WorldWideScience

Sample records for ground-level ozone measured

  1. A Simple Method for Measuring Ground-Level Ozone in the Atmosphere

    Science.gov (United States)

    Seeley, John V.; Seeley, Stacy K.; Bull, Arthur W.; Fehir, Richard J., Jr.; Cornwall, Susan; Knudsen, Gabriel A.

    2005-01-01

    An iodometric assay that allows the ground-level ozone concentration to be determined with an inexpensive sampling apparatus and a homemade photometer is described. This laboratory experiment applies a variety of different fundamental concepts including oxidation-reduction chemistry, the ideal gas law, and spectroscopic analysis and also provides…

  2. Ozone Control Strategies | Ground-level Ozone | New ...

    Science.gov (United States)

    2017-02-16

    The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.

  3. An analysis of the trend in ground-level ozone using non-homogeneous poisson processes

    Science.gov (United States)

    Shively, Thomas S.

    This paper provides a method for measuring the long-term trend in the frequency with which ground-level ozone present in the ambient air exceeds the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for ozone. A major weakness of previous studies that estimate the long-term trend in the very high values of ozone, and therefore the long-term trend in the probability of satisfying the NAAQS for ozone, is their failure to account for the confounding effects of meterological conditions on ozone levels. Meteorological variables such as temperature, wind speed, and frontal passage play an important role in the formation of ground-level ozone. A non-homogenous Poisson process is used to account for the relationship between very high values of ozone and meteorological conditions. This model provides an estimate of the trend in the ozone values after allowing for the effects of meteorological conditions. Therefore, this model provides a means to measure the effectiveness of pollution control programs after accounting for the effects of changing weather conditions. When our approach is applied to data collected at two sites in Houston, TX, we find evidence of a gradual long-term downward trend in the frequency of high values of ozone. The empirical results indicate how possibly misleading results can be obtained if the analysis does not account for changing weather conditions.

  4. Ground Level Ozone Precursors: Emission Changes in Lithuania 1990–2006

    Directory of Open Access Journals (Sweden)

    Renata DAGILIŪTĖ

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Lithuanian national strategy for sustainable development is aiming to reduce air pollution per GDP unit significantly and to ensure compliance with international commitments in the air pollution sphere. Ground-level ozone (O3 is one of the most important secondary air pollutants, which is assigned to be harmful to environmental and human health and is one of the main problems of air pollution in cities. This paper aims to overview the changes in the emissions of ground level ozone precursors and their ozone forming potential as well as the achieved progress in foreseen goals. During the analysis period (1990 - 2006 emissions of ground-level ozone precursors declined twofold in Lithuania. After transitional decline intensity of ground level ozone precursors also significantly decreased due to advanced technologies, more efficient energy consumption and changes in fuel mix. However, intensity of ground-level ozone precursors in Lithuania was higher compared to the old EU member states on average, therefore much more attention should be given to special air pollution mitigation measures.

  5. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models

    NARCIS (Netherlands)

    Sharma, Sumit; Chatani, Satoru; Mahtta, Richa; Goel, Anju; Kumar, Atul

    2016-01-01

    Ground level ozone is emerging as a pollutant of concern in India. Limited surface monitoring data reveals that ozone concentrations are well above the prescribed national standards. This study aims to simulate the regional and urban scale ozone concentrations in India using WRF-CMAQ models. Sector-

  6. Effect of shipping emissions on European ground-level ozone

    Science.gov (United States)

    Stergiou, Ioannis; -Eleni Sotiropoulou, Rafaella; Tagaris, Efthimios

    2017-04-01

    Shipping emissions contribution to the global nitrogen oxides emissions is about 15%, affecting ozone formation and the chemical composition of the atmosphere. The objective of this study is to assess the impact of shipping emissions on ozone levels over Europe suggesting regions where air quality degradation due to shipping emissions dominates against the rest of the anthropogenic source emissions. Ranking the importance of the Standard Nomenclature for Air Pollution (SNAP) categories on ozone mixing ratio, road transport has the major impact followed by other mobile sources, power generation, and industrial combustion sectors. All other sectors have a minor impact, therefor, our analysis is focused on these four emission categories. Results suggest that shipping emissions seem to play an important role on ozone levels compared to road transport sector near the coastal zone, while they could partly offset the benefits from the emissions reduction of other mobile sources, power generation and industrial combustion sources, over a great part of the European land.

  7. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  8. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  9. Comparison of temporal and Spatial Characteristics of Ozone Pollution at Ground Level in the Eastern China

    Institute of Scientific and Technical Information of China (English)

    Liu Houfeng

    2006-01-01

    Monitoring data from ozone(O3) automatic stations in three typical cities with different climatic areas in the southern and northern parts of eastern China are used to analyze temporal and spatial characteristics of ozone pollution at ground level. The results show that ozone pollution level has distinct regional differences and the concentration in the suburbs is higher than that in the urban areas. The seasonal variation of ozone concentration in different climatic areas is greatly affected by the variation of precipitation. Ozone concentration in Shenyang and Beijing , in the temperate zone, has one perennial peak concentration, occurring in early summer,May or June. Ozone concentration in Guangzhou, in sub-tropical zone, has two peak values year round. The highest values occur in October and the secondary high value in June. The ozone season in the south is longer than that in the north. The annual average daily peak value of ozone concentrations in different climates usually occur around 3 pm. The diurnal variation range of ozone concentration declines with the increase of latitude. Ozone concentration does not elevate with the increase of traffic flow. Ozone concentration in Guangzhou has a distinct reverse relation to CO and NOx. This complicated non-linearity indicates that the equilibrium of ozone photochemical reaction has regional differences.Exceeding the rate of Beijing's 1h ozone concentration is higher than that of Guangzhou, whereas the average 8h ozone level is lower than that of Guangzhou, indicating that areas in low latitude are more easily affected by moderate ozone concentrations and longer exposure. Thus,China should work out standards for 8h ozone concentration.

  10. Association of short-term exposure to ground-level ozone and respiratory outpatient clinic visits in a rural location – Sublette County, Wyoming, 2008–2011

    Energy Technology Data Exchange (ETDEWEB)

    Pride, Kerry R., E-mail: hgp3@cdc.gov [Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA (United States); Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Peel, Jennifer L. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 (United States); Robinson, Byron F. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Busacker, Ashley [Field Support Branch, Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Grandpre, Joseph [Chronic Disease Epidemiologist, Wyoming Department of Health, 6101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States); Bisgard, Kristine M. [Scientific Education and Professional Development Program Office, Office of Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, 600 Clifton Road, NE, E-92, Atlanta, GA 30333 (United States); Yip, Fuyuen Y. [Air Pollution and Respiratory Disease Branch, Centers for Disease Control and Prevention, 600 Clifton Rd, NE, E-92, Atlanta, GA 30333 (United States); Murphy, Tracy D. [Wyoming Department of Health, 101 Yellowstone Road, Suite 510, Cheyenne, WY 82002 (United States)

    2015-02-15

    Objective: Short-term exposure to ground-level ozone has been linked to adverse respiratory and other health effects; previous studies typically have focused on summer ground-level ozone in urban areas. During 2008–2011, Sublette County, Wyoming (population: ~10,000 persons), experienced periods of elevated ground-level ozone concentrations during the winter. This study sought to evaluate the association of daily ground-level ozone concentrations and health clinic visits for respiratory disease in this rural county. Methods: Clinic visits for respiratory disease were ascertained from electronic billing records of the two clinics in Sublette County for January 1, 2008–December 31, 2011. A time-stratified case-crossover design, adjusted for temperature and humidity, was used to investigate associations between ground-level ozone concentrations measured at one station and clinic visits for a respiratory health concern by using an unconstrained distributed lag of 0–3 days and single-day lags of 0 day, 1 day, 2 days, and 3 days. Results: The data set included 12,742 case-days and 43,285 selected control-days. The mean ground-level ozone observed was 47±8 ppb. The unconstrained distributed lag of 0–3 days was consistent with a null association (adjusted odds ratio [aOR]: 1.001; 95% confidence interval [CI]: 0.990–1.012); results for lags 0, 2, and 3 days were consistent with the null. However, the results for lag 1 were indicative of a positive association; for every 10-ppb increase in the 8-h maximum average ground-level ozone, a 3.0% increase in respiratory clinic visits the following day was observed (aOR: 1.031; 95% CI: 0.994–1.069). Season modified the adverse respiratory effects: ground-level ozone was significantly associated with respiratory clinic visits during the winter months. The patterns of results from all sensitivity analyzes were consistent with the a priori model. Conclusions: The results demonstrate an association of increasing ground-level

  11. Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

    Science.gov (United States)

    Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.

    2011-01-01

    Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738

  12. Development and Implementation of a Near-Real-Time Web Reporting System on Ground-Level Ozone in Europe

    DEFF Research Database (Denmark)

    Normander, Bo; Haigh, Tim; Christiansen, Jesper S.

    2008-01-01

    This article presents the development and results of Ozone Web-a near-real-time Web-based approach to communicate environmental information to policy makers, researchers, and the general public. In Ozone Web, ground-level ozone information from 750 air quality measurement stations across Europe...... actual monitoring. In a response to the acute characteristics of air pollution, the basic principle is that up-to-date and accurate information about air pollution levels will help 1) citizens to protect their health, 2) policy makers in assessing the state of the environment, and 3) researchers...... in exchanging data and knowledge. Near-real-time information systems on the Web seem to be a valuable complement to future environmental reporting, and the European Environment Agency is currently investigating the requirements needed to extend the use of near-real-time data, including reporting on air...

  13. Cost-Effective Control of Ground-Level Ozone Pollution in and around Beijing

    Institute of Scientific and Technical Information of China (English)

    Xie Xuxuan; Zhang Shiqiu; Xu Jianhua; Wu Dan; Zhu Tong

    2012-01-01

    Ground level ozone pollution has become a significant air pollution problem in Beijing. Because of the complex way in which ozone is formed, it is difficult for policy makers to identify optimal control options on a cost-effective basis. This paper identi- fies and assesses a range of options for addressing this problem. We apply the Ambient Least Cost Model and compare the eco- nomic costs of control options, then recommend the most effective sequence to realize pollution control at the lowest cost. The study finds that installing of Stage II gasoline vapor recovery system at Beijing's 1446 gasoline stations would be the most cost-effective option. Overall, options to reduce ozone pollution by cutting ve- hicular emissions are much more cost-effective than options to "clean up" coal-fired power plants.

  14. Analysis of Daytime and Nighttime Ground Level Ozone Concentrations Using Boosted Regression Tree Technique

    Directory of Open Access Journals (Sweden)

    Noor Zaitun Yahaya

    2017-01-01

    Full Text Available This paper investigated the use of boosted regression trees (BRTs to draw an inference about daytime and nighttime ozone formation in a coastal environment. Hourly ground-level ozone data for a full calendar year in 2010 were obtained from the Kemaman (CA 002 air quality monitoring station. A BRT model was developed using hourly ozone data as a response variable and nitric oxide (NO, Nitrogen Dioxide (NO2 and Nitrogen Dioxide (NOx and meteorological parameters as explanatory variables. The ozone BRT algorithm model was constructed from multiple regression models, and the 'best iteration' of BRT model was performed by optimizing prediction performance. Sensitivity testing of the BRT model was conducted to determine the best parameters and good explanatory variables. Using the number of trees between 2,500-3,500, learning rate of 0.01, and interaction depth of 5 were found to be the best setting for developing the ozone boosting model. The performance of the O3 boosting models were assessed, and the fraction of predictions within two factor (FAC2, coefficient of determination (R2 and the index of agreement (IOA of the model developed for day and nighttime are 0.93, 0.69 and 0.73 for daytime and 0.79, 0.55 and 0.69 for nighttime respectively. Results showed that the model developed was within the acceptable range and could be used to understand ozone formation and identify potential sources of ozone for estimating O3 concentrations during daytime and nighttime. Results indicated that the wind speed, wind direction, relative humidity, and temperature were the most dominant variables in terms of influencing ozone formation. Finally, empirical evidence of the production of a high ozone level by wind blowing from coastal areas towards the interior region, especially from industrial areas, was obtained.

  15. Forest Watch: Using Student Data to Monitor Forest Response to Ground-Level Ozone

    Science.gov (United States)

    Spencer, S.; Rock, B. N.

    2006-12-01

    Forest Watch, a k-12 science outreach program begun at the University of New Hampshire (UNH) in 1991, has engaged pre-college students in providing UNH researchers with data on the annual response of white pine (Pinus strobus; a bio-indicator species for ozone exposure) to ground-level ozone across the New England region. Each year, student-collected growth and foliar symptomology data for 5 pine trees adjacent to their schools, along with first-year foliar samples, are submitted to UNH. Key foliar symptoms and student data are compared with summer monthly (JJA) maximum ozone concentrations collected by state and federal ozone monitoring stations across the region. To date, tree health indicators are inversely correlated (r2=0.83;p=0.10) with ozone concentrations: low ozone levels correlate with symptoms of good health (spectral indices diagnostic of high foliar chlorophyll levels and moisture content, normal incremental growth, low number of foliar symptoms), while summers characterized by high ozone concentrations correlate with symptoms of reduced health (low chlorophyll indices and moisture content, reduced incremental growth, increased number of foliar symptoms). In drought years (1999, 2001, 2002, 2003) few foliar symptoms of ozone damage are seen even though ozone levels were high, likely due to drought-induced stomatal closure. Based on student data since 1998, either low ozone summers, or drought summers have resulted in improved health in the sampled trees (n=30). Based on the success of Forest Watch in New England, we are exploring the extension of the program to Colorado as Front Range Forest Watch, operated from Colorado State University (CSU). The primary objective is to develop a student-scientist-local agency project that addresses real ecological issues in northern Colorado, including ozone pollution, and to provide pre-college students and teachers authentic science experiences. CSU runs a GK-12 program with Poudre School District in northern

  16. Effects of 10% biofuel substitution on ground level ozone formation in Bangkok, Thailand

    Science.gov (United States)

    Milt, Austin; Milano, Aaron; Garivait, Savitri; Kamens, Richard

    2009-12-01

    The Thai Government's search for alternatives to imported petroleum led to the consideration of mandating 10% biofuel blends (biodiesel and gasohol) by 2012. Concerns over the effects of biofuel combustion on ground level ozone formation in relation to their conventional counterparts need addressing. Ozone formation in Bangkok is explored using a trajectory box model. The model is compared against O 3, NO, and NO 2 time concentration data from air monitoring stations operated by the Thai Pollution Control Department. Four high ozone days in 2006 were selected for modeling. Both the traditional trajectory approach and a citywide average approach were used. The model performs well with both approaches but slightly better with the citywide average. Highly uncertain and missing data are derived within realistic bounds using a genetic algorithm optimization. It was found that 10% biofuel substitution will lead to as much as a 16 ppb peak O 3 increase on these four days compared to a 48 ppb increase due to the predicted vehicle fleet size increase between 2006 and 2012. The approach also suggests that when detailed meteorological data is not available to run three dimensional airshed models, and if the air is stagnant or predominately remains over an urban area during the day, that a simple low cost trajectory analysis of O 3 formation may be applicable.

  17. Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models

    Science.gov (United States)

    Hoshyaripour, G.; Brasseur, G.; Andrade, M. F.; Gavidia-Calderón, M.; Bouarar, I.; Ynoue, R. Y.

    2016-11-01

    Two state-of-the-art models (deterministic: Weather Research and Forecast model with Chemistry (WRF-Chem) and statistic: Artificial Neural Networks: (ANN)) are implemented to predict the ground-level ozone concentration in São Paulo (SP), Brazil. Two domains are set up for WRF-Chem simulations: a coarse domain (with 50 km horizontal resolution) including whole South America (D1) and a nested domain (with horizontal resolution of 10 km) including South Eastern Brazil (D2). To evaluate the spatial distribution of the chemical species, model results are compared to the Measurements of Pollution in The Troposphere (MOPITT) data, showing that the model satisfactorily predicts the CO concentrations in both D1 and D2. The model also reproduces the measurements made at three air quality monitoring stations in SP with the correlation coefficients of 0.74, 0.70, and 0.77 for O3 and 0.51, 0.48, and 0.57 for NOx. The input selection for ANN model is carried out using Forward Selection (FS) method. FS-ANN is then trained and validated using the data from two air quality monitoring stations, showing correlation coefficients of 0.84 and 0.75 for daily mean and 0.64 and 0.67 for daily peak ozone during the test stage. Then, both WRF-Chem and FS-ANN are deployed to forecast the daily mean and peak concentrations of ozone in two stations during 5-20 August 2012. Results show that WRF-Chem preforms better in predicting mean and peak ozone concentrations as well as in conducting mechanistic and sensitivity analysis. FS-ANN is only advantageous in predicting mean daily ozone concentrations considering its significantly lower computational costs and ease of development and implementation, compared to that of WRF-Chem.

  18. A High Density Ground-Level Ozone Sensor Network in the Lower Fraser Valley, BC, Canada

    Science.gov (United States)

    Bart, M.; Ainslie, B.; Alavi, M.; Henshaw, G.; McKendry, I.; Reid, K.; Salmond, J. A.; Steyn, D.; Williams, D.

    2012-12-01

    Ozone can have a detrimental effect on human health, agricultural crops and the environment. To quantify these impacts, tropospheric chemistry models are often employed, which are continually increasing in complexity and resolution. In order to validate these sophisticated models and provide good quality parameterisation and initialisation data, complementary measurements are often made. However, these measurements can often be difficult to perform, expensive and time consuming to make. A low cost sensor network can overcome some of these limitations, by making spatially dense measurements for a fraction of the cost of traditional measurements. Since the mid-1980s, when reliable observations from the fixed monitoring network began, high ozone concentrations have been a health concern in the Lower Fraser Valley (LFV), BC, Canada and numerous studies have been carried out in the LFV previously [1-4]. In the summer of 2012 we embarked on a programme to advance these studies by deploying the world's first ultra-dense fully automated ozone measurement network. The network consisted of approximately 60 high quality tungsten oxide semi-conductor ozone sensors integrated with low-cost cellular telephone modems and GPS receivers, returning data to a webserver in real-time at 1 minute temporal resolution. This ultra-dense network of sensors has enabled us to perform a detailed study of ozone formation and dispersal in the LFV and associated tributary valleys. Peak ozone production areas have been mapped out, particularly in the surrounding region where ozone is not routinely monitored. This has provided a detailed understanding of small scale variability and ozone transport phenomena, with particular emphasis placed on the previously unknown role of tributary valleys to the south of the LFV, Howe Sound, and Hope. Data quality was routinely checked by co-locating sensors with the local authority, MetroVancouver, reference ozone analysers. A statistical method to check data

  19. Impact of Ground Level Enhancement from Solar Cosmic Rays on 20 January 2005 - Results for Ozone and Ionosphere Effects

    Science.gov (United States)

    Velinov, P.; Tassev, Y.; Spassov, H.; Tomova, D.

    The influences of major solar proton flare from 20 January 2005 on the ionized and neutral components in the middle atmosphere are analyzed in this work This flare is accompanied by ground level enhancement of solar cosmic rays and strong geomagnetic storm with SSC on 22 January 2005 Kp index reaches 8 Short-term variations along the ozone profiles are discussed Ozone partial pressure measurements from the programme Halogen Occultation Experiment HALOE realized by the Upper Atmospheric Research Satellite UARS are used The GOES-10 satellite obtained the data on high energy protons All energetic intervals 0 8 - 4 MeV 4 - 9 MeV 9 - 15 MeV 15 - 40 MeV 40 - 80 MeV 80 - 165 MeV 165 - 500 MeV are used Cosmic ray data from super neutron monitors Kiel - Germany 54 9 95 6 geomagnetic degree and Potchefstroom - South African Republic -27 3 -90 1 geomagnetic degree are analyzed also Statistical analysis with this big volume of data is accomplished Correlation and cross-correlation analysis between ozone and particle data is made Different behaviors of the ozone response in both hemispheres is obtained on the basis of these computations The ionosphere results for the same period are obtained in the observatory Sofia - Bulgaria by means of A3 method The minimal reflectance frequency fmin which characterizes the state of the lower ionosphere has unusual course For complement the other ionospheric parameters are involved also The present investigation is an example for complex analysis of solar and extra-terrestrial influence in the middle atmosphere

  20. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution.

    Science.gov (United States)

    Hewitt, C N; MacKenzie, A R; Di Carlo, P; Di Marco, C F; Dorsey, J R; Evans, M; Fowler, D; Gallagher, M W; Hopkins, J R; Jones, C E; Langford, B; Lee, J D; Lewis, A C; Lim, S F; McQuaid, J; Misztal, P; Moller, S J; Monks, P S; Nemitz, E; Oram, D E; Owen, S M; Phillips, G J; Pugh, T A M; Pyle, J A; Reeves, C E; Ryder, J; Siong, J; Skiba, U; Stewart, D J

    2009-11-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  1. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    Science.gov (United States)

    Hewitt, Nick; Lee, James

    2010-05-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  2. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Li, Lingyu; Xie, Shaodong; Zeng, Limin; Wu, Rongrong; Li, Jing

    2015-07-01

    To better understand the chemical speciation of volatile organic compounds (VOCs) and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China, measurements of 56 non-methane hydrocarbons (NMHCs) and 12 carbonyls were conducted at three sites in summer. Alkanes were the largest group of NMHCs (>50%), followed by alkenes and aromatics. Acetone was the most abundant carbonyl species (>50%). The OH loss rates (LOH) of VOCs were calculated to estimate their chemical reactivities. Alkenes played a predominant role in VOC reactivity, among which ethene and propene were the largest contributors. Isoprene contributed 11.61-38.00% of the total reactivity of measured VOCs. Alkenes and aromatics were the largest contributors (47.65-61.53% totally) to the total Ozone Formation Potential (OFP) of measured VOCs based on the observed mixing ratio. Isoprene was the most reactive species, but originated mainly from biogenic emissions. Ethene, m/p-xylene, toluene, propene, o-xylene, and 1-butene were considered to play significant roles in ground-level ozone formation in this region. The OFPs of total measured NMHCs increased by 10.20-22.05% when they were calculated based on the initial mixing ratio. Photochemical losses of hydrocarbons and the secondary formation of carbonyls in this region were also determined. Vehicle exhaust emissions contributed substantially to ambient VOCs.

  3. Unraveling the sources of ground level ozone in the Intermountain Western United States using Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, John N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Weiss-Penzias, Peter [University of California at Santa Cruz, Santa Cruz, CA (United States); Fine, Rebekka [University of Nevada, Reno, NV (United States); McDade, Charles E.; Trzepla, Krystyna [University of California at Davis, Crocker Nuclear Laboratory, Davis, CA (United States); Brown, Shaun T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gustin, Mae Sexauer [University of Nevada, Reno, NV (United States)

    2015-10-15

    Ozone as an atmospheric pollutant is largely produced by anthropogenic precursors and can significantly impact human and ecosystem health, and climate. The U.S. Environmental Protection Agency has recently proposed lowering the ozone standard from 75 ppbv (MDA8 = Maximum Daily 8-Hour Average) to between 65 and 70 ppbv. This will result in remote areas of the Intermountain West that includes many U.S. National Parks being out of compliance, despite a lack of significant local sources. We used Pb isotope fingerprinting and back-trajectory analysis to distinguish sources of imported ozone to Great Basin National Park in eastern Nevada. During discrete Chinese Pb events (> 1.1 ng/m{sup 3} & > 80% Asian Pb) trans-Pacific transported ozone was 5 ± 5.5 ppbv above 19 year averages for those dates. In contrast, concentrations during regional transport from the Los Angeles and Las Vegas areas were 15 ± 2 ppbv above the long-term averages, and those characterized by high-altitude transport 3 days prior to sampling were 19 ± 4 ppbv above. However, over the study period the contribution of trans-Pacific transported ozone increased at a rate of 0.8 ± 0.3 ppbv/year, suggesting that Asian inputs will exceed regional and high altitude sources by 2015–2020. All of these sources will impact regulatory compliance with a new ozone standard, given increasing global background. - Highlights: • Ozone can significantly impact human and ecosystem health and climate. • Pb isotopes and back-trajectory analysis were used to distinguish sources of O{sub 3}. • Baseline concentrations in the Western US are ~ 54 ppbv. • During discrete Asia events O{sub 3} increased by 5 ± 5.5 ppbv and during S CA events by 15 ± 2 ppbv. • Data indicate that Asian ozone inputs will exceed other sources by 2015–2020.

  4. Progress in understanding the formation of fine particulate matter and ground-level ozone in Pearl River Delta region, China

    Science.gov (United States)

    Wang, Xuemei; Wang, Tao; Zheng, Junyu; Shao, Min; Wang, Xinming

    2015-12-01

    In the past three decades, the Pearl River Delta of China has been suffered from severe air pollution due to the rapid increase in energy consumption associated with industrialization and urbanization of the region. The number of hazy days, increased from below 20 days in a year before 1970, to more than 150 days a year during 1980 and 2000. The ground-level ozone levels have also on the rise, with hourly concentration of 160 ppbv being observed in Guangzhou and 201 ppbv in nearby Hong Kong (Zhang et al., 2008). The ozone pollution has been difficult to reduce even in air quality improvement program for the Guangzhou Asian Games (Liu et al., 2013).

  5. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes

    Directory of Open Access Journals (Sweden)

    L. K. Xue

    2014-08-01

    Full Text Available We analyzed measurements of ozone (O3 and its precursors made at rural/suburban sites downwind of four large Chinese cities – Beijing, Shanghai, Guangzhou and Lanzhou, to elucidate their pollution characteristics, regional transport, in situ production, and impacts of heterogeneous processes. The same measurement techniques and observation-based model were used to minimize uncertainties in comparison of the results due to difference in methodologies. All four cities suffered from serious O3 pollution but showed different precursor distributions. The model-calculated in situ O3 production rates were compared with the observed change rates to infer the relative contributions of on-site photochemistry and transport. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high O3 levels (up to an hourly value of 286 ppbv, while the O3 pollution observed at suburban sites of Shanghai, Guangzhou and Lanzhou was dominated by intense in-situ production. The O3 production was in a VOCs-limited regime in both Shanghai and Guangzhou, and a NOx-controlled regime in Lanzhou. The key VOC precursors are aromatics and alkenes in Shanghai, and aromatics in Guangzhou. The potential impacts on O3 production of several heterogeneous processes, namely, hydrolysis of dinitrogen pentoxide (N2O5, uptake of hydro peroxy radical (HO2 on particles and surface reactions of NO2 forming nitrous acid (HONO, were assessed. The analyses indicate the varying and considerable impacts of these processes in different areas of China depending on the atmospheric abundances of aerosol and NOx, and suggest the urgent need to better understand these processes and represent them in photochemical models.

  6. Effect of Nearby Forest Fires on Ground Level Ozone Concentrations in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    María A. Rubio

    2015-12-01

    Full Text Available On 4 and 8 January 2014, at the height of the austral summer, intense wildfires in forests and dry pastures occurred in the Melipilla sector, located about 70 km to the southwest of Santiago, the Chilean capital, affecting more than 6 million inhabitants. Low level winds transported the forest fire plume towards Santiago causing a striking decrease in visibility and a marked increase in the concentration of both primary (PM10 and CO and secondary (Ozone pollutants in the urban atmosphere. In particular, ozone maximum concentrations in the Santiago basin reached hourly averages well above 80 ppb, the national air quality standard. This ozone increase took place at the three sampling sites considered in the present study. These large values can be explained in terms of high NOx concentrations and NO2/NO ratios in biomass burning emissions.

  7. Measurement of solar radiation at ground level in the region 1950-2150 A using ammonia actinometry

    Science.gov (United States)

    Knoot, P.; Reeves, R. R., Jr.

    1978-01-01

    The use of ammonia as an actinometer for measurement of the solar flux in the region 1950-2150 A is presented. The solar flux was found to be 270 million photons/sq cm per sec at ground level in this wavelength interval in an area with minimum overhead ozone concentration. The advantages of this method over previously used methods are discussed, and the results are related to the present estimates of the tropospheric photodissociation rates for the freons CFCl3 and CF2Cl2 by radiation in this wavelength region.

  8. Ground-level ozone following astrophysical ionizing radiation events: an additional biological hazard?

    CERN Document Server

    Thomas, Brian C

    2015-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to-date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling we have examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and find that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supe...

  9. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    Science.gov (United States)

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO2 concentrations. However, spatial distributions of NO2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  10. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  11. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone.

    Science.gov (United States)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-02-01

    Although elevated ground-level O₃ has a species-specific impact on plant growth, the differences in soil biota responses to O₃ pollution among rice cultivars are rarely reported. Using O₃ Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O₃-tolerant (YD6) and the O₃-sensitive (IIY084) rice cultivars to O₃ pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O₃ negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O₃ pollution. However, several keystone bacterial guilds were consistently negatively affected by O₃ pollution in two rice cultivars. These findings indicate that continuously O₃ pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O₃. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Design of the Mexico City UV monitoring network: UV-B measurements at ground level in the urban environment

    Science.gov (United States)

    Acosta, L. R.; Evans, W. F. J.

    2000-02-01

    Although there is concern for future stratospheric ozone depletion, several large urban populations are already being exposed to very high UV levels due to geographical factors. In Mexico City, ultraviolet radiation (UV) plays an important role in the generation of high levels of tropospheric ozone and other photochemical pollutants. The measurement of ultraviolet-B radiation in Mexico began in the spring 1993, as a pilot project for ultraviolet-B (UV-B) monitoring and as support for the first Hispanic public information program on the UV index through the Televisa (Mexican television network, which covers the Spanish speaking world). In 1996, based on our preliminary measurements, the Mexico City government commissioned the authors to design the Valley of Mexico UV-monitoring Network. The design of the network is presented. The preliminary measurements show that biologically active (UV-B) solar radiation can reach levels above 5 minimum erythemal dose (MED/hour) or 12 UV index units during spring and summer months. Annual UV measurements have shown seasonal variations of 40% between winter and summer months. Strong attenuation of UV-B radiation at ground level in the urban troposphere has been detected under polluted conditions. Measurements of the morphology of UV-B radiation have been taken at downtown and suburban monitoring stations, over diurnal, monthly and yearly periods. The network measurements show that the downtown UV-B levels are 20% lower than suburban levels on a seasonal basis, but differences can be greater than 40% on polluted days. The relationship between the Total Ozone Mapping Spectrometer (TOMS) total ozone column and tropospheric ozone concentrations in Mexico City is also discussed.

  13. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    Directory of Open Access Journals (Sweden)

    J. Li

    2015-03-01

    Full Text Available In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain to investigate impacts of southern California anthropogenic emissions (SoCal on Phoenix ground-level ozone concentrations ([O3] for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1 SoCal emissions are excluded, with all other emissions as in Control; (2 AZ emissions are excluded with all other emissions as in Control; and (3 SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8 [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10–30% relative to Control experiments. [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern

  14. Establishment of a structural equation model for ground-level ozone: a case study at an urban roadside site.

    Science.gov (United States)

    Lin, Kun-Ming; Yu, Tai-Yi; Chang, Len-Fu

    2014-12-01

    This study established a cause-effect relationship between ground-level ozone and latent variables employing partial least-squares analysis at an urban roadside site in four distinct seasons. Two multivariate analytic methods, factor analysis, and cluster analysis were adopted to cite and identify suitable latent variables from 14 observed variables (i.e., meteorological factors, wind and primary air pollutants) in 2008-2010. Analytical results showed that the first six components explained 80.3 % of the variance, and eigenvalues of the first four components were greater than 1. The effectiveness of this model was empirically confirmed with three indicators. Except for surface pressure, factor loadings of observed variables were 0.303-0.910 and reached statistical significance at the 5 % level. Composite reliabilities for latent variables were 0.672-0.812 and average variances were 0.404-0.547, except for latent variable "primary" in spring; thus, discriminant validity and convergent validity were marginally accepted. The developed model is suitable for the assessment of urban roadside surface ozone, considering interactions among meteorological factors, wind factors, and primary air pollutants in each season.

  15. The revision of the air quality legislation in the european union related to ground-level ozone.

    Science.gov (United States)

    Amann, M; Lutz, M

    2000-11-01

    Complying with the obligation in the current ozone directive, the European Commission came forward in 1999 with a strategy to combat tropospheric ozone together with a proposed revision of the air quality legislation for this pollutant. As a daughter legislation under the 1996 Framework Directive on Air Quality, the proposed ozone daughter directive defines for the first time (interim) air quality targets for ozone to be attained by 2010, complemented by long-term objectives for ozone based on the guideline values of the World Health Organisation. It also sets out enhanced requirements for monitoring and assessment of ozone concentrations, as well as minimum criteria for appropriate information of the public about the measured air pollution. In the past, abatement strategies against air pollution consisted of concrete obligations for controlling emissions derived solely on the basis of technical and economic aspects, covering specific types of installations or activities, thus with no direct quantitative relationship to the level of air pollution let alone to its effects. In compensating this deficit, the Commission presented, as a complement to the existing sectoral legislation, a proposal for a directive on national emission ceilings (NEC) which quantifies emission targets for every Member State to bring its total precursor emissions by 2010 down to levels being considered as necessary to achieve everywhere on a regional scale the air quality targets set in the ozone daughter directive. As the core element of the ozone abatement strategy, the national ceilings for emissions of sulfur dioxide (SO(2)), nitrogen oxides (NO(x)), ammonia (NH(3)) and volatile organic compounds (VOC) were derived from a cost-effectiveness analysis integrating information on economic, technical, physical and biological aspects of ozone pollution and abatement. This integrated assessment considers the potential and costs for further emission control in the various economic sectors in the

  16. Derivation of the radiation budget at ground level from satellite measurements

    Science.gov (United States)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  17. Measurement of survace ozone over New Dehli

    Science.gov (United States)

    Arya, B.; Jain, S.; Kumar, A.

    The measurement of surface ozone concentration is important for understanding and predicting photo chemical air pollution in u ban areas. In the troposphere ozone is ar green house gas trapping the long wave length radiation in 9.6 μm band. Surface ozone is a secondary pollutant its concentration in lower troposphere depends upon its precursors (CO, CH4, Non methane hydrocarbons, NO ) as well as weather and transport phenomenon. Ozone is a oxidizing agent increasing concentration of which can modulate the oxidizing efficiency of troposphere and may have significant consequences for the chemistry of atmosphere and climate. The regular information of its ground level concentrations is needed for setting ambient air quality objectives and understanding air pollution effects on human and vegetation health also. The measurements of surface ozone is being carried out in National Physical laboratory since 1997. The measurements showed that on a number of days the surface ozone values exceeds WHO ambient ozone air quality standards in summer season as well as in the months of October and November. In the annual variation of surface ozone two maxima (April and October) and two minima ( December and monsoon months) were observed . The increase of night time ozone concentrations has been observed predominantly in winter season. This may be correlated due to mixing of the remnant day time boundary layer ozone by mechanical turbulence produced by wind shear. The high nocturnal ozone has also been observed during thunderstorms. In the present paper observations and results obtained will be described.

  18. An estimation of COPD cases and respiratory mortality related to Ground-Level Ozone in the metropolitan Ahvaz during 2011

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2016-02-01

    Full Text Available Background & Aims of the Study :  Ground-Level Ozone (GLO is the component of one of greatest concern that threatened human health in both developing as well as developed countries. The GLO mainly enters the body through the respiration and can cause decrements in pulmonary complications, eye burning, shortness of breath, coughing, failure of immune defense, decreases forced vital capacity, reduce lung function of the lungs and increase rate of mortality. Ahwaz with high emission air pollutants because of numerous industries is one of the metropolitan Iranian polluted. The aim of this study is evaluate to Chronic Obstructive Pulmonary Disease (COPD and respiratory mortality related to GLO in the air of metropolitan Ahvaz during 2011. Materials & Methods: We used the generalized additive Air Q model for estimation of COPD and respiratory mortality attributed to GLO pollutant. Data of GLO were collected in four monitoring stations Ahvaz Department of Environment. Raw data processing by Excel software and at final step they were converted as input file to the Air Q model for estimate number of COPD Cases and respiratory mortality. Results: According to result this study, The Naderi and Havashenasi had the highest and the lowest GLO concentrations. The results of this study showed that cumulative cases of COPD and respiratory mortality which related to GLO were 34 and 30 persons, respectively. Also, Findings showed that approximately 11 % COPD and respiratory mortality happened when the GLO concentrations was more than 20 μg/m 3 . Conclusions: exposure to GLO pollution has stronger effects on human health in Ahvaz. Findings showed that there were a significant relationship between concentration of GLO and COPD and respiratory mortality. Therefore; the higher ozone pollutant value can depict mismanagement in urban air quality.  

  19. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2015-01-01

    Full Text Available In addition to the omnipresent irradiation from galactic cosmic rays (GCR and their secondary products, passengers and aircraft crew may be exposed to radiation from solar cosmic rays during ground level enhancements (GLE. In general, lowering the flight altitude and changing the flight route to lower latitudes are procedures applicable to immediately reduce the radiation exposure at aviation altitudes. In practice, however, taking such action necessarily leads to modifications in the flight plan and the consequential, additional fuel consumption constrains the mitigating measures. In this work we investigate in a case study of the ground level event of December 13th 2006 how potential mitigation procedures affect the total radiation exposure during a transatlantic flight from Seattle to Cologne taking into account constraints concerning fuel consumption and range.

  20. Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location.

    Science.gov (United States)

    Ashworth, Kirsti; Wild, Oliver; Eller, Allyson S D; Hewitt, C Nick

    2015-07-21

    Isoprene and other volatile organic compounds emitted from vegetation play a key role in governing the formation of ground-level ozone. Emission rates of such compounds depend critically on the plant species. The cultivation of biofuel feedstocks will contribute to future land use change, altering the distribution of plant species and hence the magnitude and distribution of emissions. Here we use relationships between biomass yield and isoprene emissions derived from experimental data for 29 commercially available poplar hybrids to assess the impact that the large-scale cultivation of poplar for use as a biofuel feedstock will have on air quality, specifically ground-level ozone concentrations, in Europe. We show that the increases in ground-level ozone across Europe will increase the number of premature deaths attributable to ozone pollution each year by up to 6%. Substantial crop losses (up to ∼9 Mt y(-1) of wheat and maize) are also projected. We further demonstrate that these impacts are strongly dependent on the location of the poplar plantations, due to the prevailing meteorology, the population density, and the dominant crop type of the region. Our findings indicate the need for a concerted and centralized decision-making process that considers all aspects of future land use change in Europe, and not just the effect on greenhouse gas emissions.

  1. Assessment of Kalman filter bias-adjustment technique to improve the simulation of ground-level ozone over Spain.

    Science.gov (United States)

    Sicardi, V; Ortiz, J; Rincón, A; Jorba, O; Pay, M T; Gassó, S; Baldasano, J M

    2012-02-01

    The CALIOPE air quality modelling system has been used to diagnose ground level O(3) concentration for the year 2004, over the Iberian Peninsula. We investigate the improvement in the simulation of daily O(3) maximum by the use of a post-processing such as the Kalman filter bias-adjustment technique. The Kalman filter bias-adjustment technique is a recursive algorithm to optimally estimate bias-adjustment terms from previous measurements and model results. The bias-adjustment technique improved the simulation of daily O(3) maximum for the entire year and the all the stations considered over the whole domain. The corrected simulation presents improvements in statistical indicators such as correlation, root mean square error, mean bias, and gross error. After the post-processing the exceedances of O(3) concentration limits, as established by the European Directive 2008/50/CE, are better reproduced and the uncertainty of the modelling system, as established by the European Directive 2008/50/CE, is reduced from 20% to 7.5%. Such uncertainty in the model results is under the established EU limit of the 50%. Significant improvements in the O(3) timing and amplitude of the daily cycle are also observed after the post-processing. The systematic improvements in the O(3) maximum simulations suggest that the Kalman filter post-processing method is a suitable technique to reproduce accurate estimate of ground-level O(3) concentration. With this study we evince that the adjusted O(3) concentrations obtained after the post-process of the results from the CALIOPE system are a reliable means for real near time O(3) forecasts.

  2. The impact of biofuel poplar cultivation on ground-level ozone and premature human mortality depends on cultivar selection and planting location

    OpenAIRE

    Ashworth, Kirsti; Wild, Oliver; Eller, A. S. D.; Hewitt, C.N.

    2015-01-01

    Isoprene and other volatile organic compounds emitted from vegetation play a key role in governing the formation of ground-level ozone. Emission rates of such compounds depend critically on the plant species. Future land use change, driven by the cultivation of biofuel feedstocks, will change the distribution of plant species and hence the magnitude and distribution of emissions. Here we use relationships between biomass yield and isoprene emissions derived from experimental data for 29 comme...

  3. Spatial and temporal analysis of ground level ozone and nitrogen dioxide concentration across the twin cities of Pakistan.

    Science.gov (United States)

    Ahmad, Sheikh Saeed; Aziz, Neelam

    2013-04-01

    The analyses presented in this paper include the concentration levels of NO2 and O3 measured during 2 successive years in twin cities (Rawalpindi and Islamabad) of Pakistan from November 2009 to March 2011. NO2 was determined using the passive sampling method, while ozone was determined by Model 400E ozone analyzer. The average NO2 and O3 concentration in twin cities of Pakistan was found to be 44 ± 6 and 18.2 ± 1.24 ppb, respectively. Results indicate that the concentration of NO2 and O3 show seasonal variations. Results also depict that NO2 and O3 concentration levels are high in areas of intense traffic flow and congestion. Rawalpindi has more elevated levels of NO2 and O3 as compared to the Islamabad due to the narrow roads, enclosing architecture of road network and congestion. Climatic variables also influenced the NO2 and O3 concentration, i.e., temperature is positively related with O3, while negatively related with NO2, relative humidity is directly related with NO2 and inversely related with O3, whereas rainfall show negative association with both NO2 and O3 concentration. Comparing the results with WHO standards reveals that NO2 concentration levels at all the sampling points are above the permissible limit, while ozone concentration is still lower than the WHO standards. Thus, there is a need to take appropriate steps to control these continuously increasing levels of NO2 and O3 before they become a serious hazard for the environment and people living in those areas.

  4. Simple method to measure effects of horizontal atmospherical turbulence at ground level

    Science.gov (United States)

    Tíjaro Rojas, Omar J.; Galeano Traslaviña, Yuber A.; Torres Moreno, Yezid

    2016-09-01

    The Kolmogorov's theory has been used to explain physical phenomena like the vertical turbulence in atmosphere, others recent works have made new advances and have improved K41 theory. In addition, this theory has been applied to studying different issues associated to measure atmospheric effects, and have special interest to find answers in optics to questions as e.g. at ground level, Could it find edges of two or more close objects, from a distant observer? (Classic resolution problem). Although this subject is still open, we did a model using the statistics of the centroid and the diameter of the laser beam propagated under horizontal turbulence at ground level until the object plane. The goal is to measure efficiently the turbulence effects in the long horizontal path propagation of electromagnetic wave. Natural movement of laser beam within the cavity needs be subtracted from the total transversal displacement in order to obtain a best approach. This simple proposed method is used to find the actual statistics of the centroid and beam diameter on the object plane where the turbulence introduces an additional transversal shift. And it has been tested for different values of horizontal distances under non-controlled environment in a synchronized acquisition scheme. Finally, we show test results in open very strong turbulence with high controlled temperature. This paper presents the implemented tests mainly into laboratory and discuss issues to resolve.

  5. Surface ozone measurements using differential absorption lidar

    Science.gov (United States)

    Jain, Sohan L.; Arya, B. C.; Ghude, Sachin D.; Arora, Arun K.; Sinha, Randhir K.

    2005-01-01

    Human activities have been influencing the global atmosphere since the beginning of the industrial era, causing shifts from its natural state. The measurements have shown that tropospheric ozone is increasing gradually due to anthropogenic activities. Surface ozone is a secondary pollutant, its concentration in lower troposphere depends upon its precursors (CO, CH4, non methane hydrocarbons, NOx) as well as weather and transport phenomenon. The surface ozone exceeding the ambient air quality standard is health hazard to human being, animal and vegetation. The regular information of its concentrations on ground levels is needed for setting ambient air quality objectives and understanding photo chemical air pollution in urban areas. A Differential Absorption Lidar (DIAL) using a tunable CO2 laser has been designed and developed at National Physical Laboratory, New Delhi, to monitor water vapour, surface ozone, ammonia, ethylene etc. Some times ethylene and surface ozone was found to be more than 40 ppb and 140 ppb respectively which is a health hazard. Seasonal variation in ozone concentrations shows maximum in the months of summer and autumn and minimum in monsoon and winter months. In present communication salient features of experimental set up and results obtained will be presented in detail.

  6. Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions

    Energy Technology Data Exchange (ETDEWEB)

    Emberson, Lisa D. [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom)]. E-mail: l.emberson@york.ac.uk; Bueker, Patrick [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom); Ashmore, Mike R. [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom)

    2007-06-15

    Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO{sub 3}SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O{sub 3} risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O{sub 3} risk. - A new flux-based model provides a revised assessment of risks of ozone impacts to European forests.

  7. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.

    Science.gov (United States)

    Weigt, R B; Häberle, K H; Millard, P; Metzger, U; Ritter, W; Blaschke, H; Göttlein, A; Matyssek, R

    2012-10-01

    Impacts of elevated ground-level ozone (O(3)) on nitrogen (N) uptake and allocation were studied on mature European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) in a forest stand, hypothesizing that: (i) chronically elevated O(3) limits nutrient uptake, and (ii) beech responds more sensitively to elevated O(3) than spruce, as previously found for juvenile trees. Tree canopies were exposed to twice-ambient O(3) concentrations (2 × O(3)) by a free-air fumigation system, with trees under ambient O(3) serving as control. After 5 years of O(3) fumigation, (15)NH(4)(15)NO(3) was applied to soil, and concentrations of newly acquired N (N(labelled)) and total N (N(total)) in plant compartments and soil measured. Under 2 × O(3), N(labelled) and N(total) were increased in the bulk soil and tended to be lower in fine and coarse roots of both species across the soil horizons, supporting hypothesis (i). N(labelled) was reduced in beech foliage by up to 60%, and by up to 50% in buds under 2 × O(3). Similarly, N(labelled) in stem bark and phloem was reduced. No such reduction was observed in spruce, reflecting a stronger effect on N acquisition in beech in accordance with hypothesis (ii). In spruce, 2 × O(3) tended to favour allocation of new N to foliage. N(labelled) in beech foliage correlated with cumulative seasonal transpiration, indicating impaired N acquisition was probably caused by reduced stomatal conductance and, hence, water transport under elevated O(3). Stimulated fine root growth under 2 × O(3) with a possible increase of below-ground N sink strength may also have accounted for lowered N allocation to above-ground organs. Reduced N uptake and altered allocation may enhance the use of stored N for growth, possibly affecting long-term stand nutrition.

  8. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  9. Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech and oak across different climate regions.

    Science.gov (United States)

    Emberson, Lisa D; Büker, Patrick; Ashmore, Mike R

    2007-06-01

    Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO(3)SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O(3) risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O(3) risk.

  10. Autocorrelation in ultraviolet radiation measured at ground level using detrended fluctuation analysis

    Science.gov (United States)

    da Silva Filho, Paulo Cavalcante; da Silva, Francisco Raimundo; Corso, Gilberto

    2016-07-01

    In this study, we analyzed the autocorrelation among four ultraviolet (UV) radiation data sets obtained at 305 nm, 320 nm, 340 nm, and 380 nm. The data were recorded at ground level at the INPE climate station in Natal, RN, Brazil, which is a site close to the equator. The autocorrelations were computed by detrended fluctuation analysis (DFA) to estimate the index α. We found that the ​fluctuations in the UV radiation data were fractal, with scale-free behavior at a DFA index α ≃ 0.7. In addition, we performed a power law spectral analysis, which showed that the power spectrum exhibited a power law behavior with an exponent of β ≃ 0.45. Given that the theoretical result is β = 2 α - 1, these two results are in good agreement. Moreover, the application of the DFA ​method to the UV radiation data required detrending using a polynomial with an order of at least eight, which was related to the complex daily solar radiation curve obtained at ground level in a tropical region. The results indicated that the α exponent of UV radiation is similar to other climatic records such as air temperature, wind, or rain, but not solar activity.

  11. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  12. DMAH ozone measurement net

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2006-01-01

    Full Text Available The complexity of the study of tropospheric ozone lies in the fact that it is a secondary pollutant. It is not emitted by a source, instead its concentration in the air depends on other compounds (especially the nitrogen oxides emitted by motor vehicles and the volatile organic compounds emitted by the industry and the vegetation and meteorological factors (especially solar radiation and temperature. The European legislation compells to make measurements of the tropospheric ozone due to its effects on people (fatigue, irritation of the mucous membranes, aggravation of asthma ... and on environment (decrease of the production of cereals, synergy with plagues .... The measuring net in Catalonia belongs to the Department of Environment and Housing (DMAH. It has a pyramidal structure and it allows a surveillance to notify in case of exceeding a certain threshold. From the registered data of last years it is shown that the number of incidences is related to meteorology. They are more frequent during afternoon and the behaviour of this pollutant is different according to the proximity of the point of measurement to the sources of its precursors.

  13. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads.

    Science.gov (United States)

    Harmens, Harry; Hayes, Felicity; Sharps, Katrina; Mills, Gina; Calatayud, Vicent

    2017-04-01

    Ground-level ozone (O3) concentrations and atmospheric nitrogen (N) deposition rates have increased strongly since the 1950s. Rising ground-level O3 concentrations and atmospheric N deposition both affect plant physiology and growth, however, impacts have often been studied in isolation rather than in combination. In addition, studies are often limited to a control treatment and one or two elevated levels of ozone and/or nitrogen supply. In the current study, three-year old Betula pendula saplings were exposed to seven different O3 profiles (24h mean O3 concentration of 36-68ppb in 2013, with peaks up to an average of 105ppb) in precision-controlled hemispherical glasshouses (solardomes) and four different N loads (10, 30, 50 or 70kgNha(-1)y(-1)) in 2012 and 2013. Here we report on the effects of enhanced O3 concentrations and N load on leaf traits and gas exchange in leaves of varying age and developmental stage in 2013. The response of leaf traits to O3 (but not N) vary with leaf developmental stage. For example, elevated O3 did not affect the chlorophyll content of the youngest fully expanded leaf, but it reduced the chlorophyll content and photosynthetic parameters in aging leaves, relatively more so later than earlier in the growing season. Elevated O3 enhanced the N content of senesced leaves prior to leaf fall, potentially affecting subsequent N cycling in the soil. Enhanced N generally stimulated the chlorophyll content and photosynthetic capacity. Whilst elevated O3 reduced the light-saturated rate of photosynthesis (Asat) in aging leaves, it did not affect stomatal conductance (gs). This suggests that photosynthesis and gs are not closely coupled at elevated O3 under-light saturating conditions. We did not observe any interactions between O3 and N regarding photosynthetic parameters (Vc,max, Jmax, Asat), chlorophyll content, gs, N content in senesced leaves and leaf number. Hence, the sensitivity of these leaf traits to O3 in young silver birch trees is

  14. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  15. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  16. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models

    Science.gov (United States)

    Robichaud, A.; Ménard, R.

    2014-02-01

    Multi-year objective analyses (OA) on a high spatiotemporal resolution for the warm season period (1 May to 31 October) for ground-level ozone and for fine particulate matter (diameter less than 2.5 microns (PM2.5)) are presented. The OA used in this study combines model outputs from the Canadian air quality forecast suite with US and Canadian observations from various air quality surface monitoring networks. The analyses are based on an optimal interpolation (OI) with capabilities for adaptive error statistics for ozone and PM2.5 and an explicit bias correction scheme for the PM2.5 analyses. The estimation of error statistics has been computed using a modified version of the Hollingsworth-Lönnberg (H-L) method. The error statistics are "tuned" using a χ2 (chi-square) diagnostic, a semi-empirical procedure that provides significantly better verification than without tuning. Successful cross-validation experiments were performed with an OA setup using 90% of data observations to build the objective analyses and with the remainder left out as an independent set of data for verification purposes. Furthermore, comparisons with other external sources of information (global models and PM2.5 satellite surface-derived or ground-based measurements) show reasonable agreement. The multi-year analyses obtained provide relatively high precision with an absolute yearly averaged systematic error of less than 0.6 ppbv (parts per billion by volume) and 0.7 μg m-3 (micrograms per cubic meter) for ozone and PM2.5, respectively, and a random error generally less than 9 ppbv for ozone and under 12 μg m-3 for PM2.5. This paper focuses on two applications: (1) presenting long-term averages of OA and analysis increments as a form of summer climatology; and (2) analyzing long-term (decadal) trends and inter-annual fluctuations using OA outputs. The results show that high percentiles of ozone and PM2.5 were both following a general decreasing trend in North America, with the eastern

  17. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  18. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  19. Ground level measurement of nuclei from coal development in the northern Great Plains: baseline measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B. L.; Johnson, L. R.; Sengupta, S.; Yue, P. C.

    1978-11-01

    The Institute of Atmospheric Sciences of the South Dakota School of Mines and Technology has completed 20 months of ambient air sampling at rural and remote sites in a five-state region of the northern Great Plains. Sampling was accomplished by use of a 27-ft motor home laboratory containing living accommodations for a field crew of two. The laboratory was outfitted with a number of instruments for measurement of pollutant parameters: cloud condensation nuclei, ice nuclei, Aitken nuclei, size distribution information for Aitken size particulate, sulfur dioxide, ozone, raindrop size distributions, and pH of precipitation. In addition, an instrumented meteorological tower provided wind speed, wind direction, ambient air temperature, and dew-point temperature. Instruments varied as to durability and success of operation, but better than 90% data retrieval was possible for the entire 20-month sampling study. Analyses of the large quantities of data obtained were not possible under the initial baseline measurement program, but examination of most parameters indicate that the air masses in the northern Great Plains are still relatively clean and are influenced primarily by local sources of contamination rather than large regional sources. Particulate concentrations in these remote areas are representative of mountain stations or clean rural conditions, and sulfur dioxide concentrations are at the threshold of detectability of the instrument. Precipitation is only very slightly acidic, and no significant quantity of amorphous particles (such as coal dust or combustion products) is found in the quantitative analyses of the high-volume filter collections. A summary of ''average'' conditions observed over the study area is tabulated.

  20. Constraining ozone-precursor responsiveness using ambient measurements

    Science.gov (United States)

    This study develops probabilistic estimates of ozone (O3) sensitivities to precursoremissions by incorporating uncertainties in photochemical modeling and evaluating modelperformance based on ground-level observations of O3 and oxides of nitrogen (NOx).Uncertainties in model form...

  1. Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production

    NARCIS (Netherlands)

    Kaiser, J.; Wolfe, G.M.; Bohn, B.; Ganzeveld, L.N.

    2015-01-01

    Ozone concentrations in the Po Valley of northern Italy often exceed international regulations. As both a source of radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads

  2. Ethylenediurea (EDU): A research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions

    Energy Technology Data Exchange (ETDEWEB)

    Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States); Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.it [IPP CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Sandermann, Heinrich [ecotox.freiburg, Schubertstr. 1, D-79104 Freiburg (Germany); Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Biochemical Plant Pathology, D-85764 Neuherberg (Germany); Ernst, Dieter [ecotox.freiburg, Schubertstr. 1, D-79104 Freiburg (Germany)

    2011-12-15

    Ethylenediurea (EDU) has been widely used to prevent ozone (O{sub 3}) injury and crop losses in crop plants and growth reductions in forest trees. Successful use requires establishing a dose/response curve for EDU and the proposed plant in the absence of O{sub 3} and in the presence of O{sub 3} before initiating multiple applications to prevent O{sub 3} injury. EDU can be used to verify foliar O{sub 3} symptoms in the field, and to screen plants for sensitivity to O{sub 3} under ambient conditions. Despite considerable research, the mode of action of EDU remains elusive. Additional research on the mode of action of EDU in suppressing O{sub 3} injury in plants may also be helpful in understanding the mode of action of O{sub 3} in causing injury in plants. - EDU is a verified and effective tool for the assessment of the effects of ozone on plants.

  3. Comparison of modelled and measured ozone concentrations and meteorology for a site in south-west Sweden: implications for ozone uptake calculations.

    Science.gov (United States)

    Klingberg, Jenny; Danielsson, Helena; Simpson, David; Pleijel, Håkan

    2008-09-01

    Measurements of ground-level ozone concentrations and meteorology (temperature, vapour pressure deficit (VPD), solar radiation) at the monitoring site Ostad (south-west Sweden) were compared to data from the corresponding grid in the EMEP photo-oxidant model for 1997, 1999 and 2000. The influence of synoptic weather on the agreement between model and measurements was studied. Implications of differences between modelled and observed inputs for ozone flux calculations for wheat and potato were investigated. The EMEP model output of ozone, temperature and VPD correlated well with measurements during daytime. Deviations were larger during the night, especially in calm conditions, attributed to local climatological conditions at the monitoring site deviating from average conditions of the grid. These differences did not lead to significant differences in calculated ozone uptake, which was reproduced remarkably well. The uptake calculations were sensitive to errors in the ozone and temperature input data, especially when including a flux threshold.

  4. Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions.

    Science.gov (United States)

    Manning, William J; Paoletti, Elena; Sandermann, Heinrich; Ernst, Dieter

    2011-12-01

    Ethylenediurea (EDU) has been widely used to prevent ozone (O(3)) injury and crop losses in crop plants and growth reductions in forest trees. Successful use requires establishing a dose/response curve for EDU and the proposed plant in the absence of O(3) and in the presence of O(3) before initiating multiple applications to prevent O(3) injury. EDU can be used to verify foliar O(3) symptoms in the field, and to screen plants for sensitivity to O(3) under ambient conditions. Despite considerable research, the mode of action of EDU remains elusive. Additional research on the mode of action of EDU in suppressing O(3) injury in plants may also be helpful in understanding the mode of action of O(3) in causing injury in plants.

  5. Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing

    Science.gov (United States)

    Zhao, Jian; Du, Wei; Zhang, Yingjie; Wang, Qingqing; Chen, Chen; Xu, Weiqi; Han, Tingting; Wang, Yuying; Fu, Pingqing; Wang, Zifa; Li, Zhanqing; Sun, Yele

    2017-03-01

    Strict emission controls were implemented in Beijing and adjacent provinces to ensure good air quality during the 2015 China Victory Day parade. Here, we conducted synchronous measurements of submicron aerosols (PM1) at ground level and 260 m on a meteorological tower by using a high-resolution aerosol mass spectrometer and an aerosol chemical speciation monitor, respectively, in Beijing from 22 August to 30 September. Our results showed that the average PM1 concentrations are 19.3 and 14.8 µg m-3 at ground level and 260 m, respectively, during the control period (20 August-3 September), which are 57 and 50 % lower than those after the control period (4-30 September). Organic aerosols (OAs) dominated PM1 during the control period at both ground level and 260 m (55 and 53 %, respectively), while their contribution showed substantial decreases (˜ 40 %) associated with an increase in secondary inorganic aerosols (SIAs) after the parade, indicating a larger impact of emission controls on SIA than OA. Positive matrix factorization of OA further illustrated that primary OA (POA) showed similar decreases as secondary OA (SOA) at both ground level (40 % vs. 42 %) and 260 m (35 % vs. 36 %). However, we also observed significant changes in SOA composition at ground level. While the more oxidized SOA showed a large decrease by 75 %, the less oxidized SOA was comparable during (5.6 µg m-3) and after the control periods (6.5 µg m-3). Our results demonstrated that the changes in meteorological conditions and PM loadings have affected SOA formation mechanisms, and the photochemical production of fresh SOA was more important during the control period. By isolating the influences of meteorological conditions and footprint regions in polluted episodes, we found that regional emission controls on average reduced PM levels by 44-45 %, and the reductions were close among SIA, SOA and POA at 260 m, whereas primary species showed relatively more reductions (55-67 %) than secondary

  6. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.

    Science.gov (United States)

    Fares, Silvano; Vargas, Rodrigo; Detto, Matteo; Goldstein, Allen H; Karlik, John; Paoletti, Elena; Vitale, Marcello

    2013-08-01

    High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through manipulative experiments that do not consider long-term exposure and propagate large uncertainty by up-scaling leaf-level observations to ecosystem-level interpretations. We analyzed long-term continuous measurements (>9 site-years at 30 min resolution) of environmental and eco-physiological parameters at three Mediterranean ecosystems: (i) forest site dominated by Pinus ponderosa in the Sierra Mountains in California, USA; (ii) forest site composed of a mixture of Quercus spp. and P. pinea in the Tyrrhenian sea coast near Rome, Italy; and (iii) orchard site of Citrus sinensis cultivated in the California Central Valley, USA. We hypothesized that higher levels of ozone concentration in the atmosphere result in a decrease in carbon assimilation by trees under field conditions. This hypothesis was tested using time series analysis such as wavelet coherence and spectral Granger causality, and complemented with multivariate linear and nonlinear statistical analyses. We found that reduction in carbon assimilation was more related to stomatal ozone deposition than to ozone concentration. The negative effects of ozone occurred within a day of exposure/uptake. Decoupling between carbon assimilation and stomatal aperture increased with the amount of ozone pollution. Up to 12-19% of the carbon assimilation reduction in P. ponderosa and in the Citrus plantation was explained by higher stomatal ozone deposition. In contrast, the Italian site did not show reductions in gross primary productivity either by ozone concentration or stomatal ozone deposition, mainly due to the lower ozone concentrations in the periurban site over the shorter period of investigation. These results highlight the importance of plant adaptation/sensitivity under field conditions, and the importance of

  7. Ozone measurement systems: associated instrumentation and calibration

    Directory of Open Access Journals (Sweden)

    J. Bellido

    2006-01-01

    Full Text Available The harmful effects produced by ozone have lead to a vast regulation to define and establish the quality goals of ambient air, based on common methods and criteria. The surveillance nets of atmospheric pollution are worldwide extended systems and the applied technology for the ozone measurement is nowadays quite standardized. The aim of this paper is to give a general view of the most common systems used in the ozone measurement in ambient air from a practical point of view. The used instrumentation and the usual calibration methods will be described.

  8. Arctic Ozone Depletion from UARS MLS Measurements

    Science.gov (United States)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  9. Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy)

    Science.gov (United States)

    Belosi, F.; Rinaldi, M.; Decesari, S.; Tarozzi, L.; Nicosia, A.; Santachiara, G.

    2017-04-01

    Filter-collected aerosol samples in the PM1 and PM10 fractions and particle number concentration were measured during experimental campaigns in a rural area near Bologna (Italy) in the periods 10-21 February 2014 and 19-30 May 2014. Ice nuclei particle (INP) concentrations measured off-line showed prevalently higher average values in the morning with respect to the afternoon, in the PM1 fraction with respect to PM1-10 (with the exception of the first campaign, at Sw = 1.01), and at water saturation ratio Sw = 1.01 with respect to Sw = 0.96. The aerosol in the coarse size range (1-10 μm) contributed significantly to the total INP concentration. In the first campaign, the average INP concentration in the coarse fraction was 80% of the total in the morning and 74% in the afternoon, at Sw = 1.01. In the second campaign, the contribution of the coarse size fraction to the INP number concentration was lower. On the whole, the results showed that the freezing activity of aerosol diameters larger than 1 μm needs to be measured to obtain the entire INP population. Sahara dust events (SDEs) took place during both campaigns, in the periods 17-20 February and 21-23 May 2014. Results show that the averaged particle number concentration was higher during SDE than during no-Saharan dust events. A low correlation between INP and total aerosol number concentration was generally measured, except for SDEs observed in February, in which the correlation coefficient between aerosol concentration in the coarse fraction and INP in the same range, at water supersaturation, was about 0.8. Precipitation events influenced the aerosol concentration. In the February campaign, lower values of INP and particle concentrations were measured in case of heavy rain events. During the May campaign, an average number concentration of the aerosol in the range 0.5-10 μm was slightly higher than on days when no precipitation was measured, the rainfall intensity being low. Only in a few cases did we note

  10. The "pas de deux "between remote sensing and tropospheric ozone models

    NARCIS (Netherlands)

    Nijenhuis, W.A.S.

    1999-01-01

    Levels of tropospheric ozone need to be assessed for scientific research of environmental problems. This can be done through use of models like the LOTOS (Long Term Ozone Simulation) model, ground level and radiosonde measurements and 1

  11. Measurement of the cosmic ray muon spectrum and charge ratio in the atmosphere from ground level to balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy)

    1995-09-01

    A measurement of the cosmic ray muon flux in the atmosphere has been carried out from the data collected by the MASS2 (Matter Antimatter Spectrometer System) apparatus during the ascent of the 1991 flight. The experiment was performed on September 23, 1991 from Fort Sumner, New Mexico (USA) at a geomagnetic cutoff of about 4.5 GV/c. The negative muon spectrum has been determined in different depth ranges in the momentum interval 0.33-40 GeV/c with higher statistics and better background rejection than reported before. Taking advantage of the high geomagnetic cutoff and of the high performances of the instrument, the positive muon spectrum has also been determined and the altitude dependence of the muon charge ratio has been investigated in the 0.33-1.5 GeV/c momentum range.

  12. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    OpenAIRE

    H. Vömel; K. Diaz

    2009-01-01

    Laboratory measurements of the Electrochemical Concentration Cell (ECC) ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations i...

  13. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements

    Directory of Open Access Journals (Sweden)

    X. Liu

    2007-07-01

    Full Text Available We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements (289–307 nm, 326–337 nm. These include Bass-Paur, Brion, and GOME flight model cross sections (references below. Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69×1016 molecules cm−2 in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15–60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7–10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent.

  14. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  15. Estimating ground-level PM_{2.5} concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements

    Science.gov (United States)

    Zheng, Yixuan; Zhang, Qiang; Liu, Yang; Geng, Guannan; He, Kebin

    2016-04-01

    Numerous previous studies have revealed that statistical models which combine satellite-derived aerosol optical depth (AOD) and PM2.5 measurements acquired at scattered monitoring sites provide an effective method for deriving continuous spatial distributions of ground-level PM2.5 concentrations. Using the national monitoring networks that have recently been established by central and local governments in China, we developed linear mixed-effects (LMEs) models that integrate Moderate Resolution Imaging Spectroradiometer (MODIS) AOD measurements, meteorological parameters, and satellite-derived tropospheric NO2 column density measurements as predictors to estimate PM2.5 concentrations over three major industrialized regions in China, namely, the Beijing-Tianjin-Hebei region (BTH), the Yangtze River Delta region (YRD), and the Pearl River Delta region (PRD). The models developed for these three regions exploited different predictors to account for their varying topographies and meteorological conditions. Considering the importance of unbiased PM2.5 predictions for epidemiological studies, the correction factors calculated from the surface PM2.5 measurements were applied to correct biases in the predicted annual average PM2.5 concentrations introduced by non-stochastic missing AOD measurements. Leave-one-out cross-validation (LOOCV) was used to quantify the accuracy of our models. Cross-validation of the daily predictions yielded R2 values of 0.77, 0.8 and 0.8 and normalized mean error (NME) values of 22.4%, 17.8% and 15.2% for BTH, YRD and PRD, respectively. For the annual average PM2.5 concentrations, the LOOCV R2 values were 0.85, 0.76 and 0.71 for the three regions, respectively, whereas the LOOCV NME values were 8.0%, 6.9% and 8.4%, respectively. We found that the incorporation of satellite-based NO2 column density into the LMEs model contribute to considerable improvements in annual prediction accuracy for both BTH and YRD. The satisfactory performance of our

  16. Continuous measurements of PM at ground level over an industrial area of Evia (Greece) using synergy of a scanning Lidar system and in situ sensors during TAMEX campaign

    Science.gov (United States)

    Georgoussis, G.; Papayannis, A.; Remoudaki, E.; Tsaknakis, G.; Mamouri, R.; Avdikos, G.; Chontidiadis, C.; Kokkalis, P.; Tzezos, M.; Veenstra, M.

    2009-09-01

    During the TAMEX (Tamyneon Air pollution Mini EXperiment) field Campaign, which took place in the industrial site of Aliveri (38o,24'N, 24o 01'E), Evia (Greece) between June 25 and September 25, 2008, continuous measurements of airborne particulate matter (PM) were performed by in situ sensors at ground level. Additional aerosol measurements were performed by a single-wavelength (355 nm) eye-safe scanning lidar, operating in the Range-Height Indicator (RHI) mode between July 22 and 23, 2008. The industrial site of the city of Aliveri is located south-east of the city area at distance of about 2.5 km. The in situ aerosol sampling site was located at the Lykeio area at 62 m above sea level (ASL) and at a distance of 2,8 km from the Public Power Corporation complex area (DEI Corporation) and 3,3 km from a large cement industrial complex owned by Hercules/Lafarge SA Group of Companies (HLGC) and located at Milaki area. According to the European Environment Agency (EEA) report for the year 2004, this industry emits about 302 tons per year of PM10, 967,000 tons of CO2, 16700 tons of SOx and 1410 tons of NOx while the second industrial complex (HLGC) emits about 179 tons per year of PM10, 1890 tons of CO, 1,430,000 tons of CO2, 3510 tons of NOx, 15.4 Kg of cadmium and its compounds, 64.2 kg of mercury and its compounds and 2.2 tons of benzene. The measuring site was equipped with a full meteorological station (Davis Inc., USA), and 3 aerosol samplers: two Dust Track optical sensors from TSI Inc. (USA) and 1 Skypost PM sequential atmospheric particulate matter. The Dust Track sensors monitored the PM10, PM2.5 and PM1.0 concentration levels, with time resolution ranging from 1 to 3 minutes, while a Tecora sensor was taking continuous PM monitoring by the sampling method on 47 mm diameter filter membrane. The analysis of the PM sensors showed that, systematically, during nighttime large quantities of PM2.5 particles were detected (e.g. exceeding 50 ug/m3). During daytime

  17. Simple measures of ozone depletion in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    R. Müller

    2008-01-01

    Full Text Available We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up. Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75 with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.

  18. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    Science.gov (United States)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  19. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  20. OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America

    Science.gov (United States)

    Kharol, Shailesh K.; McLinden, Chris A.; Sioris, Christopher E.; Shephard, Mark W.; Fioletov, Vitali; van Donkelaar, Aaron; Philip, Sajeev; Martin, Randall V.

    2017-05-01

    Sulfur dioxide (SO2) has a significant impact on the environment and human health. We estimated ground-level sulfur dioxide (SO2) concentrations from the Ozone Monitoring Instrument (OMI) using SO2 profiles from the Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) model over North America for the period of 2005-2015. OMI-derived ground-level SO2 concentrations (r = 0. 61) and trends (r = 0. 74) correlated well with coincident in situ measurements from air quality networks over North America. We found a strong decreasing trend in coincidently sampled ground-level SO2 from OMI (-81 ± 19 %) and in situ measurements (-86 ± 13 %) over the eastern US for the period of 2005-2015, which reflects the implementation of stricter pollution control laws, including flue-gas desulfurization (FGD) devices in power plants. The spatially and temporally contiguous OMI-derived ground-level SO2 concentrations can be used to assess the impact of long-term exposure to SO2 on the health of humans and the environment.

  1. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  2. Ozone measurements in Amazonia - Dry season versus wet season

    Science.gov (United States)

    Kirchhoff, V. W. J. H.; Da Silva, I. M. O.; Browell, Edward V.

    1990-01-01

    Recent ozone measurements taken in the Amazonian rain forest environment during the wet season (April-May 1987) are described, revealling new aspects of the regional atmospheric chemistry. The measurements were part of the Amazon Boundary Layer Experiment (ABLE 2B) mission and utilized UV absorption as a measurement technique to obtain surface ozone data; 20 ozonesondes were launched in order to obtain vertical ozone profiles used to describe the upper troposphere and stratosphere. The major differences in comparison to a previous dry season experiment, which found ozone concentrations to be lower in the whole troposphere by nearly a factor of 2, are stressed.

  3. Establishment of a Box-Jenkins multivariate time-series model to simulate ground-level peak daily one-hour ozone concentrations at Ta-Liao in Taiwan.

    Science.gov (United States)

    Liu, Pao-Wen Grace

    2007-09-01

    Box-Jenkins univariate autoregressive integrated moving average (ARIMA) and regression with time-series error (RTSE) models were established to simulate historical peak daily 1-hr ozone concentrations at Ta-Liao, Taiwan, 1997-2001. During 1995-2003, the 600 days of Pollution Standard Index (PSI) more than 100 (peak daily 1-hr ozone concentrations detected by greater than 120 ppm) at Tao-Liao showed the highest ozone exceedances among the six monitoring stations in Kaohsiung County. To improve the predictability of extremely high ozone, two different principal components, PC1 and PC(1 + 2), were introduced in the RTSE model. Four typical predictors (particular matter with an aerodynamic diameter less than or equal to 10 microm, temperature, wind speed, and wind direction) plus a PC trigger remained significant in the RTSE model. The model performance statistics concluded that the RTSE model with PC1 was optimal, compared with the univariate ARIMA, the RTSE model without PC, and RTSE model with PC(1 + 2). The contingency table shows that the successful predictions of the univariate model were only 12.9% of that of the RTSE model with PC1. Also, the POD value was improved approximately 5-fold when the univariate model was replaced by the RTSE model, and almost 8-fold when it was replaced by the RTSE model with PC1. Moreover, introducing the PC trigger indeed enhanced the ozone predictability. After the PC trigger was introduced in the RTSE model, the POD was increased 69.9%, and the FAR was reduced 8.3%. The overall correlation between the observed and simulated ozone was improved 9.6%. Also, the first principal component was more useful than the first two components in playing the "trigger" role, though it counted only for 58.62% of the environmental variance during the high ozone days.

  4. An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys

    Science.gov (United States)

    Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.

    2002-05-01

    Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.

  5. Tropospheric ozone climatology at two southern subtropical sites, (Reunion Island and Irene, South Africa from ozone sondes, LIDAR, aircraft and in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Clain

    2008-06-01

    Full Text Available This paper presents a climatology and trends of tropospheric ozone in the southwestern part of Indian Ocean (Reunion Island and South Africa (Irene and Johannesburg. This study is based on a multi-instrumental dataset: PTU-O3 radiosoundings, DIAL LIDAR, MOZAIC airborne instrumentation and Dasibi UV ground based measurements.

    The seasonal profiles of tropospheric ozone at Reunion Island have been calculated from two different data sets: radiosondes and LIDAR. The two climatological profiles are similar, except in austral summer when smaller values for the LIDAR profiles in the free troposphere, and in the upper troposphere for all seasons occur. These results show that the LIDAR profiles are at times not representative of the true ozone climatological value as measurements can be taken only under clear sky conditions, and the upper limit reached depends on the signal.

    In the lower troposphere, climatological ozone values from radiosondes have been compared to a one year campaign of ground based measurements from a Dasibi instrument located at high altitude site (2150 m at Reunion Island. The seasonal cycle is comparable for the two datasets, with Dasibi UV values displaying slightly higher values. This suggests that if local dynamical and possibly physico-chemical effects may influence the ozone level, the seasonal cycle can be followed with ground level measurements. Average ground level concentrations measured on the summits of the island seem to be representative of the lower free troposphere ozone concentration at the same altitude (~2000 m whereas night time data would be representative of tropospheric concentration at a higher altitude (~3000 m due to the subsidence effect.

    Finally, linear trends have been calculated from radiosondes data at Reunion and Irene. Considering the whole tropospheric column, the trend is slightly positive for Reunion, and more clearly positive for Irene. Trend calculations

  6. Requirements For Lidar Aerosol and Ozone Measurements

    Science.gov (United States)

    Frey, S.; Woeste, L.

    borne and ground based Aerosol and Ozone measure- ments, to give an idea, what kind of technique and input data is required to get reliable results. As an example for an application I oppose experimentally retrieved planetary boundary layer height and ozone concentrations with results of a chemical dispersion model for the region Berlin/Brandenburg. One mayor task for the future is to apply the advanced laser remote sensing techniques on all continents at as much location as possible, to get a first impression about the variability and correlation of optical parameters of the atmosphere and to gather databases, which allow to find the right input values for evaluation of space borne data.

  7. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  8. Lidar Measurements of Tropospheric Ozone in the Arctic

    Science.gov (United States)

    Seabrook, Jeffrey; Whiteway, James

    2016-06-01

    This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  9. Brewer spectrometer total ozone column measurements in Sodankylä

    Science.gov (United States)

    Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko

    2016-06-01

    Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.

  10. Ozone measurements and correlations with cosmogenic radioisotopes in Italian Alpine valley. Misure di ozono in atmosfera e correlazioni con radioisotopi cosmogenici in Valtellina

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, R.; Valli, G.; Ludwig, N.; De Dosso, L. (Milan Univ. (Italy). Ist. di Fisica Generale Applicata)

    The Italian Institute of General Applied Physics since 1990 has been conducting Be-7 measurements in the atmosphere in order to use it as a tracer for air coming from the upper layers of the atmosphere and for stratospheric ozone. This paper presents the results on Be-7 and ozone concentrations obtained with a one year monitoring campaign carried out in Sondrio, an Alpine town in Northern Italy. For a few interesting events, a correlation between beryllium and ozone is observed. Be-7 reveals itself as a good marker which reaches ground level during particularly rare events, such as stratospheric intrusions. This study could have an interesting application concerning the ozone depletion layer in the Antarctic area.

  11. Ozone in the upper troposphere from gasp measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nastrom, G.D.

    1979-07-20

    Several aspects of tropospheric ozone variations are examined by using ozone measurements made from commercial airliners (Gasp data). The east-west variations of ozone have a predominant wavelength near 2400 km, by visual inspection of the autocorrelation function, while temperature and wind have predominant wavelengths near 3300 km. The different wavelengths may be due to a sampling bias. Distance-lagged correlation functions of ozone with temperature and wind show a definite periodicity with wavelengths near 2400 km. The low correlation of ozone with meridional wind speed at lag zero makes it necessary to have many pairs of data to estimate even the sign of the meridional ozone flux with confidence. Tropical tropospheric ozone values above 100 parts per billion by volume (ppbv) appear to be associated with meridional transport from middle latitudes, and in some cases, relatively large tropical ozone values are coincident with clouds. A diurnal variation with amplitude near 2.0 ppbv is found with phase (time of maximum value) near 0800 LT at 32/sup 0/--64/sup 0/N but with phase near 1700 LT at 16/sup 0/--32/sup 0/N.

  12. Ground-Level Ozone Decomposition over Pd-MnOx/Al2O3 Catalyst Prepared by Urea Hydrolysis%尿素水解法制备降解地表臭氧的Pd-Mnox/Al2O3催化剂

    Institute of Scientific and Technical Information of China (English)

    潘浩; 周丽娜; 朱艺; 彭娜; 龚茂初; 陈耀强

    2011-01-01

    采用尿素水解法制备了Pd-MnOx/Al2O3催化剂,运用低温N2吸附-脱附和X射线衍射对其进行了表征,并评价了其催化降解地表O3反应活性,考察了Pd,MnOx焙烧时间和MnOx含量刘催化剂活性的影响.结果表明,在高空速(660000h-1)、高相对湿度(85%~90%)条件下,MnOx焙烧时间为6h且.MnOx含量为80%的Pd-MnOx/Al2O3催化剂于低温(20~25 ℃)就表现出较高的催化活性,20℃时O3转化率就高达91.7%,其完全转化温度为24℃.可以预知该催化剂涂覆在汽车水箱散热片上,于室温就可完全降解地表O3,尤其适用于汽车冷启动和冬季时净化O3.%The Pd-MnOx/Al2O3 catalyst has been prepared by the urea hydrolysis method and characterized by Iow temperature nitrogen adsorption-desorption and X-ray diffraction. Its catalytic activity for decomposing ground-level ozone has been studied. The catalyst showed a high activity at low temperature and high relative humidity. At gas hourly space velocity (GHSV) of 660000 h-1 and relative humidity of 85%-90%, the ozone conversion over the catalyst reached 91.7% at 20 ℃ and the temperature for complete decomposition of ozone was only 24 ℃. Furthermore, the prepared catalyst can completely decompose ground-level ozone when it is coated on the wave shaped heat patches of automobile water tanks.

  13. Analysis of atmospheric ozone measurements over a pine forest

    Science.gov (United States)

    Lopez, A.; Fontan, J.; Minga, A.

    Vertical and horizontal profiles of ozone concentration have been measured within the atmospheric boundary layer over the pine forest located in the southwest of France (Landes Forest). Evidence for an ozone depletion in lower layers is obtained from the analysis of vertical profiles recorded at the end of the night. In terms of deposition at the upper canopy level, this corresponds to a disappearance rate ranging between 0.2 and 0.5 cm s -1. The horizontal profiles obtained at midday reveal that ozone vanishes at a rate of the order of 5 × 10 -5 ppb m -1 when air mass moving in the advection direction passes over the forested area. These results are consistent with those obtained by numeric simulation in the case of low emission rates of nitrogen oxides. On the basis of these measurements, the expression of the ozone budget within the atmospheric boundary layer is discussed and compared with the data obtained from the simulation study.

  14. Influence of urban ozone in the measurements of the total ozone column in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A.; Gay, C. [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Bravo, J. L. [Instituto de Geofisica, UNAM, Mexico, D.F. (Mexico)

    1995-01-01

    In this paper we examine measurements of the thickness of the total ozone column between 1986 and 1989 in Mexico City. We consider the contribution of the surface ozone in measurement of the total ozone column made with the Dobson Spectrophotometer located at the Solar Radiation Laboratory (National University), in the southwest of Mexico City. We consider different depths of the mixing layer depending on the season and we compare our results with those reported for Mauna Loa in Hawaii and Poona in India, at the same latitude as Mexico City. In conclusion we confirm that in highly polluted areas the surface ozone has an important effect on measurements of the total ozone column. [Spanish] En este trabajo se examinan las mediciones del grosor de la columna total de ozono entre 1986 y 1989 en la Ciudad de Mexico. En esta revision se considera la contribucion del ozono superficial a las mediciones efectuadas con el Espectrofotometro Dobson instalado en el Laboratorio de Radiacion Solar de la UNAM al suroeste de la Ciudad de Mexico. Consideramos diferentes capas de mezcla para el ozono dependiendo del periodo estacional y comparamos los resultados obtenidos con los valores de las mediciones reportadas para Mauna Loa en Hawai y Poona en la India, ambos a latitudes similares a la de la Ciudad de Mexico. Nuestra conclusion es que en regiones urbanas con alta contaminacion ambiental, el ozono superficial afecta apreciablemente las mediciones del grosor de la columna total de ozono.

  15. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  16. Measuring Terrestrial Ozone from Historic Astronomical Spectra

    Science.gov (United States)

    Griffin, Elizabeth

    2009-01-01

    "Ozone" is a sensitive topic that arouses interest everywhere. Its presence in the stratosphere affects us all, and its threatened reduction would have such dire consequences that it energizes international campaigns, influences the thinking of governments, and activates substantial alterations in the accustomed habits of millions throughout the…

  17. Results of ground level radiation measurements in support of the 1978 aerial survey of the Lake Ontario Ordnance Works, Lewiston, New York

    Energy Technology Data Exchange (ETDEWEB)

    Berven, B A; Doane, R W; Haywood, F F; Shinpaugh, W H

    1979-09-01

    This report contains the results of a limited series of measurements at the Lake Ontario Ordnance Works site, three miles northeast of Lewiston, New York. The scope of this survey was not extensive, and the survey was conducted to support a concurrent aerial survey conducted by EG and G, Inc. Results of this survey indicate two souces of significant external gamma exposure on the site as well as several locations that retain low to intermediate levels of radioactivity in soil. Off-site soil radionuclide concentrations were well within background levels with one exception. Water radionuclide concentrations on the site in the Central Drainage Ditch are significantly above background levels but decrease with distance from the spoil pile, and are within restrictive concentration guides for off-site locations.

  18. Ozone absorption cross section measurements in the Wulf bands

    Science.gov (United States)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-08-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  19. Total ozone retrieval from satellite multichannel filter radiometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-05-25

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).

  20. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    Science.gov (United States)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  1. Learning to see the invisible: discovery and measurement of ozone.

    Science.gov (United States)

    Farrell, Alexander E

    2005-07-01

    Ozone is a key trace constituent of the atmosphere that is interesting for multiple reasons, including its ability to serve both as a screen against harmful solar radiation and as an aggressor against human health. However, methods for accurately detecting and measuring ozone were required before the behavior of ozone in the atmosphere and the effect of human activity on that behavior could be understood. This paper traces out the history of technologies and practices in ozone monitoring that have made this understanding possible, from nineteenth century chemical indicators to modern, laser-based detection technologies. Key insights include the importance of interactions between theorizing and observation in the process of scientific discovery, the importance of intercomparisons between different types of instruments, the way in which public policy concerns changed the pace and direction of ozone monitoring in the 1970s, and the importance of long-term environmental monitoring data to both improving our understanding of earth systems and protecting human health and the environment.

  2. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  3. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2011-04-01

    Full Text Available The GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20–60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22–50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use.

  4. The "pas de deux "between remote sensing and tropospheric ozone models

    NARCIS (Netherlands)

    Nijenhuis, W.A.S.

    1999-01-01

    Levels of tropospheric ozone need to be assessed for scientific research of environmental problems. This can be done through use of models like the LOTOS (Long Term Ozone Simulation) model, ground level and radiosonde measurements and 1 observations by space-born sensors like GOME and SCIAMACHY. The

  5. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  6. Retrieval of ozone profiles from GOMOS limb scattered measurements

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2010-10-01

    Full Text Available The GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time data of GOMOS are proved to be of good quality, the daytime observations are more challenging due to poorer signal-to-noise ratio. In this paper we present an alternative technique, which uses GOMOS limb scattered radiances instead of the stellar signal, to retrieve stratospheric ozone profiles. Like for many other limb-viewing instruments, GOMOS observations contain stray light at high altitudes. We introduce a method for removing the stray light and demonstrate its feasibility by comparing the corrected radiances against those from the OSIRIS (Optical Spectrograph & Infra Red Imaging System instrument. For the retrieval of ozone profiles, an onion peeling method is used. The first validation results suggest that the retrieval of stratospheric ozone is possible with a typical accuracy better than 10% at 22–50 km. GOMOS has measured about 350 000 daytime profiles since 2002. The new retrieval method presented here makes this large amount of data finally available for scientific use.

  7. Residential ozone and lung function in the elderly

    DEFF Research Database (Denmark)

    Braeuner, Elvira V.; Karottki, Dorina Gabriela; Frederiksen, Marie

    2016-01-01

    Ground level ozone arises primarily from traffic, it is a powerful oxidant and its primary target organ is the lung. Most epidemiological studies reporting the health effects of ozone have estimated individual exposure from measurements obtained from outdoor monitors but surrogates of personal...... exposure may not adequately reflect personal exposures. Also, the main focus has been on infants and children. Our purpose was to assess associations between urban background ozone and indoor residential ozone levels as well as to investigate the effects of indoor residential ozone on lung function in 51...... elderly non-smokers. Indoor ozone was measured passively in homes, while urban background outdoor ozone was monitored continuously at a fixed monitoring station located on the roof of the 20-m high university H.C. Ørsteds campus building in a park area. Lung function was measured at baseline as well...

  8. Operator-Friendly Technique and Quality Control Considerations for Indigo Colorimetric Measurement of Ozone Residual

    Science.gov (United States)

    Drinking water ozone disinfection systems measure ozone residual concentration, C, for regulatory compliance reporting of concentration-times-time (CT), and the resultant log-inactivation of virus, Giardia and Cryptosporidium. The indigotrisulfonate (ITS) colorimetric procedure i...

  9. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2009-12-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using these background currents in the processing of ECC data may lead to operator dependent uncertainties and may frequently lead to artificially low ozone concentrations in the upper tropical troposphere. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading, and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  10. Validation of Brewer and Pandora measurements using OMI total ozone

    Science.gov (United States)

    Baek, Kanghyun; Kim, Jae H.; Herman, Jay R.; Haffner, David P.; Kim, Jhoon

    2017-07-01

    Korea will launch the Geostationary Environment Monitoring Spectrometer (GEMS) instrument in 2018 onboard the Geostationary Korean Multi-Purpose Satellite to monitor tropospheric gas concentrations with high temporal and spatial resolutions. The purpose of this study is to examine the performance of total column ozone (TCO) measurements from ground-based Pandora and Brewer instruments that will be used for validation of the GEMS ozone product. Satellite measurements can be used to detect erroneous outliers at a particular ground station, which deviate significantly from co-located satellite measurements relative to other stations. This is possible because a single satellite retrieval algorithm is used to process the entire satellite dataset, and instrument characteristics typically change slowly over the life of the satellite. Thus, the short-term stability (months) of satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems at individual stations. As a reference for satellite ozone measurements, we have selected TCO data derived from OMI-TOMS V8.5 algorithm, because it is a robust algorithm that has been well studied to identify its various error sources. We validated ground-based Brewer and Pandora TCO measurements using OMI-TOMS TCO data collected over South Korea from March 2012 to December 2014. The Brewer TCO measurements at Pohang showed significant deviation from overall seasonal variation during the study period. In addition, in the presence of clouds, Pandora TCO measurements are unusually ∼7% higher than OMI-TOMS TCO data. To filter out these cloud-contaminated data, we applied a Kalman filter to the Pandora measurements. The diurnal variation in the Kalman-filtered Pandora data agrees well with the Brewer data, and the correlation of Kalman-filtered Pandora data with OMI-TOMS TCO is significantly improved from 0.89 to 0.99 at Seoul and from 0.93 to 0.99 at Busan.

  11. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    Science.gov (United States)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  12. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi

    2016-02-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  13. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements

    Directory of Open Access Journals (Sweden)

    J. Bak

    2014-02-01

    Full Text Available The accuracy of total ozone computed from the Smithsonian Astrophysical Observatory (SAO optimal estimation (OE ozone profile algorithm (SOE applied to the Ozone Monitoring Instrument (OMI is assessed through comparisons with ground-based Brewer spectrometer measurements from 2005 to 2008. We also make comparisons with the three OMI operational ozone products, derived from the NASA Total Ozone Mapping Spectrometer (TOMS, KNMI Differential Optical Absorption Spectroscopy (DOAS, and KNMI OE (KOE algorithms. Excellent agreement is observed between SAO and Brewer, with a mean difference of less than ±1% at most individual stations. The KNMI OE algorithm systematically overestimates Brewer total ozone by 2% at low/mid latitudes and 5% at high latitudes while the TOMS and DOAS algorithms underestimate it by ~1.65% on average. Standard deviations of ~1.8% are found for both SOE and TOMS, but DOAS and KOE have scatters of 2.2% and 2.6%, respectively. The stability of the SOE algorithm is found to have insignificant dependence on viewing geometry, cloud parameters, total ozone column. In comparison, the KOE differences to Brewer values are significantly correlated with solar and viewing zenith angles, with a significant deviation depending on cloud parameters and total ozone amount. The TOMS algorithm exhibits similar stability to SOE with respect to viewing geometry and total column ozone, but stronger cloud parameter dependence. The dependence of DOAS on the algorithmic variables is marginal compared to KOE, but distinct compared to the SOE and TOMS algorithms. Comparisons of All four OMI products with Brewer show no apparent long-term drift but a seasonally affected feature, especially for KOE and TOMS. The substantial differences in the KOE vs. SOE algorithm performance cannot be sufficiently explained by the use of soft calibration (in SOE and the use of different a priori error covariance matrix, but other algorithm details cause larger fitting

  14. On the trail of ozone. Measuring techniques and applications; Dem Ozon auf der Spur. Messverfahren und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Ebel, H.; Jaeger, M.; Stude, M.

    1995-11-01

    In recent times, ozone has become one of the most relevant air pollutants in the USA and Europe. More than anything, the hot summers of the last years have led to a rise in ozone concentrations near the ground. This project aims to test a simple but accurate and reliable measuring technique for ozone concentrations near the ground. The method chosen is a manual one and makes use of indigo sulfonic acid. (orig.) [Deutsch] Ozon ist in der vergangenen Zeit zu einem der bedeutendsten Luftschadstoffe in den USA und Europa geworden. Gerade die intensiven Sommer der letzten Jahre haben zu einem Anstieg der bodennahen Ozonkonzentrationen gefuehrt. Das Thema dieses Projektes ist die Erprobung eines einfachen, aber genauen und zuverlaessigen Messverfahrens fuer bodennahe Ozonkonzentrationen. Dazu wurde eine manuelle Methode, das Indigosulfonsaeure-Verfahren, ausgewaehlt. (orig.)

  15. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005

    Directory of Open Access Journals (Sweden)

    R. C. Wilson

    2011-06-01

    Full Text Available National and European legislation over the past 20 years, and the modernisation or removal of industrial sources, have significantly reduced European ozone precursor emissions. This study quantifies observed and modelled European ozone annual and seasonal linear trends from 158 harmonised rural background monitoring stations over a constant time period of a decade (1996–2005. Mean ozone concentrations are investigated, in addition to the ozone 5th percentiles as a measure of the baseline or background conditions, and the 95th percentiles that are representative of the peak concentration levels. This study aims to characterise and quantify surface European ozone concentrations and trends and assess the impact of the changing anthropogenic emission tracers on the observed and modelled trends.

    Significant (p < 0.1 positive annual trends in ozone mean, 5th and 95th percentiles are observed at 54 %, 52 % and 45 % of sites respectively (85 sites, 82 sites and 71 sites. Spatially, sites in Central and Northwestern Europe tend to display positive annual ozone trends in mean, 5th and 95th percentiles. Significant negative annual trends in ozone mean 5th and 95th percentiles are observed at 11 %, 12 % and 12 % of sites respectively (18 sites, 19 sites and 19 sites which tend to be located in the eastern and south-western extremities of Europe. European-averaged annual trends have been calculated from the 158 sites in this study. Overall there is a net positive annual trend in observed ozone mean (0.16 ± 0.02 ppbv yr−1 2σ error, 5th (0.13 ± 0.02 ppbv yr−1 and 95th (0.16 ± 0.03 ppbv yr−1 percentiles, representative of positive trends in mean, baseline and peak ozone. Assessing the sensitivity of the derived overall trends to the constituent years shows that the European heatwave year of 2003 has significant positive influence and 1998 the converse effect; demonstrating the masking effect of inter

  16. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    Science.gov (United States)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  17. Ozone measurements along vertical transects in the Alps

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Kirchner, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Oekologie; Welzl, G. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Oberschleissheim (Germany). Inst. fuer Biometrie und Biomathematik; Hangartner, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. of Applied Ergonomics and Hygiene

    1999-07-01

    To investigate the vertical profiles of air pollutants in the boundary layer, aircraft and balloon-born measurements and measurements using a cable car as an instrument platform have been performed in different parts of the Alps. This on-line monitoring of atmospheric pollutants requires expensive and sophisticated techniques. In order to control ambient air quality in remote regions, where no infrastructure like power supply is available, simple instruments are required. The objective of this study, which was coordinated and evaluated by the GSF-Forschungszentrum fuer Umwelt und Gesundheit was first, to investigate the vertical distribution of ozone in different parts of the Alps and secondly, in addition to continuous analyser measurements, to test monitoring by means of two types of passive samplers. The selection of these samples - one for one week use and another one for two week application - was based on a passive sampler intercomparison done in a preliminary study one year earlier.

  18. Ozone measurements along vertical transects in the Alps.

    Science.gov (United States)

    Werner, H; Kirchner, M; Welzl, G; Hangartner, M

    1999-01-01

    To investigate the vertical profiles of air pollutants in the boundary layer, aircraft and balloon-born measurements and measurements using a cable car as an instrument platform have been performed in different parts of the Alps. This on-line monitoring of atmospheric pollutants requires expensive and sophisticated techniques. In order to control ambient air quality in remote regions, where no infrastructure like power supply is available, simple instruments are required. The objective of this study, which was coordinated and evaluated by the GSF-Forschungszentrum für Umwelt und Gesundheit was first, to investigate the vertical distribution of ozone in different parts of the Alps and secondly, in addition to continuous analyser measurements, to test monitoring by means of two types of passive samplers. The selection of these samplers - one for one week use and another one for two week application - was based on a passive sampler intercomparison done in a preliminary study one year earlier.

  19. Measurements of arctic sunrise surface ozone depletion events at Kangerlussuaq, Greenland (67°N, 51°W)

    OpenAIRE

    Miller, Henry L.; Weaver, Alex; Sanders, Ryan W.; Arpag, Karen; Solomon, Susan

    2011-01-01

    In situ measurements of surface ozone were conducted from 30 January through 22 May 1995, at the Sondrestrom Incoherent Scatter Radar Facility near Kangerlussuaq, Greenland. Several periods of depleted ozone were observed, representing the lowest latitude measurements of springtime surface polar ozone depletion in the northern hemisphere to date. The most severe ozone depletion occurred during 14-17 March, when surface ozone levels abruptly fell to below 10 ppbv from typical values of about 4...

  20. Assessment of Odin-OSIRIS ozone measurements from 2001 to the present using MLS, GOMOS, and ozone sondes

    Directory of Open Access Journals (Sweden)

    C. Adams

    2013-04-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS was launched aboard the Odin satellite in 2001 and is continuing to take limb-scattered sunlight measurements of the atmosphere. This work aims to characterize and assess the stability of the OSIRIS 11 yr v5.0x ozone data set. Three validation data sets were used: the v2.2 Microwave Limb Sounder (MLS and v6 Global Ozone Monitoring of Occultation on Stars (GOMOS satellite data records, and ozone sonde measurements. Global mean percent differences between coincident OSIRIS and validation measurements are within 5% of zero at all altitude layers above 18.5 km for MLS, above 21.5 km for GOMOS, and above 17.5 km for ozone sondes. Below 17.5 km, OSIRIS measurements agree with ozone sondes within 5% and are well-correlated (R > 0.75 with them. For low OSIRIS optics temperatures (< 16 °C, OSIRIS ozone measurements are biased low by up 6% compared with the validation data sets for 25.5–40.5 km. Biases between OSIRIS ascending and descending node measurements were investigated and were found to be related to aerosol retrievals below 27.5 km. Above 30 km, agreement between OSIRIS and the validation data sets was related to the OSIRIS retrieved albedo, which measures apparent upwelling, with a high bias for in OSIRIS data with large albedos. In order to assess the long-term stability of OSIRIS measurements, global average drifts relative to the validation data sets were calculated and were found to be < 3% per decade for comparisons against MLS for 19.5–36.5 km, GOMOS for 18.5–54.5 km, and ozone sondes for 12.5–22.5 km, and within error of 3% per decade at most altitudes. Above 36.5 km, the relative drift for OSIRIS versus MLS ranged from ~ 0–6%, depending on the data set used to convert MLS data to the OSIRIS altitude versus number density grid. Overall, this work demonstrates that the OSIRIS 11 yr ozone data set from 2001 to the present is suitable for trend studies.

  1. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  2. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  3. Lidar method of measurement of atmospheric extinction and ozone profiles

    Science.gov (United States)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  4. Comparisons of measured and modelled ozone deposition to forests in northern Europe

    DEFF Research Database (Denmark)

    Touvinen, J. P.; Simpson, D.; Mikkelsen, Teis Nørgaard

    2001-01-01

    The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in D...

  5. IASI measurements of tropospheric ozone over Chinese megacities: Beijing, Shanghai, and Hong Kong

    OpenAIRE

    J.-M. Flaud; Orphal, J; Eremenko, M.; Dufour, G.

    2009-01-01

    IASI observations of tropospheric ozone over Beijing, Shanghai and Hong Kong during one year have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe both seasonal and daily variations of lower tropospheric ozone around megacities on the regional scale. The monthly variations of lower tropospheric ozone retrieved from IASI show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed ...

  6. Accurate measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2015-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11...

  7. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2014-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and rep...

  8. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  9. Ozone profiles above Palmer Station, Antarctica

    Science.gov (United States)

    Torres, Arnold L.; Brothers, George

    1988-01-01

    NASA's Goddard Space Flight Center/Wallops Flight Facility conducted a series of 52 balloon-borne measurements of vertical ozone profiles over the National Science Foundation (NSF) research facility at Palmer Station, Antarctica (64 deg 46 S, 64 deg 3 W) between August 9 and October 24, 1987. High resolution measurements were made from ground level to an average of 10 mb. While much variation was seen in the profile amounts of ozone, it is clear that a progressive depletion of ozone occurred during the measurement period, with maximum depletion taking place in the 17 to 19 km altitude region. Ozone partial pressures dropped by about 95 percent in this region. Shown here are plotted time dependences of ozone amounts observed at 17 km and at arbitrarily selected altitudes below (13 km) and above (24 km) the region of maximum depletion. Ozone partial pressure at 17 km is about 150nb in early August, and has decreased to less than 10nb in the minimums in October. The loss rate is of the order of 1.5 percent/day. In summary, a progressive depletion in stratospheric ozone over Palmer Station was observed from August to October, 1987. Maximum depletion occurred in the 17 to 19 km range, and amounted to 95 percent. Total ozone overburden decreased by up to 50 percent during the same period.

  10. Ozone over the Western Mediterranean Sea – results from two years of shipborne measurements

    Directory of Open Access Journals (Sweden)

    K. Velchev

    2011-01-01

    Full Text Available Ozone, along with other air pollutants, has been measured for two years from a monitoring station placed on a cruise ship that follows a regular track in the Western Mediterranean between April and October. Conditions favouring high ozone levels have been studied by analysis of weather maps and back trajectories. This analysis was focused on a transect over the open sea in the South Western Mediterranean between Tunis and Palma de Mallorca. High ozone levels were found in situations with an anticyclonic circulation over the Western Mediterranean when subsidence brings air masses down from altitudes between 1000 and 3500 m a.s.l. Analysis of composite meteorological maps suggests a relevant contribution of breeze circulation to subsidence during events with high surface ozone concentrations; this points to an important contribution from local ozone formation. A detailed back trajectory analysis of the origin of air masses with high ozone concentrations was carried out for two "hot spots" for ozone pollution, in the Gulf of Genoa and between Naples and Palermo, respectively. The main cause of high ozone levels in the Gulf of Genoa was found to be outflow from the Po Valley and the Genoa area while such episodes along the Naples-Palermo transect were most often associated with trajectories from the Rome or Naples areas. Analysis of the relationship between measured concentrations of Black Carbon and ozone allowed to evaluate the degree of photochemical "ageing" of the air masses encountered along the route of the cruise ship.

  11. Science Accomplishments from a Decade of Aura OMI/MLS Tropospheric Ozone Measurements

    Science.gov (United States)

    Ziemke, Jerald R.; Douglass, Anne R.; Joiner, Joanna; Duncan, Bryan N.; Olsen, Mark A.; Oman, Luke D.; Witte, Jacquelyn C.; Liu, X.; Wargan, K.; Schoeberl, Mark R.; Strahan, Susan E.; Pawson, Steven; Bhartia, Pawan K.; Newman, Paul A.; Froidevaux, Lucien; Cooper, Owen R.; Haffner, David P.

    2014-01-01

    Measurements of tropospheric ozone from combined Aura OMI and MLS instruments have yielded a large number of new and important science discoveries over the last decade. These discoveries have generated a much greater understanding of biomass burning, lightning NO, and stratosphere-troposphere exchange sources of tropospheric ozone, ENSO dynamics and photochemistry, intra-seasonal variability-Madden-Julian Oscillation including convective transport, radiative forcing, measuring ozone pollution from space, improvements to ozone retrieval algorithms, and evaluation of chemical-transport and chemistry-climate models. The OMI-MLS measurements have been instrumental in giving us better understanding of the dynamics and chemistry involving tropospheric ozone and the many drivers affecting the troposphere in general. This discussion will provide an overview focusing on our main science results.

  12. Quantifying wintertime boundary layer ozone production from frequent profile measurements in the Uinta Basin, UT, oil and gas region

    Science.gov (United States)

    Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo

    2016-09-01

    As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.

  13. Spatial assessment of PM{sub 10} and ozone concentrations in Europe (2005)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    This report presents particulate matter (PM{sub 10}) and ground.level ozone concentration maps covering the whole of Europe. The interpolated maps are based on a combination of measurement and regional modelling results. Using measured concentrations as a primary source of information, the report summarizes the methodologies and the methodological choices taken in order to derive such maps. (au)

  14. Wind tunnel studies of gas dispersion from ground level source

    Directory of Open Access Journals (Sweden)

    Michálek Petr

    2015-01-01

    Full Text Available Measurements of gas dispersion from ground source were performed in a boundary layer wind tunnel in VZLU Prague. The measurements include non-buoyant gas dispersion behind a ground level source on a flat plane, on a simple rectangular building model and behind a model hill and rectangular barrier. These measurements will serve for verification of a new gas dispersion software being developed in VZLU. The dispersion model is intended for use by firemen and ambulance services in the case of an accident for immediate estimation of the area with dangerous gas concentration. The dispersion model will use precalculated results for chosen areas in the Czech Republic with industrial plants and residential building in the neighborhood. The size of contaminated area will be estimated using actual meteorological situation, i.e. wind speed and direction etc. and precalculated data of flow and dispersion in the chosen location.

  15. Wind tunnel studies of gas dispersion from ground level source

    Science.gov (United States)

    Michálek, Petr; Zacho, David

    2015-05-01

    Measurements of gas dispersion from ground source were performed in a boundary layer wind tunnel in VZLU Prague. The measurements include non-buoyant gas dispersion behind a ground level source on a flat plane, on a simple rectangular building model and behind a model hill and rectangular barrier. These measurements will serve for verification of a new gas dispersion software being developed in VZLU. The dispersion model is intended for use by firemen and ambulance services in the case of an accident for immediate estimation of the area with dangerous gas concentration. The dispersion model will use precalculated results for chosen areas in the Czech Republic with industrial plants and residential building in the neighborhood. The size of contaminated area will be estimated using actual meteorological situation, i.e. wind speed and direction etc. and precalculated data of flow and dispersion in the chosen location.

  16. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-02-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes; Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed significantly (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  17. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-07-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes, Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed substantially (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over Central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  18. Tropical tropospheric ozone derived using Clear-Cloudy Pairs (CCP) of TOMS measurements

    OpenAIRE

    M.J. Newchurch; Sun, D.; Kim, J. H.; Liu, X.

    2003-01-01

    Using TOMS total-ozone measurements over high-altitude cloud locations and nearby paired clear locations, we describe the Clear-Cloudy Pairs (CCP) method for deriving tropical tropospheric ozone. The high-altitude clouds are identified by measured 380 nm reflectivities greater than 80% and Temperature Humidity InfraRed (THIR) measured cloud-top pressures less than 200 hPa. To account for locations without high-altitude clouds, we apply a zonal sine fitting to the stratospheric ozone deri...

  19. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  20. Ozone and Pollution Measuring Ultraviolet Spectrometer (OPUS): an overview

    Science.gov (United States)

    Kuze, A.; Suzuki, M.; Sano, T.; Watanabe, M.; Yoshida, S.; Yui, Y.; Okumura, S.; Shibasaki, K.; Ogawa, T.

    Atmospheric composition measurements from space are essential for monitoring earth's environment. Ozone and Pollution Measuring Ultraviolet Spectrometer (OPUS) is a nadir-looking, cross-track scanning ultraviolet spectrometer, which will be onboard Global Change Observation Mission-A1 (GCOM-A1). It will be placed in a 650 km non-sun-synchronous orbit in 2007, with an inclination angle of 69 deg. OPUS consists of a mechanical scanner, a Fastie-Ebert type polychromator with a one-dimensional UV Si-CMOS array detector, and a radiometer for cloud detection using O2 A band. It will provide information about cloud height and tropospheric O3 , SO2 , NO2 , BrO, OClO, HCHO, as well as the global distribution of total O3 , surface albedo, and aerosol in one day. This paper describes scientific objectives, instrument design, and retrieval algorithm. Pre-launch calibration, onboard calibration, and validation plan will be also presented. In addition, the ground test results using laboratory models will be discussed.

  1. Ozone studies in the Paso del Norte region

    Science.gov (United States)

    Becerra-Davila, Fernando

    obtained from this photolysis study demonstrate that the local ground level ozone formation is not only influenced by the strong solar radiation and changing aerosol makeup, but also by other heterogeneous factors and reactions. In addition, this research provided good evidence that the ground level ozone precursor regime in El Paso during the ozone episode of June 2006 was mostly VOC-limited. Much of this estimation was derived from measurements of local ambient VOC/NOx ratios. This finding shows that at least during June 2006, the non-linear surface ozone production increased during weekends compared to workdays in a habitually VOC-limited regime. The seasonal variations of columnar ozone as measured by a Multi-filter Rotating Shadowband instrument installed at the UTEP campus are analyzed for the first time for this region and results are presented. This investigation has addressed the problem of ground-level ozone formation in the Paso del Norte region. Urban ozone is a complex problem with many aspects that are not fully understood. In this investigation, a range of techniques has been used to address the study of local surface ozone episodes with the purpose of acquiring new insights and knowledge that will help understand and remediate the diverse atmospheric pollution events that affect this bi-national region recurrently. Innovative techniques were developed and used, ranging from the use of local ambient atmospheric pollution data to the utilization of complex modeling techniques to achieve the best possible computer results. Finally, the influence of ground level ozone concentrations in admissions to hospitals for this region due to respiratory diseases is analyzed. The comprehensive results obtained in this work will help to better understand ozone formation in the Paso del Norte Region for future policy regulation implementations.

  2. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    Science.gov (United States)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  3. Spectroscopical Determination of ground-level concentrations of Reactive Halogen Species (RHS) above salt lakes, salt pans and other areas with high halogen emissions

    Science.gov (United States)

    Holla, Robert; Landwehr, Sebastian; Platt, Ulrich; Kotte, Karsten; Lisitsyna, Linda V.; Mulder, Ines; Emmerich, Maren; Huber, Stefan; Heidak, Markus

    2010-05-01

    Reactive Halogen Species (RHS), especially BrO and IO, are crucial for the photo chemistry of ozone, the oxidation capacity of the troposphere and have an impact on the equilibria of many atmospheric reaction cycles. This also induces a potential influence on the earth's climate. Beside polar regions, volcanoes and the marine boundary layer salt lakes are an important source for reactive halogen species. At the Dead Sea BrO mixing ratios of up to 176 ppt were measured in summer 2001 [Matveev et al., 2001] and IO was identified with maximal mixing ratios of more than 10 ppt by [Zingler and Platt, 2005]. The Salar de Uyuni in Bolivia showed the presence of up to 20 ppt BrO [Hönninger et al., 2004]. Salt pans and salt deserts may be important halogen sources as well. Saline soils cover 2.5% of the land surface of the earth and might increase in the near future due to desertification as one aspect of the global climate change. Within the scope of the DFG research group HALOPROC a measurement campaign in Southern Russia was performed in August 2009. The ground-level concentrations of BrO, IO, Ozone and other trace gases above the salt lakes El'Ton, Baskuntschak and other local areas were measured using the Multi-AXis-DOAS technique. A further campaign was performed in Mauritania in November/December 2009 in cooperation with the BMBF project SOPRAN. In addition to the above-mentioned measurements the Long-Path DOAS technique was used in order to measure the ground-level concentrations at two different sites: 1. the salt pan Sebkha N'Dramcha and 2. close to a sea weed field at Poste Iwik in a coastal area. We present results from both campaigns concerning the concentrations of bromine oxide (BrO), iodine oxide (IO), ozone (O3)and formaldehyde (HCHO) and give an outlook on possible further campaigns in the future.

  4. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower

  5. Solar-absorption measurements of ozone from two ground based FTIR sites

    Science.gov (United States)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  6. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  7. Evaluation of passive methods for measuring ozone in the European Alps

    Energy Technology Data Exchange (ETDEWEB)

    Hangartner, M. [Inst. of Applied Ergonomics and Hygiene, Zurich (Switzerland); Kirchner, M. [GSF Research Centre for Environment and Human Health, Neuherberg (Germany); Werner, H. [Munich Univ. (Germany). Inst. for Bioclimatology and Environmental Research

    1995-12-31

    Under the leadership of the GSF research centre, various research groups were invited to make their ozone and nitrogen oxide collection systems available for comparative testing. It was considered valuable to include not only well developed systems but also methods still under development. For the main comparative test 11 working groups with differing methods took part. Essentially the goal was to evaluate of the integrating ozone measuring methods as compared to continual ozone monitoring methods under field conditions. For this the various collection systems at 6 alpine continual measuring stations in Italy and Bavaria characterising different location types, were compared over 22 weeks

  8. Validation of Aura Microwave Limb Sounder Ozone by Ozonesonde and Lidar Measurements

    Science.gov (United States)

    Jiang, Y. B.; Froidevaux, L.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Bojkov, B.; Leblanc, T.; McDermid, I. S.; Godin-Beekmann, S.; Filipiak, M. J.; Harwood, R. S.; Fuller, R. A.; Daffer, W. H.; Drouin, B. J.; Cofield, R. E.; Cuddy, D. T.; Jarnot, R. F.; Knosp, B. W.; Perun, V. S.; Schwartz, W. V.; Snyder, P. C.; Stek, R. P.; Thurstans, P. A.; Wagner, M. J.

    2007-01-01

    We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by approximately 20% at middle to high latitude, although there is a lot of variability in this altitude region.

  9. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III. We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to within 10

  10. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (6% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III.

    We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to

  11. A technique using a stellar spectrographic plate to measure terrestrial ozone column depth

    Energy Technology Data Exchange (ETDEWEB)

    Wong, A.Y.

    1995-08-01

    This thesis examines the feasibility of a technique to extract ozone column depths from photographic stellar spectra in the 5000--7000 Angstrom spectral region. A stellar spectrographic plate is measured to yield the relative intensity distribution of a star`s radiation after transmission through the earth`s atmosphere. The amount of stellar radiation absorbed by the ozone Chappuis band is proportional to the ozone column depth. The measured column depth is within 10% the mean monthly value for latitude 36{degree}N, however the uncertainty is too large to make the measurement useful. This thesis shows that a 10% improvement to the photographic sensitivity uncertainty can decrease the column depth uncertainty to a level acceptable for climatic study use. This technique offers the possibility of measuring past ozone column depths.

  12. A technique using a stellar spectrographic plate to measure terrestrial ozone column depth

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Alec Y. [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    This thesis examines the feasibility of a technique to extract ozone column depths from photographic stellar spectra in the 5000--7000 Angstrom spectral region. A stellar spectrographic plate is measured to yield the relative intensity distribution of a star`s radiation after transmission through the earth`s atmosphere. The amount of stellar radiation absorbed by the ozone Chappuis band is proportional to the ozone column depth. The measured column depth is within 10% the mean monthly value for latitude 36{degree}N, however the uncertainty is too large to make the measurement useful. This thesis shows that a 10% improvement to the photographic sensitivity uncertainty can decrease the column depth uncertainty to a level acceptable for climatic study use. This technique offers the possibility of measuring past ozone column depths.

  13. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-07-01

    ppbv during the SPE period due to the small loss rates during winter. Computed NOx increases, which were statistically significant at the 95 % level, lasted about a month past the SPEs. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer NOx measurements and MIPAS NO2 measurements for the polar Northern Hemisphere are in reasonable agreement with these predictions. An extremely large ground level enhancement (GLE occurred during the SPE period on 20 January 2005. We find that protons of energies 300 to 20 000 MeV, associated with this GLE, led to very small enhanced lower stratospheric odd nitrogen concentrations of less than 0.1 % and ozone decreases of less than 0.01 %.

  14. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    Science.gov (United States)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  15. Measurability of matter: history of ozone measurements; La mesurabilite de la matiere: histoire de la mesure de l'ozone

    Energy Technology Data Exchange (ETDEWEB)

    Callens, S. [Clerse Ifresi Fu 3 CNRS, 59 - Lille (France)

    1998-03-01

    BACHELARD wrote 'when the genuine nature of ozone molecule is known, it becomes clear that sound ideas are made despite history'. The history of ozone is interrupted with brutal breaks, more epistemic than historical, which can refer to a general history of measure. Bachelard still base his argument on an underlying inferior order in which simplicity lays. The history of ozone has always indicated that what is inferior has always revealed surprises, that the world is not a well kept house from the list of the simple chemical elements. It is a mixed, varied and short-lived world with uncertain accounts of productive processes combining precursors and processes of natural and anthropic origin. (author)

  16. Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?

    Directory of Open Access Journals (Sweden)

    J. Kar

    2010-06-01

    Full Text Available In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS/Solar Backscattered Ultraviolet (SBUV and Ozone Monitoring Instrument (OMI/Microwave Limb Sounder (MLS satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.

  17. Ozone over the Western Mediterranean Sea – results from two years of shipborne measurements

    Directory of Open Access Journals (Sweden)

    K. Velchev

    2010-03-01

    Full Text Available Ozone, along with other air pollutants, has been measured for two years from a monitoring station placed on a cruise ship that follows a regular track in the Western Mediterranean between April and October. Conditions favoring high ozone levels have been studied by analysis of weather maps and back trajectories. This analysis was focused on a transect over the open sea in the South Western Mediterranean between Tunis and Palma de Mallorca. High ozone levels were found in situations with an anticyclonic circulation over the Western Mediterranean when subsidence brings air masses down from altitudes between 1000 and 3500 m a.s.l. Analysis of composite meteorological maps suggest a relevant contribution of breeze circulation to subsidence during events with high surface ozone concentrations; this points to an important contribution from local ozone formation. A detailed back trajectory analysis of the origin of air masses with high ozone concentrations was carried out for two "hot spots" for ozone pollution, found along the coast south of Genova and between Napoli and Palermo, respectively. While it was found that the influence of plumes from areas with high pollutant levels might explain most episodes in the Northwestern transect, such "local" influences appeared to be of minor importance within the Napoli-Palermo transect.

  18. RIVM Tropospheric ozone LIDAR Measurements during TROLIX'91

    NARCIS (Netherlands)

    Apituley A

    1991-01-01

    For the intercomparison of several LIDAR systems for the vertical profiling of tropospheric ozone developed in the EUREKA/EUROTRAC subproject TESLAS a field campaign was held at the RIVM site in Bilthoven, the Netherlands, during the period from June 10 to June 28, 1991. In this report an overview

  19. RIVM Tropospheric ozone LIDAR Measurements during TROLIX'91

    NARCIS (Netherlands)

    Apituley A

    1991-01-01

    For the intercomparison of several LIDAR systems for the vertical profiling of tropospheric ozone developed in the EUREKA/EUROTRAC subproject TESLAS a field campaign was held at the RIVM site in Bilthoven, the Netherlands, during the period from June 10 to June 28, 1991. In this report an overview

  20. 浸渍法制备的Pd-MnOx/γ-Al2O3催化剂及不同载体对地表O3降解的影响%Pd-MnOx/γ-Al2O3 Monolithic Catalysts Prepared by Impregnation Method and Effect of Different Supports on Ground-Level Ozone Decomposition

    Institute of Scientific and Technical Information of China (English)

    任成军; 周丽娜; 尚鸿燕; 陈耀强

    2014-01-01

    在γ-Al2O3载体上用等体积浸渍法浸渍Pd、MnOx活性组分,然后涂覆于堇青石基体上制备Pd-MnOx/γ-Al2O3整体式催化剂.分别用 X 射线衍射(XRD)、H2-程序升温还原(H2-TPR)、低温 N2吸附-脱附及 X 射线光电子能谱(XPS)对制备的催化剂进行表征.研究了Pd、MnOx浸渍顺序对催化剂活性、氧化还原性能及织构性质的影响.实验结果表明, Pd、MnOx共浸渍较分别浸渍制备的催化剂活性好, Pd 和 MnOx之间存在一定的协同作用.考察了不同载体如La-Al2O3、SiO2、γ-Al2O3和Zr-Al2O3对催化剂活性、氧化还原性能、织构性质及表面电子性能的影响.研究表明,以La-Al2O3或SiO2为载体的催化剂活性最好,即,14°C时O3转化率为82%,完全转化温度为36°C.γ-Al2O3载体次之, Zr-Al2O3载体较差.不同载体制备的催化剂中 MnOx的氧化还原性能顺序为: Pd-MnOx/SiO2>Pd-MnOx/La-Al2O3>Pd-MnOx/γ-Al2O3>Pd-MnOx/Zr-Al2O3.%Pd-MnOx/γ-Al2O3 catalysts were prepared by impregnating Pd and MnOx on γ-Al2O3 supports, using an incipient wetness impregnation method, and then coating on a cordierite substrate to obtain monolithic catalysts. The catalysts were characterized using X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), low-temperature N2 adsorption-desorption measurements, and X-ray photoelectron spectroscopy (XPS). The effects of the Pd and MnOx impregnation order on the catalytic activity, redox performance, textural properties, and surface electronic characteristics of the catalysts were studied. The experimental results showed that the activity of the catalyst co-impregnated with Pd and MnOx on γ-Al2O3 was better than that of the catalyst impregnated sequentially with Pd and MnOx. A synergetic effect was observed between Pd and MnOx on the Pd-MnOx/γ-Al2O3 catalysts for ozone decomposition. The effects of various supports on catalytic activity, redox performance, textural properties, and surface electron

  1. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest

    Science.gov (United States)

    Fares, S.; Matteucci, G.; Scarascia Mugnozza, G.; Morani, A.; Calfapietra, C.; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.

    2013-03-01

    Mediterranean forests close to urban areas are exposed to polluted plumes loaded with tropospheric ozone. This is the case of Castelporziano Estate, a 6000 ha Mediterranean forest 25 km from Rome downtown on the coast of the Mediterranean Sea. In September 2011 we started an intensive field campaign aimed at investigating ozone deposition from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements at canopy level with the eddy covariance technique were supported by a vegetation survey and the measurement of all environmental parameters which allowed to calculate stomatal ozone fluxes. Leaf-level measurements were used to parameterize models to calculate stomatal conductance based on a Jarvis-type and Ball-Berry approach. We show changes in magnitude of ozone fluxes from a warm (September) to a cold period (October-December). Stomatal component explained almost the totality of ozone fluxes during the cold days, but contributed only up to 50% to total ozone deposition during warm days, suggesting that other sinks (e.g. chemistry in the gas-phase) play a major role. Modeled stomatal ozone fluxes based on a Jarvis-type approach (DO3SE) correlated with measured fluxes better than using a Ball-Berry approach. A third model based on a modified Ball-Berry equation was proposed to account for the non-linear dependency of stomatal conductance on relative humidity. This research will help the development of metrics for ozone-risk assessment and advance our understanding of mixed Mediterranean forests in biosphere-atmosphere exchange.

  2. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  3. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  4. Field measurements of the ambient ozone formation potential in Beijing during winter

    Science.gov (United States)

    Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William

    2017-04-01

    The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.

  5. Simultaneous Retrievals of Polar Mesospheric Clouds (PMCs with Ozone from OMI UV measurements

    Directory of Open Access Journals (Sweden)

    J. Bak

    2015-09-01

    Full Text Available The presence of polar mesospheric clouds (PMCs at high latitudes could affect the retrieval of ozone profiles using backscattered ultraviolet (BUV measurements. PMC-induced errors in ozone profile retrievals from Ozone Monitoring Instrument (OMI BUV measurements are investigated through comparisons with Microwave Limb Sounder (MLS ozone measurements. This comparison demonstrates that the presence of PMCs leads to systematic biases at altitudes above 6 hPa in summer high latitudes; the biases increase from ~ −2 % at 2 hPa to ~ −20 % at 0.5 hPa on average, and are significantly correlated with brightness of PMCs. Sensitivity studies show that the radiance sensitivity to PMCs strongly depends on wavelengths, increasing by a factor of ~ 4 from 300 to 265 nm. It also strongly depends on the PMC scattering, thus depending on viewing geometry. The optimal estimation-based retrieval sensitivity analysis shows that PMCs located at 80–85 km have the greatest effect on ozone retrievals at ~ 0.2 hPa (~ 60 km, where the retrieval errors range from −2.5 % with PMC optical depth (POD of 10−4 to −20 % with 10−3 at back scattering angles, and the impacts increase by a factor of ~ 5 at forward scattering angles due to stronger PMC sensitivities. To reduce the interference of PMCs on ozone retrievals, we perform simultaneous retrievals of POD and ozone with a loose constraint of 10−3 for POD, which results in retrieval errors of 1–4 × 10−4. It is demonstrated that the negative bias of OMI ozone retrievals relative to MLS could be improved by including the PMC in the forward model calculation and retrieval.

  6. A Numerical Study of Tropospheric Ozone in the Springtime in East Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meigen(张美根); XU Yongfu(徐永福); Itsushi UNO; Hajime AKIMOTO

    2004-01-01

    The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tropospheric ozone in March 1998. The calculated mixing ratios of ozone and carbon monoxide are compared with ground level observations at three remote sites in Japan and it is found that the model reproduces the observed features very well. Examination of several high episodes of ozone and carbon monoxide indicates that these elevated levels are found in association with continental outflow,demonstrating the critical role of the rapid transport of carbon monoxide and other ozone precursors from the continental boundary layer. In comparison with available ozonesonde data, it is found that the model-calculated ozone concentrations are generally in good agreement with the measurements, and the stratospheric contribution to surface ozone mixing ratios is quite limited.

  7. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-03-01

    this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50 ppbv during the SPE period due to the small loss rates during winter. Computed NOx increases, which were statistically significant at the 95% level, lasted about a month past the SPEs. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer NOx measurements and MIPAS NO2 measurements for the polar Northern Hemisphere are in reasonable agreement with these predictions. An extremely large ground level enhancement (GLE occurred during the SPE period on 20 January 2005. We find that protons of energies 300 to 20 000 MeV, not normally included in our computations, led to enhanced lower stratospheric odd nitrogen concentrations of less than 0.1% as a result of this GLE.

  8. Five-year measurements of ozone fluxes to a Danish Norway spruce canopy

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.; Hovmand, M.F.

    2004-01-01

    Ozone concentrations and fluxes have been measured continuously during 5 years (1996-2000) by the gradient method in a Norway spruce dominated forest stand in West Jutland, Denmark, planted in 1965. The method has been validated against other methodologies and a relatively good relationship...... was found. The data are analysed to quantify diurnal, seasonal and yearly fluxes, and non-stomatal and stomatal removal are estimated. Monthly means of climatic data are shown, and day and night values of the aerodynamic resistance, r(a), viscous sub-layer resistance, r(b), and the surface or canopy...... resistance, r(c), are presented. The yearly ozone deposition is approximately 126 kg ha(-1). The canopy ozone uptake is highest during the day and during the summer. This is interpreted as increased stomatal uptake and physical and chemical reactions. The daily means of ozone concentration and fluxes...

  9. Enhancing Low-Cost Ozone Spectrometers to Measure Mesospheric Winds and Tides

    CERN Document Server

    Alam, O B

    2015-01-01

    Ground-based spectrometers have been developed to measure the concentration, velocity, and temperature of ozone in the mesosphere and lower thermosphere (MLT) using low-cost satellite television electronics to observe the 11.072 GHz spectral line of ozone. A two-channel spectrometer has been engineered to yield various performance improvements, including a doubling of the signal-to-noise ratio, improved data processing efficiency, and lower power consumption at 15 W. Following 2009 and 2012 observations of the seasonal and diurnal variations in ozone concentration near the mesopause, the ozone line was observed at an altitude near 95 km and latitude of 38 degrees north using three single-channel spectrometers located at the MIT Haystack Observatory (Westford, MA), Chelmsford High School (Chelmsford, MA), and Union College (Schenectady, NY) pointed south at 8 degrees. Observations from 2009 through 2014 are used to derive the nightly-averaged seasonal variation in meridional velocity, as well as the seasonally...

  10. Ground Levels and Ionization Energies for the Neutral Atoms

    Science.gov (United States)

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  11. Intercomparison of aerosol optical depth from Brewer ozone spectrophotometers and CIMEL sunphotometers measurements

    Directory of Open Access Journals (Sweden)

    A. Cheymol

    2008-06-01

    Full Text Available The Langley plot method applied on the Brewer Ozone measurements can provide accurate Aerosol Optical Depth (AOD in the UV-B. We present seven intercomparisons between AOD retrieved from Brewer Ozone measurements and AOD measured by CIMEL sunphotometer, which are stored in the international AERONET database. Only the intercomparisons between co-located instruments can be used to validate the Langley Plot method applied to the Brewer measurements: in this case, all the correlation coefficient are above 0.83. If the instruments are not at the same site, the correlation between the AOD retrieved by both instruments is much lower.

  12. The role and importance of ozone for atmospheric chemistry and methods for measuring its concentration

    Directory of Open Access Journals (Sweden)

    Marković Dragan M.

    2003-01-01

    Full Text Available Depending on where ozone resides, it can protect or harm life on Earth. The thin layer of ozone that surrounds Earth acts as a shield protecting the planet from irradiation by UV light. When it is close to the planet's surface, ozone is a powerful photochemical oxidant that damage, icons frescos, museum exhibits, rubber, plastic and all plant and animal life. Besides the basic properties of some methods for determining the ozone concentration in working and living conditions, this paper presents a detailed description of the electrochemical method. The basic properties of the electrochemical method are used in the construction of mobile equipment for determining the sum of oxidants in the atmosphere. The equipment was used for testing the determination of the ozone concentration in working rooms, where the concentration was at a high level and caused by UV radiation or electrostatic discharge. According to the obtained results, it can be concluded that this equipment for determining the ozone concentration in the atmosphere is very powerful and reproducible in measurements.

  13. Ground based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, F.; Mumma, M. J.; Zipoy, D.

    1991-01-01

    The global distribution of ozone in the atmosphere of Mars was determined from Doppler-limited infrared heterodyne spectroscopy measurements at the NASA Infrared Telescope Facility (IRTF) facility during June 3-7, 1988. Mars spectra near two O3 lines arising from the v sub 3 band near 1031.45 cm (-1) were used. The lines were Doppler shifted out of the strong terrestrial ozone absorption spectrum and its effect was removed. Ozone measurements were obtained at eight beam positions over a range of latitudes and local solar zenith angles. The beam size of the planet was 1.4 arcsec. A Martian CO2 line appeared in the spectra and was inverted to retrieve local temperature profiles. Using these temperature profiles, the total ozone column abundance at each position was retrieved by fitting the measured line with synthetic spectra generated by a radiative transfer program. The only previous measurement of ozone at this season was made above the South polar cap by Mariner 7 and revealed an abundance of 10 micron-atm. However, the retrieved O3 column abundances from this investigation are less than 2.2 micron-atm at all positions sampled. These results are consistent with mid-spring abundances predicted by photochemical models of Liu and Donahue, and Shimazaki and Shimizu.

  14. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  15. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Directory of Open Access Journals (Sweden)

    J. Viallon

    2014-08-01

    Full Text Available Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10−18 cm2 molecule−1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10−18, 10.44 × 10−18, and 11.07 × 10−18 cm2 molecule−1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  16. Accurate measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  17. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  18. A high ozone episode in winter 2013 in the Uinta Basin oil and gas region characterized by aircraft measurements

    Directory of Open Access Journals (Sweden)

    S. J. Oltmans

    2014-08-01

    Full Text Available During the winter of 2012–2013 atmospheric surface ozone mole fractions exceeded the US 8 h standard of 75 ppb on 39 days in the Uinta Basin of Utah. As part of the Uinta Basin Winter Ozone Study (UBWOS aircraft flights were conducted throughout the basin with continuous measurements of ozone (O3, methane (CH4, carbon dioxide (CO2, carbon monoxide (CO, nitrogen dioxide (NO2, and discrete whole air flask samples for determination of ∼50 trace gases including a number of non-methane hydrocarbons (NMHCs. During the course of seven flights conducted between 31 January and 7 February 2013, coinciding with strong, multi-day temperature inversions, O3 levels gradually built up in the shallow boundary layer from ∼45 ppb to ∼140 ppb. Near-surface CH4 mole fractions increased during the episode from near background levels of ∼2 ppm to over 10 ppm. Based on elevated levels of CH4 across the basin and high correlations of CH4 with NMHCs from the discrete air samples, O3 precursor NMHCs were also inferred to be elevated throughout the basin. Discrete plumes of high NO2 were observed in the gas production region of the basin suggesting that gas processing plants and compressor facilities were important point sources of reactive nitrogen oxides (NOx. Vertical profiles obtained during the flights showed that the high O3 mole fractions (as well as other elevated constituents were confined to a shallow layer from near the ground to 300–400 m above ground level (m a.g.l. capped by a strong temperature inversion. The highest mole fractions of the measured constituents during the study period were in an isothermal cold layer that varied from ∼300 m depth on 4 February to ∼150 m on 5 February. A gradient layer with declining mole fractions with altitude extended above the isothermal layer to ∼1900 m a.s.l. (300–400 m a.g.l. indicative of some mixing of air out of the boundary layer. O3 mole fractions continued to increase within the basin as the

  19. A high ozone episode in winter 2013 in the Uinta Basin oil and gas region characterized by aircraft measurements

    Science.gov (United States)

    Oltmans, S. J.; Karion, A.; Schnell, R. C.; Pétron, G.; Sweeney, C.; Wolter, S.; Neff, D.; Montzka, S. A.; Miller, B. R.; Helmig, D.; Johnson, B. J.; Hueber, J.

    2014-08-01

    During the winter of 2012-2013 atmospheric surface ozone mole fractions exceeded the US 8 h standard of 75 ppb on 39 days in the Uinta Basin of Utah. As part of the Uinta Basin Winter Ozone Study (UBWOS) aircraft flights were conducted throughout the basin with continuous measurements of ozone (O3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide (NO2), and discrete whole air flask samples for determination of ∼50 trace gases including a number of non-methane hydrocarbons (NMHCs). During the course of seven flights conducted between 31 January and 7 February 2013, coinciding with strong, multi-day temperature inversions, O3 levels gradually built up in the shallow boundary layer from ∼45 ppb to ∼140 ppb. Near-surface CH4 mole fractions increased during the episode from near background levels of ∼2 ppm to over 10 ppm. Based on elevated levels of CH4 across the basin and high correlations of CH4 with NMHCs from the discrete air samples, O3 precursor NMHCs were also inferred to be elevated throughout the basin. Discrete plumes of high NO2 were observed in the gas production region of the basin suggesting that gas processing plants and compressor facilities were important point sources of reactive nitrogen oxides (NOx). Vertical profiles obtained during the flights showed that the high O3 mole fractions (as well as other elevated constituents) were confined to a shallow layer from near the ground to 300-400 m above ground level (m a.g.l.) capped by a strong temperature inversion. The highest mole fractions of the measured constituents during the study period were in an isothermal cold layer that varied from ∼300 m depth on 4 February to ∼150 m on 5 February. A gradient layer with declining mole fractions with altitude extended above the isothermal layer to ∼1900 m a.s.l. (300-400 m a.g.l.) indicative of some mixing of air out of the boundary layer. O3 mole fractions continued to increase within the basin as the high O3 episode

  20. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008.

    Science.gov (United States)

    Li, Chaoyang; Balluz, Lina S; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R

    2016-02-01

    Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P life expectancy in males (95% CI: -0.30 to -0.19) and 0.21 year in females (95% CI: -0.25 to -0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy.

  1. Harmonized dataset of ozone profiles from satellite limb and occultation measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2013-06-01

    Full Text Available In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY, Odin (OSIRIS, SMR and SCISAT (ACE-FTS satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netcdf format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grids. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which might be related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. Dataset is available at: http://www.esa-ozone

  2. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2009-10-01

    Full Text Available An observation-based box model approach was undertaken to estimate concentrations of OH, HO2, and RO2 radicals and the net photochemical production rate of ozone at the top of Mount Tai, located in the middle of Central East China, in June 2006. The model calculation was constrained by the measurements of O3, H2O, CO, NO, NO2, hydrocarbon, HCHO, and CH3CHO concentrations, and temperature and J values. The net production rate of ozone was estimated to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST, suggesting 58±37 ppb of ozone is produced in one day. Thus the daytime buildup of ozone recorded at the mountain top as ~23 ppb on average is likely affected by in situ photochemistry as well as by the upward transport of polluted air mass in the daytime. On days with high ozone concentrations (hourly values exceeding 100 ppb at least once, in situ photochemistry was more active than it was on low ozone days, suggesting that in situ photochemistry is an important factor controlling ozone concentrations. Sensitivity model runs for which different NOx and hydrocarbon concentrations were assumed suggested that the ozone production occurred normally under NOx-limited conditions, with some exceptional periods (under volatile-organic-compound-limited conditions in which there was fresh pollution. We also examined the possible influence of the heterogeneous loss of gaseous HO2 radicals in contact with aerosol particle surfaces on the rate and regimes of ozone production.

  3. [Ozone concentration inversion based on multi-reflected cell FTIR spectra and correlation analysis].

    Science.gov (United States)

    Cheng, Si-yang; Gao, Min-guang; Xu, Liang; Zhang, Tian-shu; Lu, Yi-huai; Liu, Jian-guo; Tong, Jing-jing; Jin, Ling; Li, Sheng; Wei, Xiu-li; Liu, Wen-qing

    2011-05-01

    The stratosphere ozone plays the protective action role for human and the ground-level ozone is harmful to human health. Monitoring ozone with different ways and methods took an active part in understanding distribution and transformation of ozone, which was useful to controlling pollution emission. Spectra were got by multi-reflected white cell Fourier transform infrared (FTIR) spectrometer, inversed with nonlinear least squares (NLLSQ) method and then the concentrations of ozone were got exactly. The correlations of measured ozone concentration time series by Fourier transform infrared spectrometer, open path UV differential optical absorption spectrometer and ozone analyzer of the Thermo Corporation were significant. The results showed that the measured ozone absolute concentrations with different monitoring methods and instruments had some differences, but the concentration diurnal variations were coincident and the correlations were good. Therefore, ozone concentration inversion method, based on multi-reflected cell Fourier transform infrared spectrum and not reported in domestic articles, could be used as an effective technique to measure ozone concentration.

  4. Some results of water vapor, ozone and aerosol balloon borne measurements during EASOE

    Science.gov (United States)

    Khattatov, V.; Yushkov, V.; Khaplanov, M.; Zaitzev, I.; Rosen, J.; Kjome, N.

    As part of the European Arctic Stratospheric Ozone Experiment (EASOE) in the northern winter of 1991/92, regular measurements of the vertical distribution of ozone and aerosols were carried out from two Russian polar stations, Heiss Island (81N, 58E) and Dikson Island (73N, 81E). In addition measurements of the vertical distribution of water vapor and aerosols were made from Esrange (68N, 21E), near Kiruna in Sweden. The instruments used were electrochemical ozone sondes (ECC-4A), a fluorescence hygrometer, and the University of Wyoming backscattersonde. Following the eruption of Mt.Pinatubo, in the Philippines, in June 1991, volcanic aerosol had reached Arctic latitudes at altitudes below 19 km by September. At all three sites it was observed on every flight. Polar stratospheric clouds were encountered above the volcanic aerosol on two flights from Esrange. There were no indications of dehydration in the Arctic stratosphere. On all flights the minimum mixing ratio of water vapor was observed 2 to 3 km above the tropopause. Total ozone was much lower than the climatological mean, over Dikson Island from the January 27, and over Heiss Island from mid-February, until the end of EASOE. Ozone profiles over these stations showed rapid increases in partial pressure immediately above the peak values of backscatter ratio when the volcanic aerosol was especially dense.

  5. Long-path DOAS measurements of ozone and other species at Cape Arkona, Ruegen Island

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, R.; Flentje, H.; Karbach, H.J. [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany)]|[Institut fuer Umweltphysik (IUP), Heidelberg (Germany); Heintz, F.; Platt, U. [Institut fuer Umweltphysik (IUP), Heidelberg (Germany)

    1997-12-31

    A goal for this contribution was the installation of a DOAS system at Cape Arkona and the collection of a comprehensive and statistically representative data set of ozone and related species. Ozone data from Cape Arkona were used to derive long-term trends of this trace substance. In order to understand these trends in relation to local and regional anthropogenic influences, analysis of local air-chemical processes and meteorological conditions along with evaluation of available trace gas data should be performed. The comparison of point to long path ozone measurements should give an evaluation of the evenness of O{sub 3} concentrations. The first long term measurements of tropospheric concentrations of the NO{sub 3} radical should provide for a more accurate investigation of the importance of the NO{sub 3} radical in the night time chemistry and the non-photochemical conversion of NO{sub x} to HNO{sub 3}. (orig.)

  6. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  7. Improvement of the quality of the ozone measurements by means of a standard reference photometer

    Directory of Open Access Journals (Sweden)

    C. Sánchez Blaya

    2001-11-01

    Full Text Available The Directive 92/72/CE makes reference to the analysis method described in the UNE 77-221:2000 and to the fact that the ozone analyzers shall be calibrated with a UV reference photometer or with a transfer standard.From the need of developing a procedure that assure the quality and the trazability of the measurements in Spain, the Atmospheric Pollution Area has decided to implant a NIST UV reference photometer as ozone national standard.Taking into account the procedures used by EPA and NIST, a verification procedure has been developed consistent in the realization of 6 comparisons of the Transfer Standard versus NIST UV reference photometer in different days; at least 5 different ozone concentrations are analyzed. Each comparison begins and ends always with a concentration of 0 ppb of O3, and from each comparison its regression linear is obtained.Once the 6 comparisons are done, the calibration relationship is obtained and the uncertainty associated with the transfer standard is calculated.Until now, the verifications of 17 transfer standards have been done: 11 of them were UV photometers, 2 were ozone generators and 4 were ozone generators of dilution banks.From the results is concluded that generally the uncertainties of the ozone generators are greater than those of the UV photometers, so being recommended this one like transfer standard.To emphasize that with the utilization of the tranfer standards for the calibration of ozone analyzers, the quality and the trazability of the generated data are guaranteed.

  8. Ozone observations by the Gas and Aerosol Measurement Sensor during SOLVE II

    Directory of Open Access Journals (Sweden)

    M. C. Pitts

    2006-01-01

    Full Text Available The Gas and Aerosol Measurement Sensor (GAMS was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. GAMS acquired line-of-sight (LOS direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10–20% in the Wulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.

  9. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  10. Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II

    Science.gov (United States)

    Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.

    2006-01-01

    The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.

  11. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  12. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-02-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain four months of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the aerodynamic gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of −8 × 10−3 μg m−2 s−1, respectively ~0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment, deployed at Summit for a period of four months, allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and seasonal dependencies.

  13. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Science.gov (United States)

    Bocquet, F.; Helmig, D.; van Dam, B. A.; Fairall, C. W.

    2011-10-01

    A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April-August 2004) of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a) ozone gradients measured by commercial ultraviolet absorption analyzers, (b) ambient temperature gradients using aspirated thermocouple sensors, and (c) wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10-3μg m-2 s-1, respectively ∼0.01 cm s-1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach) was on the order of 10-2 cm s-1. This uncertainty typically accounted to ~20-100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  14. Ozone in the Boundary Layer air over the Arctic Ocean – measurements during the TARA expedition

    Directory of Open Access Journals (Sweden)

    J. W. Bottenheim

    2009-03-01

    Full Text Available A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N – 88° N latitude. The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30–40 nmol mol−1 and summer minima of ca. 20 nmol mol−1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above −20°C during most ODEs (ozone depletion episodes. Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.

  15. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    Science.gov (United States)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  16. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone

    Science.gov (United States)

    Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.

  17. Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers

    Directory of Open Access Journals (Sweden)

    J. B. A. Muller

    2009-09-01

    Full Text Available Eddy covariance ozone flux measurements are the most direct way to estimate ozone removal near the surface. Over vegetated surfaces, high quality ozone fluxes are required to probe the underlying processes for which it is necessary to separate the flux into the components of stomatal and non-stomatal deposition. Detailed knowledge of the processes that control non-stomatal deposition is limited and more accurate ozone flux measurements are needed to quantify this component of the deposited flux. We present a systematic intercomparison study of eddy covariance ozone flux measurements made using two fast response dry chemiluminescence analysers. Ozone deposition was measured over a well characterised managed grassland near Edinburgh, Scotland, during August 2007. A data quality control procedure specific to these analysers is introduced. Absolute ozone fluxes were calculated based on the relative signals of the dry chemiluminescence analysers using three different calibration methods and the results are compared for both analysers. It is shown that the error in the fitted parameters required for the flux calculations provides a substantial source of uncertainty in the fluxes. The choice of the calculation method itself can also constitute an uncertainty in the flux as the calculated fluxes by the three methods do not agree within error at all times. This finding highlights the need for a consistent and rigorous approach for comparable data-sets, such as e.g. in flux networks. Ozone fluxes calculated by one of the methods were then used to compare the two analysers in more detail. This systematic analyser comparison reveals half-hourly flux values differing by up to a factor of two at times with the difference in mean hourly flux ranging from 0 to 23% with an error in the mean daily flux of ±12%. The comparison of analysers shows that the agreement in fluxes is excellent for some days but that there is an underlying uncertainty as a result of

  18. Distribution of tropospheric ozone at Brazzaville, Congo, determined from ozonesonde measurements

    Science.gov (United States)

    Cros, Bernard; Nganga, Dominique; Minga, Alexis; Fishman, Jack; Brackett, Vincent

    1992-01-01

    An analysis of 33 ozonesonde launches in Brazzaville, Congo (4 deg S, 15 deg E), between June 1990 and May 1991 is presented. The data indicate highest tropospheric amounts between June and early October, coincident with the dry season and with the presence of enhanced widespread biomass burning. The seasonal cycle of ozone derived from the ozonesonde measurements is in good agreement with the climatological seasonal cycle inferred from the use of satellite data amd both seasonal cycles peak in September. Averaged throughout the year, the integrated amount of ozone derived from the ozonesondes is 44 Dobson units (DU) and is 39 DU using the satellite data. Within the troposphere the highest partial pressures are generally found at pressure levels near 700 mbar (about 3 km). Using simultaneous ozonesonde data from Ascension Island (8 deg S, 15 deg W), examples are presented illustrating that differences in the troposphere are primarily responsible for the observed spatial gradients of total ozone observed by TOMS.

  19. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  20. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    Directory of Open Access Journals (Sweden)

    O. Couach

    2003-01-01

    Full Text Available This paper concerns an evaluation of ozone (O3 and planetary boundary layer (PBL dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL system, situated 20 km south of Grenoble at Vif (310 m ASL. The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR. Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE. The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.

  1. 20 years of surface ozone measurements at El Tololo, Chile (2200 m asl)

    Science.gov (United States)

    Gérard Anet, Julien; Steinbacher, Martin; Emmenegger, Lukas; Buchmann, Brigitte

    2016-04-01

    Globally consistent in situ-observations of high precision and known quality are one key element in understanding global climate change and effects of human activity on the Earth's atmosphere. The spatial coverage of available data strongly depends on the species of interest and varies highly around the globe. In case of surface ozone (O3), the observational network is particularly sparse in Africa, Asia, and South America. The southern hemispheric pristine GAW-regional station "El Tololo", located in the foothills of the Chilean Andes (30.17° S, 70.80° W, 2220 m asl), has been equipped with an ozone photometer in 1995 and has since then been measuring tropospheric ozone permanently. However, these measurements were neither entirely systematically processed nor quality-controlled until recently. This situation was drastically improved in 2015 the framework of the Capacity Building and Twinning for Climate Observing Systems (CATCOS) project (www.meteoswiss.ch/catcos). Empa, in coordination with the local operator, Dirección Meteorológica de Chile (DMC), and the University of Santiago, revised the entire surface ozone measurements. The unique 20-year-long ozone data-set has been made publicly available on the World Data Centre for Greenhouse Gases (WDCGG, Japan) in mid-2015 and represents an exceptional piece of information on the southern hemispheric surface ozone distribution. In contrary to northern hemispheric stations, the positive trend in the measurements of tropospheric ozone at "El Tololo" did not level off in the recent past. More specifically, "El Tololo" shows a steady positive trend of 0.7 ppb/decade in agreement with other stations on the Southern hemisphere. However, the seasonal cycle differs strongly in behaviour, as maximum values in ozone do not peak in austral winter, but in austral spring - most probably due to stratospheric influence. We also find that the spring maximum has a retrograding tendency of around 5 days per decade. A combined

  2. Springtime measurements of ozone-related compounds in the antarctic stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, D.G. (Univ. of Denver, CO (USA))

    1987-09-01

    The springtime decrease of atmospheric ozone over Antarctica has been observed over Halley Bay and over Syowa and South Pole Stations and has been recorded by satellites over a wide area of the continent. Current photochemical models did not predict these observations nor do the models explain the decrease. Several explanations for the decrease have been advanced; each explanation assumes that concentrations of other compounds in the atmosphere would change along with the concentration of ozone. However, verification of these hypotheses requires atmospheric chemical data obtained during the antarctic spring. In support of the National Ozone Expedition II, the author will obtain infrared solar spectra from ground-based stations at McMurdo and South Pole. These spectra, which contain thousands of absorption lines produced by compounds present in the atmosphere, can provide information about atmospheric chemistry at the time that the measurements were made. Because they respond to molecules anywhere along the optical path, this technique yields information on the total column density of compounds present in the stratosphere. At McMurdo Station from late August until mid October, the author will take measurements near Arrival Heights and later will continue his observations at Amundsen-Scott South Pole Station. The measurements will be analyzed for total column density of hydrochloric acid, nitric acid, nitrogen dioxide, chlorofluorocarbon gases F-11 and F-12, ozone, methane, and nitrous oxide. With these data, he hopes to follow the change in total column density for these compounds from late winter through early spring.

  3. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  4. Intercomparison of Odin/SMR ozone measurements with MIPAS and balloon sonde data

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.; Murtagh, D.; Urban, J.; Eriksson, P.; Rosevall, J. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Radio and Space Science

    2007-11-15

    The Odin satellite was launched into orbit in February 2001 as a joint initiative of Sweden, Canada, France and Finland to conduct research in aeronomy and astronomy. An optical spectrograph and infra-red imager system (OSIRIS) and an sub-millimetre radiometer (SMR) are onboard the satellite. Three versions (v1.2, v2.0 and v2.1)of global stratigraphic ozone data collected from the SMR were compared to Michelson Interferometer for Passive Atmospheric Soundings (MIPAS) ozone data and to ozone balloon sonde data collected in 2003. The purpose of this study was to evaluate the quality of the Odin/SMR ozone data which has been the focus of various stratospheric ozone studies. The v2.1 version showed the smallest systematic differences when compared to coincident MIPAS and sonde data. Between 17 and 55 km, v2.1 values agreed with MIPAS within 10 per cent (a maximum of 0.42 ppmv), while comparisons to sonde measurements showed an agreement of about 5 to 10 per cent between 22 and 35 km (less than 0.5 ppmv below 33 km). Tropical latitudes below 35 km presented the largest absolute systematic differences between v2.1 and sonde coincidences, where Odin/SMR was typically lower by about 0.9 (more than 10 per cent difference) at about 30 km. A comparison of the previous 2 Odin/SMR versions revealed considerably larger systematic differences, particularly at the higher and lower stratospheric altitudes. It was therefore suggested that scientific studies should rely on version v2.1 of Odin/SMR ozone data. 23 refs, 1 tab., 5 figs.

  5. Retrieval of stratospheric ozone profiles from OMPS measurements in limb viewing geometry

    Science.gov (United States)

    Arosio, Carlo; Rozanov, Alexei; Eichmann, Kai-Uwe; Malinina, Elizaveta; Burrows, John P.; Jaross, Glenn; Bhartia, Pawan K.

    2017-04-01

    Due to its crucial role in the radiative budged of the stratosphere as well as its importance for the mankind as an absorber of biological-damaging UV radiation, a continuous monitoring of the vertical and spatial distribution of the stratospheric ozone has been a priority for the scientific community. At the beginning of 2012 the European ENVISAT satellite, carrying among others ozone-science relevant instruments as GOMOS, MIPAS and SCIAMACHY, ceased its operations: as a consequence, only a few older satellite missions, such as OSIRIS, MLS, ACE-FTS, and SMR have been still operating, contributing to the task of continuous monitoring stratospheric ozone distributions. At the end of 2011, just some months before the end of ENVISAT lifetime, SUOMI-NPP mission carrying OMPS instrument was launched. The OMPS suite enables the study of the vertical distribution of stratospheric ozone by analyzing the intensity of the scattered solar light at UV-VIS wavelengths in limb viewing geometry. The focus of our study is to adapt the algorithm developed at the University of Bremen for the retrieval of stratospheric ozone vertical distributions from SCIAMACHY limb measurements to OMPS limb observations, with the final aim to obtain a continuous data set from both instruments. The retrieval method is based on the optimal estimation technique in a 1D geometry; the settings account for the instrumental design by optimally exploiting different spectral ranges at UV wavelengths as well as in the visible region to retrieve ozone concentrations at different tangent heights. A cloud filter based on the Color Index Ratio is applied and surface albedo is retrieved simultaneously, accounting for stratospheric aerosol. The retrieval results over six months are compared in this poster with the NASA retrieval product and validated using MLS and ozonesondes collocated observations.

  6. 40 CFR Appendix D to Part 50 - Measurement Principle and Calibration Procedure for the Measurement of Ozone in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... filter and detector response characteristics.) The length of the light path through the absorption cell... generation of the ozone concentration to be assayed (I measurement). When using the photometer to certify a... recommended to facilitate observing negative zero drift. Record the stable zero air response as “Z”. 5.5.3...

  7. Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions

    Science.gov (United States)

    Cooper, O. R.; Oltmans, S. J.; Johnson, B. J.; Brioude, J.; Angevine, W.; Trainer, M.; Parrish, D. D.; Ryerson, T. R.; Pollack, I.; Cullis, P. D.; Ives, M. A.; Tarasick, D. W.; Al-Saadi, J.; Stajner, I.

    2011-11-01

    Since 1997, baseline ozone monitoring from the surface to the tropopause along the U.S. west coast has been limited to the weekly ozonesondes from Trinidad Head, California. To explore baseline ozone at other latitudes, an ozonesonde network was implemented during spring 2010, including four launch sites along the California coast. Modeling indicated that North American pollution plumes impacted the California coast primarily below 3 km, but had no measurable impact on the average coastal ozone profiles. Vertical and latitudinal variation in free tropospheric baseline ozone appears to be partly explained by polluted and stratospheric air masses that descend isentropically along the west coast. Above 3 km, the dominant sources of ozone precursors were China and international shipping, while international shipping was the greatest source below 2 km. Approximately 8-10% of the baseline ozone that enters California in the 0-6 km range impacts the surface of the USA, but very little reaches the eastern USA. Within California, the major impact of baseline ozone above 2 km is on the high elevation terrain of eastern California. Baseline ozone below 2 km has its strongest impact on the low elevation sites throughout the state. To quantify ozone production within California we compared inland ozone measurements to baseline measurements. For average daytime conditions, we found no enhancements of lower tropospheric ozone in the northern Central Valley, but enhancements of 12-23% were found in the southern Central Valley. Enhancements above Joshua Tree were greater, 33-41%, while the greatest enhancements occurred over the LA Basin, 32-63%.

  8. Calibration of EcoBadge Test-Strips for Ozone Measurement for GLOBE

    Science.gov (United States)

    Bush, Linda C.

    2003-01-01

    The majority of our work, therefore, centered on experiments at an extended exposure period at low ozone concentrations, creating and programming the necessary calibration curve into a Zikua reader. and verifying that the Zikua would use the curve reliably. Zikua is a device supplied by Vistanomics to 'read' the exposed EcoBadge cards and provide a read-out of measured ozone concentration in ppb. This device replaces the visual comparison to a calibrated color chart. For our initial studies, test papers were prepared by the usual method in small batches. Although testing would also eventually include Vistanomics' EcoBadge papers, we began with papers prepared in our lab so that we could be assured of the freshness of each batch. We felt this would allow us better comparison among our runs as we varied exposure time. At the outset, our target acceptable error was about +/- 10%. For example, if the actual ozone concentration was 20 ppb, then we hoped to be in the range 18-22 ppb. If the actual ozone concentration was 100 ppb. then we hoped to fall within 90-110 ppb in our measurements. Clearly a systematic error in the range of 3-4 ppb or more would significantly affect the lower exposure data.

  9. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011

    Directory of Open Access Journals (Sweden)

    R. L. Mittermeier

    2012-04-01

    Full Text Available As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W, was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.

  10. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011

    Directory of Open Access Journals (Sweden)

    G. J. Nott

    2012-01-01

    Full Text Available As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W, was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.

  11. Intercomparison of Aerosol Optical Depth from Brewer Ozone spectrophotometers and CIMEL sunphotometers measurements

    Directory of Open Access Journals (Sweden)

    A. Cheymol

    2009-01-01

    Full Text Available The Langley plot method applied on the Brewer Ozone measurements can provide accurate Aerosol Optical Depth (AOD in the UV-B. We present seven intercomparisons between AOD retrieved from Brewer Ozone measurements at 320 nm and AOD measured by CIMEL sunphotometer at 340 nm or 440 nm (shifted to 320 nm in using the Angström's law, which are stored in the international AERONET database. Only the intercomparisons between co-located instruments can be used to validate the Langley Plot Method applied to the Brewer measurements: in this case, all the correlation coefficients are above 0.82. If the instruments are not at the same site, the correlation between the AOD retrieved by both instruments is much lower. In applying the Angström's law the intercomparison is improved compared to previous study.

  12. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    2011-02-01

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  13. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    2008-03-01

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  14. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    Science.gov (United States)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  15. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  16. Direct measurements of the ozone formation potential from livestock and poultry waste emissions.

    Science.gov (United States)

    Howard, Cody J; Kumar, Anuj; Mitloehner, Frank; Stackhouse, Kimberly; Green, Peter G; Flocchini, Robert G; Kleeman, Michael J

    2010-04-01

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROGs) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. The objective of this work is to directly measure the ozone formation potential (OFP) of agricultural animal plus waste sources in representative urban and rural atmospheres using a transportable "smog" chamber. Four animal types were examined: beef cattle, dairy cattle, swine, and poultry. Emissions from each animal plus waste type were captured in a 1 m(3) Teflon bag, mixed with representative background NO(x) and ROG concentrations, and then exposed to UV radiation so that ozone formation could be quantified. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured OFP under the experimental conditions. The results demonstrate that OFP associated with waste ROG emissions from swine (0.39 +/- 0.04 g-O(3) per g-ROG), beef cattle (0.51 +/- 0.10 g-O(3) per g-ROG), and dairy cattle (0.42 +/- 0.07 g-O(3) per g-ROG) are lower than OFP associated with ROG emissions from gasoline powered light-duty vehicles (LDV) (0.69 +/- 0.05 g-O(3) per g-ROG). The OFP of ROG emitted from poultry waste (1.35 +/- 0.73 g-O(3) per g-ROG) is approximately double the

  17. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-01-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing a weighted all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.7%/decade in the Northern Hemisphere and −7.8%/decade in the Southern Hemisphere. For the period 1997 to 2008 we find that the southern mid-latitudes between 35 and 45 km show the largest ozone recovery (+3.4%/decade compared to other global regions, although the estimated trend model error is of a similar magnitude (+2.1%/decade, at the 95% confidence level. An all instrument average is also constructed from water vapour anomalies during 1984–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004 in the lower tropical stratosphere (20–25 km, and has even shown signs of increasing values in upper stratospheric mid

  18. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  19. Continuous measurements of the total ozone content in the full moon period

    Science.gov (United States)

    Ishov, Alexander G.

    1994-01-01

    Presented are the experimental data on the total ozone content obtained during continuous measurements (day-night-...-night-day) by Brewer 044 spectrophotometer near the Issyk Kul Lake (42.59N, 77.04W) at 1650 m above the sea level at full moon from 13 to 18 October 1989 under anomalously high transparent atmospheric conditions (the horizontal visibility range exceeded 50 km). At night the total O3 content decreased regularly to about 20 percent of the average daytime values. The minimum values at night were observed in 1-2 hours after the maximum solar dip below the horizon. In the daytime the measurements were carried out from direct Sun, at night - from the Moon. The values of the total ozone content for adjacent measurements from the Sun and from the Moon in the evening as well as in the morning are in good agreement.

  20. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    Science.gov (United States)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  1. Arctic total ozone trend and variability during 2004 - 2012 based on Brewer revised data, Ozonesonde and satellite measurements

    Science.gov (United States)

    Moeini, Omid; Vaziri, Zahra; McElroy, Tom; Tarasick, David; Savastiouk, Vladimir; Barton, David

    2015-04-01

    It is now known that Single-Monochromator Brewer Spectrophotometer ozone measurements suffer from non-linearity due to the presence of instrumental stray light caused by scattering from the optics within the instrument. Stray light is unwanted radiation from different wavelengths that arrives at the detector during the measurements. Since the gradient of ozone absorption is large in the ultraviolet spectral region, the stray light contribution becomes significant between 300 and 325 nm where the Brewer measures, especially when the amount of ozone in the light path becomes more than 1000 Dobson Units (D.U.). Stray light results in an underestimated ozone column at larger air masses. As the light path (air mass) increases, stray-light effects in the measurements also increase. An ozone column of 600 D.U. with at an air mass factor of 3 (1800 D.U.) can measure as much as 8% lower than the ozone actual amount. These are conditions commonly seen during the Arctic spring. A new method to account for stray light effects is being developed for the Brewer ozone measurements. This method is based on a mathematical model of the instrument response and a non-linear retrieval which calculates the best values for the model parameters. The parameterization used is validated by an instrument physical model simulation. Using the mathematical model in reverse provides correct ozone values. This paper presents the method and the results of a trend analysis based of the re-evaluated data of three Brewers which are located in the Arctic (Alert Lat. 82.44, Lon. -62.55, Eureka Lat. 79.96, Lon. -86.45 and Resolute Lat. 74.69, and Lon. -95.01) from 2004 to 2012. Gaps in the Brewer data are filled with ozonesonde reanalysis data obtained from WOUDC (World Ozone and Ultraviolet radiation Data Centre) and the results will be compared with MLS (Microwave Limb Sounder) satellite data.

  2. Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program (GASP)

    Science.gov (United States)

    Newell, R. E.; Wu, M.-F.

    1985-01-01

    It is noted that the Global Atmospheric Sampling Program (GASP) was intended to establish global baseline values of selected atmospheric constituents that could be used for studies of the dynamics of the sampled region as well as for modeling purposes. Instrument packages were carried on four Boeing 747 aircraft in routine commercial service. Carbon monoxide and ozone data were collected simultaneously from early 1977 to early 1979 when GASP terminated. CO was measured with an infrared absorption analyzer using dual isotope fluorescence. Ozone was measured via absorption of UV light. Correlations between the CO and the O3 are tabulated; they are clearly negative for both troposphere and stratosphere in middle latitudes, indicating that transport processes between the stratosphere and troposphere (discussed) dominate. But in the low latitude troposphere the correlations are positive, indicating the possible influence of photochemical effects.

  3. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  4. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  5. Inferring Ozone Production in an Urban Atmosphere using Measurements of Peroxynitric Acid

    Science.gov (United States)

    Spencer, K. M.; McCabe, D. C.; Crounse, J. D.; Olson, J. R.; Crawford, J. H.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Cantrell, C. A.; Anderson, R. S.; Mauldin, R. L.; Wennberg, P. O.

    2009-01-01

    Observations of peroxynitric acid (HO2NO2) obtained simultaneously with those of NO and NO2 provide a sensitive measure of the ozone photochemical production rate. We illustrate this technique for constraining the ozone production rate with observations obtained from the NCAR C-130 aircraft platform during the Megacity Initiative: Local and Global Research Observations (MILAGRO) intensive in Mexico during the spring of 2006. Sensitive and selective measurements of HO2NO2 were made in situ using chemical ionization mass spectrometry (CIMS). Observations were compared to modeled HO2NO2 concentrations obtained from the NASA Langley highly-constrained photochemical time-dependent box model. The median observed-to-calculated ratio of HO2NO2 is 1.18. At NOx levels greater than 15 ppbv, the photochemical box model underpredicts observations with an observed-to-calculated ratio of HO2NO2 of 1.57. As a result, we find that at high NOx, the ozone production rate calculated using measured HO2NO2 is faster than predicted using accepted photochemistry. Inclusion of an additional HOx source from the reaction of excited state NO2 with H2O or reduction in the rate constant of the reaction of OH with NO2 improves the agreement.

  6. Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter

    Directory of Open Access Journals (Sweden)

    A. D. Robinson

    2005-01-01

    Full Text Available Balloon-borne measurements of CFC11 (from the DIRAC in situ gas chromatograph and the DESCARTES grab sampler, ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden. Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days.

  7. Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Directory of Open Access Journals (Sweden)

    A. D. Robinson

    2004-11-01

    Full Text Available Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler, ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days.

  8. A UT/LS ozone climatology of the nineteen seventies deduced from the GASP aircraft measurement program

    Directory of Open Access Journals (Sweden)

    C. Schnadt Poberaj

    2007-03-01

    Full Text Available The knowledge of historical ozone in the upper troposphere/lower stratosphere (UT/LS region is mostly confined to regular measurements from a number of ozonesonde stations. We present ozone measurements of the Global Atmospheric Sampling Program (GASP performed from four commercial and one research aircraft during 1975 to 1979. Using GASP data, a UT/LS ozone climatology of 1975–1979 was built. Seasonality and concentrations of GASP UT ozone in the middle, subtropical and tropical regions of the northern hemisphere (NH are generally in agreement with other published observations, derived from ozonesondes or aircraft campaigns. In regions where both GASP (1970s and MOZAIC (1990s data are available, similar ozone concentrations are found and seasonal cycles agree well confirming the reliability of GASP ozone. GASP provides unique large-scale climatological information on UT/LS ozone above the NH Pacific region. Agreement is found with observations from individual ozonesonde sites and aircraft campaigns carried out over this region. Tropical UT ozone is seen to be lower near the dateline than further east, presumably related to uplift of ozone poor air within convection. Over the west coast of the United States, summer UT ozone is higher than over the adjacent Pacific, probably caused by air pollution over southern California in the 1970s. GASP offers an unprecedented opportunity to link to European, Canadian and U.S. American ozonesonde observations of the 1970s. For the quantitative comparison, an altitude offset was applied to the sonde data to account for the slow response time of the sensors. In the LS, the European and Canadian Brewer-Mast (BM sensors then agree to ±10% with the GASP instruments in all seasons. In the UT, the European BM sondes record similar to slightly less average ozone than GASP, however, with large variability overlaid. Over the eastern United States, systematic positive deviations of the Wallops Island ECC sondes from

  9. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements

    Directory of Open Access Journals (Sweden)

    E. Eckert

    2013-07-01

    Full Text Available Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles, among many other species, were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS by means of the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorlogy and Climate Research (IMK. All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from three to twenty four months and the quasi-biennial oscillation (QBO. Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to Lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0° E, Lauder (45.0° S, 169.7° E, Mauna Loa (19.5° N, 155.6° W, Observatoire Haute Provence (43.9° N, 5.7° E and Table Mountain (34.4° N, 117.7° W. Drifts against ACE-FTS were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from -0.5 ppmv decade-1 to +0.5 ppmv decade-1 depending on altitude and latitude. From the drift analyses we derive that the real ozone trends might be slighly more positive/less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approx. within -0.3 ppmv decade-1 negative drift for ozone. This leads to drift-corrected trends of -0.4 ppmv decade-1 to +0.55 ppmv decade-1 for the time period covered by MIPAS Envisat measurements with very few negative and large areas of positive trends, which is in good agreement with recent literature. Differences of the trends compared with recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude-latitude distribution of

  10. Gamma-rays Associated with Nearby Thunderstorms at Ground Level

    CERN Document Server

    Ringuette, Rebecca; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2014-01-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located at rooftop level on the campus of Louisiana State University in Baton Rouge, Louisiana. From July 2010 through March 2014, TETRA has detected 28 millisecond-duration bursts of gamma-rays at energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. The ability to observe ground-level Terrestrial Gamma Flashes from close to the source allows a unique analysis of the storm cells producing these events. The results of the initial analysis will be presented.

  11. Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas

    Directory of Open Access Journals (Sweden)

    J. Xu

    2011-06-01

    Full Text Available Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3, carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, nitrogen oxide (NOx and non-methane hydrocarbons (NMHCs were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai (FT and Baolian (BL, an upwind suburban site (Shunyi (SY and a downwind rural site (Shangdianzi (SDZ during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to and slightly lower than it was at other sites. The daily-averaged ozone concentration at SDZ was much higher than at other sites due to weak titration. Ranking by OH loss rate coefficient (LOH, alkenes played a dominant role in total NMHCs reactivity at both urban and rural sites during the experiment, accounting for 48.6 % and 52.1 % of total LOH, respectively. The NMHCs data were also used to estimate the ozone potential formation (OFP in Beijing. The leading contributors to ozone formation were aromatics at both urban and rural sites during the experiment, which accounts for 55.5 % and 49.4 % of total OFP, respectively. The ozone peak values are

  12. The link between ozone and temperature as derived from sonde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fortuin, J.P.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands)

    1995-12-31

    The current study is based on ozone and temperature measurements, recorded at 8 ozonesonde stations over the period 1971 -1991. The ozonesonde and raw instruments are attached to the same balloon, which has the advantage that datasets are truly synoptic. The ozonesonde stations are located in Canada (Resolute, Edmonton, Churchill and Goose Bay), Japan (Sapporo, Tateno and Kagoshima U.S.) (Wallops Island). The ozone and temperature datasets are submitted to a multiple linear regression analysis. The predictors are time cycle, solar flux at 10.7 cm, quasi-biennial oscillation (equatorial wind at 30 hPa where available), the wind direction recorded during the same balloon flight. To account possible changes in ozonesonde instruments, a step function is used. The El Chichon volcanic eruption is accounted for using the 9-season window technique. Results are presented for the warm and cold half year periods of the annual cycle

  13. Non-coincident inter-instrument comparisons of ozone measurements using quasi-conservative coordinates

    Directory of Open Access Journals (Sweden)

    L. R. Lait

    2004-08-01

    Full Text Available Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-θ coordinate space; the resulting composites from each instrument are mapped onto the other instruments' locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four ozone data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-θ mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.

  14. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    Science.gov (United States)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  15. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    Science.gov (United States)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  16. Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2004-11-01

    Full Text Available Direct observation of the Sun at large solar zenith angles during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II/Validation of International Satellites and study of Ozone Loss (VINTERSOL campaign by several instruments provided a rich dataset for the retrieval and analysis of line-of-sight column composition, intercomparison, and measurement validation. A flexible, multi-species spectral fitting technique is presented and applied to spectral solar irradiance measurements made by the NCAR Direct beam Irradiance Atmospheric Spectrometer (DIAS on-board the NASA DC-8. The approach allows for the independent retrieval of O3, O2·O2, and aerosol optical properties, by constraining Rayleigh extinction. We examine the 19 January 2003 and 6 February 2003 flights and find very good agreement of O3 and O2·O2 retrievals with forward-modeling calculations, even at large solar zenith angles, where refraction is important. Intercomparisons of retrieved ozone and aerosol optical thickness with results from the Ames Airborne Tracking Sunphotometer (AATS-14 are summarized.

  17. Vertical profiles of ozone between 0 and 400 meters in and above the African equatorial forest

    Science.gov (United States)

    Cros, B.; Fontan, J.; Minga, A.; Helas, G.; Nganga, D.; Delmas, R.; Chapuis, A.; Benech, B.; Druilhet, A.; Andreae, M. O.

    1992-08-01

    Results are presented of measurements of ozone concentrations in the northern Congo, near Impfondo, as part of the DECAFE experiment in February 1988, during the dry season. The measurements were carried out simultaneously at ground level in a large clearing, inside the forest between 0 and 30 m, and above the forest with a captive balloon flying up to 400 m. The results presented are compared with the data obtained in the Mayombe forest in southern Congo, near Dimonika, in June 1988, during the dry season. For both northern and southern forested areas the ozone concentrations measured at ground level in a large clearing exhibit daily variations with maxima in the afternoon ranging between 10 and 30 parts per billion by volume (ppbv) and minima at the end of the night between 4 and 15 ppbv. The characteristics of each surface ozone cycle are analyzed. Inside the forest, ozone concentrations are found very low near the ground, and rarely exceed 15 ppbv above the canopy. The relationships among the vertical profiles of ozone, temperature, and water vapor are discussed.

  18. TETRA Observation of Gamma Rays at Ground Level Associated with Nearby Thunderstorms

    CERN Document Server

    Ringuette, Rebecca; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms -- have been detected with satellite instruments. TETRA, an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After 2.6 years of observation, twenty-four events with durations 0.02- 4.2 msec have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ~1000 m. Nine of the events occurred within 6 msec and 3 miles of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.

  19. MIPAS Ozone Validation by Stratospheric Balloon and Aircraft Measurements

    Science.gov (United States)

    Cortesi, U.; Blom, C. E.; Camy-Peyret, C.; Chance, K.; Davies, J.; Goutail, F.; Kuttippurath, J.; McElroy, C. T.; Mencaraglia, F.; Oelhaf, H.; Petritoli, A.; Pirre, M.; Pommereau, J. P.; Ravegnani, F.; Renard, J. B.; Strong, K.

    2004-08-01

    A number of in situ and remote sensing techniques for the measurement of upper tropospheric and stratospheric O3 content was employed during dedicated experiments of the ESABC programme, aiming at the validation of the ENVISAT chemistry payload. In this paper, we will be focusing on the validation of MIPAS off-line products, by presenting the results of the intercomparison between MIPAS O3 vertical profiles and aircraft and balloon correlative measurements. First priority is given to the validation of processor v4.61 data, but individual results of 2002 and 2003 balloon observations are also compared with MIPAS O3 non operational data. Some general remarks are finally expressed, along with specific recommendation to fully exploit the available ESABC validation dataset

  20. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  1. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Réunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    OpenAIRE

    Portafaix T.; Godin-Beekmann S.; Payen G.; de Mazière M.; Langerock B.; Fernandez S; Posny F.; Cammas J.P.; Metzger J. M.; Bencherif H.; Vigouroux C.; Marquestaut N.

    2016-01-01

    International audience; A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vert...

  2. Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas

    Science.gov (United States)

    Xu, J.; Ma, J. Z.; Zhang, X. L.; Xu, X. B.; Xu, X. F.; Lin, W. L.; Wang, Y.; Meng, W.; Ma, Z. Q.

    2011-12-01

    Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai "FT" and Baolian "BL"), an upwind suburban site (Shunyi "SY") and a downwind rural site (Shangdianzi "SDZ") during 20 June-16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to, though slightly lower than, at the urban sites. We estimate the photochemical reactivity (LOH and the ozone formation potential (OFP) in the urban (BL) and rural (SDZ) areas using measured CO and NMHCs. The OH loss rate coefficient (LOH by total NMHCs at the BL and SDZ sites are estimated to be 50.7 s-1 and 15.8 s-1, respectively. While alkenes make a major contribution to the LOH, aromatics dominate OFP at both urban and rural sites. With respect to the individual species, CO has the largest ozone formation potential at the rural site, and at the urban site aromatic species are the leading contributors. While the O3 diurnal variations at the four sites are typical for polluted areas, the ozone peak values are found to lag behind one site

  3. Climatology of total ozone measurements 1964 - 1997 at Potsdam, based on re-evaluated Dobson series

    Energy Technology Data Exchange (ETDEWEB)

    Spaenkuch, D.; Schulz, E.; Feister, U.; Plessing, P. (Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium)

    1999-01-01

    The paper documents in detail the homogenization and re-evaluation procedures applied to the Total Column Ozone (TCO) derived from Dobson spectrophotometer measurements at Potsdam (52.36 N, 13.08 E) for the period 1964 to 1997 and compares the revised series with the original one available at the World Ozone Data Center in Toronto, Canada. In the re-evaluation procedure, use was made not only of internal checks but of independent external checks, too. Of particular value was the application of the linear multiple regression approach developed originally for short-term TCO forecasting. Comparing the measured series with the statistical estimate reveals much less TCO than expected after the volcanic eruptions of El Chichon (1982) and Pinatubo (1991) in contrast to the atmospheric reaction after the preceding volcanic eruptions of Mt. Agung (1963) and Fuego (1974) when obviously the atmopsheric chlorine loading had not reached the critical level to be of significant impact on TCO. The discrepancy between estimate and measurement was about -14 DU after the El Chichon eruption and -19 DU after the Mt. Pinatubo eruption equivalent to an ozone sink of 3.8*10[sup 17] and 5.1*10[sup 17] ozone molecules per cm[sup 2], respectively that is in rather good agreement with the estimate of WEGE and CLAUDE (1997). The statistical estimate allowed furtheron the extrapolation of the Potsdam series back till 1958 with good correspondence, on the yearly average, to the well-evaluated series of Arosa. The climatology of TCO at Potsdam is discussed by means of numerous Figures and Tables including the daily means given in the Appendix. The trend estimates fit the amounts given by previous investigations. For the whole period from 1965 to 1997 the yearly linear trend is -0.82[+-]0.50 DU/yr with 95% confidence equivalent to a decrease of -2.45[+-]1.4% per decade. The acceleration of the TCO downward trend is about - 1.5% per decade in agreement with previous investigations. The comparison

  4. Infrared measurements in the spring 1987 ozone hole

    Science.gov (United States)

    Murcray, F. J.; Murcray, D. G.; Goldman, Aaron; Keys, J. G.; Matthews, W. A.

    1988-01-01

    Solar spectra were recorded from Arrival Heights (McMurdo), Antartica, with a FTIR system during the austral spring of 1987. Spectra were recorded on 22 days from September 13 through October 28. The instrument was setup with 2 detectors for simultaneous operation in 2 wavelength regions. Several stratospheric gases have measurable absorptions in these regions including HCl, HNO3, O3, ClONO2, and NO2. The system is equipped with an automatic solar tracking system and records data on tape cartridges. A portable personal computer allows Fourier transforming and initial processing of some of the data. The HNO3 gas column amount shows large variations, but no apparent correlation with stratospheric temperature. The HCl column shows a steady increase from 0.9 x 10 to the 15th power molecules/sq.cm. on September 13 to 1.5 x 10 to the 15th power on October 6. McMurdo moved out of the polar vortex for a few days, and the HCl column jumped to 2.9 x 10 to the 15th power by October 11. Although McMurdo moved back under the vortex, the HCl continued to increase, reaching 3.4 x 10 to the 15th power at the end of the period.

  5. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  6. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-02-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation affecting trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above about 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the

  7. Statistical interpolation of ozone measurements from satellite data (TOMS, SBUV and SAGE II) using the kriging method

    Energy Technology Data Exchange (ETDEWEB)

    Tranchant, B.J.S.; Vincent, A.P. [Montreal Univ., PQ (Canada). Dept. of Physics; Centre for Research on Computation and its Applications (CERCA), Montreal, PQ (Canada)

    2000-06-01

    This study demonstrates that ordinary kriging in spherical coordinates using experimental semivariograms provides highly usable results, especially near the pole in winter and/or where there could be data missing over large areas. In addition, kriging allows display of the spatial variability of daily ozone measurements at different pressure levels. Three satellite data sets were used: total ozone mapping spectrometer (TOMS) data, solar backscattered ultra violet (SBUV), and the stratospheric aerosol and gas experiment (SAGE II) ozone profiles. Since SBUV is a nadir-viewing instrument, measurements are only taken along the sun-synchronous polar orbits of the satellite. SAGE II is a limb-viewing solar occulation instrument, and measurements have high vertical resolution but poor daily coverage. TOMS has wider coverage with equidistant distribution of data (resolution 1 x 1.25 ) but provides no vertical information. Comparisons of the resulting SBUV-interpolated (column-integrated) ozone field with TOMS data are strongly in agreement, with a global correlation of close to 98%. Comparisons of SBUV-interpolated ozone profiles with daily SAGE II profiles are relatively good, and comparable to those found in the literature. The interpolated ozone layers at different pressure levels are shown. (orig.)

  8. Evaluation of ozone column amount from the solar backscattering spectra measured with the Airborne-OPUS and error analysis

    Science.gov (United States)

    Nakata, T.; Kita, K.; Suzuki, M.; Shiomi, K.; Okumura, S.; Ogawa, T.

    Satellite observation is one of the best methods to monitor the increase of atmospheric pollutants including tropospheric ozone especially due to industrial activities in Asia It is significant to investigate the satellite sensor and data processing algorithm for developing next generation monitoring system The Airborne Ozone and Pollution measuring Ultraviolet Spectrometer Airborne-OPUS sensor was developed by JAXA EORC to study the solar ultraviolet backscattering measurement of ozone nitrogen dioxide sulfur dioxide and some other species from a satellite In this study we deduced slant column amounts of ozone from the Airborne-OPUS data during an aircraft observation and estimated analytical errors The Airborne-OPUS which consists of a compact spectrometer Jobin-Yvon CP-200 thermoelectric-cooled CCD SpectraVideo SV11C and optics measures backward-scattered ultraviolet spectra between 300 and 455 nm with a spectral resolution of 0 9 nm FWHM from an aircraft In this study the spectra between 315 and 325 nm obtained during Pacific Exploration and Asia and Continental Emission phase-A campaign Parrish et al 2004 in January 2002 were analyzed to evaluate the ozone column amount In this analysis the absorption by ozone the scattering by atmospheric molecules and the Ring effect were estimated from the ratios between the target spectra derived when the solar zenith angle SZA exceeded about 60o and the reference spectra when SZA was minimum at the same day The scattering by aerosols surface albedo and artificial continuous

  9. Vertical Distributions of Ozone above the San Joaquin Valley Measured by the NOAA TOPAZ lidar during the California Baseline Ozone Transport Study

    Science.gov (United States)

    Langford, A. O.; Alvarez, R. J., II; Kirgis, G.; Senff, C. J.; Weickmann, A. M.

    2016-12-01

    The California Baseline Ozone Transport Study (CABOTS) was conducted in the late spring and summer of 2016 to investigate the influence of trans-boundary ozone (O3) on the surface concentrations in the San Joaquin Valley (SJV) of California, one of two "extreme" non-attainment areas remaining in the United States. As part of this study, the truck-based NOAA ESRL scanning ozone and aerosol lidar (TOPAZ) was deployed to the Visalia, CA Airport for two 3-week intensive operating periods: (May 29 - June 18) and (July 18-August 7). This site was selected to take advantage of the collocated radar wind profiler and RASS operated by the San Joaquin Valley Air Pollution Control District and the lidar measurements also overlapped with in situ sampling by the NASA Ames Alpha Jet (AJAX) and the UC Davis/Scientific Aviation Mooney aircraft. In addition, the lidar measurements coincided with daily ozonesonde launches at Bodega Bay and Half Moon Bay by San Jose State University. In this talk, I will provide an overview of the TOPAZ measurements, and discuss the impacts of stratosphere-to-troposphere transport (STT), long-range transport from Asia, and regional transport from the Los Angeles Basin on the measurements.

  10. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    A compact differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone campaigns. This lidar will be integrated into the Air Quality lidar Network (AQLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver box with associated Licel photon counting and analog channels. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. A custom-designed Ce:LiCAF tunable UV laser has a wavelength range of 282 to 300-nm that is selectable between two or more wavelengths. The current wavelengths are online 286.4 nm and offline 293.1 nm. The 527-nm visible beam is transmitted into the atmosphere for aerosol measurements. The fourth harmonic 262 nm beam is split by a beamsplitter into two pump beams that pump each face of the Ce:LiCAF crystal. A short laser cavity consisting of a 60% reflective (1m radius of curvature) output mirror, a dispersive prism and a flat HR mirror is used to produce the UV wavelengths. In order to produce different wavelengths, the high-reflectivity rear mirror is mounted on a servo controlled galvanometer motor to allow rapid tuning between the on and offline ozone wavelengths. Typical laser results are 6.8-W at 527-nm, 800-mW at 262-nm and 130-mW at the UV transmitted wavelengths. The lidar receiver system consists of a receiver telescope with a 40-cm diameter parabolic mirror. A fiber optic cable transmits the received signal from the telescope to the receiver box, which houses the detectors. A separate one inch diameter telescope with PMT and filter is used to sample the very near field to allow

  11. BOUNDARY-LAYER EVOLUTION AND ITS INFLUENCE ON GROUND-LEVEL OZONE CONCENTRATIONS. (R826373)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-09-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.

  13. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; Pawson, S.; Duncan, B. N.; Newman, P. A.; Bhartia, K.; Heney, M. K.

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  14. The Effect of Air Pollution on Ozone Layer Thickness in Troposphere over the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. O. Al Jeran

    2009-01-01

    Full Text Available Troposphere ozone layer acts as a shield against all ultraviolet radiation approaching the planet Earth through absorption. It was noticed in mid 80s that ozone layer has thinned on the poles of the planet due to release of man-made substances commonly known as Ozone Depleting Substances, (ODS into its atmosphere. The consequences of this change are adverse as the harmful radiations reach to the surface of the earth, strongly influencing the crops yield and vegetation. These radiations are major cause of skin cancer that has long exposure to Ultra Violet (UV radiation. United States environmental protection agency and European community have imposed strict regulations to curb the emission of ODS and phase out schedules for the manufacture and use of ODS that was specified by Montreal protocol in 1987. Problem statement: This research deled with data analysis of ozone layer thickness obtained from Abu-Dhabi station and detailed measurement of air pollution levels in Kuwait. Approach: The ozone layer thickness in stratosphere had been correlated with the measured pollution levels in the State of Kuwait. The influence of import of ozone depletion substances for the last decade had been evaluated. Other factor that strongly affects the ozone layer thickness in stratosphere is local pollution levels of primary pollutants such as total hydrocarbon compounds and nitrogen oxides. Results: The dependency of ozone layer thickness on ambient pollutant levels presented in detail reflecting negative relation of both non-methane hydrocarbon and nitrogen oxide concentrations in ambient air. Conclusion: Ozone layer thickness in stratosphere had been measured for five years (1999-2004 reflecting minimum thickness in the month of December and maximum in the month of June. The ozone thickness related to the ground level concentration of non-methane hydrocarbon and can be used as an indicator of the health of ozone layer thickness in the stratosphere.

  15. Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America.

    Science.gov (United States)

    Rousseaux, M C; Ballaré, C L; Giordano, C V; Scopel, A L; Zima, A M; Szwarcberg-Bracchitta, M; Searles, P S; Caldwell, M M; Díaz, S B

    1999-12-21

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.

  16. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2008-02-01

    Full Text Available Ground-based total ozone and surface UV irradiance measurements have been collected since 1992 using Brewer spectrophotometer and Erythemal Dose Rates (EDRs have been determined by a broad-band radiometer (model YES UVB-1 operational since 2000 at Rome station. The methodology to retrieve the EDR and the Erythemal Daily Dose (EDD from the radiometer observations is described. Ground-based measurements were compared with satellite-derived total ozone and UV data from the Ozone Monitoring Instrument (OMI. OMI, onboard the NASA EOS Aura spacecraft, is a nadir viewing spectrometer that provides total ozone and surface UV retrievals. The results of the validation exercise showed satisfactory agreement between OMI and Brewer total ozone data, for both OMI-TOMS and OMI-DOAS ozone alghorithms (biases of −1.8% and −0.7%, respectively. Regarding UV data, OMI data overestimate ground-based erythemally weighted data retrieved from both Brewer and YES Radiometer (biases about 20%, probably because of the effect of absorbing aerosols in an urban site such as Rome.

  17. Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid

    Directory of Open Access Journals (Sweden)

    K. M. Spencer

    2009-06-01

    Full Text Available Observations of peroxynitric acid (HO2NO2 obtained simultaneously with those of NO and NO2 provide a sensitive measure of the ozone photochemical production rate. We illustrate this technique for constraining the ozone production rate with observations obtained from the NCAR C-130 aircraft platform during the Megacity Initiative: Local and Global Research Observations (MILAGRO intensive in Mexico during the spring of 2006. Sensitive and selective measurements of HO2NO2 were made in situ using chemical ionization mass spectrometry (CIMS. Observations were compared to modeled HO2NO2 concentrations obtained from the NASA Langley highly-constrained photochemical time-dependent box model. The median observed-to-calculated ratio of HO2NO2 is 1.18. At NOx levels greater than 15 ppbv, the photochemical box model underpredicts observations with an observed-to-calculated ratio of HO2NO2 of 1.57. As a result, we find that at high NOx, the ozone production rate calculated using measured HO2NO2 is faster than predicted using accepted photochemistry. Inclusion of an additional HOx source from the reaction of excited state NO2 with H2O or reduction in the rate constant of the reaction of OH with NO2 improves the agreement.

  18. A UT/LS ozone climatology of the nineteen seventies deduced from the GASP aircraft measurement program

    Directory of Open Access Journals (Sweden)

    C. Schnadt Poberaj

    2007-11-01

    Full Text Available We present ozone measurements of the Global Atmospheric Sampling Program (GASP performed from four commercial and one research aircraft in the late 1970s. The GASP quality assurance and control program was reviewed, and an ozone climatology of the upper troposphere and lower stratosphere (UT/LS of the years 1975–1979 was built. The data set was estimated to have an overall uncertainty of 9% or 3 ppb whichever is greater for the first two years and 4% or 3 ppb for the remaining years, i.e. after implementation of silicone rubber membranes in the pumps. Two cases of nearly coincident flights of two GASP airliners along the same flight route, and the comparison with independent observations from the literature, including ozonesondes and aircraft campaigns, indicate that the ozone measurements are of high quality. The UT/LS climatology of the GASP data set is in general agreement with that derived from MOZAIC in the 1990s in regions covered by both programmes. GASP provides unique large-scale climatological information on UT/LS ozone above the northern hemisphere Pacific region, which is not covered by MOZAIC. There, the GASP climatology confirms several characteristic features derived from individual research aircraft campaigns and from ozone soundings. In particular, summertime ozone in the UT over the midlatitude eastern Pacific Ocean was significantly lower in the 1970s than over the American continent. The generally lower ozone concentrations in the tropics near the dateline as compared to farther east are indicative of convective uplifting of ozone poor air from the marine boundary layer.

  19. A UT/LS ozone climatology of the nineteen seventies deduced from the GASP aircraft measurement program

    Science.gov (United States)

    Schnadt Poberaj, C.; Staehelin, J.; Brunner, D.; Thouret, V.; Mohnen, V.

    2007-11-01

    We present ozone measurements of the Global Atmospheric Sampling Program (GASP) performed from four commercial and one research aircraft in the late 1970s. The GASP quality assurance and control program was reviewed, and an ozone climatology of the upper troposphere and lower stratosphere (UT/LS) of the years 1975-1979 was built. The data set was estimated to have an overall uncertainty of 9% or 3 ppb whichever is greater for the first two years and 4% or 3 ppb for the remaining years, i.e. after implementation of silicone rubber membranes in the pumps. Two cases of nearly coincident flights of two GASP airliners along the same flight route, and the comparison with independent observations from the literature, including ozonesondes and aircraft campaigns, indicate that the ozone measurements are of high quality. The UT/LS climatology of the GASP data set is in general agreement with that derived from MOZAIC in the 1990s in regions covered by both programmes. GASP provides unique large-scale climatological information on UT/LS ozone above the northern hemisphere Pacific region, which is not covered by MOZAIC. There, the GASP climatology confirms several characteristic features derived from individual research aircraft campaigns and from ozone soundings. In particular, summertime ozone in the UT over the midlatitude eastern Pacific Ocean was significantly lower in the 1970s than over the American continent. The generally lower ozone concentrations in the tropics near the dateline as compared to farther east are indicative of convective uplifting of ozone poor air from the marine boundary layer.

  20. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Espenak, Fred; Mumma, Michael J.; Kostiuk, Theodor; Zipoy, David

    1991-01-01

    Doppler-limited IR spectroscopy measurements of the Mars atmosphere's global ozone distribution have been obtained for June 3-7, 1988; surface pressures and temperature profiles are retrieved through inversion of the fully-resolved (C-12)(O-16)2 line. The total O3 column abundance at each position has been retrieved at each of eight positions over a range of Martian latitudes by fitting the lines with synthetic spectra generated by a radiative transfer program: column burdens of O3 are less than 2.2 microns-atm for all latitudes sampled.

  1. Measurements of self-broadening of infrared absorption lines of ozone

    Science.gov (United States)

    Smith, M. A. H.; Rinsland, C. P.; Devi, V. M.

    1991-01-01

    Lorentz self-broadening coefficients have been determined for 355 spectral lines belonging to five different infrared vibration-rotation bands of O3 in the spectral region from 4.8 to 17 microns. Six ozone absorption spectra, recorded at room temperature using a Fourier transform spectrometer, were analyzed. The half-width values were obtained through a nonlinear least-squares spectral fitting procedure. The results are compared with previous measurements, and the vibration of the half-widths with vibrational and rotational quantum numbers is examined.

  2. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  3. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    Science.gov (United States)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  4. Ozone Layer Observations

    Science.gov (United States)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  5. Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis

    OpenAIRE

    Y. Wang; Konopka, P.; Liu, Y.; Chen, H; Müller, R.; F. Plöger; M. Riese; Cai, Z.; D. Lü

    2012-01-01

    Using a combination of ozonesonde data and numerical simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS), the trend of tropospheric ozone (O3) during 2002–2010 over Beijing was investigated. Tropospheric ozone over Beijing shows a winter minimum and a broad summer maximum with a clear positive trend in the maximum summer ozone concentration over the last decade. The observed significant trend of tropospheric column ozone for the entire time serie...

  6. Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis

    OpenAIRE

    Wang, Y.; Konopka, P.; Liu, Y.; Chen, H; Müller, R.; F. Plöger; M. Riese; Cai, Z.; D. Lü

    2012-01-01

    Using a combination of ozonesonde data and numerical simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS), the trend of tropospheric ozone (O3) during 2002–2010 over Beijing was investigated. Tropospheric ozone over Beijing shows a winter minimum and a broad summer maximum with a clear positive trend in the maximum summer ozone concentration over the last decade. The observed significant trend of tropospheric column ozone is mainly caused by photoche...

  7. The capability of satellite borne remote sensors to measure stratospheric trace constituents. Volume 2: Ozone and aerosol related missions

    Science.gov (United States)

    Keitz, E. L.

    1978-01-01

    Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.

  8. An Intercomparison of Tropospheric Ozone Retrievals Derived from Two Aura Instruments and Measurements in Western North America in 2006

    Science.gov (United States)

    Doughty, D. C.; Thompson, A. M.; Schoeberl, M. R.; Stajner, I.; Wargan, K.; Hui, W. C. J.

    2011-01-01

    Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectory-enhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS-06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream.

  9. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  10. The Response of Lower Atmospheric Ozone to ENSO in Aura Measurements and a Chemistry-Climate Simulation

    Science.gov (United States)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Rodriquez, J. M.; Waugh, D. W.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.

  11. Error analysis for the ground-based microwave ozone measurements during STOIC

    Science.gov (United States)

    Connor, Brian J.; Parrish, Alan; Tsou, Jung-Jung; McCormick, M. Patrick

    1995-01-01

    We present a formal error analysis and characterization of the microwave measurements made during the Stratospheric Ozone Intercomparison Campaign (STOIC). The most important error sources are found to be determination of the tropospheric opacity, the pressure-broadening coefficient of the observed line, and systematic variations in instrument response as a function of frequency ('baseline'). Net precision is 4-6% between 55 and 0.2 mbar, while accuracy is 6-10%. Resolution is 8-10 km below 3 mbar and increases to 17km at 0.2 mbar. We show the 'blind' microwave measurements from STOIC and make limited comparisons to other measurements. We use the averaging kernels of the microwave measurement to eliminate resolution and a priori effects from a comparison to SAGE 2. The STOIC results and comparisons are broadly consistent with the formal analysis.

  12. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Directory of Open Access Journals (Sweden)

    Portafaix T.

    2016-01-01

    Full Text Available A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean. The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  13. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Science.gov (United States)

    Portafaix, T.; Godin-Beekmann, S.; Payen, G.; de Mazière, M.; Langerock, B.; Fernandez, S.; Posny, F.; Cammas, J. P.; Metzger, J. M.; Bencherif, H.; Vigouroux, C.; Marquestaut, N.

    2016-06-01

    A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  14. Highlights from the 11-year record of tropospheric ozone from OMI/MLS and continuation of that long record using OMPS measurements

    Science.gov (United States)

    Ziemke, Jerry; Kramarova, Natalya; Bhartia, Pawan; Degenstein, Doug; Deland, Matthew

    2016-04-01

    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 - present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the SASKatchewan radiative TRANsfer (SASKTRAN) algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of ~10 DU over Indonesia and decreases ~5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific.

  15. Investigation of Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    Science.gov (United States)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2015-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  16. Ozone profiles retrieved from SCIMACHY Chappuis-Wulf limb scatter measurements using MART

    Science.gov (United States)

    Chen, S.

    2010-12-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument, launched on the Envisat satellite in March 2002, will measure the earthshine radiance, simultaneously from the ultraviolet (UV) to the near infrared (NIR), in the three viewing geometries nadir, limb, and occultation. These measurements will be used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents. In this paper, stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIMACHY limb scattered radiance in the Chappuis-Wulf band. It employs a new multiplicative algebraic reconstruction technique (MART) coupled with the radiative transfer model SCIATRAN. Radiance normalization and wavelength pairing is applied to radiance as an intermediate step, using the wavelengths 525 nm, 600 nm and 675 nm. The sensitivity of ozone retrieval by this method to tangent altitude pointing, surface albedo, aerosol and cloud parameters is studied, the results show that the retrieval impact due to tangent altitude pointing bias is the biggest can be up to 75% with 1 km shift, and the impact of albedo is limited within 5%. The effect of boundary visibility and cloud parameters can be ignored since these impact is too small. The effectiveness of the retrieval is demonstrated using a set of coincident SCIMACHY product at Hefei that shows a mean bias of less than 12% between 15 and 40 km, and with a better accuracy of 5% from 16 to 36 km.

  17. Six years of total ozone column measurements from SCIAMACHY nadir observations

    Directory of Open Access Journals (Sweden)

    C. Lerot

    2008-11-01

    Full Text Available Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR in the version 4 of the GOME Data Processor (GDP and in version 3 of the SCIAMACHY Ground Processor (SGP, respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA. We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  18. Detection of 6 November 1997 Ground Level Event by Milagrito

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    1999-01-01

    Solar Energetic Particles from the 6 November 1997 solar flare/CME(coronal mass ejection) with energies exceeding 10 GeV have been detected by Milagrito, a prototype of the Milagro Gamma Ray Observatory. While particle acceleration beyond 1 GeV at the Sun is well established, few data exist for protons or ions beyond 10 GeV. The Milagro observatory, a ground based water Cherenkov detector designed for observing very high energy gamma ray sources, can also be used to study the Sun. Milagrito, which operated for approximately one year in 1997/98, was sensitive to solar proton and neutron fluxes above ~5- 10 GeV. Milagrito operated in a scaler mode, which was primarily sensitive to muons, low energy photons, and electrons, and the detector operated in a mode sensitive to showers and high zenith angle muons. In its scaler mode, Milagrito registered a rate increase coincident with the 6 November 1997 ground level event observed by Climax and other neutron monitors. A preliminary analysis suggests the presence of >...

  19. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  20. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-01-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene. PMID:21139865

  1. Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: effects of coexistent carbonyl compounds.

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-11-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.

  2. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    Science.gov (United States)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  3. MUCESS-Supported Ozone Studies in Upstate New York and along the Texas Gulf Coast

    Science.gov (United States)

    Hromis, A.; Balimuttajjo, M.; Johnson, A.; Wright, J. M.; Idowu, A.; Vieyra, D.; Musselwhite, D.; Morris, P. A.

    2010-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) supports yearly atmospheric science workshops at their respective institutions. The NSF funded program has enabled Universities and colleges that are part of MUCESS, which include Medgar Evers College, City University of NY, University of Houston-Downtown and South Carolina State University, to develop and support atmospheric studies. The goal of the annual workshops is to instruct the students on the basics of atmospheric science and provide them with hands-on experience for preparing and calibrating the instruments for measuring atmospheric parameters. The instruments are subsequently attached to weather balloons. The data is obtained with an ENSCI ECC ozonesonde, which measures ozone concentrations to parts per billion, and an iMET radiosonde, which records temperature, pressure, relative humidity, and GPS altitude and position. In March 2010, Medgar Evers hosted the workshop in Paradox, NY. Students and faculty from the three institutions attended the 3 day workshop. Subsequent to the annual workshop students from the University of Houston-Downtown (UHD) launched a series of four Sunday launches during the summer from the campus. The data from both the workshop and UHD launches was subsequently analyzed to compare ozone profiles within the troposphere and stratosphere. Comparing rural (Paradox, NY) and urban ozone profiles (Houston, Tx) provides an invaluable experience. An excellent example is the March Paradox temperature profiles as the data indicates a mid-tropospheric temperature inversion. Coincident with this inversion, there is a significant rise in ozone concentrations, the source of which is likely of non-local provenance. In contrast, the Houston summer data indicates a different story as ground level ozone is produced by industrial and transportation-related ozone sources levels which vary. Weekend ground level ozone levels on Sunday are usually relatively low because of

  4. A stochastic cloud model for cloud and ozone retrievals from UV measurements

    Science.gov (United States)

    Efremenko, Dmitry S.; Schüssler, Olena; Doicu, Adrian; Loyola, Diego

    2016-11-01

    The new generation of satellite instruments provides measurements in and around the Oxygen A-band on a global basis and with a relatively high spatial resolution. These data are commonly used for the determination of cloud properties. A stochastic model and radiative transfer model, previously developed by the authors, is used as the forward model component in retrievals of cloud parameters and ozone total and partial columns. The cloud retrieval algorithm combines local and global optimization routines, and yields a retrieval accuracy of about 1% and a fast computational time. Retrieved parameters are the cloud optical thickness and the cloud-top height. It was found that the use of the independent pixel approximation instead of the stochastic cloud model leads to large errors in the retrieved cloud parameters, as well as, in the retrieved ozone height resolved partial columns. The latter can be reduced by using the stochastic cloud model to compute the optimal value of the regularization parameter in the framework of Tikhonov regularization.

  5. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  6. Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2012-05-01

    Full Text Available Using a combination of ozonesonde data and numerical simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS, the trend of tropospheric ozone (O3 during 2002–2010 over Beijing was investigated. Tropospheric ozone over Beijing shows a winter minimum and a broad summer maximum with a clear positive trend in the maximum summer ozone concentration over the last decade. The observed significant trend of tropospheric column ozone for the entire time series is 4.6% yr−1 for a mean level of 52 DU. This trend is close to the significant trend of partial column ozone in the lower troposphere (0–3 km during summer (3.4% yr−1 for a mean level of 23 DU. Analysis of the CLaMS simulation shows that transport rather than chemistry drives most of the seasonality of tropospheric ozone. However, dynamical processes alone cannot explain the trend of tropospheric ozone in the observational data. Clearly enhanced ozone values and a negative vertical ozone gradient in the lower troposphere in the observational data emphasize the importance of photochemistry within the troposphere during spring and summer, and suggest that the photochemistry within the troposphere significantly contributed to the tropospheric ozone trend over Beijing during the last decade.

  7. Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2012-09-01

    Full Text Available Using a combination of ozonesonde data and numerical simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS, the trend of tropospheric ozone (O3 during 2002–2010 over Beijing was investigated. Tropospheric ozone over Beijing shows a winter minimum and a broad summer maximum with a clear positive trend in the maximum summer ozone concentration over the last decade. The observed significant trend of tropospheric column ozone is mainly caused by photochemical production (3.1% yr−1 for a mean level of 52 DU. This trend is close to the significant trend of partial column ozone in the lower troposphere (0–3 km resulting from the enhanced photochemical production during summer (3.0% yr−1 for a mean level of 23 DU. Analysis of the CLaMS simulation shows that transport rather than chemistry drives most of the seasonality of tropospheric ozone. However, dynamical processes alone cannot explain the trend of tropospheric ozone in the observational data. Clearly enhanced ozone values and a negative vertical ozone gradient in the lower troposphere in the observational data emphasize the importance of photochemistry within the troposphere during spring and summer, and suggest that the photochemistry within the troposphere significantly contributes to the tropospheric ozone trend over Beijing during the last decade.

  8. Wintertime Distributed Ozone Measurement in Utah's Uintah Basin during UBWOS 2012

    Science.gov (United States)

    Moore, K. D.; Martin, R. S.; Harper, K.; Lyman, S. N.

    2012-12-01

    Recent wintertime measurements in two basins in the Rocky Mountains with significant fossil fuel production have revealed serious air quality concerns with respect to ozone (O3). Wintertime O3 levels greater than the current National Ambient Air Quality Standard (NAAQS) of 75 ppbv, expressed as a daily maximum 8-hr average, were observed first in the Upper Green River Basin of western Wyoming in 2005 and then in the Uintah Basin of eastern Utah in early 2010. This abstract reports on a part of the Uintah Basin Winter Ozone 2012 Study (UBWOS 2012) designed to better understand the temporal and spatial extents of elevated O3 in the Basin. A prior study in the Basin during winter 2010/2011 investigated the temporal and spatial extent of O3. Ten monitoring sites were setup throughout the Basin using 2B Technology 205 Ozone Monitors; data from six other monitoring sites around the Basin were also gathered. Hourly averaged O3 over 120 ppbv were recorded in many locations. Levels above the 75 ppbv 8-hr NAAQS were observed at 14 of the 16 sites, with 11 sites logging more than 3 exceedences. Two sites recorded 25 exceedences. The highest O3 and greatest number of exceedences occurred in areas with the greatest fossil fuel production density. Elevated O3 was also found in population centers but with a different diurnal pattern due to local sources. The follow-on study conducted during winter 2011/2012 expanded the number of ozone monitoring sites to 30 to provide better spatial coverage; 19 were operated by the investigators and 11 were operated by other groups. In contrast to the previous study, no elevated O3 levels were recorded at any location. The highest 1-hr O3 level observed was 65.8 ppbv and the highest 8-hr average level was 62.9 ppbv. The most significant difference between the two winters was the weather - winter 2010/2011 had snow cover from December through mid-March and experienced 6+ multi-day temperature inversion periods, while winter 2011/2012 had very

  9. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    Science.gov (United States)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  10. Measurement and modelling ozone fluxes over a cut and fertilized grassland

    Directory of Open Access Journals (Sweden)

    R. Mészáros

    2009-10-01

    Full Text Available During the GRAMINAE Integrated Experiment between 20 May and 15 June 2000, the ozone flux was measured by the eddy covariance method above intensively managed grassland in Braunschweig, northern Germany. Three different phases of vegetation were covered during the measuring campaign: tall grass canopy before cut (29 May 2000, short grass after cut, and re-growing vegetation after fertilization (5 June 2000. Results show that beside weather conditions, the agricultural activities significantly influenced the O3 fluxes. After the cut the daytime average of the deposition velocity (vd decreased from 0.44 cm s−1 to 0.26 cm s−1 and increased again to 0.32 cm s−1 during the third period. Detailed model calculations were carried out to estimate deposition velocity and ozone flux. The model captures the general diurnal patter of deposition, with vd daytime values of 0.52, 0.24, and 0.35 cm s−1 in the first, second and third period, respectively. Thus the model predicts a stronger response to the cut than the measurements, which is nevertheless smaller than expected on the basis of change in leaf area. The results show that both cut and fertilization have complex impacts on fluxes. Reduction of vegetation by cutting decreased the stomatal flux initially greatly, but the stomatal flux recovered to 80% of its original value within a week. At the same time, the non-stomatal flux appears to have increased directly after the cut, which the model partially explains by an increase in the deposition to the soil. A missing sink after the cut may be the chemical interaction with biogenic volatile organic compounds released after the cut and exposed senescent plant parts, or the increase in soil NO emissions after fertilization. Increased canopy temperatures may also have promoted ozone destruction on leaf surfaces. These results demonstrate the importance of canopy

  11. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-07-01

    Full Text Available Arctic ozone depletion events (ODEs are due to catalytic ozone loss driven by halogen chemistry. The presence of ODEs is affected not only by in situ chemistry but also by transport including advection of ozone-poor air mass and vertical mixing. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS and the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectories calculations are used to investigate the characteristics of observed ODEs. The implications of the analysis results for the validation of the retrieval of tropospheric column BrO are also discussed. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (~1 day transport from nearby regions with ozone depletion. The effect of in situ halogen-driven loss is also evident in the diurnal variation of surface ozone concentrations at Alert, Canada. High-BrO regions revealed by satellite measurements tend to be collocated with first-year sea ice, particularly over the Chukchi Sea. Aircraft observations indicate low-ozone air mass transported from these high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free tropospheric BrO through convective transport and explain the significant negative correlation between free tropospheric ozone and

  12. Contributors to ozone episodes in three US/Mexico border twin-cities.

    Science.gov (United States)

    Shi, Chune; Fernando, H J S; Yang, Jie

    2009-09-01

    The Process Analysis tools of the Community Multiscale Air Quality (CMAQ) modeling system together with back-trajectory analysis were used to assess potential contributors to ozone episodes that occurred during June 1-4, 2006, in three populated U.S.-Mexico border twin cities: San Diego/Tijuana, Imperial/Mexicali and El Paso/Ciudad Juárez. Validation of CMAQ output against surface ozone measurements indicates that the predictions are acceptable with regard to commonly recommended statistical standards and comparable to other reported studies. The mean normalized bias test (MNBT) and mean normalized gross error (MNGE) for hourly ozone fall well within the US EPA suggested range of +/-15% and 35%, respectively, except MNBT for El Paso. The MNBTs for maximum 8-h average ozone are larger than those for hourly ozone, but all the simulated maximum 8-h average ozone are within a factor of 2 of those measured in all three regions. The process and back-trajectory analyses indicate that the main sources of daytime ground-level ozone are the local photochemical production and regional transport. By integrating the effects of each process over the depth of the daytime planetary boundary layer (PBL), it is found that in the San Diego area (SD), chemistry and vertical advection contributed about 36%/48% and 64%/52% for June 2 and 3, respectively. This confirms the previous finding that high-altitude regional transport followed by fumigation contributes significantly to ozone in SD. The back-trajectory analysis shows that this ozone was mostly transported from the coastal area of southern California. For the episodes in Imperial Valley and El Paso, respectively, ozone was transported from the coastal areas of southern California and Mexico and from northern Texas and Oklahoma.

  13. Measurements of Selected Air Pollutants in Danish Homes and Ozone Interaction with Floor Dust

    DEFF Research Database (Denmark)

    Vibenholt, Anni

    and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. KFLEC was independent of the ozone concentration and the reaction was treated as first order...... in the Field and Laboratory Emission Cell (FLEC) at different ozone concentrations and relative humidities (0, 25, and 50 % RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor......Section I: Laboratory studies: Chemical and sorption properties of indoor floor dust in FLEC: Ozone reacts with C-C double bonds in common indoor VOCs and SVOCs contained in indoor dust and may be catalytically degraded on dust surfaces. The reaction between floor dust and ozone was investigated...

  14. A compact, fast UV photometer for measurement of ozone from research aircraft

    Directory of Open Access Journals (Sweden)

    R. S. Gao

    2012-09-01

    Full Text Available In situ measurements of atmospheric ozone (O3 are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs, there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200–500 hPa, and 0.5 Hz at ≥ 500 hPa, high accuracy (3% excluding operation in the 300–450 hPa range, where the accuracy may be degraded to about 5%, and excellent precision (1.1 × 1010 O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa. The size (36 l, weight (18 kg, and power (50–200 W make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000–50 hPa that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  15. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Sabine, E-mail: sabine.braun@iap.c [Institute for Applied Plant Biology, Sangrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland); Schindler, Christian [Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, CH-4051 Basel (Switzerland); Leuzinger, Sebastian [Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstr. 16, 8092 Zuerich (Switzerland)

    2010-09-15

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO{sub 3}SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.

  16. Measurements of vertical distributions of bromine oxide, iodine oxide, oxygenated hydrocarbons and ozone over the Eastern Tropical Pacific Ocean

    Science.gov (United States)

    Volkamer, R. M.; Baidar, S.; Dix, B. K.; Apel, E. C.; Hornbrook, R. S.; Pierce, B.; Gao, R.

    2012-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment 17 research flights were conducted with the NSF/NCAR GV aircraft equipped with a combination of chemical in-situ sensors, and remote sensing instruments to characterize air-sea exchange of reactive halogen species, oxygenated hydrocarbons, and aerosols, and their transport into the free troposphere, over different ocean environments of the Humboldt current in the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long.). This presentation presents measurements of the spatial distributions of halogen oxide radicals, oxygenated hydrocarbons, and discusses their impact on ozone destruction rates, and the oxidation of atmospheric mercury. Air mass history is assessed by means of the Real-time Air Quality Modeling System (RAQMS), a global meteorological, chemical and aerosol assimilation/forecasting system that assimilates real-time stratospheric ozone retrievals from the Microwave Limb Sounder (MLS), total column ozone from the Ozone Monitoring Instrument (OMI), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Reactive halogen species and organic carbon are important in the atmosphere, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions; halogen radicals can further oxidize atmospheric mercury.

  17. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  18. Ozone measurements in Zagreb, Croatia, at the end of 19{sup th} century compared to the present data

    Energy Technology Data Exchange (ETDEWEB)

    Lisac, Inga; Vujnovic, Vladis; Marki, Antun [Andrija Mohorovicic Geophysical Inst., Univ. of Zagreb (Croatia)

    2010-04-15

    Surface ozone measurements at the Zagreb-Gric Meteorological Observatory (founded in 1861), applying the Schoenbein colorimetric method, were introduced at the end of the 19{sup th} century (1889-1900), at the time of the city's most intensive development. The data measured in 11 (0-10) grade Schoenbein scale were published in the Observatory annual journals. The well-known geophysicist, Andrija Mohorovicic, then a leader of the Observatory, supervised the surface ozone measurements. The ozone data, converted into quantitative units (ppb (the symbol ppb in the text relates to volume ratios (ppbv)), which differ from mass ratios (ppbm), but as only volume ratios are used in the article, the simple unit symbol ppb is used.) after applying several statistical tests for the data quality check, were compared with recent ozone data. These first results, including the conversion method used, were published. In our study some additional quality data tests and ozone data comparisons were made, and a description of significant environmental conditions surrounding the measuring site in Zagreb was presented. A comparison between the multiannual data from the pre-industrial period and the ones from the recent multiannual period was made, based on annual and monthly averages. The average value of the surface ozone at the end of the 20{sup th} century (1989-1994) in Zagreb is by 24% higher compared to the end of the 19{sup th} century. The rise relates to daily maxima in both time series. A bi-modal shape of the annual run of the surface ozone monthly average was found in the older as well as in the more recent data sets. The position of the primary maximum in the cold part of the year (winter/spring) during the last decade of the 19{sup th} century points at the rural surface-air characteristics. The annual primary maximum during the recent observation period was found in the summer months, and it demonstrates an increase in air pollution, mostly of anthropogenic origin

  19. Synchronous measurements of total ozone content in the tropical and the midlatitude zones during March-May 1990

    Science.gov (United States)

    Ishov, A. G.; Perov, S. P.; Semenov, V. K.

    1992-07-01

    A series of synchronous measurements of the total ozone content over Lake Issyk-Kul' (Kyrgyzstan) and Tumba (India), both located at 77 deg W but at widely separated latitudes (42.62 deg N and 8.53 deg N, respectively) was carried out using a high-sensitivity Brewer spectrophotometer and the SFSU ozonometric instrument. A statistical correlation was demonstrated between the daily mean total ozone content over Lake Issyk-Kul' and the 2800 MHz solar radiation flux. No statistically significant correlation was observed for the Tumba location.

  20. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    Full Text Available The Optical Spectrograph and Infra-Red Imager System (OSIRIS and the Atmospheric Chemistry Experiment (ACE have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL, which is located at Eureka, Canada (80° N, 86° W and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC. The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS instruments, one Bruker Fourier transform infrared spectrometer (FTIR and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14–52 km ozone and 17–40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2 plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% and −0.2 ± 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52 km satellite and 0–14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree

  1. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measurements of total ozone twice daily with little sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS retrieval parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations covering all latitude regions have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments. A significant improvement is obtained after applying the new O3 AMFs, although systematic seasonal differences between SAOZ and all other instruments remain. These are shown to mainly originate from i the temperature dependence of the ozone absorption cross sections in the UV being not or improperly corrected by some retrieval algorithms, and ii the longitudinal differences in

  2. Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach.

    Science.gov (United States)

    O' Lenick, Cassandra R; Chang, Howard H; Kramer, Michael R; Winquist, Andrea; Mulholland, James A; Friberg, Mariel D; Sarnat, Stefanie Ebelt

    2017-04-05

    Ground-level ozone is a potent airway irritant and a determinant of respiratory morbidity. Susceptibility to the health effects of ambient ozone may be influenced by both intrinsic and extrinsic factors, such as neighborhood socioeconomic status (SES). Questions remain regarding the manner and extent that factors such as SES influence ozone-related health effects, particularly across different study areas. Using a 2-stage modeling approach we evaluated neighborhood SES as a modifier of ozone-related pediatric respiratory morbidity in Atlanta, Dallas, & St. Louis. We acquired multi-year data on emergency department (ED) visits among 5-18 year olds with a primary diagnosis of respiratory disease in each city. Daily concentrations of 8-h maximum ambient ozone were estimated for all ZIP Code Tabulation Areas (ZCTA) in each city by fusing observed concentration data from available network monitors with simulations from an emissions-based chemical transport model. In the first stage, we used conditional logistic regression to estimate ZCTA-specific odds ratios (OR) between ozone and respiratory ED visits, controlling for temporal trends and meteorology. In the second stage, we combined ZCTA-level estimates in a Bayesian hierarchical model to assess overall associations and effect modification by neighborhood SES considering categorical and continuous SES indicators (e.g., ZCTA-specific levels of poverty). We estimated ORs and 95% posterior intervals (PI) for a 25 ppb increase in ozone. The hierarchical model combined effect estimates from 179 ZCTAs in Atlanta, 205 ZCTAs in Dallas, and 151 ZCTAs in St. Louis. The strongest overall association of ozone and pediatric respiratory disease was in Atlanta (OR = 1.08, 95% PI: 1.06, 1.11), followed by Dallas (OR = 1.04, 95% PI: 1.01, 1.07) and St. Louis (OR = 1.03, 95% PI: 0.99, 1.07). Patterns of association across levels of neighborhood SES in each city suggested stronger ORs in low compared to high SES areas, with

  3. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  4. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  5. Source apportionment of biogenic contributions to ozone formation over the United States

    Science.gov (United States)

    Zhang, Rui; Cohan, Alexander; Pour Biazar, Arastoo; Cohan, Daniel S.

    2017-09-01

    Vegetation is the leading emitter of volatile organic compounds (VOC), a key ingredient for ozone formation. The contribution of biogenic VOC (BVOC) emissions to regional ozone formation needs better quantification so that air quality regulators can effectively design emission control strategies. One of the key uncertainties for modeling BVOC emissions comes from the estimation of photosynthetically active radiation (PAR) reaching canopy. Satellite insolation retrieval data provide an alternative to prognostic meteorological models for representing the spatial and temporal variations of PAR. In this study, biogenic emission estimates generated with the MEGAN and BEIS biogenic emissions models using satellite or prognostic PAR are used to examine the contribution of BVOC to ozone in the United States. The Comprehensive Air Quality Model with Extensions (CAMx) is applied with Ozone Source Apportionment Technology (OSAT) and brute force zero-out sensitivity runs to quantify the biogenic contributions to ozone formation during May through September 2011. The satellite PAR retrievals are on average lower than modeled PAR and exhibit better agreement with SCAN and SURFRAD network measurements. Using satellite retrievals instead of modeled PAR reduces BEIS and MEGAN estimates of isoprene by an average of 3%-4% and 9%-12%, respectively. The simulations still overestimate observed ground-level isoprene concentrations by a factor of 1.1 for BEIS and 2.6 for MEGAN. The spatial pattern of biogenic ozone contribution diagnosed from OSAT differs from the brute force zero-out sensitivity results, with the former more smoothly distributed and the latter exhibiting peak impacts near metropolitan regions with intense anthropogenic NOx emissions. OSAT tends to apportion less ozone to biogenics as BVOC emissions increase, since that shifts marginal ozone formation toward more NOx-limited conditions. By contrast, zero-out source apportionment of ozone to biogenics increases with BVOC

  6. Narrow-band multi-filter radiometer for total ozone content measurements: Mario Zucchelli Station (Antarctica) campaign.

    Science.gov (United States)

    Scaglione, Salvatore; Zola, Danilo; Menchini, Francesca; Sarcina, Ilaria Di

    2017-02-01

    The importance of ground-based measurements of ultraviolet radiation has increased since the discovery of the stratospheric ozone layer depletion. Spectroradiometers are the most widely used class of instruments, although the requirement to work in attended stations is sometimes limiting. In this work we present a filter radiometer, named F-RAD, with good optical stability, very short sampling time (1 min), and proven reliability. The instrument is based on a stand-alone functioning, making it suitable for operation in hostile environments. The total ozone column (TOC) was estimated by the irradiance ratio at wavelengths where the ozone absorbs the solar radiation and where the radiation is not absorbed. Direct correlation between the TOC values estimated by F-RAD and by the Ozone Monitoring Instrument (OMI) was found, and the standard deviations of the ratios between such values were calculated. Three wavelength ratios were identified to take into account the dependence of the measurements from the Solar Zenith Angle, AF-RAD (306.0 nm/325.3 nm) for SZAF-RAD (309.9 nm/325.3 nm) and CF-RAD (317.5 nm/325.3 nm) for SZA>50°. Considering the OMI ozone data as the reference values, the accuracy of the filter radiometer is estimated to be ±4%. The data collected during the calibration campaign in Lampedusa (June-July 2009, Italy) and during the first Antarctica winter of the 2009-2013 measurement campaign at Mario Zucchelli Station (MZS) are reported. The TOC measured by the F-RAD instrument, by the OMI on board of EOS-Aura satellite (NASA), and by the NOAA UV Monitoring Station in McMurdo (USA) are compared to assess the appropriateness of F-RAD for a long-term measurement campaign.

  7. Urban greening impacts on tropospheric ozone

    Science.gov (United States)

    Grote, R.; Churkina, G.; Butler, T. M.; Morfopoulos, C.

    2013-12-01

    Cities are characterized by elevated air temperatures as well as high anthropogenic emissions of air pollutants. Cities' greening in form of urban parks, street trees, and vegetation on roofs and walls of buildings is supposed to generally mitigate negative impacts on human health and well-being. However, high emissions of biogenic volatile organic compounds (BVOC) from certain popular urban plants in combination with the elevated concentrations of NOx have the potential to increase ground-level ozone concentrations - with negative impacts on health, agriculture, and climate. Policies targeting reduction of ground-level ozone in urban and suburban areas therefore must consider limiting BVOC emissions along with measures for decreasing NOx and VOC from anthropogenic sources. For this, integrated climate/ chemistry models are needed that take into account the species-specific physiological responses of urban plants which in turn drive their emission behavior. Current models of urban climate and air quality 1) do not account for the feedback between ozone concentrations, productivity, and BVOC emission and 2) do not distinguish different physiological properties of urban tree species. Instead environmental factors such as light, temperature, carbon dioxide, and water supply are applied disregarding interactions between such influences. Thus we may not yet be able to represent the impacts of air pollution under multiple changed conditions such as climate change, altered anthropogenic emission patterns, and new urban structures. We present here the implementation of the new BVOC emission model (Morfopolous et al., in press) that derives BVOC emissions directly from the electron production potential and consumption from photosynthesis calculation that is already supplied by the CLM land surface model. The new approach has the advantage that many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology. We

  8. Observations of ozone transport from the free troposphere to the Los Angeles basin

    Science.gov (United States)

    Neuman, J. A.; Trainer, M.; Aikin, K. C.; Angevine, W. M.; Brioude, J.; Brown, S. S.; de Gouw, J. A.; Dube, W. P.; Flynn, J. H.; Graus, M.; Holloway, J. S.; Lefer, B. L.; Nedelec, P.; Nowak, J. B.; Parrish, D. D.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Smit, H.; Thouret, V.; Wagner, N. L.

    2012-03-01

    Analysis of in situ airborne measurements from the CalNex 2010 field experiment (Research at the Nexus of Air Quality and Climate Change) show that ozone in the boundary layer over Southern California was increased by downward mixing of air from the free troposphere (FT). The chemical composition, origin, and transport of air upwind and over Los Angeles, California, were studied using measurements of carbon monoxide (CO), ozone, reactive nitrogen species, and meteorological parameters from the National Oceanic and Atmospheric Administration WP-3D aircraft on 18 research flights in California in May and June 2010. On six flights, multiple vertical profiles from 0.2-3.5 km above ground level were conducted throughout the Los Angeles (LA) basin and over the Pacific Ocean. Gas phase compounds measured in 32 vertical profiles are used to characterize air masses in the FT over the LA basin, with the aim of determining the source of increased ozone observed above the planetary boundary layer (PBL). Four primary air mass influences were observed regularly in the FT between approximately 1 and 3.5 km altitude: upper tropospheric air, long-range transport of emissions, aged regional emissions, and marine air. The first three air mass types accounted for 89% of the FT observations. Ozone averaged 71 ppbv in air influenced by the upper troposphere, 69 ppbv in air containing emissions transported long distances, and 65 ppbv in air with aged regional emissions. Correlations between ozone and CO, and ozone and nitric acid, demonstrate entrainment of ozone from the FT into the LA PBL. Downward transport of ozone-rich air from the FT into the PBL contributes to the ozone burden at the surface in this region and makes compliance with air quality standards challenging.

  9. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT

    Directory of Open Access Journals (Sweden)

    J. L. Bertaux

    2010-04-01

    Full Text Available GOMOS on ENVISAT (launched in February, 2002 is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars. From a polar orbit, it allows to have a good latitude coverage. Because it is self-calibrated, it is particularly well adapted to the long time trend monitoring of stratospheric species. With 4 spectrometers the wavelength coverage of 248 nm to 942 nm allows to monitor ozone, H2O, NO2, NO3, air, aerosols, and O2. Two additional fast photometers (1 kHz sampling rate allow for the correction of scintillations, as well as the study of the structure of air density irregularities, resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC, are routinely observed in both polar summers, and global observations of OCLO and sodium are achieved.

    The instrument configuration, dictated by the scientific objectives rationale and technical constraints, are described, together with the typical operations along one orbit, and statistics over 5 years of operation. Typical atmospheric transmission spectra are presented, and some retrieval difficulties are discussed, in particular for O2 and H2O.

    An overview of a number of scientific results is presented, already published or found in more details as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide the incentive for GOMOS data exploitation, available to the whole scientific community in the ESA data archive, and to help the GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, for an optimized scientific return.

  10. Measurements of Selected Air Pollutants in Danish Homes and Ozone Interaction with Floor Dust

    DEFF Research Database (Denmark)

    Vibenholt, Anni

    and a FLEC on a stainless steel plate without dust (kFLEC). The composition of organic compounds in the dust was analyzed by pressurized liquid extraction and thermal desorption GC-MS before and after ozone exposure. KFLEC was independent of the ozone concentration and the reaction was treated as first order...... in the Field and Laboratory Emission Cell (FLEC) at different ozone concentrations and relative humidities (0, 25, and 50 % RH). One gram of dust was spread on a clean stainless steel plate which was placed in the FLEC. Steady state reaction rate (kDust) at 2.2 ppm ozone was determined for four different floor...... rate; indoor aldehydes and outdoor ozone; and, indoor aldehyde and air exchange rate. A total of 85 VOCs was identified from sampling on Tenax TA in the five homes during the fall season. Section IIb: Direct Low Temperature Plasma ionization-MS analysis of air sampling filters The quantitative...

  11. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  12. Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Johnson, Matthew S.; Wang, Lihua; Burris, John; Pierce, Robert B.; Eloranta, Edwin W.; Pollack, Ilana B.; Graus, Martin; de Gouw, Joost; Warneke, Carsten; Ryerson, Thomas B.; Markovic, Milos Z.; Holloway, John S.; Pour-Biazar, Arastoo; Huang, Guanyu; Liu, Xiong; Feng, Nan

    2017-01-01

    Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.

  13. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke

    Directory of Open Access Journals (Sweden)

    Barela Ana MF

    2009-12-01

    Full Text Available Abstract Background Body weight support (BWS systems on treadmill have been proposed as a strategy for gait training of subjects with stroke. Considering that ground level is the most common locomotion surface and that there is little information about individuals with stroke walking with BWS on ground level, it is important to investigate the use of BWS on ground level in these individuals as a possible alternative strategy for gait training. Methods Thirteen individuals with chronic stroke (four women and nine men; mean age 54.46 years were videotaped walking on ground level in three experimental conditions: with no harness, with harness bearing full body weight, and with harness bearing 30% of full body weight. Measurements were recorded for mean walking speed, cadence, stride length, stride speed, durations of initial and terminal double stance, single limb support, swing period, and range of motion of ankle, knee, and hip joints; and foot, shank, thigh, and trunk segments. Results The use of BWS system leads to changes in stride length and speed, but not in stance and swing period duration. Only the hip joint was influenced by the BWS system in the 30% BWS condition. Shank and thigh segments presented less range of motion in the 30% BWS condition than in the other conditions, and the trunk was held straighter in the 30% BWS condition than in the other conditions. Conclusion Individuals with stroke using BWS system on ground level walked slower and with shorter stride length than with no harness. BWS also led to reduction of hip, shank, and thigh range of motion. However, this system did not change walking temporal organization and body side asymmetry of individuals with stroke. On the other hand, the BWS system enabled individuals with chronic stroke to walk safely and without physical assistance. In interventions, the physical therapist can watch and correct gait pattern in patients' performance without the need to provide physical

  14. Application and further characterization of the snap bean S156/R123 ozone biomonitoring system in relation to ambient air temperature

    Science.gov (United States)

    Increased mixing ratios of ground-level ozone threaten individual plants, plant communities and ecosystems. In this sense, ozone biomonitoring is of great interest. The ozone-sensitive S156 and the ozone-tolerant R123 genotypes of snap bean (Phaseolus vulgaris L.) have been proposed as a potential t...

  15. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  16. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  17. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  18. An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling

    OpenAIRE

    Couach, O.; Balin, I.; Jiménez, R; P. Ristori(CEILAP); Perego, S.; Kirchner, F.; Simeonov, V.; Calpini, B.; H. Bergh

    2003-01-01

    This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m ASL). The combined lidar observations ...

  19. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  20. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    Science.gov (United States)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  1. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    Science.gov (United States)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  2. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    Science.gov (United States)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  3. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...

  4. A Comparison of Ozone Measurements Made by the ATMOS, MAS, and SSBUV Instruments During ATLAS 1,2, and 3

    Science.gov (United States)

    Kriebel, D. L.; Bevilacqua, R. M.; Hilsenrath, E.; Gunson, M.; Hartmann, G. K.; Abrams, M.; Daehler, M.; Pauls, T. A.; Newchurch, M.; Aellig, C. P.; Bories, M. C.

    1996-01-01

    Ozone profile measurements were made by three instruments, ATMOS, MAS, and SSBUV, using distinctly different observing techniques, as part of the ATLAS Space Shuttle missions in March 1992, April 1993, and November 1994. ATMOS makes solar-occultation observations of infrared spectra using a Fourier transform interferometer. MAS uses a limb-scanning antenna to measure emission spectra at millimeter wavelengths. SSBUV is a nadir-viewing instrument measuring the transmission of scattered solar ultraviolet radiation modified by ozone absorption. A sample of zonal-mean mixing ratio profiles indicates that these three ATLAS instruments generally agree to within 10%, although a few potential biases have been noted. There are significant differences in the character of the agreement between ATLAS 1 and ATLAS 2 which will require further study.

  5. The intercomparison of ozone measured from the SME and Nimbus-7 satellites on short and long time scales

    Science.gov (United States)

    Chandra, S.; Mcpeters, R. D.; Srivastava, D. N.

    1986-01-01

    The spatial and temporal characteristics of ozone density measured from the SBUV (Solar Backscatter Ultraviolet) spectrometer on Nimbus-7 and the UV and the UV and the IR spectrometers on SME (Solar Mesosphere Explorer) are compared in the altitude region near 50 km where the three data sets overlap. Their temporal characteristics, when averaged over the same longitude range, are remarkably similar with respect to seasonal variations and short term fluctuations induced by transient planetary waves. The long term trends in the three data sets, however, differ significantly with each other. Over the three year period after 1982 ozone mixing ratio at 1 mb decreased by about 10 percent based on SEUV measurements but increased by 12 and 30 percent respectively based on SME-IR and SME-UV measurements. None of these estimates are consistent with the predicted decrease of about 2 percent based on solar UV flux and temperature changes during this period.

  6. Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2012-01-01

    Full Text Available We use ozone and carbon monoxide measurements from the Tropospheric Emission Spectrometer (TES, model estimates of Ozone, CO, and ozone pre-cursors from the Real-time Air Quality Modeling System (RAQMS, and data from the NASA DC8 aircraft to characterize the source and dynamical evolution of ozone and CO in Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. In addition to photochemical production due to ozone pre-cursors, we find that exchange between the stratosphere and the troposphere is a major factor influencing O3 concentrations for both plumes. For example, the Kazakhstan and Siberian plumes at 55 degrees North is a region of significant springtime stratospheric/tropospheric exchange. Stratospheric air influences the Thailand plume after it is lofted to high altitudes via the Himalayas. Using comparisons of the model to the aircraft and satellite measurements, we estimate that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios by approximately 6.4 ppbv and 38 ppbv in the lower troposphere (height of 2 to 6 km, and the Thailand plume is responsible for increases of O3 and CO mixing ratios of approximately 11 ppbv and 71 ppbv in the upper troposphere (height of 8 to 12 km respectively. However, there are significant sources of uncertainty in these estimates that point to the need for future improvements in both model and satellite observations. For example, it is challenging to characterize the fraction of air parcels from the stratosphere versus those from the

  7. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-05-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. Indeed, the information content of OASIS ozone retrievals is clearly sufficient to monitor separately tropospheric (from the surface up to 8 km and stratospheric ozone. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements have been compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data clearly shows OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events were identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE were compared by respecting temporal and spatial coincidence criteria. Quantitatively, an average bias of 0.2 %, a mean square error deviation of 7.6 %, and a correlation coefficient of 0.91 was found between CHIMERE and OASIS. This demonstrates that a mid-resolution FTIR instrument in ground-based solar absorption geometry is a promising technique for monitoring tropospheric ozone.

  8. Ozone - plant surface reactions an important ozone loss term?

    Science.gov (United States)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  9. Toronto area ozone: Long-term measurements and modeled sources of poor air quality events

    Science.gov (United States)

    Whaley, C. H.; Strong, K.; Jones, D. B. A.; Walker, T. W.; Jiang, Z.; Henze, D. K.; Cooke, M. A.; McLinden, C. A.; Mittermeier, R. L.; Pommier, M.; Fogal, P. F.

    2015-11-01

    The University of Toronto Atmospheric Observatory and Environment Canada's Centre for Atmospheric Research Experiments each has over a decade of ground-based Fourier transform infrared (FTIR) spectroscopy measurements in southern Ontario. We present the Toronto area FTIR time series from 2002 to 2013 of two tropospheric trace gases—ozone and carbon monoxide—along with surface in situ measurements taken by government monitoring programs. We interpret their variability with the GEOS-Chem chemical transport model and determine the atmospheric conditions that cause pollution events in the time series. Our analysis includes a regionally tagged O3 model of the 2004-2007 time period, which quantifies the geographical contributions to Toronto area O3. The important emission types for 15 pollution events are then determined with a high-resolution adjoint model. Toronto O3, during pollution events, is most sensitive to southern Ontario and U.S. fossil fuel NOx emissions and natural isoprene emissions. The sources of Toronto pollution events are found to be highly variable, and this is demonstrated in four case studies representing local, short-, middle-, and long-range transport scenarios. This suggests that continental-scale emission reductions could improve air quality in the Toronto region. We also find that abnormally high temperatures and high-pressure systems are common to all pollution events studied, suggesting that climate change may impact Toronto O3. Finally, we quantitatively compare the sensitivity of the surface and column measurements to anthropogenic NOx emissions and show that they are remarkably similar. This work thus demonstrates the usefulness of FTIR measurements in an urban area to assess air quality.

  10. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT

    Directory of Open Access Journals (Sweden)

    J. L. Bertaux

    2010-12-01

    Full Text Available GOMOS on ENVISAT (launched in February, 2002 is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars. Its polar orbit makes good latitude coverage possible. Because it is self-calibrating, it is particularly well adapted to long time trend monitoring of stratospheric species. With 4 spectrometers, the wavelength coverage of 248 nm to 942 nm enables monitoring ozone, H2O, NO2, NO3, air density, aerosol extinction, and O2. Two additional fast photometers (with 1 kHz sampling rate enable the correction of the effects of scintillations, as well as the study of the structure of air density irregularities resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC are routinely observed in both polar summers and global observations of OClO and sodium are achieved.

    The instrument configuration, dictated by the scientific objectives' rationale and technical constraints, is described, together with the typical operations along one orbit, along with the statistics from over 6 years of operation. Typical atmospheric transmission spectra are presented and some retrieval difficulties are discussed, in particular for O2 and H2O.

    An overview is presented of a number of scientific results already published or found in more detail as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide an incentive for the exploitation of GOMOS data available to the whole scientific community in the ESA data archive, and to help GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, thus leading to an increase in

  11. Certain Results of Measurements of Characteristics of Stratospheric Aerosol Layer and Total Ozone Content at Siberian Lidar Station in Tomsk

    Directory of Open Access Journals (Sweden)

    Nevzorov Aleksey

    2016-01-01

    Full Text Available We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E. The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  12. Certain Results of Measurements of Characteristics of Stratospheric Aerosol Layer and Total Ozone Content at Siberian Lidar Station in Tomsk

    Science.gov (United States)

    Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey

    2016-06-01

    We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.

  13. Fifteen years of stratospheric nitrogen dioxide and ozone measurements in Antarctica

    Science.gov (United States)

    Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Kulkarni, P. S.; Anton, M.; Costa, M. J.; Silva, A. M.

    2013-05-01

    The stratospheric NO2 and O3 total columns and vertical profiles retrieved from the measurements performed the last 15 years by the GASCOD spectrometer installed at the Mario Zucchelli Antarctic Station (MZS) - 74.69S, 164.12E, are presented here and briefly discussed. The full dataset of the spectral data obtained with GASCOD during the period 1996-2009, was re-analyzed with a modified version of the software tool previously utilized. The uncertainties range from 4% up to 8% for O3 and from 3% tup o 6% for NO2. The peculiar features of the seasonal variation of O3 (i.e. during the 'Ozone Hole' periods (mid-August to mid-October) and NO2 total columns (i.e. the normal decreasing during the austral fall and the irregular growing towards the spring months) are clearly identified. For the first time, the NO2 total columns values, obtained with the GASCOD installed at MZS, are compared with the data obtained with satellite borne equipments (SCIAMACHY, GOME and OMI).

  14. Characteristics of the nocturnal boundary layer inferred from ozone measurements onboard a Zeppelin airship

    Science.gov (United States)

    Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.

  15. Ozone transport from the free troposphere to the Los Angeles Basin

    Science.gov (United States)

    Neuman, J.; Trainer, M.; Aikin, K.; Angevine, W. M.; Brioude, J.; Brown, S. S.; De Gouw, J. A.; Dube, B.; Graus, M.; Flynn, J. H.; Holloway, J. S.; Lefer, B. L.; Nedelec, P.; Nowak, J. B.; Parrish, D. D.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Smit, H. M.; Thouret, V.; Wagner, N.

    2011-12-01

    Downward transport of ozone-rich air from the free troposphere (FT) into the planetary boundary layer (PBL) contributes to the ozone burden at the surface in Southern California and makes compliance with air quality standards challenging. Gas phase compounds measured in 32 vertical profiles are used to characterize air masses in the FT over the Los Angeles, California (LA) basin, with the aim of determining the source of increased ozone observed above the PBL. The chemical composition, origin, and transport of air upwind and over LA are studied using in-situ airborne measurements from the CalNex 2010 field experiment (Research at the Nexus of Air Quality and Climate Change). Carbon monoxide (CO), ozone, reactive nitrogen species, and meteorological parameters were measured from the National Oceanic and Atmospheric Administration WP-3D aircraft on 18 research flights in California in May and June 2010. On six flights, multiple vertical profiles from 0.2-3.5 km above ground level were conducted throughout the LA basin and over the Pacific Ocean. Four primary air mass influences were regularly observed in the FT between approximately 1-3.5 km altitude: upper tropospheric air, emissions from long range transport, aged regional emissions, and marine air. Ozone in the FT was increased in three air mass types, averaging 71 ppbv in air influenced by the upper troposphere, 69 ppbv in air containing emissions transported long distances, and 65 ppbv in air with aged regional emissions. Correlations between ozone and CO, and ozone and nitric acid, demonstrate entrainment of ozone from the FT into the LA PBL.

  16. Range resolved measurements of atmospheric ozone and water vapour; Misure `range resolved` di ozono e vapor d`acqua

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Palucci, A.; Ribezzo, S.

    1992-12-31

    The ENEA (Italian Agency for New Technology, Energy and Environment) ground based lidar (Light Detection and Ranging) station, equipped with two TEA CO/sub 2/ laser transmitters, allows for range resolved measurements of minor atmospheric constituents or pollutants, using the DIAL differential absorption technique. This paper provides brief notes on the lidar station`s design characteristics and reports on the application of the instruments to obtain water vapour and ozone concentration profiles with a useful investigated range , R = 6 Km.

  17. Five blind men and the elephant: what can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?

    Directory of Open Access Journals (Sweden)

    Q. Tang

    2012-03-01

    Full Text Available We examine whether the individual ozone (O3 measurements from the four Aura instruments can quantify the stratosphere-troposphere exchange (STE flux of O3, an important term of the tropospheric O3 budget. The level 2 (L2 Aura swath data and the nearly coincident ozone sondes for the years 2005–2006 are compared with the 4-D, high-resolution (1° × 1° × 40-layer × 0.5 h model simulation of atmospheric ozone for the same period from the University of California, Irvine chemistry transport model (CTM. The CTM becomes a transfer standard for comparing individual profiles from these five, not-quite-coincident measurements of atmospheric ozone. Even with obvious model discrepancies identified here, the CTM can readily quantify instrument-instrument biases in the tropical upper troposphere and mid-latitude lower stratosphere. In terms of STE processes, all four Aura datasets have some skill in identifying stratosphere-troposphere folds, and we find several cases where both model and measurements see evidence of high-O3 stratospheric air entering the troposphere. In many cases identified in the model, however, the individual Aura profile retrievals in the upper troposphere and lower stratosphere show too much noise, as expected from their low sensitivity and coarse vertical resolution at and below the tropopause. These model-measurement comparisons of individual profiles do provide some level of confidence in the model-derived STE O3 flux, but it will be difficult to integrate this flux from the satellite data alone.

  18. Transport and deposition of nitrogen oxides and ozone in the atmospheric surface layer

    Science.gov (United States)

    Li, Yongxian

    Tropospheric ozone is an important photochemical air pollutant, which increases respiratory-related diseases, decreases crop yields, and causes other environmental problems. This research has focused on the measurement of soil biogenic emissions of nitric oxide (NO), one of the precursors for ozone formation, from intensively managed soils in the Southeast US, and examined the transport and deposition of NOx (NO + NO2) and ozone in the atmospheric surface layer, and the effects of NO emissions and its chemical reactions on ozone flux and deposition to the earth's surface. Emissions of nitric oxide were measured from an intensively managed agricultural soil, in the lower coastal plain of North Carolina (near Plymouth, NC), using a dynamic chamber technique. Measurements of soil NO emissions in several crop canopies were conducted at four different sites in North Carolina during late spring and summer of 1994-1996. The turbulent fluxes of NO2 and O3 at 5 m and 10 m above the ground were measured using the eddy-correlation technique near Plymouth, NC during late spring of 1995 and summer of 1996, concurrent with measurements of soil NO emissions using the dynamic chamber system. Soil NO emission from within the corn field was high averaging approximately 35 ng N/m2/s during the measurement period of 1995. In another study, vertical measurements of ozone were made on a 610 m tall tower located 15 km Southeast of Raleigh, NC during the summers of 1993-1997, as part of an effort by the State of North Carolina to develop a State Implementation Plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. A strong correlation was observed between the nighttime and early morning ozone concentrations in the residual layer (CR) above the NBL and the maximum ground level concentration (C o max) the following afternoon. Based on this correlation, an empirical regression equation (Co max = 27.67*exp(0.016 CR)) was developed for predicting maximum ground level ozone

  19. Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture

    Science.gov (United States)

    Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona

    2008-01-01

    GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.

  20. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  1. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  2. Air pollution affects food security in China: taking ozone as an example

    Directory of Open Access Journals (Sweden)

    Zhaozhong FENG,Xuejun LIU,Fusuo ZHANG

    2015-06-01

    Full Text Available Air pollution is becoming an increasingly important environmental concern due to its visible negative impact on human health. However, air pollution also affects agricultural crops or food security directly or indirectly, which has not so far received sufficient attention. In this overview, we take ozone (O3 as an example to analyze the principles and extent of the impact of air pollution on food security in China based on a review of the literature. Current O3 pollution shows a clear negative impact on food security, causing around a 10% yield decrease for major cereal crops according to a large number of field studies around the world. The mean yield decrease of winter wheat is predicted to be up to 20% in China, based on the projection of future ground-level O3 concentration in 2020, if no pollution control measures are implemented. Strict mitigation of NOx and VOCs (two major precursors of O3 emissions is crucial for reducing the negative impacts of ground-level O3 on food security. Breeding new crop cultivars with tolerance to high ground-level O3 should receive serious consideration in future research programs. In addition, integrated soil-crop system management will be an important option to mitigate the negative effects of elevated ground-level O3 on cereal crop production and food quality.

  3. Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere

    Science.gov (United States)

    Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea

    2017-10-01

    Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer

  4. Neutrophil influx measured in nasal lavages of humans exposed to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Graham, D.; Henderson, F.; House, D.

    1988-05-01

    Neutrophils (PMNs) obtained by nasal lavage were counted to determine if ozone, an oxidant air pollutant, induces an acute inflammatory response in the upper respiratory tract (URT) of humans. Background data were obtained by the nasal lavages from 200 nonexperimentally exposed subjects. Then, using a known inflammatory agent for the URT, rhinovirus-type 39, the induction, peak, and resolution of an acute inflammatory response was shown to be documented by the nasal lavage PMN counts. To determined if ozone induces this response, 41 subjects were exposed to either filtered air or 0.5 ppm ozone for 4 hr, on 2 consecutive days. Nasal lavages were taken pre-, immediately post each exposure, and 22 hr following the last exposure. Lavage PMN counts increased significantly (p = .005) in the ozone-exposed group, with 3.5-, 6.5-, and 3.9-fold increases over the air-exposed group at the post 1, pre 2, and post 2 time points, respectively. Ozone induces an inflammatory response in the URT of humans, and nasal lavage PMN counts are useful to assay the inflammatory properties of air pollutants.

  5. Synchronized Periodicities of Cosmic Rays, Solar Flares and Ground Level Enhancements

    Science.gov (United States)

    Velasco Herrera, Victor Manuel; Perez-Peraza, Jorge

    2016-07-01

    The behaviour changes in galactic cosmic rays before the occurrence of a ground level enhancement may be used as a predictor of ground level enhancements occurrence. In order to go deep into the determination of which is the agent for such connections we study in this work the common periodicities among them and the source of ground level enhancements, namely solar flares. To find the relationships among different indexes in time-frequency space, we use wavelet coherence analysis. Also we used the probability density function in galactic cosmic rays and solar flare, which allowed the finding of a binomial asymmetric distribution and a Beta distribution respectively.

  6. Spectral analysis of atmospheric composition: application to surface ozone model-measurement comparisons

    Science.gov (United States)

    Bowdalo, Dene R.; Evans, Mathew J.; Sofen, Eric D.

    2016-07-01

    Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb-Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem) output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather) and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1-5 months. This spectral methodology can be applied to a range of model-measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs).

  7. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    Science.gov (United States)

    Williams, David E.; Henshaw, Geoff S.; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A.

    2013-06-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.

  8. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health.

    Science.gov (United States)

    Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y

    2015-01-01

    UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a

  9. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, J& #233; r& #233; mie; Zhang, Jianshun (Jensen); Fisk, William J.

    2009-09-09

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  10. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  11. Four years of ozone measurements in the Central Amazon - Absorption mechanisms and reactions within the rainforest

    Science.gov (United States)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Saturno, Jorge; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2017-04-01

    The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and therefore several month of parallel NOx measurements are available. This data allows the analyses of diverse patterns regarding emission, deposition, turbulence and chemical reactions of trace gases within and above the rainforest for several rainy and dry seasons. The remote Amazon generally serves as a sink for O3 which is mainly deposited to the canopy. The deposition depends to a large extent on the aperture of the leaf stomata, which is correlated to temperature, humidity, solar radiation and water availability. Comparing these parameters with the in-canopy and above canopy gradients of O3, considering the turbulent conditions and further chemical reactions of O3 with NOx and VOC molecules, we estimated the role of the forest for the removal of ozone from the atmosphere under different meteorological conditions. We applied the Multi-Layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. Under pristine conditions, the forest soil is the major source for NO emissions, which are directly reacting with O3 molecules, affecting the O3 gradient within the sub-canopy. We have analyzed differences between model and measurements in sub-canopy NO and O3 mixing ratios by the application of different NO soil emission scenarios and by the performance of several sensitivity analyses to

  12. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  13. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    Science.gov (United States)

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

  14. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  15. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  16. Ozone sonde measurements aboard long-range boundary-layer pressurized balloons over the western Mediterranean basin

    Science.gov (United States)

    Gheusi, François; Barret, Brice; Verdier, Nicolas; Dulac, François; Durand, Pierre; Jambert, Corinne

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPBs) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electro-chemical cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (due to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPBs. The mechanical elements (Teflon pump and motor) and the electro-chemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, the strategy has been adopted of short measurement sequences (typically 3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is left at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Therefore, the typical measurement sequence is composed of a one-minute spin-up period after the pump has been turned on, followed by a two-minute acquisition period. (Note that the time intervals given here are indicative. All can be adjusted before and during the flight.) Results of a preliminary ground-based test in spring 2012 will be first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then, we will illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during the three summer field campaings of the coordinated project

  17. ATMOSPHERIC VOLATILE ORGANIC COMPOUND MEASUREMENTS DURING THE 1996 PASO DEL NORTE OZONE STUDY

    Science.gov (United States)

    Ambient air VOC samples were collected at surface air quality monitoring sites, near sources of interest, and aloft on the US (El Paso) and Mexican (Ciudad Juarez) side of the border during a six-week period of the 1996 Paso del Norte Ozone Study. Samples were collected at five...

  18. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  19. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    Science.gov (United States)

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique.

  20. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  1. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy [Discussion paper

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  2. Small Ground-Level Enhancement of 6 January 2014: Acceleration by CME-Driven Shock?

    Science.gov (United States)

    Li, C.; Miroshnichenko, L. I.; Sdobnov, V. E.

    2016-03-01

    Available spectral data for solar energetic particles (SEPs) measured near the Earth's orbit (GOES-13) and on the terrestrial surface (polar neutron monitors) on 6 January 2014 are analyzed. A feature of this solar proton event (SPE) and weak ground-level enhancement (GLE) is that the source was located behind the limb. For the purpose of comparison, we also use the Advanced Composition Explorer (ACE) data on sub-relativistic electrons and GOES-13 measurements of a strong and extended proton event on 8 - 9 January 2014. It was found that the surface observations at energies {>} 433 MeV and GOES-13 data at {>} 30 - {>} 700 MeV may be satisfactorily reconciled by a power-law time-of-maximum (TOM) spectrum with a characteristic exponential tail (cutoff). Some methodological difficulties of spectrum determination are discussed. Assuming that the TOM spectrum near the Earth is a proxy of the spectrum of accelerated particles in the source, we critically consider the possibility of shock acceleration to relativistic energies in the solar corona. Finally, it is suggested to interpret the observational features of this GLE under the assumption that small GLEs may be produced by shocks driven by coronal mass ejections. However, the serious limitations of such an approach to the problem of the SCR spectrum prevent drawing firm conclusions in this controversial field.

  3. Air pollution by ozone across Europe during summer 2008. Overview of exceedances of EC ozone threshold values for April-September 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    This report provides an evaluation of ground-level ozone pollution in Europe for April-September 2008, based on information submitted to the European Commission under Directive 2002/3/EC on ozone in ambient air. Since Members States have not yet finally validated the submitted data, the conclusions drawn in this report should be considered as preliminary. (au)

  4. Modelling the spring ozone maximum and the interhemispheric asymmetry in the remote marine boundary layer 1. Comparison with surface and ozonesonde measurements

    CERN Document Server

    Wang, Kuo-Ying; Pyle, John A

    2008-01-01

    Here we report a modelling study of the spring ozone maximum and its interhemispheric asymmetry in the remote marine boundary layer (MBL). The modelled results are examined at the surface and on a series of time-height cross sections at several locations spread over the Atlantic, the Indian, and the Pacific Oceans. Comparison of model with surface measurements at remote MBL stations indicate a close agreement. The most striking feature of the hemispheric spring ozone maximum in the MBL can be most easily identified at the NH sites of Westman Island, Bermuda, and Mauna Loa, and at the SH site of Samoa. Modelled ozone vertical distributions in the troposphere are compared with ozone profiles. For the Atlantic and the Indian sites, the model generally produces a hemispheric spring ozone maximum close to those of the measurements. The model also produces a spring ozone maximum in the northeastern and tropical north Pacific close to those measurements, and at sites in the NH high latitudes. The good agreement betw...

  5. Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica

    Science.gov (United States)

    Browell, Edward V.; Poole, Lamont R.; Mccormick, M. Patrick; Ismail, Syed; Butler, Carolyn F.; Kooi, Susan A.; Szedlmayer, Margaret M.; Jones, Rod; Krueger, Arlin J.; Tuck, Adrian

    1988-01-01

    A joint field experiment between NASA and NOAA was conducted during August to September 1987 to obtain in situ and remote measurements of key gases and aerosols from aircraft platforms during the formation of the ozone (O3) hole over Antarctica. The ER-2 (advanced U-2) and DC-8 aircraft from the NASA Ames Research Center were used in this field experiment. The NASA Langley Research Center's airborne differential absorption lidar (DIAL) system was operated from the DC-8 to obtain profiles of O3 and polar stratospheric clouds in the lower stratosphere during long-range flights over Antarctica from August 28 to September 29, 1987. The airborne DIAL system was configured to transmit simultaneously four laser wavelengths (301, 311, 622, and 1064 nm) above the DC-8 for DIAL measurements of O3 profiles between 11 to 20 km ASL (geometric altitude above sea level) and multiple wavelength aerosol backscatter measurements between 11 to 24 km ASL. A total of 13 DC-8 flights were made over Antarctica with 2 flights reaching the South Pole. Polar stratospheric clouds (PSC's) were detected in multiple thin layers in the 11 to 21 km ASL altitude range with each layer having a typical thickness of less than 1 km. Two types of PSC's were found based on aerosol backscattering ratios: predominantly water ice clouds (type 2) and clouds with scattering characteristics consistent with binary solid nitric acid/water clouds (type 1). Large-scale cross sections of O3 distributions were obtained. The data provides additional information about a potentially important transport mechanism that may influence the O3 budget inside the vortex. There is also some evidence that strong low pressure systems in the troposphere are associated with regions of lower stratospheric O3. This paper discusses the spatial and temporal variations of O3 inside and outside the polar vortex region during the development of the O3 hole and relates these data to other measurements obtained during this field experiment.

  6. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  7. Measurements of Biogenic and Anthropogenic Ozone and Aerosol Precursors during the SENEX (Southeast Nexus) Campaign 2013

    Science.gov (United States)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2013-12-01

    Natural emissions of ozone and aerosol precursor gases such as isoprene and monoterpenes are the highest in the southeast of the U.S. and rival those found in tropical forests. In addition, anthropogenic emissions are significant in the Southeast and photochemistry is rapid. The southeast U.S. has not warmed like other parts of the U.S. in response to global climate change, and the temperature anomaly has been suggested to be related to aerosols derived from a combination of anthropogenic and biogenic precursors. The NOAA SENEX aircraft campaign took place in June-July 2013 in the southeast U.S. as part of the Southeast Atmosphere Study (SAS). The NOAA WP-3 aircraft conducted 20 research flights between May 27 and July 10, 2013 based out of Smyrna, TN. To investigate the combination of anthropogenic and biogenic emissions several flights were designed to follow the emissions of cities and power plants as they are transported over forested regions in the Southeast. For example, over-flights of Atlanta, Birmingham and Nashville were performed and the plumes were followed to the forested areas with high isoprene and monoterpene emissions. The same was done for several power plants such as EC Gaston, Scherer and Johnsonville. In the anthropogenic plumes, effects such as the modulation of the isoprene chemistry by high NOx and particle formation and growth were investigated. The same strategy was used for three nighttime flights over Atlanta, Birmingham and the New Madrid and White Bluff power plants. Flights over and downwind of St Lois and Indianapolis were used as a contrast in areas with smaller biogenic emissions. Other anthropogenic emissions sources that were investigated during SENEX included bio refineries, paper mills, coalmines, poultry and pork farming. Also biomass burning emissions were observed during one daytime and one nighttime flight. Another focus of the SENEX campaign was to determine the emissions of natural gas and oil production from the

  8. Meteorological factors affecting lower tropospheric ozone mixing ratios in Bangkok, Thailand

    Science.gov (United States)

    Janjai, S.; Buntoung, S.; Nunez, M.; Chiwpreecha, K.; Pattarapanitchai, S.

    2016-09-01

    This paper examines the influence of meteorological conditions in ozone mixing ratio measured at the Thai Meteorological Department (TMD) in Bangkok, Thailand. In addition to surface wind speed and direction, surface ozone concentrations, ozonesondes and CALIPSO Lidar images were collected during the study period extending from 01/01/2014 to 30/04/2015. Surface ozone concentrations show a strong seasonality, with maximum in the dry months of December to April and minimum during the wet southwest (SW) monsoon period extending from May to October. High ozone concentrations are related to biomass burning in the northeast highland regions of the country and neighboring Myanmar and southern China. These precursors travel in a southerly direction towards Bangkok in a well-defined aerosol layer which may be at ground level or at elevated heights. The growth of the daytime mixed layer scavenges some of the upper level aerosols, although local maxima in ozone concentrations at 1-2 km are a frequent feature at Bangkok. There is an evidence of fumigation in the Gulf of Thailand and a return flow via the southerly sea breezes.

  9. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956

    Directory of Open Access Journals (Sweden)

    A. Belov

    2005-09-01

    Full Text Available The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05 is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth.

    Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers

  10. Measurement, modeling, and analysis of nonmethane hydrocarbons and ozone in the southeast United States national parks

    Science.gov (United States)

    Kang, Daiwen

    In this research, the sources, distributions, transport, ozone formation potential, and biogenic emissions of VOCs are investigated focusing on three Southeast United States National Parks: Shenandoah National Park, Big Meadows site (SHEN), Great Smoky Mountains National Park at Cove Mountain (GRSM) and Mammoth Cave National Park (MACA). A detailed modeling analysis is conducted using the Multiscale Air Quality SImulation Platform (MAQSIP) focusing on nonmethane hydrocarbons and ozone characterized by high O3 surface concentrations. Nine emissions perturbation using the Multiscale Air Quality SImulation Platform (MAQSIP) focusing on nonmethane hydrocarbons and ozone characterized by high O 3 surface concentrations. In the observation-based analysis, source classification techniques based on correlation coefficient, chemical reactivity, and certain ratios were developed and applied to the data set. Anthropogenic VOCs from automobile exhaust dominate at Mammoth Cave National Park, and at Cove Mountain, Great Smoky Mountains National Park, while at Big Meadows, Shenandoah National Park, the source composition is complex and changed from 1995 to 1996. The dependence of isoprene concentrations on ambient temperatures is investigated, and similar regressional relationships are obtained for all three monitoring locations. Propylene-equivalent concentrations are calculated to account for differences in reaction rates between the OH and individual hydrocarbons, and to thereby estimate their relative contributions to ozone formation. Isoprene fluxes were also estimated for all these rural areas. Model predictions (base scenario) tend to give lower daily maximum O 3 concentrations than observations by 10 to 30%. Model predicted concentrations of lumped paraffin compounds are of the same order of magnitude as the observed values, while the observed concentrations for other species (isoprene, ethene, surrogate olefin, surrogate toluene, and surrogate xylene) are usually an

  11. Synoptic typing of high ozone events in Arizona (2011-2013)

    Science.gov (United States)

    Wood, Jessica

    This thesis examines the synoptic characteristics associated with ozone exceedance events in Arizona during the time period of 2011 to 2013. Finding explanations and sources to the ground level ozone in this state is crucial to maintaining the state's adherence to federal air quality regulations. This analysis utilizes ambient ozone concentration data, surface meteorological conditions, upper air analyses, and HYSPLIT modeling to analyze the synoptic characteristics of ozone events. Based on these data and analyses, five categories were determined to be associated with these events. The five categories all exhibit distinct upper air patterns and surface conditions conducive to the formation of ozone, as well as distinct potential transport pathways of ozone from different nearby regions. These findings indicate that ozone events in Arizona can be linked to synoptic-scale patterns and potential regional transport of ozone. These results can be useful in the forecasting of high ozone pollution and influential on the legislative reduction of ozone pollution.

  12. Temperature dependent ozone absorption cross section spectra measured with the GOME-2 FM3 spectrometer and first application in satellite retrievals

    Directory of Open Access Journals (Sweden)

    W. Chehade

    2012-10-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.

  13. Electron and proton acceleration during the first ground level enhancement of solar cycle 24

    CERN Document Server

    Li, C; Sun, L P; Miroshnichenko, L I

    2013-01-01

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 +/- 0.05 AU) and solar particle release time (01:29 +/- 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active r...

  14. Ground level photosynthetically active radiation dynamics in stands of Acacia mearnsii De Wild.

    Science.gov (United States)

    Péllico Netto, Sylvio; Sanquetta, Carlos R; Caron, Braulio O; Behling, Alexandre; Simon, Augusto A; Corte, Ana Paula D; Bamberg, Rogério

    2015-09-01

    The objective is to study the dynamics of photosynthetic radiation reaching the soil surface in stands of Acacia mearnsii De Wild and its influence on height growth in stands. This fact gives rise to the formulation of the following hypothesis for this study: "The reduction of the incidence of light inside the stand of black wattle will cause the inflection point in its height growth when this reaches 4 to 5 m in height, i.e. when the stand is between 2 and 3 years of age". The study was conducted in stands in the state of Rio Grande do Sul, Brazil, where diameters at breast height, total height and photosynthetically active radiation available at ground level were measured. The frequency tended to be more intense when the age of the stands increases. It was evident that a reduction of light incidence inside the forest occurred, caused by canopy closure. Consequently, closed canopy propitiated the competition of plants. This has affected the conditions for growth in diameter and height of this species, reason why it becomes possible to conceive the occurrence of an inflection point in the growth of these two variables, confirming the formulated hypothesis.

  15. Infrared heterodyne spectrometer measurements of vertical profile of tropospheric ammonia and ozone. [using dual carbon dioxide laser

    Science.gov (United States)

    Peyton, B. J.; Lange, R. A.; Savage, M. G.; Seals, R. K.; Allario, F.

    1977-01-01

    Remote sensing of the concentration and vertical distribution of atmospheric gases has been carried out using a dual CO2 laser multichannel infrared heterodyne spectrometer (IHS). The high specificity and nearly quantum-noise-limited sensitivity of the IHS provide the capability of scanning individual signature lines of selected atmospheric constituents in the 9 to 11 micron region. A comprehensive investigation of the spectral overlap between CO2 laser local oscillator transitions and selected atmospheric constituents was performed; measurements of the atmospheric absorption of solar radiation from the ground were carried out at selected laser transitions for ammonia and ozone.

  16. Unusual discrepancy between TOMS and ground-based measurements of the total ozone in 2002-2003

    Institute of Scientific and Technical Information of China (English)

    BIAN Jianchun; CHEN Hongbin; ZHANG Zhongbo; ZHAO Yanliang

    2005-01-01

    @@ Monitoring the atmospheric ozone is one of the key projects in the atmospheric and environmental sciences, and the decrease of ozone in stratosphere has aroused the interests of governments and public in the world[1-4].

  17. Reconstructing ozone chemistry from Asian wild fires using models, satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2010-11-01

    Full Text Available We use ozone (O3 and carbon monoxide (CO satellite measurements from the Tropospheric Emission Spectrometer (TES, simulations from the Real-time Air Quality Modeling System (RAQMS and aircraft data from the NASA DC8 aircraft to characterize the chemical and dynamical evolution of Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. Comparison between satellite O3 and CO measurements and model results show consistency when the TES averaging kernel and constraint vector are applied to the model. However, RAQMS CO simulations suggest that TES observations do not capture the full range of CO variability in the plume due to low sensitivity. In both plumes, exchanges between the stratosphere and the troposphere tend to be a major factor influencing O3 concentrations. However, fire emissions of ozone precursors increase photochemical ozone production, particularly in the Thailand wildfire plume. Analysis shows that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios up to 6.4 ppbv and 38 ppbv in the lower troposphere, and the Thailand plume is responsible for increases of O3 and CO mixing ratios up to 11 ppbv and 71 ppbv in the upper troposphere.

  18. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-09-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m above sea level, and for one flight over the Mexico City area where the aircraft was restricted to altitudes ~320–800 m above ground level over the rural area and ~550–750 m over the city. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET

  19. Intercomparison of stratospheric ozone and temperature measurements at the Observatoire de Haute Provence during the OTOIC NDSC validation campaign from 1–18 July 1997

    Directory of Open Access Journals (Sweden)

    C. Vialle

    2004-09-01

    Full Text Available The OHP Temperature and Ozone Intercomparison Campaign (OTOIC took place at the Observatoire de Haute Provence, France, from 1–18 July 1997. The NASA Goddard Space Flight Center (GSFC mobile lidar system was deployed at the Observatoire de Haute Provence (OHP during a blind intercomparison as a part of the continuous validation process within the Network for the Detection of Stratospheric Change. The GSFC measurements were compared to two lidars permanently deployed at OHP and operated by the Centre National de la Recherche Scientifique (CNRS, one measuring ozone and the other measuring temperature.

  20. Conversion of Airborne Gamma ray Spectra to Ground Level Air Kerma Rates

    DEFF Research Database (Denmark)

    Bargholz, Kim; Korsbech, Uffe C C

    1997-01-01

    A new method for relating airborne gamma-ray spectra to dose rates and kerma rates at ground level is presented. Dependent on flying altitude 50 m to 125 m the method gives correct results for gamma energies above 250 keV respective 350 keV. At lower energies the method underestimate the dose...... or kerma rates; by having a large fraction of the ground level gamma-rays at energies below 350 keV special care should be taken at an interpretation of the results....

  1. Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft

    Science.gov (United States)

    Jurkat, T.; Voigt, C.; Kaufmann, S.; Grooß, J.-U.; Ziereis, H.; Dörnbrack, A.; Hoor, P.; Bozem, H.; Engel, A.; Bönisch, H.; Keber, T.; Hüneke, T.; Pfeilsticker, K.; Zahn, A.; Walker, K. A.; Boone, C. D.; Bernath, P. F.; Schlager, H.

    2017-06-01

    Novel airborne in situ measurements of inorganic chlorine, nitrogen oxide species, and ozone were performed inside the lower Antarctic polar vortex and at its edge in September 2012. We focus on one flight during the Transport and Composition of the LMS/Earth System Model Validation (TACTS/ESMVal) campaign with the German research aircraft HALO (High-Altitude LOng range research aircraft), reaching latitudes of 65°S and potential temperatures up to 405 K. Using the early winter correlations of reactive trace gases with N2O from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), we find high depletion of chlorine reservoir gases up to ˜40% (0.8 ppbv) at 12 km to 14 km altitude in the vortex and 0.4 ppbv at the edge in subsided stratospheric air with mean ages up to 4.5 years. We observe denitrification of up to 4 ppbv, while ozone was depleted by 1.2 ppmv at potential temperatures as low as 380 K. The advanced instrumentation aboard HALO enables high-resolution measurements with implications for the oxidation capacity of the lowermost stratosphere.

  2. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Black, Douglas R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-12-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM2.55 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

  3. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  4. Total Ozone Prediction: Stratospheric Dynamics

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  5. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    Science.gov (United States)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  6. Temporal and spatial characteristics of surface ozone depletion events from measurements over the Arctic Ocean

    Science.gov (United States)

    Halfacre, J. W.; Knepp, T. N.; Stephens, C. R.; Pratt, K. A.; Shepson, P.; Simpson, W. R.; Peterson, P. K.; Walsh, S. J.; Matrai, P. A.; Bottenheim, J. W.; Netcheva, S.; Perovich, D. K.; Richter, A.

    2012-12-01

    Arctic tropospheric ozone depletion events (ODEs) have been studied primarily from coastal sites since the mid 1980s with only a few studies occurring over the Arctic Ocean, the hypothesized site of initiation. Despite a multitude of studies, some basic characteristics of ODEs remain poorly defined, including their temporal, spatial, and meteorological characteristics. Several deployments of autonomous, ice-tethered buoys (O-Buoys) were used to elucidate such characteristics from both the Arctic Ocean and coastal sites. The apparent first order decays imply an ozone lifetime (median of 11 hours) that would correspond to a very large BrO concentration, relative to BrO observations obtained from the buoys. These results suggest that ODEs involve a large, unaccounted for source of bromine atoms, that there is a significant contribution from other mechanisms possibly not involving bromine, or that the majority of observed ODEs represent advection of previously-depleted air to the buoy site, even in the Arctic Ocean. Using backward air mass trajectories, the spatial scales for ODEs (defined by time periods with O3 ≤ 15 nmol/mol) were estimated to be ~1800 km (mode), suggesting that most of the lower troposphere above the Arctic Ocean is frequently, at least partially, depleted of ozone. Using the same method, areas estimated to be highly depleted of O3 (ice-tethered O-Buoys provide unique data to study the characteristics of ODEs; however, more remote and simultaneous surface observations over the Arctic Ocean are necessary to enable study of both the site(s) and mechanism(s) of ODE initiation.

  7. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    Directory of Open Access Journals (Sweden)

    Christian N. Gencarelli

    2014-12-01

    Full Text Available Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measured on-board the Italian Research Council’s R. V. Urania during summer oceanographic campaigns between 2000 and 2010 regularly exceeded 60 ppb, even at night. The WRF/Chem (Weather Research and Forecasting (WRF model coupled with Chemistrymodel has been used to simulate tropospheric chemistry during the periods of the measurement campaigns, and then, the same simulations were repeated, excluding the contribution of maritime traffic in the Mediterranean to the anthropogenic emissions inventory. The differences in the model output suggest that, in large parts of the coastal zone of the Mediterranean, ship emissions Atmosphere 2014, 5 938 contribute to 3 and 12 ppb to ground level daily average ozone concentrations. Near busy shipping lanes, up to 40 ppb differences in the hourly average ozone concentrations were found. It seems that ship emissions could be a significant factor in the exceedance of the EU directive on air quality in large areas of the Mediterranean Basin.

  8. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  9. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  10. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    NARCIS (Netherlands)

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those ins

  11. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    NARCIS (Netherlands)

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those

  12. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    OpenAIRE

    C. N. Hewitt; MacKenzie, A. R.; Di Carlo, P.; C. F. Di Marco; J. R. Dorsey; Evans, M,; Fowler, D; M. W. Gallagher; J. R. Hopkins; Jones, C. E.; Langford, B.; Lee, J. D.; A. C. Lewis; S. F. Lim; McQuaid, J.

    2009-01-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is p...

  13. Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle

    Science.gov (United States)

    Shea, M. A.; Smart, D. F.

    2012-10-01

    Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth's surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.

  14. An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations

    Science.gov (United States)

    Allen, Dale J.; Dibb, Jack E.; Ridley, Brian; Pickering, Kenneth E.; Talbot, Robert W.

    2003-02-01

    Measurements of tropospheric ozone (O3) between 30°N and 70°N show springtime maxima at remote locations. The contribution of seasonal changes in stratosphere-troposphere exchange (STE) to these maxima was investigated using measurements from the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) campaign and the beryllium-7 (7Be) distribution from a calculation driven by fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Comparison with TOPSE measurements revealed that upper tropospheric model-calculated 7Be mixing ratios were reasonable (a change from previous calculations) but that lower tropospheric mixing ratios were too low most likely due to an overestimation of scavenging. Temporal fluctuations were well captured although their amplitudes were often underestimated. Analysis of O3 measurements indicated that O3 mixing ratios increased by 5-10% month-1 for θ underworld) and by 10-15% month-1 for θ > 300 K (the tropospheric middleworld). 7Be mixing ratios decreased with time for θ 300 K. Model-calculated middleworld increases of 7Be were a factor of 2 less than measured increases. 7Be with a stratospheric source (strat-7Be) increased by 4.6-8.8% month-1 along TOPSE flight paths within the tropospheric middleworld. Increases in strat-7Be were not seen along TOPSE flight paths in the underworld. Assuming changes in tropospheric O3 with a stratospheric source are the same as changes in strat-7Be and that 50% of O3 in the region of interest is produced in the stratosphere, changes in STE explain 20-60% of O3 increases in the tropospheric middleworld and less than 33% of O3 increases in the underworld.

  15. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.; Sun, L. P. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Firoz, Kazi A. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Miroshnichenko, L. I., E-mail: lic@nju.edu.cn [N. V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences, Troitsk, 142190 Moscow Region (Russian Federation)

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  16. The cosmic-ray ground-level enhancement of 1989 September 29

    Energy Technology Data Exchange (ETDEWEB)

    Moraal, H. [Centre for Space Research, School for Physical and Chemical Sciences, North-West University, Potchefstroom 2520 (South Africa); Caballero-Lopez, R. A. [Ciencias Espaciales, Instituto de Geofisica, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico)

    2014-08-01

    The ground-level enhancement (GLE) of 1989 September 29 is one of the largest of 71 solar energetic particle events observed by neutron monitors on Earth. It was smaller than the record-breaking GLE 5 of 1956 February 23, but by some measures it was larger than GLE 69 of 2005 January 20. It is also the most extensively studied of the 71 GLEs, and it was observed by more than 50 ground-based detectors in the worldwide network. This paper contains another study of the event, with the main difference from previous studies that all the existing observations are employed, instead of the usual selection of stations. An effort is made to represent all the information graphically. This reveals new insight in the event, mainly about its time profile. The main conclusion is that the event is the best example available of a 'classical' GLE that has a gradual increase toward peak intensity and does not contain two or more distinct peaks as inferred previously. It does, however, suggest that there were two acceleration or release mechanisms: a prompt, rapid one and a delayed, slower one. This conclusion is based on a detailed comparison with GLE 69 of 2005 January 20, which is the best-known example of a double-peaked event with a 'prompt' component. It is also found that the rigidity spectrum was probably softer than derived in several previous studies, and that the decay phase of the event reveals that the cosmic-ray diffusion coefficient in the neutron monitor range is proportional to rigidity.

  17. Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO2 measurements

    Directory of Open Access Journals (Sweden)

    T. Chai

    2013-10-01

    Full Text Available The National Air Quality Forecast Capability (NAQFC project provides the US with operational and experimental real-time ozone predictions using two different versions of the three-dimensional Community Multi-scale Air Quality (CMAQ modeling system. Routine evaluation using near-real-time AIRNow ozone measurements through 2011 showed better performance of the operational ozone predictions. In this work, quality-controlled and -assured Air Quality System (AQS ozone and nitrogen dioxide (NO2 observations are used to evaluate the experimental predictions in 2010. It is found that both ozone and NO2 are overestimated over the contiguous US (CONUS, with annual biases of +5.6 and +5.1 ppbv, respectively. The annual root mean square errors (RMSEs are 15.4 ppbv for ozone and 13.4 ppbv for NO2. For both species the overpredictions are most pronounced in the summer. The locations of the AQS monitoring sites are also utilized to stratify comparisons by the degree of urbanization. Comparisons for six predefined US regions show the highest annual biases for ozone predictions in Southeast (+10.5 ppbv and for NO2 in the Lower Middle (+8.1 ppbv and Pacific Coast (+7.1 ppbv regions. The spatial distributions of the NO2 biases in August show distinctively high values in the Los Angeles, Houston, and New Orleans areas. In addition to the standard statistics metrics, daily maximum eight-hour ozone categorical statistics are calculated using the current US ambient air quality standard (75 ppbv and another lower threshold (70 ppbv. Using the 75 ppbv standard, the hit rate and proportion of correct over CONUS for the entire year are 0.64 and 0.96, respectively. Summertime biases show distinctive weekly patterns for ozone and NO2. Diurnal comparisons show that ozone overestimation is most severe in the morning, from 07:00 to 10:00 local time. For NO2, the morning predictions agree with the AQS observations reasonably well, but nighttime concentrations are overpredicted

  18. Investigating sources of ozone over California using AJAX airborne measurements and models: Assessing the contribution from long-range transport

    Science.gov (United States)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Gore, Warren

    2017-04-01

    High ozone (O3) concentrations at low altitudes (1.5-4 km) were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on 30 May 2012 off the coast of California (CA). We investigate the causes of those elevated O3 concentrations using airborne measurements and various models. GEOS-Chem simulation shows that the contribution from local sources is likely small. A back-trajectory model was used to determine the air mass origins and how much they contributed to the O3 over CA. Low-level potential vorticity (PV) from Modern Era Retrospective analysis for Research and Applications 2 (MERRA-2) reanalysis data appears to be a result of the diabatic heating and mixing of airs in the lower altitudes, rather than be a result of direct transport from stratospheric intrusion. The Q diagnostic, which is a measure of the mixing of the air masses, indicates that there is sufficient mixing along the trajectory to indicate that O3 from the different origins is mixed and transported to the western U.S. The back-trajectory model simulation demonstrates the air masses of interest came mostly from the mid troposphere (MT, 76%), but the contribution of the lower troposphere (LT, 19%) is also significant compared to those from the upper troposphere/lower stratosphere (UT/LS, 5%). Air coming from the LT appears to be mostly originating over Asia. The possible surface impact of the high O3 transported aloft on the surface O3 concentration through vertical and horizontal transport within a few days is substantiated by the influence maps determined from the Weather Research and Forecasting-Stochastic Time Inverted Lagrangian Transport (WRF-STILT) model and the observed increases in surface ozone mixing ratios. Contrasting this complex case with a stratospheric-dominant event emphasizes the contribution of each source to the high O3 concentration in the lower altitudes over CA. Integrated analyses using models, reanalysis, and diagnostic tools, allows high ozone values

  19. Temporal Forecasting with a Bayesian Spatial Predictor: Application to Ozone

    Directory of Open Access Journals (Sweden)

    Yiping Dou

    2012-01-01

    Full Text Available This paper develops and empirically compares two Bayesian and empirical Bayes space-time approaches for forecasting next-day hourly ground-level ozone concentrations. The comparison involves the Chicago area in the summer of 2000 and measurements from fourteen monitors as reported in the EPA's AQS database. One of these approaches adapts a multivariate method originally designed for spatial prediction. The second is based on a state-space modeling approach originally developed and used in a case study involving one week in Mexico City with ten monitoring sites. The first method proves superior to the second in the Chicago Case Study, judged by several criteria, notably root mean square predictive accuracy, computing times, and calibration of 95% predictive intervals.

  20. Aerosol measurements in the winter/spring Antarctic stratosphere. I - Correlative measurements with ozone. II - Impact on polar stratospheric cloud theories

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Aerosol measurements collected from August 25-November 3, 1986 at McMurdo Station using balloon-borne optical particle counters are examined in order to study the relationship between aerosol and ozone distribution and the formation of polar stratospheric clouds (PSCs). Ozone, aerosol, and condensation nuclei profiles, and pressure, temperature, and humidity measurements are analyzed. It is observed that the height of the stratospheric sulfate layer decreases over the period of measurement suggesting that upwelling in the votex is not important in the zone depletion process. Three theories on PSC formation are described, and the effects of the aerosol measurements on the theories are considered. The three theories are: (1) the original theory of water vapor pressure over a solution of H2SO4 of Steele et al. (1983) and Hamill and Mc Master (1984); (2) the nitric acid theory of PSCs of Toon et al. (1986) and Hamill et al. (1986); and (3) the quasi-cirrus cloud theory of Heymsfield (1986).

  1. Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements

    Science.gov (United States)

    Sullivan, John T.; McGee, Thomas J.; Thompson, Anne M.; Pierce, R. Bradley; Sumnicht, Grant K.; Twigg, Laurence W.; Eloranta, Edwin; Hoff, Raymond M.

    2015-12-01

    The evolution of a Stratospheric-Tropospheric Exchange (STE) event from 4 to 8 August 2014 at Fort Collins, Colorado, is described. The event is characterized with observations from the Goddard Space Flight Center TROPospheric OZone (TROPOZ) Differential Absorption Lidar, the University of Wisconsin High Spectral Resolution Lidar, and multiple ozonesondes during NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality and the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns. Based on the extended TROPOZ observations throughout the entire campaign, it was found that STE events have largely contributed to an additional 10-30 ppbv of ozone at Fort Collins. Additional measurements of ozone and relative humidity from the Atmospheric Infrared Sounder are characterize the transport of the intrusion. The Real-time Air Quality Modeling System simulated ozone agrees well with the TROPOZ ozone concentrations and altitude during the STE event. To extend the analysis into other seasons and years, the modeled ozone to potential vorticity ratio is used as a tracer for stratospheric air residing below the tropopause. It is found that at Fort Collins, CO, and depending on season from 2012 to 2014, between 18 and 31% of tropospheric ozone corresponds to stratospheric air. A relationship to determine the lifetime of stratospheric air below the tropopause is derived using the simulated ratio tracer. Results indicate that throughout summer 2014, 43% of stratospheric air resided below the tropopause for less than 12 h. However, nearly 39% persisted below the tropopause for 12-48 h and likely penetrated deeper in the troposphere.

  2. Concentration measurements of ozone in the 1200-300ppbv range: an intercomparison between the BNM ultraviolet standard and infrared methods.

    Science.gov (United States)

    Dufour, Gaëlle; Valentin, Alain; Henry, Annie; Hurtmans, Daniel; Camy-Peyret, Claude

    2004-12-01

    Simultaneous ultraviolet (UV) and infrared (IR) measurements of ozone concentration in air in the 1200-300 ppbv range have been performed using the ultraviolet absorption in the Hartley band at 0.2537 microm and the infrared absorption of a doublet at 9.507 microm in the nu(3) vibration-rotation band. Infrared concentration measurements were achieved using the tunable diode laser spectrometer of LPMA in Paris with interferometric control of the emitted wavelength while the UV concentration measurements were performed with the 49PS Megatec ozone generator of the Bureau National de Metrologie (BNM). The simultaneous recording of spectra of a reference cell filled with pure distilled ozone and of a low concentration mixture inside a long absorbing path Herriott cell allows to carry out infrared concentration measurements with an accuracy of the same order as the ultraviolet ones and provides the instrumental parameters of the spectrometer corresponding to each concentration measurement, which reduces systematic errors. Within the respective absolute uncertainties proper to the two techniques, no systematic discrepancy was evidenced between the IR and the UV measurements. The ozone ultraviolet absorption coefficient value determined by Hearn (308.3 +/- 4 cm(-1)atm(-1)) and used by the BNM and the National Institute of Standards and Technology (NIST) is confirmed by the present work.

  3. Degradation of Acenaphthene by Ozone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generated from filtered dry oxygen by an ozone generator and continually bubbled into a reactor containing 1g/L Ace dissolved in an acetonitrile/water solvent mixture (90/10, v/v) at a rate of 0.5 mg/s. HPLC was used to analyze the Ace concentration. Total organic carbon (TOC) was used to measure the amount of water soluble organic compounds. GC-MS was used to identify the ozonized products. Oxygen uptake rate (OUR) of activated sludge was used to characterize the biodegradability of ozonized products. Results During the ozonation process, Ace was degraded, new organic compounds were produced and these intermediate products were difficult mineralize by ozone, with increasing TOC of soluble organics. The ozonized products were degraded by activated sludge more easily than Ace. Conclusion Ozonation decomposes the Ace and improves its biodegradability. The ozonation combined with biological treatment is probably an efficient and economical way to mineralize acenaphthene in wastewater.

  4. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California

    Science.gov (United States)

    Granados-Muñoz, Maria Jose; Leblanc, Thierry

    2016-07-01

    A combined surface and tropospheric ozone climatology and interannual variability study was performed for the first time using co-located ozone photometer measurements (2013-2015) and tropospheric ozone differential absorption lidar measurements (2000-2015) at the Jet Propulsion Laboratory Table Mountain Facility (TMF; elev. 2285 m), in California. The surface time series were investigated both in terms of seasonal and diurnal variability. The observed surface ozone is typical of high-elevation remote sites, with small amplitude of the seasonal and diurnal cycles, and high ozone values, compared to neighboring lower altitude stations representative of urban boundary layer conditions. The ozone mixing ratio ranges from 45 ppbv in the winter morning hours to 65 ppbv in the spring and summer afternoon hours. At the time of the lidar measurements (early night), the seasonal cycle observed at the surface is similar to that observed by lidar between 3.5 and 9 km. Above 9 km, the local tropopause height variation with time and season impacts significantly the ozone lidar observations. The frequent tropopause folds found in the vicinity of TMF (27 % of the time, mostly in winter and spring) produce a dual-peak vertical structure in ozone within the fold layer, characterized by higher-than-average values in the bottom half of the fold (12-14 km), and lower-than-averaged values in the top half of the fold (14-18 km). This structure is consistent with the expected origin of the air parcels within the fold, i.e., mid-latitude stratospheric air folding down below the upper tropospheric sub-tropical air. The influence of the tropopause folds extends down to 5 km, increasing the ozone content in the troposphere. No significant signature of interannual variability could be observed on the 2000-2015 de-seasonalized lidar time series, with only a statistically non-significant positive anomaly during the years 2003-2007. Our trend analysis reveals however an overall statistically

  5. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  6. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  7. Effect of copper and aluminium on the event rate of cosmic ray muons at ground level in Bangi, Malaysia

    Science.gov (United States)

    Altameemi, Rasha N. I.; Gopir, G.

    2016-11-01

    In this study we determine the effect of aluminium (Al) and copper (Cu) shielding on the event rate of cosmic ray muons at ground level. The experiment was performed at Bangi in Malaysia with coordinates of 101.78° E, 2.92° N and elevation 30 m above sea level. Measurements were made along the vertical direction using muon telescopes (MTs) of parallel Geiger-Muller (GM) tubes with metal sheets above the MTs of up to 2.4 cm for Al and 2.7 cm for Cu. For these ranges of metal thicknesses, we find that the muon count rates increase linearly with the increase in metal thicknesses. The observed increase rate values are (0.18 ± 0.10) cm-1 and (0.26 ± 0.10)cm-1 for Al and Cu, respectively, with the larger value for Cu as expected from its higher atomic number and density. This indicates that for this thickness range, only the lower region of the Rossi curve is observed, with incoming cosmic ray muons producing charged particles in the metal layers, resulting in shower events or electromagnetic cascade. Thus, for this range of layer thickness, both aluminium and copper are not suitable to be used as shielding materials for ground level cosmic ray muons.

  8. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    Science.gov (United States)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  9. Airborne measurements of stratospheric constituents over Antarctica in the austral spring 1987. I - Method and ozone observations

    Science.gov (United States)

    Mankin, William G.; Coffey, M. T.

    1989-01-01

    A Fourier transform spectrometer was flown aboard a DC-8 on 10 flights over Antarctica during August and September, 1987, as part of the Airborne Antarctic Ozone Experiment (AAOE). Observing the sun at infrared wavelengths, it was possible to determine the integrated column amount above the flight altitude for ozone and a number of other chemical species that are believed to be important in the perturbed chemistry of the 'ozone hole'. The paper describes the method, the observations, the data analysis procedure, and the ozone results. During the observation period, ozone developed a steep gradient near the edge of the polar vortex; deep within the vortex, the average ozone column decreased by about 1.6 percent per day during September.

  10. Evaluation of ground level concentration of pollutant due to gas flaring by computer simulation: A case study of Niger - Delta area of Nigeria

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-01-01

    Full Text Available The disposal of associated gases through flaring has been a major problem for the Nigerian oil and gas industries and most of theses gases are flared due to the lack of commercial out lets. The resultant effects of gas flaring are the damaging effect of the environment due to acid rain formation, green house effect, global warming and ozone depletion.This writes up is aimed at evaluating ground level concentration of CO2, SO2, NO2 and total hydrocarbon (THC, which are product of gas flared in oil producing areas. Volumes of gas flared at different flow station were collected as well as geometrical parameters. The results of simulation of model developed based on the principles of gaseous dispersion by Gaussian showed a good agreement with dispersion pattern.The results showed that the dispersion pattern of pollutants at ground level depends on the volume of gas flared, wind speed, velocity of discharge and nearness to the source of flaring. The results shows that continuous gas flaring irrespective of the quantity deposited in the immediate environment will in long run lead to change in the physicochemical properties of soil.

  11. Understanding and improving global crop response to ozone pollution

    Science.gov (United States)

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  12. Ozone and Water Vapor Measurements by Raman Lidar in the Planetary Boundary Layer: Error Sources and Field Measurements

    Science.gov (United States)

    Lazzarotto, Benoit; Frioud, Max; Larcheveque, Gilles; Mitev, Valentin; Quaglia, Philippe; Simeonov, Valentin; Thompson, Anne; VandenBergh, Hubert; Calpini, Bertrand; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Why do we need time series of ozone and water vapor profiles at low altitude? The degradation of air quality is a very serious environmental problem that affects urban and industrial areas worldwide. Air pollution injures human health and ecosystems, diminishes crop yield, and spoils patrimony and materials. The phenomena involved in air pollution are very complex. Once emitted into the atmosphere, (primary) pollutants are transported, dispersed, transformed by gas/solid phase change and chemical reaction, and finally removed by dry and wet deposition. Most challenging is the fact that the health and environmental impacts of secondary pollutants (formed in the atmosphere) are frequently more severe than those of their precursors (primary pollutants). This is the case of ozone and other photochemical pollutants, such as peroxyacetil nitrate (PAN) and secondary particles, produced in the atmosphere by the photo-oxidation volatile organic compounds (VOC) catalyzed by nitrogen oxides (NO(sub x)). Photochemical air pollution is a complex science because of the non-linearity of its response to changes in primary emission.

  13. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    Science.gov (United States)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  14. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2011-07-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofisica de Andalucia (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radio sondes, frost point hygrometers, lidars, microwave radiometers and FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10 % of the data of all correlative instruments, while a high bias of up to 10 % is found in comparison to ground-based microwave instruments around 45 km. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40 % around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS is provided as well.

  15. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    Science.gov (United States)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  16. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  17. Characterization of tropospheric ozone based on lidar measurement in Hangzhou, East China during the G20 Leaders' Summit

    Science.gov (United States)

    Su, Wenjing; Liu, Cheng; Fan, Guangqiang; Hu, Qihou; Huang, Xin; Dong, Yunsheng; Zhang, Tianshu; Liu, Jianguo

    2017-04-01

    Owing to the G20 (Group of Twenty Finance Ministers and Central Bank Governors) Leaders' Summit (Sep.5th-6th, 2016), a series of strict air quality control measures were implemented in Hangzhou and its surrounding regions from Aug.26th to Sep.6th. A differential absorption lidar was employed to monitor tropospheric ozone in urban Hangzhou during a campaign from Aug. 24th to Sep. 10th, and the satellite-based NO2 VCDs and HCHO VCDs in the troposphere were also retrieved using the Ozone Monitoring Instrument (OMI). During our campaign, six O3 pollution events, which were determined according to the National Ambient Air Quality Standard of China (GB-3095-2012), and two stages with rapid reduction of O3 concentration on Aug. 26th and Sep.4-6th were observed. The temporal variation tendency of O3 concentrations was well reproduced by the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Typical cases with the abrupt rise and decline of O3 concentrations were analyzed using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory, satellite NO2 and HCHO product and the prediction by WRF-Chem model. The transport from northern cities have an important impact on pollutants observed in Hangzhou, and the chemical sensitivity of O3 production, which were approximately evaluated using the ratio of HCHO VCDs to NO2 VCDs in the troposphere, was turned from a mixed VOC-NOx-limited regime into a NOX-limited regime in Hangzhou due to the strict emission control measures.

  18. An urban-forest control measure for ozone in the Sacramento, CA federal non-attainment area (SFNA) Sustainable Cities and Society

    Science.gov (United States)

    Haider Taha; James Wilkinson; Robert Bornstein; Qingfu Xiao; E. Gregory McPherson; Jim Simpson; Charles Anderson; Steven Lau; Janice Lam; Cindy. Blain

    2015-01-01

    Urban forest strategies of gradually replacing high emitters of biogenic volatile organic compounds (BVOC) with low-emitting species are being considered as voluntary or emerging control measures for maintenance of the 8-h ozone standard in the Sacramento Federal Non-Attainment Area (SFNA). We describe a regulatory modeling study demonstrating the air-quality impacts...

  19. High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K

    Directory of Open Access Journals (Sweden)

    V. Gorshelev

    2013-07-01

    Full Text Available In this paper we discuss the methodology of taking broadband relative and absolute measurements of ozone cross-sections including uncertainty budget, experimental set-ups, and methods for data analysis. We report on new ozone absorption cross-section measurements in the solar spectral region using a combination of Fourier transform and echelle spectrometers. The new cross-sections cover the spectral range 213–1100 nm at a spectral resolution of 0.02–0.06 nm in the UV-vis and 0.12–0.24 nm in the IR at eleven temperatures from 193 to 293 K in steps of 10 K. The absolute accuracy is better than three percent for most parts of the spectral region and wavelength calibration accuracy is better than 0.005 nm. The new room temperature cross-sections data are compared in detail with previously available literature data. The temperature dependence of our cross-sections is described in a companion paper.

  20. Measurements of ozone columns in different atmospheric layers over St. Petersburg (Russia) using ground-based FTIR spectrometer in comparison with IASI satellite data

    Science.gov (United States)

    Virolainen, Yana; Eremenko, Maxim; Timofeyev, Yury; Dufour, Gaelle; Poberovsky, Anatoly; Polyakov, Alexander; Imhasin, Hamud

    2014-05-01

    Ozone plays a key role in the photochemical equilibrium of the atmosphere. In the stratosphere, it absorbs harmful ultraviolet solar radiation, in the troposphere it is one of the main air pollutant, greenhouse gases and it is involved in the troposphere's oxidative capacity. In this study, we analyze the ozone variability in different atmospheric layers over St. Petersburg (Russia) measured with the ground-based FTIR spectrometer Bruker 125 HR at the Peterhof station (59.82 N, 29.88 E), and compare it to the satellite Infrared Atmospheric Sounding Interferometer (IASI) ozone retrievals. The FTIR spectrometer has a maximum optical path difference of 180 cm, yielding an apodized spectral resolution of 0.008 cm-1, and has been recording IR spectra since 2009. The high spectral resolution of the registered spectra allows the retrieval of the ozone content in four atmospheric layers. We applied the PROFFIT inversion code to the ozone vertical profiles retrievals in 9.6-µm O3 absorption band and calculated the daily means of ozone partial columns for about 300 days between 2009 and 2013. The IASI instrument onboard the satellite MetOp-A measures the thermal infrared radiation emitted by the Earth's surface and the atmosphere with an apodized spectral resolution of 0.5 cm-1. We used the LISA (Laboratoire Inter-universitaire des Systemes Atmospheriques) retrieval algorithm for deriving the ozone profiles between 0 and 60 km for the region of 2 degrees around the Peterhof station in coincidence with FTIR-observation dates, and averaged profiles daily over all the pixels in the considered region. In this study, we compare and discuss the both types of ozone retrievals: total and partial columns in four atmospheric layers (0-12 km, 12-18 km, 18-25 km, and 25-60 km) for 285 coincident days in 2009-2013. This study was partly supported by Saint-Petersburg State University (project No. 11.0.44.2010) and Russian Foundation for Basic Research (grants No. 12-05-00596, 12

  1. EPA Strengthens Ozone Standards to Protect Public Health/Science-based standards to reduce sick days, asthma attacks, emergency room visits, greatly outweigh costs

    Science.gov (United States)

    WASHINGTON - Based on extensive scientific evidence on effects that ground-level ozone pollution, or smog, has on public health and welfare, the U.S. Environmental Protection Agency (EPA) has strengthened the National Ambient Air Quality Standards (

  2. Search for tachyons associated with extensive air showers in the ground level cosmic radiation

    Science.gov (United States)

    Masjed, H. F.; Ashton, F.

    1985-01-01

    Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.

  3. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  4. An empirical method of RH correction for satellite estimation of ground-level PM concentrations

    Science.gov (United States)

    Wang, Zifeng; Chen, Liangfu; Tao, Jinhua; Liu, Yang; Hu, Xuefei; Tao, Minghui

    2014-10-01

    A hygroscopic growth model suitable for local aerosol characteristics and their temporal variations is necessary for accurate satellite retrieval of ground-level particulate matters (PM). This study develops an empirical method to correct the relative humidity (RH) impact on aerosol extinction coefficient and to further derive PM concentrations from satellite observations. Not relying on detailed information of aerosol chemical and microphysical properties, this method simply uses the in-situ observations of visibility (VIS), RH and PM concentrations to characterize aerosol hygroscopicity, and thus makes the RH correction capable of supporting the satellite PM estimations with large spatial and temporal coverage. In this method, the aerosol average mass extinction efficiency (αext) is used to describe the general hygroscopic growth behaviors of the total aerosol populations. The association between αext and RH is obtained through empirical model fitting, and is then applied to carry out RH correction. Nearly one year of in-situ measurements of VIS, RH and PM10 in Beijing urban area are collected for this study and RH correction is made for each of the months with sufficient data samples. The correlations between aerosol extinction coefficients and PM10 concentrations are significantly improved, with the monthly correlation R2 increasing from 0.26-0.63 to 0.49-0.82, as well as the whole dataset's R2 increasing from 0.36 to 0.68. PM10 concentrations are retrieved through RH correction and validated for each season individually. Good agreements between the retrieved and observed PM10 concentrations are found in all seasons, with R2 ranging from 0.54 in spring to 0.73 in fall, and the mean relative errors ranging from -2.5% in winter to -10.8% in spring. Based on the satellite AOD and the model simulated aerosol profiles, surface PM10 over Beijing area is retrieved through the RH correction. The satellite retrieved PM10 and those observed at ground sites agree well

  5. Greenhouse Gas Emissions from Ground Level Area Sources in Dairy and Cattle Feedyard Operations

    Directory of Open Access Journals (Sweden)

    Calvin B. Parnell

    2011-08-01

    Full Text Available A protocol that consisted of an isolation flux chamber and a portable gas chromatograph was used to directly quantify greenhouse gas (GHG emissions at a dairy and a feedyard operation in the Texas Panhandle. Field sampling campaigns were performed 5 consecutive days only during daylight hours from 9:00 am to 7:00 pm each day. The objective of this research was to quantify and compare GHG emission rates (ERs from ground level area sources (GLAS at dairy and cattle feedyard operations during the summer. A total of 74 air samples using flux chamber were collected from the barn (manure lane and bedding area, loafing pen, open lot, settling basin, lagoons, and compost pile within the dairy operation. For the cattle feedyard, a total of 87 air samples were collected from four corner pens of a large feedlot, runoff holding pond, and compost pile. Three primary GHGs (methane, carbon dioxide, and nitrous oxide were measured and quantified from both operations. The aggregate estimated ERs for CH4, CO2, and N2O were 836, 5573, 3.4 g hd−1 d−1 (collectively 27.5 kg carbon dioxide equivalent (CO2e hd−1 d−1, respectively, at the dairy operation. The aggregate ERs for CH4, CO2, and N2O were 3.8, 1399, 0.68 g hd−1 d−1 (1.7 kg CO2e hd−1 d−1, respectively, from the feedyard. The estimated USEPA GHG ERs were about 13.2 and 1.16 kg CO2e hd−1 d−1, respectively, for dairy and feedyard operations. Aggregate CH4, CO2 and N2O ERs at the dairy facility were about 219, 4 and 5 times higher, respectively, than those at the feedyard. At the dairy, average CH4 ERs estimated from the settling basin, primary and secondary lagoons were significantly higher than those from the other GLAS, contributing about 98% of the aggregate CH4 emission. The runoff holding pond and pen surface of the feedyard contributed about 99% of the aggregate CH4 emission. Average CO2 and N2O ERs estimated from the pen surface area were significantly higher than those estimated from

  6. Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings

    Science.gov (United States)

    Han, Su-qin; Zhang, Min; Zhao, Chun-sheng; Lu, Xue-qiang; Ran, Liang; Han, Meng; Li, Pei-yan; Li, Xiang-jin

    2013-11-01

    Ground level ozone and its precursors were measured from July 10 to September 30, 2009 within Tianjin. The data were used to analyze differences in ozone photochemical oxidant production in urban and rural areas. Results showed more pronounced risk of O3 exposure at the rural site, Wuqing. During the observation period, ozone varied monthly, peaking in Jul. and reaching a minimum in Sep. The daily maximum ozone concentration was found to exceed 80 ppb for 28 days 100 ppb for 12 days, 120 ppb for 7 days at Wuqing, while it exceeded 80 ppb for 10 days, 100 ppb for 2 days, and 120 ppb for 1 day at the urban site, Tieta. The daily maximum ozone concentrations at Wuqing and Tieta were 193.7 ppb and 130.4 ppb. The daily maximum ozone concentration occurred at noon in Tieta and at 14:00 in Wuqing. NO and NOx peaked in September and reached minimum values in Jul., CO showed little variation at both sites. NOx and CO showed similar double-peak diurnal cycles resulted from a combination of diurnal variation of emission and the Planetary Boundary Layer During the VOCs (volatile organic compounds) sampling period, the average total VOCs concentration showed considerable day to day variation, which was 87.91 ppb with a range of 27.2 ppb-437.3 ppb at Tieta, and the average total VOCs was 197.95 ppb with a range of 63.48 ppb-473.97 ppb at Wuqing. A sensitivity study performed with the NCAR-MM model showed alkenes to be the most numerous contributors to O3 production, accounting for 53.3% of the total. Aromatics and alkanes accounted for 35.1% and 9.2%, respectively.

  7. Spektroskopische (DOAS)-Langzeitmessungen von Ozon und Vorlaeufersubstanzen an der Ostseekuestenstation Arkona. Abschlussbericht; Long term spectroscopic (DOAS) measurement of ozone and related species at the Baltic coast station Arkona. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, R. [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Flentje, H. [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Heintz, F. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Karbach, H.J. [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Stutz, J. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Platt, U. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1996-08-01

    Boundary layer ozone concentrations have been recorded since 1956 by the German Weather Service, (MD / DWD) at Cape Arkona, Island of Ruegen, GDR / FRG. In April 1993, a Long Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up near the DWD-site. Measurements of the concentrations of O{sub 3}, NO{sub 2}, NO{sub 3} and SO{sub 2} were carried out with a newly developed DOAS system. The system incorporates two coaxially arranged Newton-type telescopes, a flat field holographic grating spectrometer and a retro reflector array. Combining the meteorological data with ozone and other gas concentrations, sector-classified results are used to identify the constraints for future evaluations of regional long-term trends of ozone concentrations. A statistical analysis of different trace gases for the periods summer, autumn, winter and spring is prepared. The long term nitrate radicals data record is used to retrieve information on the production rate of nitrate radicals, its lifetime, and possible depletion mechanism. (orig.)

  8. Analysis of short-term ozone and PM2.5 measurements: Characteristics and relationships for air sensor messaging.

    Science.gov (United States)

    Mannshardt, Elizabeth; Benedict, Kristen; Jenkins, Scott; Keating, Martha; Mintz, David; Stone, Susan; Wayland, Richard

    2017-04-01

    Air quality sensors are becoming increasingly available to the general public, providing individuals and communities with information on fine-scale, local air quality in increments as short as 1 min. Current health studies do not support linking 1-min exposures to adverse health effects; therefore, the potential health implications of such ambient exposures are unclear. The U.S. Environmental Protection Agency (EPA) establishes the National Ambient Air Quality Standards (NAAQS) and Air Quality Index (AQI) on the best science available, which typically uses longer averaging periods (e.g., 8 hr; 24 hr). Another consideration for interpreting sensor data is the variable relationship between pollutant concentrations measured by sensors, which are short-term (1 min to 1 hr), and the longer term averages used in the NAAQS and AQI. In addition, sensors often do not meet federal performance or quality assurance requirements, which introduces uncertainty in the accuracy and interpretation of these readings. This article describes a statistical analysis of data from regulatory monitors and new real-time technology from Village Green benches to inform the interpretation and communication of short-term air sensor data. We investigate the characteristics of this novel data set and the temporal relationships of short-term concentrations to 8-hr average (ozone) and 24-hr average (PM2.5) concentrations to examine how sensor readings may relate to the NAAQS and AQI categories, and ultimately to inform breakpoints for sensor messages. We consider the empirical distributions of the maximum 8-hr averages (ozone) and 24-hr averages (PM2.5) given the corresponding short-term concentrations, and provide a probabilistic assessment. The result is a robust, empirical comparison that includes events of interest for air quality exceedances and public health communication. Concentration breakpoints are developed for short-term sensor readings such that, to the extent possible, the related air

  9. Phenotypic variation and identification of quantitative trait loci for ozone injury in a Fiskeby III x Mandarin (Ottawa) soybean population

    Science.gov (United States)

    Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tol...

  10. Impact of near-surface atmospheric composition on ozone formation in Russia

    Science.gov (United States)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    natural and anthropogenic sources of VOCs. The quantitative contribution of aromatic VOCs to ozone formation in urban areas and in Russian regions along the railway is estimated. The greatest impact of aromatic VOCs to ozone formation (up to 7.5 ppb of O3) is obtained in the large cities along the Trans-Siberian Railway, with the highest concentrations of aromatic VOCs (1-1.7 ppb) and nitrogen oxides (> 20 ppb) being observed. The results show a significant contribution of anthropogenic emissions of VOCs to the photochemical ozone generation (30-50%) in the large cities along the Trans-Siberian railway in hot and dry weather conditions against natural isoprene emissions determining the regional balance of ground-level ozone in summer. This study was supported by the Russian Science Foundation (grant no. 14-47-00049) and by the Russian Foundation for Basic Research (grant no. 16-35-00158). References: 1. Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C. C., and Chen, Z. M. // Atmos. Environ., 2008, 42, pp. 6000-6010. 2. Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., Fall, R. // Atmospheric Environment, 2000, 34, pp. 2205-2230. 3. Dreyfus, G. B., Schade G. W., Goldstein A. H. // J. Geophys. Res., 2002, 107(D19): 4365, doi:10.1029/2001JD001490.

  11. Study of the Forbush Decreases, Geomagnetic Storms, and Ground-Level Enhancements in Selected Intervals and Their Space Weather Implications

    Science.gov (United States)

    Badruddin; Kumar, Anand

    2015-04-01

    We analysed geomagnetic storms, ground-level enhancements (GLEs), and Forbush decreases in cosmic-ray intensity that occurred in selected intervals. We used data of ground-based neutron monitors for the cosmic-ray intensity. We used the geomagnetic index Dst as a measure of the geomagnetic storm intensity. Solar observations and interplanetary plasma/field parameters were used to identify the solar cause(s), interplanetary structure(s), and physical mechanism(s) responsible for the geomagnetic storms, the Forbush decreases, and the GLEs of different amplitudes and time profiles; all of them occurring within four selected periods of one month each. The observed differences in cosmic-ray and geomagnetic-activity responses to the same solar sources were used to distinguish the structures and mechanisms responsible for transient cosmic-ray modulation and geomagnetic storms.

  12. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  13. Surface ozone in the urban area of Manaus, Amazonas, Brazil

    Science.gov (United States)

    Souza, R. A. F. D.; Costa, P. S.; Silva, C.; Godoi, R. M.; Martin, S. T.; Tota, J.; Barbosa, H. M.; Pauliquevis, T.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Wolf, S. A.; Cirino, G. G.

    2014-12-01

    When nitrogen oxides from vehicle and industrial emissions mix with volatile organic compounds from trees and plants with exposure to sunlight, a chemical reaction occurs contributing to ground-level ozone pollution. The preliminary results of the surface ozone study in urban area of Manaus, Amazonas State, Brazil, are presented for the first intensive operating period (IOP1) of the GoAmazon experiment (February/March 2014). Photochemical ozone production was found to be a regular process, with an afternoon maximum of the ozone mixing ratio of lower than 20 ppbv for cloudy days or clear sky weather. Typical ozone concentrations at mid-day were low (about 10 ppb). On the other hand, several high-value ozone episodes with surface ozone mixing ratios up to three times larger were registered during the dry season of 2013 (September/October). At the beginning of the wet season, the ozone concentration in Manaus decreased significantly, but diurnal variations can be found during the days with rainfall and other fast changes of meteorological conditions. Possible explanations of the nature of pulsations are discussed. Photochemical ozone production by local urban plumes of Manaus is named as a first possible source of the ozone concentration and biomass burning or power plant emissions are suggested as an alternative or an additional source.

  14. Magnetism of Rare-Earth Compounds with Non-Magnetic Crystal-Field Ground Levels

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-Sen

    2007-01-01

    @@ Among rare-earth compounds, there are many materials having non-magnetic crystal-field (CF) ground levels.To understand their magnetic behaviour at low temperatures, we study the effects of the CF levels and the Heisenberg-like coupling on the magnetic process of such a crystalline with mean-field and CF theory. It is found that the material can be magnetically ordered if the Heisenberg exchange is sufficiently strong. Additionally we obtain a condition for initial magnetic ordering, and derive a formula for estimating the Curie temperature if the ordering occurs.

  15. Standardization of the Definitions of Vertical Resolution and Uncertainty in the NDACC-archived Ozone and Temperature Lidar Measurements

    Science.gov (United States)

    Leblanc, T.; Godin-Beekmann, S.; Payen, Godin-Beekmann; Gabarrot, Franck; vanGijsel, Anne; Bandoro, J.; Sica, R.; Trickl, T.

    2012-01-01

    The international Network for the Detection of Atmospheric Composition Change (NDACC) is a global network of high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the Earth atmosphere. As part of NDACC, over 20 ground-based lidar instruments are dedicated to the long-term monitoring of atmospheric composition and to the validation of space-borne measurements of the atmosphere from environmental satellites such as Aura and ENVISAT. One caveat of large networks such as NDACC is the difficulty to archive measurement and analysis information consistently from one research group (or instrument) to another [1][2][3]. Yet the need for consistent definitions has strengthened as datasets of various origin (e.g., satellite and ground-based) are increasingly used for intercomparisons, validation, and ingested together in global assimilation systems.In the framework of the 2010 Call for Proposals by the International Space Science Institute (ISSI) located in Bern, Switzerland, a Team of lidar experts was created to address existing issues in three critical aspects of the NDACC lidar ozone and temperature data retrievals: signal filtering and the vertical filtering of the retrieved profiles, the quantification and propagation of the uncertainties, and the consistent definition and reporting of filtering and uncertainties in the NDACC- archived products. Additional experts from the satellite and global data standards communities complement the team to help address issues specific to the latter aspect.

  16. Standardization of the Definitions of Vertical Resolution and Uncertainty in the NDACC-archived Ozone and Temperature Lidar Measurements

    Science.gov (United States)

    Leblanc, T.; Godin-Beekmann, S.; Payen, Godin-Beekmann; Gabarrot, Franck; vanGijsel, Anne; Bandoro, J.; Sica, R.; Trickl, T.

    2012-01-01

    The international Network for the Detection of Atmospheric Composition Change (NDACC) is a global network of high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the Earth atmosphere. As part of NDACC, over 20 ground-based lidar instruments are dedicated to the long-term monitoring of atmospheric composition and to the validation of space-borne measurements of the atmosphere from environmental satellites such as Aura and ENVISAT. One caveat of large networks such as NDACC is the difficulty to archive measurement and analysis information consistently from one research group (or instrument) to another [1][2][3]. Yet the need for consistent definitions has strengthened as datasets of various origin (e.g., satellite and ground-based) are increasingly used for intercomparisons, validation, and ingested together in global assimilation systems.In the framework of the 2010 Call for Proposals by the International Space Science Institute (ISSI) located in Bern, Switzerland, a Team of lidar experts was created to address existing issues in three critical aspects of the NDACC lidar ozone and temperature data retrievals: signal filtering and the vertical filtering of the retrieved profiles, the quantification and propagation of the uncertainties, and the consistent definition and reporting of filtering and uncertainties in the NDACC- archived products. Additional experts from the satellite and global data standards communities complement the team to help address issues specific to the latter aspect.

  17. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  18. Ozone absorption in a mechanically stirred reactor

    OpenAIRE

    LJILJANA TAKIC; VLADA VELJKOVIC; MIODRAG LAZIC; SRDJAN PEJANOVIC

    2007-01-01

    Ozone absorption in water was investigated in a mechanically stirred reactor, using both the semi-batch and continuous mode of operation. A model for the precise determination of the volumetric mass transfer coefficient in open tanks without the necessity of the measurement the ozone concentration in the outlet gas was developed. It was found that slow ozone reactions in the liquid phase, including the decomposition of ozone, can be regarded as one pseudo-first order reaction. Under the exami...

  19. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements

    Directory of Open Access Journals (Sweden)

    Scully Adam T

    2007-02-01

    Full Text Available Abstract Background Environmental ozone can rapidly degrade cyanine 5 (Cy5, a fluorescent dye commonly used in microarray gene expression studies. Cyanine 3 (Cy3 is much less affected by atmospheric ozone. Degradation of the Cy5 signal relative to the Cy3 signal in 2-color microarrays will adversely reduce the Cy5/Cy3 ratio resulting in unreliable microarray data. Results Ozone in central Arkansas typically ranges between ~22 ppb to ~46 ppb and can be as high as 60–100 ppb depending upon season, meteorological conditions, and time of day. These levels of ozone are common in many areas of the country during the summer. A carbon filter was installed in the laboratory air handling system to reduce ozone levels in the microarray laboratory. In addition, the airflow was balanced to prevent non-filtered air from entering the laboratory. These modifications reduced the ozone within the microarray laboratory to ~2–4 ppb. Data presented here document reductions in Cy5 signal on both in-house produced microarrays and commercial microarrays as a result of exposure to unfiltered air. Comparisons of identically hybridized microarrays exposed to either carbon-filtered or unfiltered air demonstrated the protective effect of carbon-filtration on microarray data as indicated by Cy5 and Cy3 intensities. LOWESS normalization of the data was not able to completely overcome the effect of ozone-induced reduction of Cy5 signal. Experiments were also conducted to examine the effects of high humidity on microarray quality. Modest, but significant, increases in Cy5 and Cy3 signal intensities were observed after 2 or 4 hours at 98–99% humidity compared to 42% humidity. Conclusion Simple installation of carbon filters in the laboratory air handling system resulted in low and consistent ozone levels. This allowed the accurate determination of gene expression by microarray using Cy5 and Cy3 fluorescent dyes.

  20. Temporal changes of beryllium-7 and lead-210 in ground level air in Serbia

    Directory of Open Access Journals (Sweden)

    Janković Marija M.

    2014-01-01

    Full Text Available 7Be, 210Pb and 137Cs activity concentrations in ground level air at five monitoring stations (MS Vinča, Zeleno Brdo, Zaječar, Vranje and Zlatibor in Serbia were determined during the period from May 2011. to September 2012., as part of the project monitoring of Serbia. Activity of the radionuclides in air was determined on an HPGe detector (Canberra, relative efficiency 20 % by standard gamma spectrometry. Concentrations of cosmogenic 7Be, ranged from 1.5 to 8.8 mBq m-3 and exhibit maxima in the spring/summer period. The maximum concentrations for 210Pb were generally obtained in the fall for all investigated locations, and concentrations were in range 3.6 - 30 × 10-4 Bq m-3. The activity concentrations of anthropogenic 137Cs in ground level air, during the observed period, were at level 0.3 - 8 μBq m-3. The variations in 7Be/210Pb activity ratio for the investigated stations are also presented. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  1. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    Science.gov (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  2. Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2011-03-01

    Full Text Available During the Texas Air Quality Study II (TexAQS 2006 campaign, a PEroxy Radical Chemical Amplifier (PERCA was deployed on the NOAA research ves