single-Site Anisotropy

    Science.gov (United States)

    Hida, Kazuo

    2014-03-01

    The ground-state phase diagram of S = 2 antiferromagnetic Heisenberg chains with coexisting uniform and alternating single-site anisotropies is investigated by the numerical exact diagonalization and density matrix renormalization group methods. We find the Haldane, large-D, Néel, period-doubled Néel, gapless spin fluid, quantized and partial ferrimagnetic phases. The Haldane phase is limited to the close neighborhood of the isotropic point. Within numerical accuracy, the transition from the gapless spin-fluid phase to the period-doubled Néel phase is a direct transition. Nevertheless, the presence of a narrow spin-gap phase between these two phases is suggested on the basis of the low-energy effective theory. The ferrimagnetic ground state is present in a wide parameter range. This suggests the realization of magnetized single-chain magnets with a uniform spin magnitude by controlling the environment of each magnetic ion without introducing ferromagnetic interactions.

  1. Extremal Optimization for Ground States of the Sherrington-Kirkpatrick Spin Glass with Levy Bonds

    Science.gov (United States)

    Boettcher, Stefan

    2013-03-01

    Using the Extremal Optimization heuristic (EO),[3] ground states of the SK-spin glass are studied with bonds J distributed according to a Levy distribution P (J) ~ 1 /| J | 1 + α with | J | > 1 and 1 model with Gaussian bonds.[4] We find that the energies attain universally the Parisi-energy of the SK when the second moment of P(J) exists (α > 2). They compare favorably with recent one-step replica symmetry breaking predictions well below α = 2 . Near α = 2 , the simulations deviate significantly from theoretical expectations. The finite-size corrections exponent ω decays from the putative SK value ωSK =2/3 already well above α = 2 . The exponent ρ for the scaling of ground state energy fluctuations with system size decays linearly from its SK value for decreasing α and vanishes at α = 1 . Supported through NSF grant DMR-#1207431

  2. High-precision quadrupole moment reveals significant intruder component in 33Al20 ground state

    CERN Document Server

    Heylen, H; Neyens, G; Bissell, M L; Caceres, L; Chevrier, R; Daugas, J M; Ichikawa, Y; Ishibashi, Y; Kamalou, O; Mertzimekis, T J; Morel, P; Papuga, J; Poves, A; Rajabali, M M; Stodel, C; Thomas, J C; Ueno, H; Utsuno, Y; Yoshida, N; Yoshimi, A

    2016-01-01

    The electric quadrupole moment of the 33Al20 ground state, located at the border of the island of inversion, was obtained using continuous-beam beta-detected nuclear quadrupole resonance (beta-NQR). From the measured quadrupole coupling constant Q = 2.31(4) MHz in an alpha-Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: Qs= 141(3) mb. A comparison with large-scale shell model calculations shows that 33Al has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N = 20 shell gap. 33Al therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z>14 isotopes.

  3. Ground-state solution for a class of biharmonic equations including critical exponent

    Science.gov (United States)

    Liu, Hongliang; Chen, Haibo

    2015-12-01

    In this paper, we study the following biharmonic equations Δ^2 u = λ{|u|^{2^{astast}(s)-2}u/|x|^s} + β a(x)|u|^{r-2}u,quad xin {{R}}^N. Under some suitable assumptions of {λ}, {β} and {a(x)}, the existence of ground-state solution and nonexistence of nontrivial solution are obtained by using variational methods. Moreover, the phenomenon of concentration of solutions is also explored.

  4. The role of correlation in the ground state energy of confined helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  5. Ground state Lamb-shift of heavy hydrogen-like ions: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th., E-mail: t.stoehlker@gsi.de; Beyer, H. F.; Gumberidze, A.; Kumar, A.; Liesen, D.; Reuschl, R.; Spillmann, U.; Trassinelli, M. [GSI Darmstadt (Germany)

    2006-09-15

    We present the current status in experimental investigations of the heaviest hydrogen-like systems at the Experimental Storage Ring (ESR) at GSI Darmstadt. Together with the most recent theoretical predictions the present experimental result provides a test of the leading quantum electrodynamical (QED) contributions on a percent level. In addition, the planned future experimental studies and related developments devoted to high-resolution spectroscopy of the ground-state in high-Z hydrogen-like systems are reviewed.

  6. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  7. Ground state spin 0$^+$ dominance of many-body systems with random interactions and related topics

    CERN Document Server

    Arima, A; Zhao, Y M

    2003-01-01

    In this talk we shall show our recent results in understanding the spin$^{\\rm parity}$ 0$^+$ ground state (0 g.s.) dominance of many-body systems. We propose a simple approach to predict the spin $I$ g.s. probabilities which does not require the diagonalization of a Hamiltonian with random interactions. Some findings related to the 0 g.s. dominance will also be discussed.

  8. Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2012-01-01

    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.

  9. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  10. Perturbative analysis of the ground-state wavefunctions of the quantum anharmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Xie Qiongtao [Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081 (China)], E-mail: xieqiongtao@yahoo.cn

    2009-10-23

    We investigate the perturbative expansions of the ground-state wavefunctions of the quantum anharmonic oscillators. With an appropriate change of spatial scale, the weak-coupling Schroedinger equation is transformed to an equivalent strong-coupling one. The Friedberg-Lee-Zhao method is applied to obtain the improved perturbative expansions. These perturbative expansions give a correction to the WKB results for large spatial distances, and reproduce the conventional weak-coupling results for small spatial distances.

  11. Perturbative analysis of the ground-state wavefunctions of the quantum anharmonic oscillators

    Science.gov (United States)

    Xie, Qiong-Tao

    2009-10-01

    We investigate the perturbative expansions of the ground-state wavefunctions of the quantum anharmonic oscillators. With an appropriate change of spatial scale, the weak-coupling Schrödinger equation is transformed to an equivalent strong-coupling one. The Friedberg-Lee-Zhao method is applied to obtain the improved perturbative expansions. These perturbative expansions give a correction to the WKB results for large spatial distances, and reproduce the conventional weak-coupling results for small spatial distances.

  12. Diagrammatic perturbation theory applied to the ground state of the water molecule

    Science.gov (United States)

    Silver, D. M.; Wilson, S.

    1977-01-01

    The diagrammatic many-body perturbation theory is applied to the ground state of the water molecule within the algebraic approximation. Using four different basis sets, the total energy, the equilibrium OH bond length, and the equilibrium HOH bond angle are examined. The latter is found to be a particularly sensitive test of the convergence of perturbation expansions. Certain third-order results, which incorporate all two-, three-, and four-body effects, show evidence of good convergence properties.

  13. Ground-State Bands of Fm and No Isotopes in Cluster Model

    Institute of Scientific and Technical Information of China (English)

    XU Chang; REN Zhong-Zhou

    2006-01-01

    We investigate the ground-state rotational bands of nuclei with Z ≥ 100 using cluster model proposed by Buck et al. [Phys. Rev. Lett. 94 (2005) 202501]. The core-cluster decomposition of each nucleus is determined by the corresponding electric quadrupole transition strength B(E2 : 2+ → 0+). The theoretical spectra of fermium and nobelium isotopes are compared with available experimental data. Good agreement between model and data is obtained.

  14. A centred, elongated "ferric tetrahedron" with an S= 15/2 spin ground state.

    Science.gov (United States)

    Tabernor, James; Jones, Leigh F; Heath, Sarah L; Muryn, Chris; Aromi, Guillem; Ribas, Joan; Brechin, Euan K; Collison, David

    2004-04-07

    The reaction of anhydrous FeCl(3) with 1H-benzotriazole-1-methanol (Bta-CH(2)OH) in MeOH produces the pentanuclear complex [Fe(5)O(2)(OMe)(2)(Bta)(4)(BtaH)(MeOH)(5)Cl(5)], containing a distorted tetrahedron of four Fe ions centred on a fifth. The central Fe is antiferromagnetically coupled to the peripheral Fe ions resulting in an S= 15/2 spin ground state.

  15. Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    CERN Document Server

    Bisconti, C; Có, G; Fabrocini, A

    2006-01-01

    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.

  16. Stable π-Extended p -Quinodimethanes: Synthesis and Tunable Ground States

    KAUST Repository

    Zeng, Zebing

    2014-12-18

    © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. p-Quinodimethane (p-QDM) is a highly reactive hydrocarbon showing large biradical character in the ground state. It has been demonstrated that incorporation of the p-QDM moiety into an aromatic hydrocarbon framework could lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. On the other hand, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. Therefore, the synthesis of stable π-extended p-QDMs is very challenging. In this Personal Account we will briefly discuss different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties, including two types of polycyclic hydrocarbons: (1) tetrabenzo-Tschitschibabin\\'s hydrocarbons, and (2) tetracyano-rylenequinodimethanes. We will discuss how the aromaticity, substituents and steric hindrance play important roles in determining their ground states and properties. Incorporation of the p-quinodimethane moiety into aromatic hydrocarbon frameworks can lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. Furthermore, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. In this Personal Account, different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties are briefly discussed, including the roles of aromaticity, substituents and steric hindrance.

  17. Massless ground state for a compact SU(2 matrix model in 4D

    Directory of Open Access Journals (Sweden)

    Lyonell Boulton

    2015-09-01

    Full Text Available We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2 matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  18. Eigenfunctions of Five-Qubit XX Chain and Ground State Concurrence

    Institute of Scientific and Technical Information of China (English)

    LING Yin-Sheng

    2008-01-01

    Use Jordan-Wigner transformation the eigenstates and eigenenergies of five qubits XX chain including external magnetic field are obtained. The concurrences Co,1 and C0,2 of ground state are obtained. For the ferromagnetic,when [((√)5-1)/2]|J|

  19. Creation of ultracold $^{87}$RbCs molecules in the rovibrational ground state

    CERN Document Server

    Molony, Peter K; Ji, Zhonghua; Lu, Bo; Köppinger, Michael P; Sueur, C Ruth Le; Blackley, Caroline L; Hutson, Jeremy M; Cornish, Simon L

    2014-01-01

    We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be $h c \\times 3811.576(1)$ cm$^{-1}$ and the $|\

  20. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    Science.gov (United States)

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  1. Ground-state diagrams for lattice-gas models of catalytic CO oxidation

    Directory of Open Access Journals (Sweden)

    I.S.Bzovska

    2007-01-01

    Full Text Available Based on simple lattice models of catalytic carbon dioxide synthesis from oxygen and carbon monoxide, phase diagrams are investigated at temperature T=0 by incorporating the nearest-neighbor interactions on a catalyst surface. The main types of ground-state phase diagrams of two lattice models are classified describing the cases of clean surface and surface containing impurities. Nonuniform phases are obtained and the conditions of their existence dependent on the interaction parameters are established.

  2. Ground-state energy of the electron liquid in ultrathin wires.

    Science.gov (United States)

    Fogler, Michael M

    2005-02-11

    The ground-state energy and the density correlation function of the electron liquid in a thin one-dimensional wire are computed. The calculation is based on an approximate mapping of the problem with a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for modestly thin wires.

  3. Ground state phase diagram of the half-filled bilayer Hubbard model

    OpenAIRE

    Golor, Michael; Reckling, Timo; Classen, Laura; Scherer, Michael M.; Wessel, Stefan

    2014-01-01

    Employing a combination of functional renormalization group calculations and projective determinantal quantum Monte Carlo simulations, we examine the Hubbard model on the square lattice bilayer at half filling. From this combined analysis, we obtain a comprehensive account on the ground state phase diagram with respect to the extent of the system's metallic and (antiferromagnetically ordered) Mott-insulating as well as band-insulating regions. By means of an unbiased functional renormalizatio...

  4. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    Science.gov (United States)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  5. Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state

    Science.gov (United States)

    Ren, Zhongzhou; Xu, Chang

    2005-09-01

    We generalize the formulas of spontaneous fission half-lives of even-even nuclei in their ground state to both the case of odd nuclei and the case of fission isomers [Phys. Rev. C 71 (2005) 014309]. The spontaneous fission half-lives of odd- A nuclei and of odd-odd nuclei in the ground state are calculated by Swiatecki's formula, by its generalized form, and by a new formula where the blocking effect of unpaired nucleon on the half-lives has been taken into account with different mechanisms. By introducing a blocking factor or a generalized seniority in the formulas of the half-lives of even-even nuclei, we can reasonably reproduce the experimental fission half-lives of odd- A nuclei and of odd-odd nuclei with the same parameters used in ground state of even-even nuclei. For spontaneous fission of the isomers in transuranium nuclei the new formula can be simplified into a three-parameter formula and the isomeric half-lives can be well reproduced by the formula. The new formula of the isomeric half-lives is as good as Metag's formula of fission isomers. The half-lives of isomers from these formulas are very accurate and therefore these formulas can give reliable predictions for half-lives of new isomers of neighboring nuclei.

  6. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Science.gov (United States)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  7. Uniqueness and symmetry of ground states for the L^2-critical boson star equation

    CERN Document Server

    Frank, Rupert L

    2009-01-01

    We prove uniqueness of ground state solutions for the $L^2$-critical boson star equation $\\sqrt{-\\Delta} u - \\big (|x|^{-1} \\ast |u|^2 \\big) u = -u$ in $\\R^3$, thereby settling a uniqueness conjecture of Lieb and Yau in [CMP \\textbf{112} (1987), 147--174] for the massless case. Our proof blends variational arguments with an harmonic extension to the halfspace $\\R^4_+ = \\R^3 \\times \\R_+$. Apart from uniqueness, we also establish the radial symmetry of ground state solutions (up to translations) as well as the nondegeneracy of the linearization. Our results provide an indispensable basis for the blowup analysis for the time-dependent $L^2$-critical massless boson star equation. The main result of this paper can be generalized to different fractional powers $(-\\Delta)^s$ and dimensions $d \\geq 3$. In particular, it can be regarded as the first non-perturbative uniqueness result for ground states of fractional elliptic nonlinear equations in higher space dimensions, beyond the conformally invariant case of Sobole...

  8. Three-body correlations in the ground-state decay of 26O

    CERN Document Server

    Kohley, Z; Christian, G; DeYoung, P A; Finck, J E; Frank, N; Luther, B; Lunderberg, E; Jones, M; Mosby, S; Smith, J K; Spyrou, A; Thoennessen, M

    2015-01-01

    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body...

  9. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2

    Science.gov (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    2015-03-01

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  10. Antiferromagnetic ground state with pair-checkerboard order in FeSe

    Science.gov (United States)

    Cao, Hai-Yuan; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao

    2015-01-01

    A monolayer FeSe thin film grown on SrTiO3(001) (STO) shows the sign of Tc>77 K , which is higher than the Tc record of 56 K for bulk FeAs-based superconductors. However, little is known about the magnetic ground state of FeSe, which should be closely related to its unusual superconductivity. Previous studies presume the collinear stripe antiferromagnetic (AFM) state as the ground state of FeSe, the same as that in FeAs superconductors. Here we find a magnetic order named the "pair-checkerboard AFM" as the magnetic ground state of tetragonal FeSe. The pair-checkerboard order results from the interplay between the nearest-, next-nearest, and unnegligible next-next-nearest neighbor magnetic exchange couplings of Fe atoms. The monolayer FeSe in pair-checkerboard order shows an unexpected insulating behavior with a Dirac-cone-like band structure related to the specific orbital order of the dx z and dy z characters of Fe atoms, which could explain the recently observed insulator-superconductor transition. The present results cast insights on the magnetic ordering in FeSe monolayer and its derived superconductors.

  11. On equilibrium structures of the water molecule

    Science.gov (United States)

    Császár, Attila G.; Czakó, Gábor; Furtenbacher, Tibor; Tennyson, Jonathan; Szalay, Viktor; Shirin, Sergei V.; Zobov, Nikolai F.; Polyansky, Oleg L.

    2005-06-01

    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×10-5Å and 0.02° for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J =1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm-1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm-1 (or the lower ones to better than 0.0035cm-1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The

  12. Ground-state phase diagram for a system of interacting, D(D{sub 3}) non-Abelian anyons

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.E., E-mail: peter.finch@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany); Frahm, H. [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstrasse 2, 30167 Hannover (Germany); Links, J. [Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072 (Australia)

    2011-03-01

    We study an exactly solvable model of D(D{sub 3}) non-Abelian anyons on a one-dimensional lattice with a free coupling parameter in the Hamiltonian. For certain values of the coupling parameter level crossings occur, which divide the ground-state phase diagram into four regions. We obtain explicit expressions for the ground-state energy in each phase, for both closed and open chain boundary conditions. For the closed chain case we show that chiral phases occur which are characterised by non-zero ground-state momentum.

  13. Merit of ground-state electronegativities; a reply to ``Comments on `Introduction to the chemistry of fractionally charged atoms: Electronegativity' ''

    Science.gov (United States)

    Lackner, Klaus S.; Zweig, George

    1987-09-01

    The arguments presented in the Comment by Liebman and Huheey are shown to be incorrect. The operational equivalence of Mulliken ground-state electronegativities and Pauling electronegativities is demonstrated for neutral atoms. It is shown that ground-state electronegativities and valence-state electronegativities for both neutral atoms and ions are also operationally equivalent. A single electronegativity scale based on Mulliken ground-state electronegativities may therefore be used for neutral atoms, ions, and fractionally charged atoms, as originally implied in the paper by Lackner and Zweig.

  14. Interface between light coupled to excited-states transition and ground-state coherence of rubidium atoms

    CERN Document Server

    Parniak, Michał; Wasilewski, Wojciech

    2015-01-01

    We demonstrate an interface between light coupled to transition between excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a non-linear process of four-wave mixing in an open-loop configuration is used to achieve light emission proportional to independently prepared ground-state atomic coherence. We demonstrate strong correlations between Raman light heralding generation of ground-state coherence and the new four-wave mixing signal. Dependance of the efficiency of the process on laser detunings is studied.

  15. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  16. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    Science.gov (United States)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  17. Competing ground states of strongly correlated bosons in the Harper-Hofstadter-Mott model

    Science.gov (United States)

    Natu, Stefan S.; Mueller, Erich J.; Das Sarma, S.

    2016-06-01

    Using an efficient cluster approach, we study the physics of two-dimensional lattice bosons in a strong magnetic field in the regime where the tunneling is much weaker than the on-site interaction strength. We study both the dilute, hard-core bosons at filling factors much smaller than unity occupation per site and the physics in the vicinity of the superfluid-Mott lobes as the density is tuned away from unity. For hard-core bosons, we carry out extensive numerics for a fixed flux per plaquette ϕ =1 /5 and ϕ =1 /3 . At large flux, the lowest-energy state is a strongly correlated superfluid, analogous to He-4, in which the order parameter is dramatically suppressed, but nonzero. At filling factors ν =1 /2 ,1 , we find competing incompressible states which are metastable. These appear to be commensurate density wave states. For small flux, the situation is reversed and the ground state at ν =1 /2 is an incompressible density wave solid. Here, we find a metastable lattice supersolid phase, where superfluidity and density wave order coexist. We then perform careful numerical studies of the physics near the vicinity of the Mott lobes for ϕ =1 /2 and ϕ =1 /4 . At ϕ =1 /2 , the superfluid ground state has commensurate density wave order. At ϕ =1 /4 , incompressible phases appear outside the Mott lobes at densities n =1.125 and n =1.25 , corresponding to filling fractions ν =1 /2 and 1, respectively. These phases, which are absent in single-site mean-field theory, are metastable and have slightly higher energy than the superfluid, but the energy difference between them shrinks rapidly with increasing cluster size, suggestive of an incompressible ground state. We thus explore the interplay between Mott physics, magnetic Landau levels, and superfluidity, finding a rich phase diagram of competing compressible and incompressible states.

  18. Spin-Exchange Collisions of the Ground State of Cs Atoms in a High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FU Li-Ping; LUO Jun; ZENG Xi-Zhi

    2000-01-01

    Cs atoms were optically pumped with a Ti:sapphire laser in a magnetic field of 1.516 T. Steady absorption spectra and populations of Zeeman sublevels of the ground state of Cs in N2 gas at various pressures (5, 40, and 80 Torr)were obtained. The results show that in a high magnetic field, the combined electron-nuclear spin transition(flip-flop transition), which is mainly induced by the collision modification δa( J.I)of hyperfine interaction, is an important relaxation mechanism at high buffer-gas pressures.

  19. Phenomenological description of ground state bands for doubly even plutonium-isotopes

    CERN Document Server

    Alsoraya, A M

    2002-01-01

    The energy levels of the ground state bands of even-even plutonium-isotopes are studied according to the variable moment of inertia (VMI), variable moment of inertia nuclear softness (VMINS) and nuclear softness (NS) models. In general, the NS3 model leads to more reasonable results than the others. The backbending phenomena in these were described and discussed. The calculations of the transition probabilities B(E2) show that the effect of addition of each neutron pair on the deformation parameter (BETA) is very small. Furthermore, the proton and neutron effective charges are found to be e sub = 0.48 eb and e-v =0.33 eb.

  20. The fine structure levels for ground states of negative ions of nitrogen and phosphorus

    Directory of Open Access Journals (Sweden)

    Leyla Özdemir

    2013-01-01

    Full Text Available The fine structure levels for negative ions (anions of nitrogen and phosphorus have been investigated using multiconfiguration Hartree-Fock method within the framework of Breit-Pauli Hamiltonian (MCHF+BP. Nitrogen and phosphorus have half-filled outer shell in ground state 1s22s22p3 4S and 1s22s22p33s23p3 4S, respectively. It has been stated in most works that the negative ion of nitrogen is instable whereas the negative ion of phosphorus is stable. The results obtained have been compared with other works.

  1. First principles calculations of the ground state properties and structural phase transformation in YN

    CERN Document Server

    Mancera, L; Takeuchi, N

    2003-01-01

    We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.

  2. Ground-state OH maser distributions in the Galactic Centre region

    CERN Document Server

    Qiao, Hai-Hua; Shen, Zhi-Qiang; Dawson, Joanne R

    2016-01-01

    Ground-state OH masers identified in the Southern Parkes Large-Area Survey in Hydroxyl were observed with the Australia Telescope Compact Array to obtain positions with high accuracy ($\\sim$1\\,arcsec). We classified these OH masers into evolved star OH maser sites, star formation OH maser sites, supernova remnant OH maser sites, planetary nebula OH maser sites and unknown maser sites using their accurate positions. Evolved star and star formation OH maser sites in the Galactic Centre region (between Galactic longitudes of $-5^{\\circ}$ to $+5^{\\circ}$ and Galactic latitudes of $-2^{\\circ}$ and $+2^{\\circ}$) were studied in detail to understand their distributions.

  3. Direct Photoassociative Formation of Ultracold KRb Molecules in the Lowest Vibrational Levels of the Ground State

    CERN Document Server

    Banerjee, Jayita; Carollo, Ryan; Bellos, Michael; Eyler, Edward E; Gould, Phillip L; Stwalley, William C

    2012-01-01

    We report continuous direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels $(v"=0 -10)$ of the electronic ground state $(X ^1\\Sigma^+)$, starting from $^{39}$K and $^{85}$Rb atoms in a magneto-optical trap. The process exploits a newfound resonant coupling between the $2(1), v'=165$ and $4(1), v'=61$ levels, which exhibit an almost equal admixture of the uncoupled eigenstates. The production rate of the $X^1\\Sigma^+$ ($v"$=0) level is estimated to be $5\\times10^3$ molecules/sec.

  4. Ground state of excitons in quantum-dot quantum-well nanoparticles:stochastic variational method

    Institute of Scientific and Technical Information of China (English)

    Zhang Heng; Shi Jun-Jie

    2004-01-01

    Within the framework of effective mass approximation, the ground state of excitons confined in spherical core-shell quantum-dot quantum-well (QDQW) nanoparticles is solved by using the stochastic variational method, in which the finite band offset and the heavy (light) hole exciton states are considered. The calculated lse-lsh transition energies for the chosen CdS/HgS/CdS QDQW samples are in good agreement with the experimental measurements. Moreover,some previous theoretical results are improved.

  5. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  6. Positive ground state solutions to Schrodinger-Poisson systems with a negative non-local term

    Directory of Open Access Journals (Sweden)

    Yan-Ping Gao

    2015-04-01

    Full Text Available In this article, we study the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+u-\\lambda K(x\\phi(xu=a(x|u|^{p-1}u, \\quad x\\in\\mathbb{R}^3, \\cr -\\Delta\\phi=K(xu^{2},\\quad x\\in\\mathbb{R}^3, }$$ with $p\\in(1,5$. Assume that $a:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ and $K:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods.

  7. 1 and 2 transitions in the ground-state configuration of atomic manganese

    Indian Academy of Sciences (India)

    S Kabakçi; B Karaçoban Usta; L Özdemir

    2015-10-01

    Using the multiconfiguration Hartree–Fock approximation within the framework of the Breit–Pauli Hamiltonian (MCHF+BP) and the relativistic Hartree–Fock (HFR) approximation, we have calculated the forbidden transition (1 and 2) parameters such as transition energies, logarithmic weighted oscillator strengths and transition probabilities between the fine-structure levels in the ground-state configuration of 3d5 4s2 for atomic manganese (Mn I, Z =25). A discussion of these calculations for manganese using MCHF+BP and HFR methods is given here.

  8. E2 transitions between excited single-phonon states: Role of ground-state correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre Kurchatov Institute (Russian Federation); Voitenkov, D. A., E-mail: dvoytenkov@ippe.ru [Institute for Physics and Power Engineering (Russian Federation)

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  9. Light-cone distribution amplitudes of the ground state bottom baryons in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Wang, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hambrock, C. [Technische Univ. Dortmund (Germany); Parkhomenko, A.Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation)

    2012-12-15

    We provide the definition of the complete set of light-cone distribution amplitudes (LCDAs) for the ground state heavy bottom baryons with the spin-parities J{sup P}=1/2{sup +} and J{sup P}=3/2{sup +} in the heavy quark limit. We present the renormalization effects on the twist-2 light-cone distribution amplitudes and use the QCD sum rules to compute the moments of twist-2, twist-3, and twist-4 LCDAs. Simple models for the heavy baryon distribution amplitudes are analyzed with account of their scale dependence.

  10. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems.

    Science.gov (United States)

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-07

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology.

  11. The magnetic structure on the ground state of the equilateral triangular spin tube

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-12-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  12. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2012-01-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  13. Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma

    Science.gov (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2012-09-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  14. Ground state of an antiferromagnetic superconductor in the presence of a homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, Y.; Naji, A.D.S. (Waterloo Univ., Ontario (Canada). Dept. of Physics)

    1981-11-01

    The effect of a homogeneous magnetic field, H/sub 0/. on the ground state of an antiferromagnetic superconductor has been investigated. Assuming a one-dimensional like half-filled band, a new state has been found having gapless superconductivity and H/sub 0/-dependent order parameter. This state exists for Hsub(Q)/..delta../sub 0/ > 0.22 and when ..delta.. - Hsub(Q) <= H/sub 0/ < ..delta.. + Hsub(Q) Hsub(Q) is the staggered magnetic field, ..delta.. is the superconducting order parameter and ..delta../sub 0/ is ..delta.. in the absence of Hsub(Q) and H/sub 0/.

  15. Ground-State Entanglement and Mixture in an XXZ Spin Chain

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-Zhi; LI Chun-Xian; GUO Guang-Can

    2005-01-01

    @@ We study the pairwise entanglement and mixture of a three-qubit XXZ spin chain in the ground state in thepresence of an external magnetic field B. The effects of the magnetic field, the anisotropy and the temperature on the entanglement and mixture are considered, and entanglement versus the mixture of all the two-spin states is investigated. We find that the maximal entangled mixed state can be obtained in the considered system by controlling the magnetic field. Our results provide another way to generate maximally entangled mixed states.

  16. Extended Ho\\v{r}ava Gravity with Physical Ground-State Wavefunction

    CERN Document Server

    Shu, Fu-Wen

    2010-01-01

    We propose a new extended theory of Ho\\v{r}ava gravity based on the following three conditions: (i) UV completion, (ii) healthy IR behavior and (iii) a stable vacuum state in quantized version of the theory. Compared with other extended theories, we stress that any realistic theory of gravity must have physical ground states when quantization is performed. To fulfill the three conditions, we softly break the detailed balance but keep its basic structure unchanged. It turns out that the new model constructed in this way can avoid the strong coupling problem and remains power-counting renormalizable, moreover, it has a stable vacuum state by an appropriate choice of parameters.

  17. Ground states for Schrodinger-Poisson systems with three growth terms

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-12-01

    Full Text Available In this article we study the existence and nonexistence of ground states of the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+V(xu+K(x\\phi u=Q(xu^3,\\quad x\\in \\mathbb{R}^3,\\cr -\\Delta\\phi=K(xu^2, \\quad x\\in \\mathbb{R}^3, }$$ where V, K, and Q are asymptotically periodic in the variable x. The proof is based on the the method of Nehari manifold and concentration compactness principle. In particular, we develop the method of Nehari manifold for Schrodinger-Poisson systems with three times growth.

  18. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Science.gov (United States)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  19. Ground State Solutions for a Semilinear Elliptic Equation Involving Concave-Convex Nonlinearities

    Institute of Scientific and Technical Information of China (English)

    KHAZAEE KOHPAR O; KHADEMLOO S

    2013-01-01

    This work is devoted to the existence and multiplicity properties of the grotmd state solutions of the semilinear boundary value problem-Au=λa(x)u|u|q-2+b(x) u |u|2*-2 in a bounded domain coupled with Dirichlet boundary condition.Here 2* is the critical Sobolev exponent,and the term ground state refers to minimizers of the corresponding energy within the set of nontrivial positive solutions.Using the Nehari manifold method we prove that one can find an interval A such that there exist at least two positive solutions of the problem for λ ∈ A.

  20. Ground states of bilayered and extended t-J-U models

    Science.gov (United States)

    Voo, Khee-Kyun

    2015-09-01

    The ground states of bilayered and extended t-J-U models are investigated with renormalized mean field theory. The trial wave functions are Gutzwiller projected Hartree-Fock states, and the site double occupancies are variational parameters. It is found that a spontaneous interlayer phase separation (PS) may arise in bilayers. In electron-hole doping asymmetric systems, the propensity for PS is stronger in electron doped bands. Via a PS, superconductivity can survive to lower doping densities, and antiferromagnetism in electron doped systems may survive to higher doping densities. The result is related to the superconducting cuprates.

  1. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 ... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... Benjamin–Ono (BO) and Benjamin–Bona–Mahony (BBM) water wave equations....

  2. Status Report: A Detector for Measuring the Ground State Hyperfine Splitting of Antihydrogen

    CERN Document Server

    Kolbinger, Bernadette

    2016-01-01

    The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration at the Antiproton Decelerator at CERN aims to measure the ground state hyperfine structure of antihydrogen. A Rabi-like spectrometer line has been built for this purpose. A detector for counting antihydrogen is located at the end of the beam line. This contribution will focus on the tracking detector, whose challenging task it is to discriminate between background events and antiproton annihilations originating from antihydrogen atoms which are produced only in small amounts.

  3. Ground State Transitions of Four-Electron Quantum Dots in Zero Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; XIE Wen-Fang; LIU Yi-Ming; SHI Ting-Yun

    2008-01-01

    In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.

  4. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    Science.gov (United States)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  5. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.

  6. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; GUO Lu

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field (RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A=139 where the neutron number is the magic number N=82.It is also found that the octupole deformations may exist in the La isotopes with mass number A~ 145-155.

  7. Ground State and Single Vortex for Bose-Einstein Condensates in Anisotropic Traps

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-Jun; CAI Ping-Gen

    2007-01-01

    For Bose-Einstein condensation of neutral atoms in anisotropic traps at zero temperature, we present simple analytical methods for computing the properties of ground state and single vortex of Bose-Einstein condensates,and compare those results to extensive numerical simulations. The critical angular velocity for production of vortices is calculated for both positive and negative scattering lengths a, and find an analytical expression for the large-N limit of the vortex critical angular velocity for a > 0, and the critical number for condensate population approaches the point of collapse for a < 0, by using approximate variational method.

  8. Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state

    Science.gov (United States)

    Hernández, J. M.; Ramírez, C.; Sánchez, M.

    2014-05-01

    We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.

  9. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  10. Ground State and Elementary Excitations of the S=1 Kagome Heisenberg Antiferromagnet

    OpenAIRE

    Hida, Kazuo

    2000-01-01

    Low energy spectrum of the S=1 kagom\\'e Heisenberg antiferromagnet (KHAF) is studied by means of exact diagonalization and the cluster expansion. The magnitude of the energy gap of the magnetic excitation is consistent with the recent experimental observation for \\mpynn. In contrast to the $S=1/2$ KHAF, the non-magnetic excitations have finite energy gap comparable to the magnetic excitation. As a physical picture of the ground state, the hexagon singlet solid state is proposed and verified b...

  11. Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.

  12. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    Science.gov (United States)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  13. Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields

    Science.gov (United States)

    Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2015-12-01

    The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.

  14. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; XIAO Jing-Ling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron arealdensity and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's,the spin-splitting states of the polaron are more stable than electron's.

  15. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...

  16. Impact of Mercury(II) on proteinase K catalytic center: investigations via classical and Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Panek, Jarosław J; Mazzarello, Riccardo; Novič, Marjana; Jezierska-Mazzarello, Aneta

    2011-02-01

    Mercury(II) has a strong affinity for the thiol groups in proteins often resulting in the disruption of their biological functions. In this study we present classical and first-principles, DFT-based molecular dynamics (MD) simulations of a complex of Hg(II) and proteinase K, a well-known serine protease with a very broad and diverse enzymatic activity. It contains a catalytic triad formed by Asp39, His69, and Ser224, which is responsible for its biological activity. It was found previously by X-ray diffraction experiments that the presence of Hg(II) inhibits the enzymatic action of proteinase K by affecting the stereochemistry of the triad. Our simulations predict that (i) the overall structure as well as the protein backbone dynamics are only slightly affected by the mercury cation, (ii) depending on the occupied mercury site, the hydrogen bonds of the catalytic triad are either severely disrupted (both bonds for mercury at site 1, and the His69-Ser224 contact for mercury at site 2) or slightly strengthened (the Asp39-His69 bond when mercury is at site 2), (iii) the network of hydrogen bonds of the catalytic triad is not static but undergoes constant fluctuations, which are significantly modified by the presence of the Hg(II) cation, influencing in turn the triad's ability to carry out the enzymatic function--these facts explain the experimental findings on the inhibition of proteinase K by Hg(II).

  17. The suggested presence of the tetrahedral-symmetry in the ground-state configuration of the $^{96}$Zr nucleus

    CERN Document Server

    Dudek, Jerzy; Rouvel, David; Mazurek, Katarzyna; Shimizu, Yoshifumi; Tagami, Shingo

    2014-01-01

    We discuss the predictions of the large scale calculations using the realistic realisation of the phenomenological nuclear mean-field theory. Calculations indicate that certain Zirconium nuclei are tetrahedral-symmetric in their ground-states. After a short overview of the research of the nuclear tetrahedral symmetry in the past we analyse the predictive capacities of the method and focus on the $^{96}$Zr nucleus expected to be tetrahedral in its ground-state.

  18. High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    CERN Document Server

    Wiesemeyer, Helmut; Heyminck, Stefan; Karl, Jacobs; Menten, Karl; Neufeld, David; Requena-Torres, Miguel Angel; Stutzki, Jürgen; 10.1051/0004-6361/201218915

    2012-01-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the...

  19. Polarizabilities and tune-out wavelengths of the hyperfine ground states of $^{87,85}$Rb

    CERN Document Server

    Wang, Xia; Xie, Lu-You; Zhang, Deng-Hong; Dong, Chen-Zhong

    2016-01-01

    The static and dynamic polarizabilities, and the tune-out wavelengths of the ground state of Rb and the hyperfine ground states of $^{87, 85}$Rb have been calculated by using relativistic configuration interaction plus core polarization(RCICP) approach. It is found that the first primary tune-out wavelengths of the $ 5s_{1/2}, F=1, 2 $ states of $ ^{87}$Rb are 790.018187(193) nm and 790.032602(193) nm severally, where the calculated result for the $ 5s_{1/2}, F=2 $ state is in good agreement with the latest high-precision measurement 790.032388(32) nm [Phys. Rev. A 92, 052501 (2015)]. Similarly, the first primary tune-out wavelengths of the $ 5s_{1/2}, F=2, 3 $ states of $^{85}$Rb are 790.023515(218) nm and 790.029918(218) nm respectively. Furthermore, the tune-out wavelengths for the different magnetic sublevels $ M_{F}$ of each hyperfine level $F$ are also determined by considering the contributions of tensor polarizabilities.

  20. Ground-State Behavior of the Quantum Compass Model in an External Field

    Institute of Scientific and Technical Information of China (English)

    SUN Ke-Wei; CHEN Qing-Hu

    2011-01-01

    @@ Ground-state(GS)properties of the two-dimensional(2D)quantum compass model in an external field on a square 5×5 lattice are investigated by using the exact diagonalization(ED)method.We obtain the GS energy and evaluate quantities such as its correlation functions,nearest-neighbor entanglement and local order parameter.As the external field is presented,the first-order quantum phase point is absent and the system exhibits the behaviors of the second-order phase transition.%Ground-state (GS) properties of the two-dimensional (2D) quantum compass model in an external Geld on a square 5x5 lattice are investigated by using the exact diagonalization (ED) method. We obtain the GS energy and evaluate quantities such as its correlation functions, nearest-neighbor entanglement and local order parameter. As the external Geld is presented, the first-order quantum phase point is absent and the system exhibits the behaviors of the second-order phase transition.