WorldWideScience

Sample records for ground-dwelling arthropod community

  1. Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community.

    Science.gov (United States)

    Cooling, M; Sim, D A; Lester, P J

    2015-02-01

    It is frequently assumed that an invasive species that is ecologically or economically damaging in one region, will typically be so in other environments. The Argentine ant Linepithema humile (Mayr) is listed among the world's worst invaders. It commonly displaces resident ant species where it occurs at high population densities, and may also reduce densities of other ground-dwelling arthropods. We investigated the effect of varying Argentine ant abundance on resident ant and nonant arthropod species richness and abundance in seven cities across its range in New Zealand. Pitfall traps were used to compare an invaded and uninvaded site in each city. Invaded sites were selected based on natural varying abundance of Argentine ant populations. Argentine ant density had a significant negative effect on epigaeic ant abundance and species richness, but hypogaeic ant abundance and species richness was unaffected. We observed a significant decrease in Diplopoda abundance with increasing Argentine ant abundance, while Coleoptera abundance increased. The effect on Amphipoda and Isopoda depended strongly on climate. The severity of the impact on negatively affected taxa was reduced in areas where Argentine ant densities were low. Surprisingly, Argentine ants had no effect on the abundance of the other arthropod taxa examined. Morphospecies richness for all nonant arthropod taxa was unaffected by Argentine ant abundance. Species that are established as invasive in one location therefore cannot be assumed to be invasive in other locations based on presence alone. Appropriate management decisions should reflect this knowledge. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Science.gov (United States)

    Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; McManus, Reilly B; Brantley, Sandra L; Henkel, Jeff; Marek, Paul E; Hall, W Eugene; Olson, Carl A; McInroy, Ryan; Bernal Loaiza, Emmanuel M; Brusca, Richard C; Moore, Wendy

    2015-01-01

    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  3. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Wallace M Meyer

    Full Text Available The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May and summer (September 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon biomes. Four arthropod taxa: (1 beetles (Coleoptera, (2 spiders (Araneae, (3 grasshoppers and crickets (Orthoptera, and (4 millipedes and centipedes (Myriapoda were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species and 76% (254 species of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests. Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon, significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  4. 宁夏荒漠草原地面节肢动物群落组成及季节动态特征%Community composition and seasonal dynamics of ground-dwelling arthropods in the desertified steppe of Ningxia

    Institute of Scientific and Technical Information of China (English)

    刘任涛; 郗伟华; 朱凡

    2016-01-01

    以宁夏荒漠草原封育草地生境为研究对象,于2012和2013年的春、夏、秋3个季节,利用国际通用的陷阱诱捕法,调查了年内季节和年际间地面节肢动物群落组成及其结构变化特征,旨在分析宁夏荒漠草原地面节肢动物群落组成及其时间动态变化特征。调查共获得地面节肢动物2纲12目50科52个类群,其中优势类群为鳃金龟科,亚优势类群为蚁科,两者占总个体数的47.34%;常见类群包括13个类群,占总个体数的41.95%;稀有类群包括37个类群,占总个体数的10.71%。结果显示,地面节肢动物类群组成年内不同季节间和年际间均差别较大,反映了地面节肢动物对微生境变化的敏感性和适应性。地面节肢动物个体数年内不同季节间和年际间均差别较大,并且地面节肢动物与地表植被的个体数季节分布格局不同。特别是2013年,地面节肢动物个体数与地表草本个体数的季节分布呈相反变化关系。但是,地面节肢动物类群数和生物量的季节分布格局呈现出相对稳定性,年际间分布差别较小,而年内季节间分布差异较大。研究表明,宁夏荒漠草原地面节肢动物群落组成和个体数分布格局年内、年际间均变化较大,并且与地表植被呈现不同的响应规律。但地面节肢动物类群数和生物量呈现出相对稳定的季节分布格局。%A field survey was undertaken to investigate the community composition and seasonal dynamics of ground-dwelling arthropods in the desertified steppe of Ningxia.In order to determine inter-and intra-year changes,pitfall traps were used to collect specimens in spring,summer and autumn of 2012 and 2013.The traps captured 52 taxonomical groups belonging to 50 families,12 orders and 2 classes.The two dominant and subdominant groups were the Melolonthidae and Formicidae families,together making up 47.34% of total ground-dwelling

  5. Dominance in a ground-dwelling ant community of banana agroecosystem.

    Science.gov (United States)

    Carval, Dominique; Cotté, Violaine; Resmond, Rémi; Perrin, Benjamin; Tixier, Philippe

    2016-12-01

    In tropical ecosystems, ants represent a substantial portion of the animal biomass and contribute to various ecosystem services, including pest regulation and pollination. Dominant ant species are known to determine the structure of ant communities by interfering in the foraging of other ant species. Using bait and pitfall trapping experiments, we performed a pattern analysis at a fine spatial scale of an ant community in a very simplified and homogeneous agroecosystem, that is, a single-crop banana field in Martinique (French West Indies). We found that the community structure was driven by three dominant species (Solenopsis geminata, Nylanderia guatemalensis, and Monomorium ebeninum) and two subdominant species (Pheidole fallax and Brachymyrmex patagonicus). Our results showed that dominant and subdominant species generally maintained numerical dominance at baits across time, although S. geminata, M. ebeninum, and B. patagonicus displayed better abilities to maintain dominance than P. fallax and N. guatemalensis. Almost all interspecific correlations between species abundances, except those between B. patagonicus and N. guatemalensis, were symmetrically negative, suggesting that interference competition prevails in this ground-dwelling ant community. However, we observed variations in the diurnal and nocturnal foraging activity and in the daily occurrence at baits, which may mitigate the effect of interference competition through the induction of spatial and temporal niche partitioning. This may explain the coexistence of dominant, subdominant, and subordinate species in this very simplified agroecosystem, limited in habitat structure and diversity.

  6. Effectiveness of GAEC cross-compliance Standard 4.2c for biodiversity conservation in set-asides, part II (ground-dwelling Arthropods and Vertebrates

    Directory of Open Access Journals (Sweden)

    Marta Biaggini

    2016-02-01

    Full Text Available The MO.NA.CO. project has been set up to evaluate the effectiveness of some GAECs (Good Agricultural and Environmental Conditions through the institution of a monitoring network throughout the Italian territory. The present work deals with the evaluation of the Standard 4.2c, concerning biomass and biodiversity in set-asides, in relation to fauna conservation. Monitoring was performed in three areas, using the following indicators: ground-dwelling Arthropods identified at the order level, Coleoptera identified at the family level and Lacertids. Our results seem to indicate that a mild management of set-asides, consisting in mowing once a year (mid July in the examined areas, may enhance faunal diversity, above all Arthropod diversity. After mowing, the set-asides managed following Standard 4.2, hosted higher levels of Arthropod diversity and a more balanced faunistic composition in comparison to unmoved set-asides and arable lands. On the contrary, we did not find significant effects of mowing on lizard abundance. We also discussed some measures to mitigate the negative direct effects of mechanical mowing on fauna. 

  7. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.; Coyle, David. R.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.

  8. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies.

  9. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies.

  10. Effect of Afforested Shrubs on Ground-Dwelling Arthropod Diversity and Throphic Structure in Desertified Grassland Ecosystems%流动沙地人工种植灌丛对地面节肢动物多样性与功能群结构的影响

    Institute of Scientific and Technical Information of China (English)

    刘任涛; 朱凡

    2016-01-01

    Objective]The objectives of this study were to investigate and evaluate the influences of shrub plantation on the ground-dwelling arthropod diversity and their functional structure. With the adjacent exclosure grassland as a control, the effectiveness of afforested shrub plantation on the mobile sand land fixation was examined in terms of ground-dwelling diversity and trophic structure.[Method]In the desertified grassland of Yanchi County of Ningxia,the mobile sand land, and 6-,15-,36-years-old shrub plantations,as well as the adjacent exclosure grassland were selected as the experimental sites. The ground-dwelling arthropods and their functional structure were investigated by pitfall trapping method.[Result]1) It was found that the Labiduridae,Tenebrionidae,and Melolonthidae families were the dominant groups,accounting for 78. 84% of the total individuals. There were seven common groups,accounting for 15. 23% of the total individuals. The other 26 taxon belonged to the rare groups,accounting for 5. 93% of the total individuals. Meantime,there was marked different distribution of arthropod individuals between the microhabitats. For example, the Phalangidae, Lycosidae,Sphecidae families dominated the microhabitats beneath the shrub cover, whereas the Carabidae family dominated the mobile sand land. 2) Abundance of total ground-dwelling arthropods and the abundance of predators and herbivores decreased markedly ( P0. 05) changes between the afforested shrubland and the exclosure grassland,whereas the taxa richness and Shannon index increased markedly ( P <0 . 05 ) . Taxa richness in 15-years-old shrubland was found to be close to that in the exclosure grassland,whereas the Shannon index in 36-years-old shrubland was found to be close to that in the exclosure grassland. 4 ) During the process of the stabilization,the taxa richness of predators and herbivores increased (P <0. 05) markedly,with 6-years-old shrubland being close to the exclosure grassland,whereas the

  11. Determinants of the detrital arthropod community structure

    DEFF Research Database (Denmark)

    Lessard, J.P.; Sackett, Tara E.; Reynolds, William N.;

    2011-01-01

    Understanding the factors that shape community structure, and whether those factors vary geographically, has a long history in ecology. Because the abiotic environment often varies in predictable ways along elevational gradients, montane systems are ideal to study geographic variation in the dete......Understanding the factors that shape community structure, and whether those factors vary geographically, has a long history in ecology. Because the abiotic environment often varies in predictable ways along elevational gradients, montane systems are ideal to study geographic variation...... in the determinants of community structure. In this study, we first examined the relative importance of environmental gradients, microclimate, and food resources in driving spatial variation in the structure of detrital communities in forests of the southeastern USA. Then, in order to assess whether the determinants...... for the effect of climatic variation along the elevational gradient, food resource addition and microclimate alteration influenced the richness and abundance of some taxa. However, the effect of food resource addition and microclimate alteration on the richness and abundance of arthropods did not vary...

  12. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  13. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  14. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  15. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.

  16. 金沙江干热河谷人工林地表的蚂蚁群落%Communities of Ground-Dwelling Ants in Different Plantation Forests in Arid-Hot Valleys of Jinsha River,Yunnan Province,China

    Institute of Scientific and Technical Information of China (English)

    李巧; 卢志兴; 张威; 马艳滟; 冯萍

    2015-01-01

    Objective]Because of the fragile ecological environment in arid-hot valleys of Jinsha River,Yunnan Province,China,the region has been the hot spots of vegetation restoration for which plantation is the main model. To reveal the diversity status of these plantations,and the potential role in biodiversity protection,the ground-dwelling ant community was studied in 7 different plantations in Jinsha River arid-hot valleys,by comparing the difference of ground-dwelling ant community in terms of species composition and diversity. It would be reference for revegetation and biodiversity protection in the arid-hot valleys.[Method]The experimental sites were in the Desert Ecosystem Observation Station of the State Forestry Administration in Yuanmou County. The sampled plots were set in the following tree plantations: Eucalyptus spp.; Jatropha carcas; Jatropha carcas +Leucaena leucocephala; Azadirachta indica; Azadirachta indica + Acacia auriculiformis; Azadirachta indica + Acacia glauca and Azadirachta indica + Leucaena leucocephala. Investigation of ground-dwelling ant community was carried out by pitfall trappings in all 7 plantations in April ( dry season) and August (wet season),2011,respectively. At each plot,two-three 200 m transects were established for ant collection. The 20 pitfall traps with 50ml 50% glycerol were set along each transect at 10 m intervals at ground level.Pitfall traps were made from plastic containers,8 cm diameter and 15 cm deep,covered by a stone plate to protect the trap from rain. Traps were set for 5 days. The contents of each transect were placed separately in plastic bottles and deposited in 95% alcohol.[Results]The resultswere as follows: 1 ) Ant community composition: 4001 ant individuals were collected,representing 36 species in 17 genera and 5 subfamilies. The collected Myrmicinae subfamily had the most abundant genus and species,with 18 species in 6 genera,followed by Formicinae with 10 species in 5 genera,then Dolichoderinae with 6

  17. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    Abstract—Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  18. The Role of Dead Wood in Maintaining Arthropod Diversity on the Forest Floor

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James L. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Horn, Scott [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station; Wade, Dale D. [Dept. of Agriculture Forest Service, Athens, GA (United States). Southern Research Station

    2006-08-01

    Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. Finally, the results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  19. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    Science.gov (United States)

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  20. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods onindividual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, S.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  1. Canopy arthropods community within and among oak species in central Mexico

    Institute of Scientific and Technical Information of China (English)

    Efraín TOVAR-SANCHEZ

    2009-01-01

    Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak canopies were fogged during rainy and dry season. A total of 614 identified arthropod morphospecies were recognized belonging to 22 orders associated with tree canopies. A separation of host tree species during both seasons, suggesting a different community structure on host plants species was demonstrated by the principal component analyses (PCA), therefore, differences between oak species results in phenotypes that structure the composition of the arthropod community. Q.laurina registered the highest densities, diversity index and number of rare species in comparison with Q.rugosa. While arthropod biomass showed an inverse pattern. Trees more close to one another (spatial distance) register a more similar canopy arthropod fauna. This study suggests that the trees of Q.laurina could act as a center of biodiversity by the accumulation of arthropod fauna with a considerable number of rare species, which presents wide ecological roles or is involved in critical processes that maintain forest ecosystems[Current Zoology 55(2):132-144,2009].

  2. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  3. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.).

    Science.gov (United States)

    Robinson, Kathryn M; Ingvarsson, Pär K; Jansson, Stefan; Albrectsen, Benedicte R

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  4. Elevation modulates how Arctic arthropod communities are structured along local environmental gradients

    DEFF Research Database (Denmark)

    Høye, Toke Thomas; Bowden, Joseph James; Hansen, Oskar Liset Pryds

    2017-01-01

    The organisation of ecological communities along local environmental gradients provides important information about how such communities may respond to environmental change. In the Arctic, the importance of gradients in shrub cover and soil moisture for non-marine arthropod communities has been...... clearly demonstrated. By replicating studies along shrub and moisture gradients at multiple elevations and using space-for-time substitution, it is possible to examine how arthropod communities may respond to future environmental change. We collected and identified 4640 adult specimens of spiders...... allowed us to detect fine-scale variation in arthropod communities. Together our results suggest that Arctic arthropod community responses to environmental change may differ among low and high elevation sites....

  5. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    Science.gov (United States)

    Spafford, Ryan D; Lortie, Christopher J

    2013-01-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  6. Initial response of small ground-dwelling mammals to forest alternative buffers along headwater streams in the Washington Coast Range, USA

    Science.gov (United States)

    Randall J. Wilk; Martin G. Raphael; Christopher S. Nations; Jeffrey D. Ricklefs

    2010-01-01

    We assessed the short-term effects of alternative designs of forested buffer treatments along headwater streams on small ground-dwelling mammals in managed forests in western Washington, USA. Over three summers (one pretreatment and two posttreatment), we trapped 19 mammalian species along 23 streams in the northern Coast Range. We compared faunal communities in...

  7. Aerial arthropod communities of native and invaded forests, Robinson Crusoe Island, Chile.

    Science.gov (United States)

    Hagen, Erin N; Bakker, Jonathan D; Gara, Robert I

    2010-08-01

    Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.

  8. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, Biogeography, Ecology, and Population Genetics of Arthropods of the Madrean Sky Islands.

    Science.gov (United States)

    Moore, Wendy; Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; Wiens, John F; Brusca, Richard C

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains.

  9. Impact of plant invasions on local arthropod communities: a meta-analysis

    NARCIS (Netherlands)

    van Hengstum, T.; Hooftman, D.A.P.; Oostermeijer, J.G.B.; van Tienderen, P.H.

    2014-01-01

    1. Invasive plants can have a major impact on local plant and animal communities. However, effects of plant invasions on arthropod communities and the potential drivers have rarely been studied. 2. We present a meta-analysis of 56 studies on the impact of plant invasions on abundance and richness of

  10. Impact of plant invasions on local arthropod communities: a meta-analysis

    NARCIS (Netherlands)

    van Hengstum, T.; Hooftman, D.A.P.; Oostermeijer, J.G.B.; van Tienderen, P.H.

    2014-01-01

    1. Invasive plants can have a major impact on local plant and animal communities. However, effects of plant invasions on arthropod communities and the potential drivers have rarely been studied. 2. We present a meta-analysis of 56 studies on the impact of plant invasions on abundance and richness of

  11. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  12. The response of sward-dwelling arthropod communities to reduced grassland management intensity in pastures

    Directory of Open Access Journals (Sweden)

    Helden Alvin J.

    2015-12-01

    Full Text Available We compared arthropod taxon richness, diversity and community structure of two replicated grassland husbandry experiments to investigate effects of reduced management intensity, as measured by nutrient input levels (390, 224 and 0 kg/ha per year N in one experiment, and 225 and 88 kg/ha per year N in another. Suction sampling was used to collect Araneae, Coleoptera, Hemiptera and Hymenoptera, with Araneae and Coleoptera also sampled with pitfall trapping. Univariate analyses found no significant differences in abundance and species density between treatments. However, with multivariate analysis, there were significant differences in arthropod community structure between treatments in both experiments.

  13. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Brittany D McCall

    Full Text Available Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy.

  14. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  15. Characterization of the Arthropod Community Associated with Switchgrass (Poales: Poaceae) in Nebraska

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a perennial warm-season grass, native to the North American Great Plains. Recently, this prairie grass has received increased attention as a potential biomass energy crop. Little is known about the arthropod community affecting switchgrass grown under either mana...

  16. Relationship between land use pattern and the structure and diversity of soil meso-micro arthropod community.

    Science.gov (United States)

    Zhang, Limin; Zhang, Xueping; Cui, Wei

    2014-05-01

    Soil arthropod communities can provide valuable information regarding the impacts of human disturbances on ecosystem structure. Our study evaluated the structure, composition and diversity of soil meso-micro arthropod communities, in six different vegetation types and assessed the impacts of human activity. A completely randomized design, including 3 replicates from 6 sites (mowing steppe, natural grassland, severe degradation grassland, farmland, artificial shelter forest, and wetland) was used. Soil samples from the depth of 0 to 20 cm were collected during May, July, and September 2007. Soil meso-micro arthropod were separated using the Tullgren funnels method, and were identified and counted. Soil pH value, organic matter, and total nitrogen were measured in topsoil (0-20 cm) from each site. A total of 5,602 soil meso-micro arthropod individuals were collected, representing 4 classes, 14 orders, and 57 families. Most soil arthropods were widely distributed; however, some species appeared to be influenced by environment variables, and might serve as bioindicators of adverse human impacts. Canonical correspondence analysis indicated the soil arthropod distribution in the severely degraded grassland, mowing steppe, farmland, and shelter forest differed from the natural grassland. Arthropod density and diversity were greatest in May, and the forestland community was the most stable. Because of the vital role soil arthropods have in maintaining a healthy ecosystem, mechanisms to maintain their abundance and diversity should be further evaluated.

  17. Effects of Stand Types on the Community Diversity of Ground-Dwelling Beetles in the Invaded Regions of Eupatorium adenophorum Spreng.%林分类型对西昌紫茎泽兰入侵地地表甲虫群落的影响

    Institute of Scientific and Technical Information of China (English)

    亓东明

    2013-01-01

    The diversity of ground-dwelling beetles in 5 stand types from the suburbs of Xichang city was investigated with the bait-traps method.886 beetles' specimens were gathered and belonged to 15 families.The Geotrupidae,Rutelidae and Staphylinidae were the dominant groups whose individuals were the most.The number of individuals of ground-dwelling beetles was the highest in the Pinus yunnanensis forest among the five stand types (P<0.01).The study of diversity showed that the richness of the ground-dwelling in Pinus yunnanensis forest and the Cupressus funebris forest were significantly higher than that of the Quercus acutissima forest(P<0.05).The dominance and evenness of the 5 stand types had no significant difference.The diversity of the Pinus yunnanensis forest had very significant difference with the Abies sp.forest and Dodonaea viscose shrub (P<0.01).The study of similarity showed that most of the similarity was middling dissimilar and middling similar,but the similarity of the Abies sp.forest and shurb was significantly different.The results showed that the composition and individuals of the ground-dwelling beetles in the 5 stand types of the suburbs of Xichang city had significant difference with the natural pure forest.It was suggested to design stand rebuilding for the artificial pure forest to increase the biodiversity.%2010年7~9月主要采用巴氏罐诱法对四川西昌市郊紫茎泽兰入侵地5种类型林分的地表甲虫群落进行调查,共采集地表甲虫标本886份,隶属15科,其中粪金龟科、隐翅虫科和丽金龟科昆虫个体数量多,是西昌市郊林下地表甲虫的优势类群.云南松(Pinus yunnanensis)林林下地表甲虫个体数量极显著高于其他4种林分(P<0.01).多样性分析表明,云南松林与柏木(Cupressus funebris)林林下地表甲虫丰富度指数显著高于麻栎(Quercus acutissima)林(P<0.05).各林分类型地表甲虫优势度指数及均匀度指数差异不显著,柏木林优

  18. The influence of fire disturbance on the biotype structure and seasonal dynamics of ground-dwelling spider on Cangshan Mountain, Yunnan Province

    Directory of Open Access Journals (Sweden)

    Yanyan Ma

    2014-03-01

    Full Text Available In order to demonstrate the influence of fire disturbance on the function, structure and seasonal dynamics of ground-dwelling spider assemblages, we chose a burned site and an unburned control site. Both study sites were in broadleaf-conifer mixed forest on Cangshan Mountain, Yunnan Province. The results showed that (1 Zelotes zhui (relative dominance value (DV' =33.03, Pardosa chionophila (DV'=22.53 and Sibianor sp. 1 (DV'=8.75 were obviously dominant at the burned site and that Draconarius sp. 2 (DV'=63.50 was absolutely dominant at the control site; (2 At the burned site, the relative abundance of web-builders was significantly lower than that of hunters (P<0.001, whereas the relative abundance of web-builders was significantly higher than that of hunters at the control site; and (3 As season changed, the dominant group fluctuated significantly at the burned, with the lowest abundance during the part of the summer with the maximum rainfall and during the coldest winter; the spider assemblages were stable at the control site, with agelenids consistently the dominant group. These results indicated that fire disturbance changes the community function and structure of ground-dwelling spiders in mixed broadleaf-conifer forest in Cangshan Mountain, increases the relative abundance of hunters and reduces the stability of ground-dwelling spider assemblages.

  19. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Arthropods in Natural Communities in Mescal Agave (Agave durangensis Gentry in an Arid Zone

    Directory of Open Access Journals (Sweden)

    Maria P. Gonzalez-Castillo

    2011-01-01

    Full Text Available Problem statement: The arthropods have a very important role in the arid zones due to their interactions with many organism and because they constituted an important element in the structure of the plant community. Nevertheless their importance there are few knowledge about the community of arthropods associated to vegetation in arid zones in the North of Mexico. The present study had the objective of determining the abundance, richness and diversity of arthropods in three localities where there are natural populations of mescal agave in the State of Durango, Mexico. Approach: In order to know the structure community of the arthropods associated to the mescal agave, we perform a sampling schedule during March 2008 to November 2010 by direct collection, using transects in three different localities with the presence of mescal agave. The relative abundance, species richness, Shannon’s diversity index, Pielou’s Index of evenness, Jaccard’s similitude and Simpson’s dominance indexes were determined. Results: A total of 4665 individual arthropods associated to mescal agave corresponding to 39 species were found. El Mezquital had the highest abundance and relative abundance (44.1% with 29 species. The mean species abundance was not significantly different between localities using Turkey’s test. The highest density per unit of area was found in El Mezquital (La Brena had the highest species diversity (1.89, evenness (0.61 and dominance (0.78. At the taxon level, Hymenoptera had the highest number of species represented (14, followed by Coleoptera (9 and hemiptera (5, with the remaining taxons with four, two and one species each. Conclusion: The greatest similitude was observed between La Brena and El Mezquital (46% which shared seven taxons, while the least similitude was observed between El Venado and La Brena (29%. Dominance/diversity curves are presented for each locality. The species Caulotops sp., Acutaspis agavis, Chilorus sp

  1. Plant genetics affects arthropod community richness and composition: evidence from a synthetic eucalypt hybrid population.

    Science.gov (United States)

    Dungey, H S; Potts, B M; Whitham, T G; Li, H F

    2000-12-01

    To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly different communities. Second, species richness was significantly greatest on hybrids (F1 > F2 > E. amygdalina > E. risdonii). These results are similar to those from a wild population of the same species and represent the first case in which both synthetic and wild population studies confirm a genetic component to community structure. Hybrids also acted as centers of biodiversity by accumulating both the common and specialist taxa of both parental species (100% in the wild and 80% in the synthetic population). Third, species richness was significantly greater on F1s than the single F2 family, suggesting that the increased insect abundance on hybrids may not be caused by the breakup of coadapted gene complexes. Fourth, specialist arthropod taxa were most likely to show a dominance response to F1 hybrids, whereas generalist taxa exhibited a susceptible response. Fifth, in an analysis of 31 leaf terpenoids that are thought to play a role in plant defense, hybrids were generally intermediate to the parental chemotypes. Within the single F2 family, we found significant associations between the communities of individual trees and five individual oil components, including oil yield, demonstrating that there is a genetic effect on plant defensive chemistry that, in turn, may affect community structure. These studies argue that hybridization has important community-level consequences and that the genetic variation present in hybrid zones can be used to explore the genetic-based mechanisms that structure communities.

  2. [Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation].

    Science.gov (United States)

    Jiang, Jie-xian; Wan, Nian-feng; Ji, Xiang-yun; Dan, Jia-gui

    2011-09-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1.48, 1.84 and 0.64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon's diversity, and Pielou's evenness index of the arthropods in the orchard with ground cover vegetation were 83.733 +/- 4.932, 4.966 +/- 0.110, and 0.795 +/- 0.014, respectively, being significantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker's dominance index was 0.135 +/- 0.012, being significantly lower than that (0.184 +/- 0.018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0.883 +/- 0.123. 1714 +/- 0.683, and 0.781 +/- 0.040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson's correlation analysis indicated that in the orchard with ground cover vegetation, the Shannon's diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the diversity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp, Sn/Sp, and S/N.

  3. Community Composition and Structure of Soil Macro-Arthropods Under Agricultural Land Uses in the Black Soil Region of Jilin Province, China

    Institute of Scientific and Technical Information of China (English)

    WU Dong-hui; ZHANG Bai; CHEN Peng

    2006-01-01

    Soil macro-arthropods in the black soil region in Jilin Province of China were investigated with the emphasis laid on the species richness and abundance in relation to the types of land-use, i.e., farm yard, farm land and Three-North Forest Shelter Belt. Soil macro-arthropods were hand-sorted in the field. A total of 2 357 soil macro-arthropod individuals was captured and fell into 70 families. The results suggested that type of land use affected the species richness and abundance of soil macro-arthropods. Agricultural practices had a strong impact on the soil macro-arthropods community, the conventional cultivations changed the vertical structure of macro-arthropods in the soil profile, and improved the richness and abundance of macro-arthropods in the lower soil layers especially in July. The results also showed that different groups of soil macro-arthropods had various responses to land use changes.

  4. Adult carrion arthropod community in a tropical rainforest of Malaysia: analysis on three common forensic entomology animal models.

    Science.gov (United States)

    Azwandi, A; Nina Keterina, H; Owen, L C; Nurizzati, M D; Omar, B

    2013-09-01

    Decomposing carrion provides a temporary microhabitat and food source for a distinct community of organisms. Arthropods constitute a major part of this community and can be utilized to estimate the postmortem interval (PMI) of cadavers during criminal investigations. However, in Malaysia, knowledge of carrion arthropod assemblages and their succession is superficial. Therefore, a study on three types of forensic entomology animal model was conducted from 27 September 2010 to 28 October 2010 in a tropical rainforest at National University of Malaysia, Bangi, Selangor, Malaysia. Over one month collections of arthropods were made on nine animal carcasses: three laboratory rats (Rattus norvegicus, mean weight: 0.508 ± 0.027 kg), three rabbits (Oryctolagus cuniculus, mean weight: 2.538 ± 0.109 kg) and three long tailed macaque (Macaca fascicularis, mean weight: 5.750 ± 0.551 kg). A total of 31,433 arthropods belonging to eight orders and twenty-eight families were collected from all carcasses. Among 2924 of adults flies collected, approximately 19% were calliphorids with Chrysomya megacephala (Fabricius, 1794) being the most abundant. Arthropod taxon richness was lower on rat carcasses compared to that of rabbit and monkey carcasses, and this was more apparent during the first week of decomposition. However, there were no significant differences in Shannon-Weiner index (H'), Simpson dominance index (C) and Pielou's Evenness index (J) between different animal model. The arthropod assemblages associated to animal model were different significantly (p<0.05) while decomposition stage was a significant factor influencing insect assemblages (p<0.05). Analysis on the arthropods succession indicated that some taxa have a clear visitation period while the others, particularly Coleoptera, did not show a clear successional pattern thus require futher insect succession study. Although human bodies were not possible for the succession study, most of the arthropods collected are

  5. The Effect of Decreasing Temperature on Arthropod Diversity and Abundance in Horse Dung Decomposition Communities of Southeastern Massachusetts

    Directory of Open Access Journals (Sweden)

    Patrick Kearns

    2012-01-01

    Full Text Available Dung from large mammalian herbivores provides a concentrated food resource, rich in bacteria, nitrogen, and many forms of carbon that support a diverse community of arthropods. Detrital communities, while essential to nutrient cycling, are poorly studied. From July 2010 to October 2010, we sampled these arthropod assemblages using pitfall traps baited with horse dung at five sites southeast of Boston, MA. A total of 396 samples were collected, resulting in 10,299 arthropod specimens. We found a highly diverse group of arthropods dominated by Coleoptera (n=3696 and Diptera (n=3791 and noted the absence of hymenopterans, a group that was dominant in previous studies on these communities. The community had a high level of evenness (0.93 Shannon evenness and lacked a dominant species, with no one species obtaining more than 7% relative abundance. Species accumulation curves indicate near maximum diversity was reached for each site and the study as a whole (93% maximum calculated Shannon Diversity. A strong effect of seasonality was also observed on the community, as shown by a strong shift in community at the end of August. The community sampled displayed a high similarity to previous studies, indicating a cosmopolitan distribution as well as an opportunistic community.

  6. Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard.

    Science.gov (United States)

    Gómez, José Alfonso; Campos, Mercedes; Guzmán, Gema; Castillo-Llanque, Franco; Vanwalleghem, Tom; Lora, Ángel; Giráldez, Juan V

    2017-01-30

    A 3-year experiment compared in an olive orchard the effect of different cover crops' composition on runoff, water erosion, diversity of annual plants, and arthropod communities which could provide an alternative to conventional management based on tillage (CT). The cover crops evaluated were a seeded homogeneous grass (GC), a seeded mix of ten different species (MCseeded), and a non-seeded cover by vegetation naturally present at the farm after 20 years of mowing (MCnatural). The results suggest that heterogeneous cover crops can provide a viable alternative to homogeneous ones in olives, providing similar benefits in reducing runoff and soil losses compared to management based on bare soil. The reduction in soil loss was particularly large: 46.7 in CT to 6.5 and 7.9 t ha(-1) year(-1) in GC and MCseeded, respectively. The heterogeneous cover crops resulted in greater diversity of plant species and a modification of the arthropod communities with an increased number of predators for pests. The reduction of the cost of implanting heterogeneous cover crops, improvement of the seeding techniques, and selection of species included in the mixes require additional research to promote the use of this practice which can deliver enhanced environmental benefits.

  7. Mechanisms underlying plant sexual dimorphism in multi-trophic arthropod communities.

    Science.gov (United States)

    Petry, William K; Perry, Kayla I; Fremgen, Aleshia; Rudeen, Sarahi K; Lopez, Mitchell; Dryburgh, John; Mooney, Kailen A

    2013-09-01

    A growing body of research documents the importance of plant genetic effects on arthropod community structure. However, the mechanisms underlying these effects are often unclear. Additionally, plant genetic effects have largely been quantified in common gardens, thus inflating the estimates of their importance by minimizing levels of natural variation. Using Valeriana edulis, a dioecious plant with genetically based sex determination, we conducted surveys and experiments on wild-grown individuals to document field patterns of arthropod association between the sexes and the mechanisms underlying these plant genetic effects. Three years of surveys revealed strong and consistent sex-biased arthropod association in wild-grown plants: female plants supported 4-fold, 1.5-fold, and 4-fold higher densities of aphids, aphid predators, and aphid-tending ants, respectively, compared to males. There was mixed evidence that the female bias for aphids was due to higher plant quality, while we found no difference between plant sexes in aphid preference or the top-down effects of predators and tending ants. Female bias for ants was due to both the greater attractiveness of female plants (direct effect mediated by floral nectar) and an independent, weaker effect of higher aphid abundance on females (density-mediated indirect effect). Conversely, the female bias for predators was driven solely by the greater attractiveness of female plants. We did not find interaction modification, i.e., ant-aphid and predator-aphid interactions were equivalent between plant sexes. Plant sex explained 0.24%, 2.28%, and 4.42% of the variance in aphids, predators, and ants, respectively, values comparable to but slightly weaker than those previously reported from common-garden studies. In contrast to the prediction of diminished plant genetic effects with increasing trophic level, we show how weak indirect effects on predators and parasitoids (via herbivores) can be complemented by strong direct

  8. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests.

    Science.gov (United States)

    Moretti, Marco; Duelli, Peter; Obrist, Martin K

    2006-08-01

    Changes in ecosystem functions following disturbances are of central concern in ecology and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions. In many forest ecosystems, one such important natural disturbance is fire. The aim of this study was to understand the variation of resilience in six functional groups of invertebrates in response to different fire frequencies in southern Switzerland. We measured resilience by analysing arthropod species composition, abundance and diversity in plots where the elapsed time after single or repeated fires, as determined by dendrochronology, varied. We compared data from these plots with data from plots that had not burned recently and defined high resilience as the rapid recovery of the species composition to that prior to fire. Pooling all functional groups showed that they were more resilient to single fires than to repeated events, recovering 6-14 years after a single fire, but only 17-24 years after the last of several fires. Flying zoophagous and phytophagous arthropods were the most resilient groups. Pollinophagous and epigaeic zoophagous species showed intermediate resilience, while ground-litter saprophagous and saproxylophagous arthropods clearly displayed the lowest resilience to fire. Their species composition 17-24 years post-burn still differed markedly from that of the unburned control plots. Depending on the fire history of a forest plot, we found significant differences in the dominance hierarchy among invertebrate species. Any attempt to imitate natural disturbances, such as fire, through forest management must take into account the recovery times of biodiversity, including functional group composition, to ensure the conservation of multiple taxa and ecosystem functions in a sustainable manner.

  9. Richness, diversity, and similarity of arthropod prey consumed by a community of Hawaiian forest birds.

    Science.gov (United States)

    Banko, Paul C.; Peck, Robert W.; Brinck, Kevin W.; Leonard, David L.

    2015-01-01

    We evaluated the diet richness, diversity, and similarity of a community of seven endemic and two introduced passerine birds by analyzing the composition of arthropod prey in fecal samples collected during 1994–1998 at Hakalau Forest National Wildlife Refuge, Hawai‘i Island. Most prey fragments were identified to order, but we also distinguished among morpho-species of Lepidoptera based on the shape of larval (caterpillar) mandibles for higher resolution of this important prey type. Diets were compared among feeding specialists, generalists, and “intermediate” species and among introduced and three endangered Hawaiian honeycreeper (Fringillidae) species. Lepidoptera (moths), especially the larval (caterpillar) stage, comprised the greatest proportion of prey in samples of all bird species except for the introduced Japanese white-eye (Zosterops japonicus; JAWE). Araneae (spiders) was the most abundant order in JAWE samples and the second most abundant order for most other species. The two specialist honeycreepers ranked lowest in the richness and diversity of arthropod orders, but only the ‘akiapōlā‘au (Hemignathus munroi, AKIP) was significantly lower than the three generalist or intermediate honeycreeper species. The diversity of arthropod orders was significantly lower for the three endangered honeycreeper species compared to the two introduced species. No significant differences were observed among the five honeycreepers with respect to the arthropod orders they consumed. The use of arthropod orders taken by endangered honeycreepers and introduced species was significantly different in all paired comparisons except for JAWE and ‘ākepa (Loxops coccineus; AKEP). In terms of richness and diversity of caterpillar morpho-species in the diet, only the specialist, AKEP, was significantly lower than all three generalist and intermediate species. Both AKEP and AKIP consumed a significantly different diet of caterpillar morpho-species compared to at least

  10. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles

    Science.gov (United States)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  11. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available BACKGROUND: Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. METHODS AND RESULTS: In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. CONCLUSIONS: Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the

  12. Do Ground-Dwelling Vertebrates Promote Diversity in a Neotropical Forest? Results from a Long-Term Exclosure Experiment

    Science.gov (United States)

    Kurten, Erin L.; Carson, Walter P.

    2015-01-01

    Using a decade-long exclosure experiment in Panama, we tested the hypothesis that ground-dwelling vertebrate herbivores and seed predators are crucial determinants of tropical tree diversity and abundance within the understory. Our exclosure experiment is a community-level test of the Janzen–Connell hypothesis. Therefore, we predicted that vertebrate exclusion would (a) increase plant densities and (b) lower richness, diversity, and evenness. Excluding vertebrates caused a 38%–46% increase in plant densities, which, in contrast to our predictions, caused species richness to increase by 12%–15%. Because vertebrate exclusion causes plant species richness to increase, not decrease, vertebrates are unlikely to be causal agents of Janzen–Connell effects. We synthesized this and previous studies to explore why plant richness responds differently to defaunation and exclosures in tropical forests worldwide. Likely because of their contrasting effects on mesoconsumers, defaunation and exclosures cause decreases and increases in plant density respectively, which in turn cause corresponding changes in richness. PMID:26955084

  13. Land Use Intensification Effects in Soil Arthropod Community of an Entisol in Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2014-01-01

    Full Text Available The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon’s diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  14. Land use intensification effects in soil arthropod community of an entisol in Pernambuco State, Brazil.

    Science.gov (United States)

    Siqueira, G M; Silva, E F F; Paz-Ferreiro, J

    2014-01-01

    The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon's diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  15. The new transgenic Cry1Ab/vip3H rice poses no ecological risks to arthropod communities in rice agroecosystems

    Science.gov (United States)

    The ecological risks to non-target organisms should be rigorously assessed before Bt crops are released. Here, the impacts of a new Cry1Ab/Vip3H rice line on arthropod communities in rice agroecosystems were evaluated across three years. Arthropods collected via vacuum were sorted into five guilds. ...

  16. The effect of repeated release of the predatory mite Neoseiulus (Amblyseius) cucumeris on arthropod communities in citrus ecosystems

    OpenAIRE

    Jie Ji; Yanxuan Zhang; Xia Chen; Jianzhen Lin; Li Sun

    2012-01-01

    In order to study the effect of repeated release of Neoseiulus (Amblyseius) cucumeris on the species composition and diversity of arthropod community in citrus ecosystems, we established bio-control orchards, natural orchards and chemical control orchards in the Mawei and Jin’an experimental field of Fuzhou, China. Our results indicated that the species richness of bio-control orchards was higher than that of natural or chemical control orchards at both sites. Diversity and evenness indices w...

  17. Differences in arthropod communities between island and inland Masson pine forests infested by pine wilt disease in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    WU Hai-wei; LUO You-qing; SHI Juan; YAN Xiao-su; CHEN Wei-ping; JIANG Ping

    2008-01-01

    The invasion of Bursaphelenchus xylophilus (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacks Masson pine (Pinus massoniana) forests and causes great economic losses in China. In this study, we assessed whether the effect of the invasion of PWN is different between island and inland forests. Arthropods were sampled in Fuyang (inland) and Zhoushan (island) counties in Zhejiang Province with sweep netting and light traps at four plots. During two field periods (May to June 2004 and September to October 2005) a total of 21,916 insects, representing 384 species belonging to 99 families and 15 orders,were collected in the sample plots from the island, whereas, from the inland forest a total of 29,262 insects, representing 308 species belonging to 96 families and 13 orders, were found. A hierarchical cluster analysis (HCA) and one-way ANOVA, based on the composition of different arthropod guilds, were performed. The results showed that there was no significant difference in the composition of arthropod communities at the family level between inland and island. But these two habitats had a significant effect on the composition of species, individuals, sub-communities and energy class levels. Statistically, the composition of the two orders, Lepidoptera and Diptera, in the two habitats were significantly different.

  18. Distribution of ground-dwelling beetles (Coleoptera) across a forest-clearcut ecotone in Wolong Natural Reserve, southwestern China

    Institute of Scientific and Technical Information of China (English)

    XIAO-DONG YU; TIAN-HONG LUO; JIAN YANG; HONG-ZHANG ZHOU

    2006-01-01

    The influence of edge effect on ground-dwelling beetles (Coleoptera) across a forest-clearcut ecotone was studied in Wolong Natural Reserve, southwestern China. During the field research, a total of 30 739 beetles were collected with pitfall traps along transects, which extending 100 m from the edge into the forest interior and 100 m into the clearcut. Of the collection, Carabidae comprised 92%, Staphylinidae 3%, Curculionidae 2%, and Tenebrionidae 2%, and these four families can be considered as abundant groups. Family richness, Shannon diversity and equitability display a significant decrease from forest interior, edge to clearcut. Based on the family composition and abundance, ground-dwelling beetles of the forest interior can be separated from those in the clearcut by Principal coordinate analysis ordination, and beetle assemblages in the forest edge were more similar to forest assemblages than to those found in the clearcut by cluster analysis. Seasonal dynamics of family richness showed a monotone peak in the middle season, with a highest value in the forest interior and a lowest value in the clearcut. Family abundance showed two peaks in the middle season, always with more individuals in the clearcut than in the forest interior or in the edge. Multiple linear regression analyses showed that the cover of shrub and fitter were the two most important factors in determining family richness, Shannon diversity, equitability and abundance. Our results show that the forest edge and clearcut have obviously different composition and diversity of ground-dwelling beetles from forest interior at the family level. However, more edges have been formed due to increasing forest fragmentation (clearcutting or logging), so it is necessary to preserve large and intact forest to protect the diversity of ground-dwelling beetles in Wolong Natural Reserve.

  19. Terrestrial Riparian Arthropod Investigations In the Big Beaver Creek Research Natural Area, North Cascades National Park Service Complex,1995-1996: Part III, Arachnida:Araneae

    Data.gov (United States)

    Oak Ridge National Laboratory — Ground-dwelling spider communities of nine distinct habitat types were sampled within the riparian corridor of lower Big Beaver Creek, North Cascades National Park...

  20. Effect of some environmental factors on arthropod communities in bat guano

    Directory of Open Access Journals (Sweden)

    Watanasit, S.

    2002-01-01

    Full Text Available Data are presented on the taxonomic composition of arthropod fauna found in bat guano in 6 limestone caves of southern Thailand, collected by Berlese's funnel type trap. There were 2 sampling periods; the first from 29 April to 7 May 1996 and the second from 1 to 4 August 1996. Combined samples of bat guano comprised 4,430 individuals of 32 families of the following : 13 orders (2 classes ; Arachnida and Hexapoda Araneae, Acari, Pseudoscorpiones, Collembola, Blattaria, Hemiptera, Thysanoptera, Psocoptera, Neuroptera, Diptera, Coleoptera, Lepidoptera and Hymenoptera. The relationships between arthropods and physical factors such as cave temperature, relative humi-dity of the cave, moisture in guano, pH of guano, total nitrogen in guano and organic matters in guano were explored. The results showed that the number of individuals of Leptonetidae (P<0.05, Araneae (P<0.05 and Psocoptera (P<0.05 positively correlated with total nitrogen in guano but numbers of Blattellidae (P<0.05 and Blattaria (P<0.05 negatively correlated with total nitrogen in guano. The total numbers of families of arthropods (P<0.05 and the number of individuals of Leptonetidae (P<0.05, Sphaeropsocidae (P<0.05, Liposcelidae (P<0.05, Alleculidae (P<0.01, Chironomidae (P<0.05, Formicidae (P<0.05, Araneae (P<0.05, Psocoptera (P<0.01 and Hymenoptera (P<0.05 positively correlated with organic matters in guano. None of all arthropods correlated with cave temperature, relative humidity of the cave, moisture in guano and pH of guano. Study on the effect of type of bat guano (insectivore or frugivore bat guano and the light factor (light or dark zone on arthropods showed that type of bat guano has an effect on total numbers of families (P<0.05 and the number of individuals of Leptonetidae (P<0.01, Laelapidae (P<0.05, Blattellidae (P<0.05, Sphaeropsocidae (P<0.01, Liposcelidae (P<0.05, Dermestidae (P<0.01, Staphylinidae (P<0.01, Tineidae (P<0.05, Araneae (P<0.01, Blattaria (P<0

  1. Where is the extended phenotype in the wild? The community composition of arthropods on mature oak trees does not depend on the oak genotype.

    Directory of Open Access Journals (Sweden)

    Martin M Gossner

    Full Text Available Through a series of common garden experiments, it has been shown that heritable phenotypic differences between individual trees can affect arthropod communities. However, field studies under heterogeneous environmental conditions remain rare. In the present study, we investigated the genetic constitution of 121 mature oak host trees at different trophic levels from 10 sites across Bavaria, southern Germany and their associated insect communities. A total of 23,576 individuals representing 395 species of beetles and true bugs were evaluated. In particular, we determined whether the composition of arthropod communities is related to the oak genotype and whether the strength of the relationships decreases from lower to higher trophic levels, such as for phytophagous, xylophagous, zoophagous, and mycetophagous species. The genetic differentiation of oaks was assessed using eight microsatellite markers. We found no significant influence of the oak genotype on neither the full beetle and true bug community nor on any of the analyzed trophic guilds. In contrast, the community composition of the insects was highly related to the space and climate, such that the community similarity decreased with increases in spatial distance and climatic differences. The relationship with space and climate was much stronger in beetles than in true bugs, particularly in mycetophagous species. Our results suggest that spatial processes override the genetic effects of the host plant in structuring arthropod communities on oak trees. Because we used neutral markers, we cannot exclude the possibility that trait-specific markers may reveal a genetic imprint of the foundation tree species on the composition of the arthropod community. However, based on the strength of the spatial patterns in our data set, we assume that genetic differences among oaks are less important in the structuring of arthropod communities. Future whole-genome studies are required to draw a final

  2. [Effects of management level on community characteristics of arthropod and on population numbers of target insect pest and its natural enemies in graperies].

    Science.gov (United States)

    Li, Changgen; Zou, Yunding; Bi, Shoudong; Wu, Houchang; Chen, Xiangyang; Li, Fen; Zhou, Xiazhi; Lin, Xuefei

    2005-12-01

    In this paper, an investigation on the grape tree and ground vegetation was conducted in two graperies with intensive and extensive management, aimed to study the effects of different management level on the community characteristics of arthropod, and the population numbers of target pest Halticinae chalybca (Illiger) and its natural enemies Erigonidium gram inicolum and Tetragnathidae. The results showed that between the two graperies, the individual number, concentration value, evenness, and Hill diversity index of arthropod community had no significant difference, but its species number and abundance was significantly different (P number of arthropod on the grape trees in intensive management grapery was not significantly different from that in extensive management grapery, while on the ground vegetation, it was significantly different (P numbers of H. chalybca and its natural enemies on the trees and ground vegetations of the two graperies.

  3. Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies.

    Science.gov (United States)

    Guo, Jingfei; He, Kanglai; Hellmich, Richard L; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Ahmed, Tofael; Wang, Zhenying

    2016-02-26

    Possible non-target effect of transgenic cry1Ie maize exerts on natural enemy community biodiversity in the field is unresolved. In the present study, a 2-yr comparison of transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) on natural enemy community biodiversity were compared with whole plant inspections, pitfall traps and suction sampler. Natural enemy diversity indices (Shannon-Wiener', Simpson's and Pielou's index) and abundance suggested there were no significant differences between the two types of maize. The only exceptions were the Pielou's index for whole plant inspections in 2013 and abundance for pitfall traps in 2012, which were significantly higher in Bt maize than those of non-Bt maize. The main species of natural enemies were identical in Bt and non-Bt maize plots for each method and the three methods combined. For whole plant inspections, Bt maize had no time-dependent effect on the entire arthropod natural enemy community, and also no effect on community dissimilarities between Bt and non-Bt maize plots. These results suggested that despite the presence of a relatively minor difference in natural enemy communities between Bt and non-Bt maize, transgenic cry1Ie maize had little, if any, effect on natural enemy community biodiversity.

  4. The New Transgenic cry1Ab/vip3H Rice Poses No Unexpected Ecological Risks to Arthropod Communities in Rice Agroecosystems.

    Science.gov (United States)

    Lu, Zengbin; Dang, Cong; Han, Naishun; Shen, Zhicheng; Peng, Yufa; Stanley, David; Ye, Gongyin

    2016-04-01

    The ecological risks to nontarget organisms should be rigorously assessed before Bt crops are released. Here, the impacts of a new Cry1Ab/Vip3H rice line on arthropod communities in rice agroecosystems were evaluated across 3 yr. Arthropods collected via vacuum were sorted into five guilds. The abundance and proportion of each guild as well as community-level parameters were determined in Cry1Ab/Vip3H and control rice fields. Changes in arthropod species assemblage over sampling dates were investigated by principal response curves (PRCs). Cry1Ab/Vip3H rice did not exert significant impacts on the seasonal density and proportion of each guild, except parasitoids. Detritivore seasonal density, but not its relative abundance, was significantly affected by Cry1Ab/Vip3H rice. Four community indices (species richness S, Shannon-Wiener index H', Simpson index D, and evenness index J') were similar between rice types. PRCs revealed a slight community difference between rice types in the past two tested years, with rice types accounting for 1.0-3.5% of the variance among arthropod communities. However, sampling dates explain 32.1-67.6% for these community differences. Of the 46 taxa with higher species weights, 26.1% of the taxa were significantly different, including seven taxa with higher abundance and five with lower density in Cry1Ab/Vip3H rice fields. These differences may be attributed to change in abundance of prey or hosts but not to direct effects of Bt proteins. We infer that this new Cry1Ab/Vip3H rice line poses no unintended ecological risks to the arthropod community. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. 热带次生林火烧前后土壤节肢动物群落组成和分布特征的变化%Change on the Comosition and Distribution of Soil Arthropod Community before and afier Burning in the Secondary Forest of Xishuangbanna

    Institute of Scientific and Technical Information of China (English)

    杨效东; 唐勇; 唐建纬

    2001-01-01

    The effects of controlled burning of slash-and-burn agriculture on soil arthropod community of a 7-year tropical secondary forest in Xishuangbanna were studied.The results showed that groups of soil arthropod decreased 28.57%,and individuals of soil arthropod reduced 72.7% after burning.The composition of soil arthropod communities changed as well.The proportion of individuals of Acari,Collembola,Protura in the 0~15cm soil layer and Hymenoptera (ant) in burned leftover increased,and became dominant groups of soil arthropod communities after firing.The vertical structure of soil arthropod communities in secondary forest was disordered.There were much more groups and individuals of soil arthropod in soil bottom than those in soil surface after fire.The diversity of soil arthropod communities decreased after fire.

  6. Does selective logging change ground-dwelling beetle assemblages in a subtropical broad-leafed forest of China?

    Science.gov (United States)

    Yu, Xiao-Dong; Liu, Chong-Ling; Lü, Liang; Bearer, Scott L; Luo, Tian-Hong; Zhou, Hong-Zhang

    2017-04-01

    Selective logging with natural regeneration is advocated as a near-to-nature strategy and has been implemented in many forested systems during the last decades. However, the efficiency of such practices for the maintenance of forest species are poorly understood. We compared the species richness, abundance and composition of ground-dwelling beetles between selectively logged and unlogged forests to evaluate the possible effects of selective logging in a subtropical broad-leafed forest in southeastern China. Using pitfall traps, beetles were sampled in two naturally regenerating stands after clearcuts (ca. 50 years old, stem-exclusion stage: selectively logged 20 years ago) and two mature stands (> 80 years old, understory re-initiation stage: selectively logged 50 years ago) during 2009 and 2010. Overall, selective logging had no significant effects on total beetle richness and abundance, but saproxylic species group and some abundant forest species significantly decreased in abundance in selectively logged plots compared with unlogged plots in mature stands. Beetle assemblages showed significant differences between selectively logged and unlogged plots in mature stands. Some environmental characteristics associated with selective logging (e.g., logging strategy, stand age, and cover of shrub and moss layers) were the most important variables explaining beetle assemblage structure. Our results conclude that selective logging has no significant impacts on overall richness and abundance of ground-dwelling beetles. However, the negative effects of selective logging on saproxylic species group and some unlogged forest specialists highlight the need for large intact forested areas for sustaining the existence of forest specialist beetles.

  7. Seed handling by primary frugivores differentially influence post-dispersal seed removal of Chinese yew by ground-dwelling animals.

    Science.gov (United States)

    Pan, Yang; Bai, Bing; Xiong, Tianshi; Shi, Peijian; Lu, Changhu

    2016-05-01

    Seed handling by primary frugivores can influence secondary dispersal and/or predation of post-dispersal seeds by attracting different guilds of ground-dwelling animals. Many studies have focused on seeds embedded in feces of mammals or birds; however, less is known about how ground-dwelling animals treat seeds regurgitated by birds (without pulp and not embedded in feces). To compare the effect of differential seed handling by primary dispersers on secondary seed removal of Chinese yew (Taxus chinensis var. mairei), we conducted a series of exclosure experiments to determine the relative impact of animals on the removal of defecated seeds (handled by masked palm civet), regurgitated seeds (handled by birds) and intact fruits. All types of yew seeds were consistently removed at a higher rate by rodents than by ants. Regurgitated seeds had the highest removal percentage and were only removed by rodents. These seeds were probably eaten in situ without being secondarily dispersed. Defecated seeds were removed by both rodents and ants; only ants might act as secondary dispersers of defecated seeds, whereas rodents ate most of them. We inferred that seeds regurgitated by birds were subjected to the highest rates of predation, whereas those dispersed in the feces of masked palm civets probably had a higher likelihood of secondary dispersal. Seeds from feces attracted ants, which were likely to transport seeds and potentially provided a means by which the seeds could escape predation by rodents. Our study highlighted that primary dispersal by birds might not always facilitate secondary dispersal and establishment of plant populations.

  8. Effects of lac-corn agroforest ecosystem on ground-dwelling ant diversity and functional groups%紫胶玉米混农林模式对地表蚂蚁多样性及功能群的影响

    Institute of Scientific and Technical Information of China (English)

    卢志兴; 李可力; 张念念; 陈又清

    2016-01-01

    survival and higher biodiversity. Lac insects (Kerria spp.) as well as their excrement are important resource insects widely used in many fields including food, medicine and military industry. Lac-corn agroforestry ecosystem is popular pattern of lac production in mountain areas of Southwest China where lac production accounts for a good fraction of the income of farmers’ households. However, there is less research on the functional groups of arthropods in lac-corn agroforestry. Ants (Hymenoptera: Formicidae) are widely distributed in many terrestrial ecosystems. They can be used as indicator for evaluating environmental changes and ecosystem health because they are sensitive to disturbances in important functions of ecosystem. Studies have shown that functional groups constitute a useful method of predicting the response of ant communities to disturbances and environmental changes. This study determined the effects of lac-corn agroforest ecosystem on the diversity and functional groups of ground-dwelling ant communities and the role of lac-corn agroforestry ecosystem in ant diversity and ecosystem function protection. A research was conducted using pitfall traps on ground-dwelling ant communities in lac plantation, lac-corn agroforest ecosystem and cornfield in Lüchun County. A total of 11 781 individual ants were collected, belonging to 78 species, 37 genera and 7 sub-families. Lac-corn agroforest ecosystem had higher species and rare species numbers of ground-dwelling ant communities. In lac-corn agroforest ecosystem, the numbers species and rare species increased by 41% and 85%, respectively, compared with cornfield. Ant abundance in lac-corn agroforest ecosystem was significantly higher than that in lac plantation and cornfield. Ant abundance, ACE of ant in lac-corn agroforest ecosystem and lac plantation were significantly higher those of cornfield. Ant community structure of lac-corn agroforest ecosystem was similar to that of lac plantation, but dissimilar

  9. Impact of habitat diversification on arthropod communities: A study in the fields of Chinese cabbage, Brassica chinensis

    Institute of Scientific and Technical Information of China (English)

    HONG-JIAO CAI; ZHI-SHENG LI; MIN-SHENG YOU

    2007-01-01

    Field trials were carried out from June to August in 2004 at Wuyishan (Wuyi Mountains), Fujian province, China, to determine the effects of habitat diversification on arthropod communities. Two Chinese cabbage, Brassica chinensis, field 1 (Fl) and field 2 (F2) surrounded by diverse vegetable cultivars were selected, while a monoculture of Chinese cabbage served as the control field (CK). The results showed that: (i) when comparing insect abundance of each order between different habitats, significantly higher numbers of lepidopterous insects (39.76% from the each order) and lower densities of Hymenoptera (19.82%) were found in CK than in F1 and F2; (ii) compared with CK, F1 and F2 had a lower percentage of species richness and an abundance of herbivorous insects, but increased richness, abundance and biodiversity of predatory insects; (iii) no differences were observed in neutral insects' guild between different fields; and (iv) the dominant species for each guild depends on the habitat types and sampling dates. This study suggests that intercropping could conceivably be used in these habitats to increase the population of natural predators, thus achieving desirable and ecologically friendly results in vegetable fields.

  10. Environment heterogeneity and seasonal effects in ground-dwelling ant (Hymenoptera: Formicidae) assemblages in the Parque Estadual do Rio Doce, MG, Brazil.

    Science.gov (United States)

    Coelho, Igor R; Ribeiro, Sérvio P

    2006-01-01

    This work aimed to explore the response of ant species assemblage to contrasting types of forests in a semideciduous stationary rainforest, in the Parque Estadual do Rio Doce, South Eastern Brazil. We compared antropomorphic borders of this park and natural ecotones, such as lake margins continuous with forests, as well as preserved forests far from ecotones. We investigated whether ground-dwelling ant species richness, abundance and composition would change according to forest types and ecotones. We expected greater species richness in interior tall forest, compared with low forest or ecotone habitats. In addition, we tested the effect of climate seasonality on ant assemblages found in each studied vegetation type. Each forest type was surveyed based on a minimum transect sampling unit of 150 m long summing up 30 pit-falls per unit. Two sampling events, one in dry season (September of 2001) and another in the rainy season (January of 2002) were performed. For both seasons, tall forest presented greater total number of ant species, however lower mean ant species and abundance per trap than other forest types, thus corroborating the prediction that ecotones might present high alpha diversity. Mean species richness and abundance did not differ between interior low forest and lake edge, or between these habitats and reserve border. In general, species composition were not clearly defined by forest types. Results here found suggest that species loss or community dominance by generalist species, eventually due to deforestation, is probably a much greater problem than previously thought. However, to understand patterns of insect species diversity and distribution in tropical ecosystem should be taken in account much more comprehensive, spatially explicit sampling designs.

  11. Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system.

    Science.gov (United States)

    Caruso, Tancredi; Trokhymets, Vladlen; Bargagli, Roberto; Convey, Peter

    2013-06-01

    Current meta-community theories postulate that the structure of local communities depends on dispersal, environmental filtering, and biotic interactions. However, disentangling the relative effects of these factors in the field and for diverse assemblages is a major challenge. A solution is to address natural but simple communities (i.e. with low numbers of species in few trophic levels), wherein one of these factors is predominant. Here, we analyse the micro-arthropod community of a moss-turf habitat typical of the Antarctic Peninsula region, and test the widely accepted hypothesis that this system is abiotically driven. In the austral summers 2006/7 and 2007/8, we sampled nearly 80 units of moss from four islands in the Argentine Islands. Using variance partitioning, we quantified the relative contribution of: (1) multiple scale spatio-temporal autocorrelation; (2) environmental effects; (3) the island effect. Little variance (1 %) was accounted for by sources 1 (1 %, significant) and 2 (structured environmental variation (7 %). Null models demonstrated that species co-occurred less frequently than expected by chance, suggesting the prevalence of negative interactions. Our data support the novel hypothesis that negative biotic interactions are the most important structuring force of this micro-arthropod community. The analysed system is a good proxy for more complex communities in terms of taxonomic composition and the functional groups present. Thus, biotic interaction might be a predominant factor in soil meta-community dynamics.

  12. [Arthropod community associated with the canopy of Attalea phalerata Mart. (Arecaceae) during the flood period of the Pantanal of Poconé, Mato Grosso, Brazil].

    Science.gov (United States)

    Battirola, Leandro D; Adis, Joachim; Marques, Marinêz I; Silva, Fábio H O

    2007-01-01

    Six trees of the palm species Attalea phalerata Mart. were sampled during high water (aquatic phase) of the Pantanal of Mato Grosso (February 2001), by canopy fogging. The composition, structure, and biomass of the arthropod community associated with their canopies were analysed, as well as the influence the flood pulse renders on it. Each tree was fogged once, followed by three consecutive collections. A total of 63,657 arthropods (643.0 +/-; 259.87 ind./m(2)) were collected, representing 25 orders in the classes Insecta, Arachnida, Diplopoda and Crustacea. The dominant groups were Acari (40.0%; 257.2 +/- 116.50 ind./m(2)), Coleoptera (12.0%; 77.5 +/- 64.93 ind./m(2)), Psocoptera (9.2%; 59.0 +/- 38.00 ind./m(2)), Diptera (8.4%; 54.1 +/- 18.72 ind./m(2)), Collembola (8.3%; 53.4 +/- 26.24 ind./m(2)) and Hymenoptera (7.9%; 50.6 +/- 21.40 ind./m(2)), the latter mostly represented by Formicidae (49.2%). Arthropod biomass amounted to 8.86 g dry weight and 0.18 mg/m(2). Coleoptera, Blattodea, Orthoptera, Araneae and Hymenoptera were the most representative taxa. The hydrological regime (flood pulse), as well as seasonality, appear to strongly affect the composition and structure of this canopy community.

  13. Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  14. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?

    Science.gov (United States)

    Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J

    2016-07-01

    In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized

  15. 猕猴桃园节肢动物群落结构及其动态研究%Structure and dynamics of arthropod communities in kiwifruit orchards

    Institute of Scientific and Technical Information of China (English)

    杜超; 伏召辉; 赵惠燕

    2011-01-01

    【目的】探讨猕猴桃园节肢动物群落特征、结构组成及动态规律,为猕猴桃园害虫防治提供依据。【方法】在猕猴桃种植面积较大、产量较高的周至、眉县2县,选择树龄分别为3,9和14年生的人工栽植猕猴桃园及秦岭山区野生园为调查对象,系统调查园内节肢动物群落的种类和数量,测定群落的丰富度、多样性及均匀度等指标,并用Matlab7.1平均距离法进行系统聚类分析,用SPSS16.0进行主分量分析,研究园内节肢动物群落的变化规律。【结果】猕猴桃园节肢动物群落分属3纲,15目,74科,约有90种。野生猕猴桃园节肢动物群落最稳定,栽植园群落稳定性9年生园〉14年生园〉3年生园。野生猕猴桃园及3个人工栽植园之间,节肢动物群落的多样性、均匀度和优势度差异均显著。野生猕猴桃园节肢动物群落多样性、均匀度、优势度的动态变化较人工栽植园平稳;3个人工栽植园群落多样性和均匀度在7月份出现低谷,优势度在7月份出现高峰。聚类结果表明,9年生园节肢动物群落与14年生园首先聚为一类,再与3年生园聚为一类,最后与野生园聚为一类。随着树龄的增长,主导节肢动物群落的最主要因子由捕食性类群逐渐转变为植食性类群。野生猕猴桃节肢动物群落数量的高峰出现在6月份,且以天敌亚群落为主;栽植园群落高峰期出现在7月份,且以害虫亚群落为主。【结论】3个人工栽植猕猴桃园内节肢动物群落消长动态起伏较大。在5月份14年生园中叶蝉数量较多,7月份各栽植园中的山楂叶螨数量较多,8-9月份9和14年生园中小薪甲发生量较大,应适时进行有针对性的防治。%【Objective】 Study on the characteristics,structures and dynamics of arthropod communities in kiwifruit orchards was done to provide evidence for pest control in kiwifruit orchards.【Method】 In Zhouzhi and Meixian

  16. Disentangling above- and belowground neighbor effects on the growth, chemistry and arthropod community on a focal plant

    NARCIS (Netherlands)

    Kos, M.; Bukovinszky, T.; Mulder, P.P.J.; Bezemer, T.M.

    2015-01-01

    Neighboring plants can influence arthropods on a focal plant and this can result in associational resistance or associational susceptibility. These effects can be mediated by above- and belowground interactions between the neighbor and focal plant, but determining the relative contribution of the ab

  17. 不同类型茶园节肢动物群落结构研究%Research on Structure of Arthropod Community in Different Tea Gardens

    Institute of Scientific and Technical Information of China (English)

    玉香甩; 冉隆繤; 刘关所; 浦恩达; 李慧; 孙雪梅; 刘本英; 陈剑锋

    2016-01-01

    A three -year investigation on the structure of arthropod community was carried out in three different tea gardens,i.e.pure tea garden,camphor tree -tea and mango tree -tea intercropping gardens. The analysis was conducted from aspects of richness,evenness,dominance index,stability coefficient (Ss /Si ) and variation coefficient (ds /dm ).The results indicated that the diversity indexes of arthropod communities in tea gardens intercropped with camphor and mango tree were higher,and they possessed better richness,diver-sity and evenness.It showed that the restrictive interactions among different species in arthropod communities in intercropping tea gardens were stronger than those in pure tea garden,and the structures were better.%连续三年分别对樟-茶间作茶园、芒果-茶间作茶园和纯茶园中节肢动物群落结构进行系统调查,并从丰富度、均匀度、优势度指数、稳定性系数值 Ss /Si 和变异系数 ds /dm 等方面进行了分析。结果表明:樟-茶间作茶园和芒果-茶间作茶园中节肢动物群落的多样性指数较高,具有更大的丰富度、更丰富的多样性和更高的均匀性,表明樟与茶间作、芒果与茶间作后茶园节肢动物群落内各物种间制约关系强于纯茶园,结构更趋合理。

  18. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  19. Eaten out of house and home: impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands.

    Science.gov (United States)

    Howland, Brett; Stojanovic, Dejan; Gordon, Iain J; Manning, Adrian D; Fletcher, Don; Lindenmayer, David B

    2014-01-01

    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing.

  20. Eaten out of house and home: impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands.

    Directory of Open Access Journals (Sweden)

    Brett Howland

    Full Text Available Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1 density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2 grass structure and reptiles (i.e. abundance, richness, diversity and occurrence across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing.

  1. Study on the Comparison of Arthropod Communities in Three Kinds of Cruciferous Vegetable Fields at High Mountainous Area%高山地区3种十字花科蔬菜田节肢动物群落比较研究

    Institute of Scientific and Technical Information of China (English)

    王香萍; 李传仁; 王福莲

    2008-01-01

    [Objective]This research aimed to compare arthropod communities in different cruciferons vegetable fields at high mountainous area and provide guidance for pest control.[Method]The main arthropod species in 3 kinds of cruciferous vegetable fields at high mountainous area were investigated,the composition of arthropod community in different vegetable fields were analyzed.[Result]The main arthropod species in cruciferous vegetables fields at high mountainous area were similar,but had different quantity compositions.The richness was the highest in radish field.[Conclusion]Crop species had great influence on biological community;we should focus on the main pests in the process of pest control.

  2. Anthropogenic noise changes arthropod abundances.

    Science.gov (United States)

    Bunkley, Jessie P; McClure, Christopher J W; Kawahara, Akito Y; Francis, Clinton D; Barber, Jesse R

    2017-05-01

    Anthropogenic noise is a widespread and growing form of sensory pollution associated with the expansion of human infrastructure. One specific source of constant and intense noise is that produced by compressors used for the extraction and transportation of natural gas. Terrestrial arthropods play a central role in many ecosystems, and given that numerous species rely upon airborne sounds and substrate-borne vibrations in their life histories, we predicted that increased background sound levels or the presence of compressor noise would influence their distributions. In the second largest natural gas field in the United States (San Juan Basin, New Mexico, USA), we assessed differences in the abundances of terrestrial arthropod families and community structure as a function of compressor noise and background sound level. Using pitfall traps, we simultaneously sampled five sites adjacent to well pads that possessed operating compressors, and five alternate, quieter well pad sites that lacked compressors, but were otherwise similar. We found a negative association between sites with compressor noise or higher levels of background sound and the abundance of five arthropod families and one genus, a positive relationship between loud sites and the abundance of one family, and no relationship between noise level or compressor presence and abundance for six families and two genera. Despite these changes, we found no evidence of community turnover as a function of background sound level or site type (compressor and noncompressor). Our results indicate that anthropogenic noise differentially affects the abundances of some arthropod families. These preliminary findings point to a need to determine the direct and indirect mechanisms driving these observed responses. Given the diverse and important ecological functions provided by arthropods, changes in abundances could have ecological implications. Therefore, we recommend the consideration of arthropods in the environmental

  3. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  4. Seasonal characteristics of arthropod communities in maize fields%玉米田节肢动物群落特征的时序动态

    Institute of Scientific and Technical Information of China (English)

    邱明生; 张孝羲; 王进军; 赵志模

    2001-01-01

    通过对玉米整个生长季节内的节肢动物群落调查,共发现节肢动物12目、39科、123种,主要为蜘蛛类、蚜虫类和瓢虫类。玉米田节肢动物群落的相对多度、丰富度、多样性指数和均匀度等群落特征表现出明显的季节动态;不同类型田的节肢动物群落组成、群落多样性明显不同。重庆地区小麦-玉米-红苕间套作类型田丰富的节肢动物群落和较大比例的天敌类群,成为控制其害虫的有效因子。%Based on the investigations on the compositions and s tructuresof the arthropod communities in maize fields, the present paper analyz ed the arthropod communities characteristics including the indices species richn ess (S), evenness (J), Shannons index(H′) and the total individual of art hropods (N). There were totally 123 species from 12 orders and 39 families, whic h mainly composed by natural enemies of ladybirds and spiders. In generally, the S,J′,H′, and N reached its peak value in the tasselling phases of maize. Comp ared with the different cropping systems, the plant model of wheat intercroping or rotating with maize and sweet_potato can be have higher N and S. Its natural enemies were also richness. The results should provide some scientific bases for the management strategy of maize IPM.

  5. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Science.gov (United States)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  6. Distribution and abundance of arthropod species in pasture communities of three Azorean islands (Santa Maria, Terceira and Pico

    Directory of Open Access Journals (Sweden)

    Borges, P.A.V.

    2008-01-01

    Full Text Available This work provides evidence that the "hollow curve" is a consistent pattern in the range size distribution of taxonomic and ecological groups of arthropod pasture dwelling species. Many of the inconsistent results relating range size to herbivores diet breadth are probably due to historical constraints in the colonization of the islands and particular characteristics of the habitats studied (e.g. types of resources available. The positive relationship between range size and abundance may be explained by the "resource usage model". However, the slope of the regression line relating distribution to abundance was similar for different groups which suggests there is no difference in the way that the species’ local abundance scales with distribution in the four assemblages of species studied and that there is a close relationship between the trophic groups studied. This suggests that the “resource availability model” could be the explanation for the distribution and abundance of pasture spider and insect species. More work needs to be conducted in order to evaluate the relationship between diet breadth, habitat specialization and range size in the islands.

  7. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation.

    Science.gov (United States)

    Cakir, Meric; Makineci, Ender

    2013-11-01

    In order to assess the effects of conversion of natural stands into plantations, soil invertebrate micro- and macroarthropod communities were evaluated for their abundance and richness in a sessile oak (SO; Quercus petraea L.) stand and adjacent Austrian pine (AP; Pinus nigra Arnold) plantation. Sites were sampled four times a year in 3-month intervals from May 2009 to February 2010. Humus characteristics such as total mass; carbon, lignin, and cellulose contents; and C/N ratio were significantly different between SO and AP. Statistically significant differences were detected on soil pH, carbon and nitrogen contents, and electrical conductivity between the two sites. The number of microarthropods was higher in AP than in the SO site. The annual mean abundance values of microarthropods in a square meter were 67,763 in AP and 50,542 in SO, and the annual mean abundance values of macroarthropods were 921 m(-2) in AP and 427 m(-2) in SO. Among the soil microarthropods, Acari and Collembola were the dominant groups. Shannon's diversity index was more affected by evenness than species number despite the species diversity (H') of soil arthropods being generally higher in the SO stand. The abundance of microarthropods showed clear seasonal trends depending upon the humidity of the soil.

  8. Effects of transgenic cotton with cry1Ac plus cry2Ab on arthropod communities%转cry1Ac+cry2Ab基因棉对棉田节肢动物群落的影响

    Institute of Scientific and Technical Information of China (English)

    雒珺瑜; 崔金杰; 张帅; 陆雪君

    2011-01-01

    The effects of transgenic cotton with cry1Ac + cry2Ab on arthropod communities were studied, with transgenic cotton with crylAc and conventional cotton as the controls. The results showed that there were no significant differences in the structure and composition of arthropod community, pest sub-community and natural enemy communities among the three cotton fields. The numbers of piercing-sucking pests, trunk boring pests, defoliating insects and spiders, ladybirds and predatory natural enemies were decreased in transgenic cotton with cry1Ac+ cry2Ab fields than in transgenic cotton with cry1Ac and conventional cotton fields. The diversity indexes of arthropod community, pest sub-community and natural enemy communities showed no significant difference a-mong the three cotton fields, indicating that there was no significant difference in the community stability of arthropod community, pest sub-community and natural enemy communities among different cotton fields.%以Bt棉和常规棉为对照,研究了转cry1Ac+ cry2Ab棉对棉田节肢动物群落的影响.研究结果表明,转cry1Ac+ cry2Ab棉田、转crylAc棉田和常规棉田节肢动物群落、害虫亚群落和天敌亚群落的结构与组成无明显差异;转cry1Ac+ cry2Ab棉田刺吸类害虫、蛀食类害虫和食叶类害的数量均低于转cry1Ac棉田和常规棉田;转cry1Ac +cry2Ab棉田蜘蛛类、瓢虫类和捕食类天敌的数量均低于转cry1Ac棉田和常规棉田;转cry1Ac+ cry2Ab棉田节肢动物群落、害虫亚群落和天敌亚群落的多样性指数与转cry1Ac棉田和常规棉田相比均无明显差异,说明转cry1Ac+ cry2Ab棉田节肢动物群落、害虫亚群落和天敌亚群落的稳定性和转cry1Ac棉和常规棉相比均无明显差异.

  9. Target and nontarget effects of novel "triple-stacked" Bt-transgenic cotton 1: canopy arthropod communities.

    Science.gov (United States)

    Whitehouse, M E A; Wilson, L J; Davies, A P; Cross, D; Goldsmith, P; Thompson, A; Harden, S; Baker, G

    2014-02-01

    Transgenic cotton varieties (Bollgard II) expressing two proteins (Cry1Ac and Cry2Ab) from Bacillus thuringiensis (Bt) have been widely adopted in Australia to control larvae of Helicoverpa. A triple-stacked Bt-transgenic cotton producing Cry1Ac, Cry2Ab, and Vip3A proteins (Genuity Bollgard III) is being developed to reduce the chance that Helicoverpa will develop resistance to the Bt proteins. Before its introduction, nontarget effects on the agro-ecosystem need to be evaluated under field conditions. By using beatsheet and suction sampling methods, we compared the invertebrate communities of unsprayed non-Bt-cotton, Bollgard II, and Bollgard III in five experiments across three sites in Australia. We found significant differences between invertebrate communities of non-Bt and Bt (Bollgard II and Bollgard III) cotton only in experiments where lepidopteran larval abundance was high. In beatsheet samples where lepidopterans were absent (Bt crops), organisms associated with flowers and bolls in Bt-cotton were more abundant. In suction samples, where Lepidoptera were present (i.e., in non-Bt-cotton), organisms associated with damaged plant tissue and frass were more common. Hence in our study, Bt- and non-Bt-cotton communities only differed when sufficient lepidopteran larvae were present to exert both direct and indirect effects on species assemblages. There was no overall significant difference between Bollgard II and III communities, despite the addition of the Vip gene in Bollgard III. Consequently, the use of Bollgard III in Australian cotton provides additional protection against the development of resistance by Helicoverpa to Bt toxins, while having no additional effect on cotton invertebrate communities.

  10. The diversity of ant communities (Hymenoptera: Formicidae) and their connections with other arthropods from three temperate forests of Central Mexico

    OpenAIRE

    Guzmán-Mendoza, Rafael; Castaño Meneses, Gabriela; Nuñez-Palenius, Hector Gordon

    2016-01-01

    Ants have been considered useful for bioindication because of their ecological characteristics. Nonetheless, among the characteristics of a bioindicator group, there must be a consistent and replicable response to disturbance. In this sense, divergent reactions have been found, even between taxons narrowly related. The objective of this work was to compare the diversity of the ant communities in three different temperate forests with different levels of disturbance, and to correlate their abu...

  11. Arthropod cuticles in coal

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, K.M.; Jeram, A.J.; Selden, P.A.

    1987-05-01

    An abundance of scorpion cuticles from Westphalian (Upper Carboniferous) coals of Yorkshire is described, and other records of arthropod cuticles in coals are reviewed. The absence of cuticles assignable to arthropod groups other than scorpions is thought to be due to preferential preservation of the unique exocuticle of scorpions; it alone is preserved and appears to retain an organic nature. The cuticle is recovered from all the lithotypes of humic bituminous coals although it is most common in coals rich in inertinite macerals. From the present study it is uncertain whether the scorpions were aquatic or terrestrial. The recognition of arthropod cuticle as a coal maceral could aid environmental interpretations. The abundance of arthropod cuticle in the coals studied indicates its potential use in correlation and in determining the thermal maturity of sediments. 37 refs., 1 fig.

  12. Tick paralysis in spectacled flying-foxes (Pteropus conspicillatus in North Queensland, Australia: impact of a ground-dwelling ectoparasite finding an arboreal host.

    Directory of Open Access Journals (Sweden)

    Petra G Buettner

    Full Text Available When a parasite finds a new wildlife host, impacts can be significant. In the late 1980s populations of Spectacled Flying-foxes (SFF (Pteropus conspicillatus, a species confined, in Australia, to north Queensland became infected by paralysis tick (Ixodes holocyclus, resulting in mortality. This Pteropus-tick relationship was new to Australia. Curiously, the relationship was confined to several camps on the Atherton Tableland, north Queensland. It was hypothesised that an introduced plant, wild tobacco (Solanum mauritianum, had facilitated this new host-tick interaction. This study quantifies the impact of tick paralysis on SFF and investigates the relationship with climate. Retrospective analysis was carried out on records from the Tolga Bat Hospital for 1998-2010. Juvenile mortality rates were correlated to climate data using vector auto-regression. Mortality rates due to tick paralysis ranged between 11.6 per 10,000 bats in 2003 and 102.5 in 2009; more female than male adult bats were affected. Juvenile mortality rates were negatively correlated with the total rainfall in January to March and July to September of the same year while a positive correlation of these quarterly total rainfalls existed with the total population. All tick affected camps of SFF were located in the 80% core range of S. mauritianum. This initial analysis justifies further exploration of how an exotic plant might alter the relationship between a formerly ground-dwelling parasite and an arboreal host.

  13. 皖南山区茶园节肢动物群落多样性调查%Investigation of Diversity of Arthropod Community in Tea Garden in Southern Anhui

    Institute of Scientific and Technical Information of China (English)

    闫冲冲; 陈向阳; 张持浩; 张守伟; 冯敏; 刘蕊; 董勤

    2009-01-01

    The community diversity of arthropod in tea garden of southern Anhui from April to May, 2008 and 2009 was investigated and analyzed respectively. The results showed that the tendency of community diversity indices (D, H', J, H, DMC)of arthropod in tea garden were changed as follows: low→high→low. However, the inhibitory effect of predatory sub-community on phytophagous sub-community was significantly decreased in the late May, while should make pest forecasting and controlling to provide scientific method for tea farmers to control the pest in tea garden.%在2008年和2009年4、5月份对皖南山区茶同节肢动物群落多样性进行了调查分析.结果表明:茶园节肢动物群落多样性指数D、H'、J、H、DMC随时间变化趋势都是"低一高一低".然而,在5月下旬,捕食性亚群落对植食性亚群落的抑制作用大大降低,这一时期应该做好害虫测报和防治的准备,为茶农防治茶园害虫提供科学方法.

  14. A four-country ring test of nontarget effects of ivermectin residues on the function of coprophilous communities of arthropods in breaking down livestock dung

    NARCIS (Netherlands)

    Tixier, Thomas; Blanckenhorn, Wolf U.; Lahr, Joost; Floate, Kevin; Scheffczyk, Adam; Düring, Rolf Alexander; Wohde, Manuel; Römbke, Jörg; Lumaret, Jean Pierre

    2016-01-01

    By degrading the dung of livestock that graze on pastures, coprophilous arthropods accelerate the cycling of nutrients to maintain pasture quality. Many veterinary medicinal products, such as ivermectin, are excreted unchanged in the dung of treated livestock. These residues can be insecticidal a

  15. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  16. 闽南番石榴树冠节肢动物群落的结构和动态%The Structure and Dynamic of Arthropod Communities of Guava Orchards in South Fujian

    Institute of Scientific and Technical Information of China (English)

    吴梅香; 傅建炜; 占志雄; 李建宇; 张莉; 邱良妙; 刘长明

    2011-01-01

    2006年8月至2007年8月对惠安番石榴园树冠节肢动物群落结构特征及群落特征的时序动态进行了研究.结果表明,树冠节肢动物共采集到2纲、16目、100科总计218种,其中害虫116种、天敌61种、中性昆虫41种.害虫优势种为桔小实蝇Bactrocera dorsalis(Hendel)和棉蚜Aphis gossypii Glover,天敌优势种为细纹猫蛛Oxyopes macilentus L.Koch和大草蛉Chrysopa septempunctata Wesmael.节肢动物群落的物种丰富度、个体丰盛度、多样性指数、均匀度指数和优势集中性指数等特征随季节的更替发生波动.%The arthropod community structure and dynamics of guava orchards were studied in Huian County,Fujian Province from August 2006 to August 2007. The results showed that 218 arthropod species of tree crown were recorded, which belonged to 100 families of 16 orders in Insecta and Arachnoidea. Of them, 116 species of pests, 61 species of natural enemies and 41 species of neutral insects were included. The dominant pests were Bactrocera dorsalis and Aphis gossypii, and the dominant natural enemies were Oxyopes macilentas and Chrysopa septempunctata The richness, individual, diversity, evenness and dominant concentration of arthropod community index fluctuated with the change of season.

  17. 内蒙古东部过渡带大型土壤节肢动物多样性调查%Community Structure and Diversity of Soil Macro-arthropod in the Forest-steppe Ecotone

    Institute of Scientific and Technical Information of China (English)

    朱新玉; 高宝嘉; 胡云川

    2012-01-01

    利用样带法对河北北部,内蒙古东部林牧过渡带不同生境中大型土壤节肢动物群落进行调查,研究过渡带大型土壤节肢动物群落结构及多样性变化.共获得大型土壤节肢动物2 134只,隶属6纲18目,其中优势类群为膜翅目和蜘蛛目,常见类群为同翅目、鳞翅目、鞘翅目成虫、鞘翅目幼虫、双翅目幼虫、石蜈蚣目和地蜈蚣目,其余类群为稀有类群.大型土壤节肢动物在3个地带中的森林带的种类最高(17类),且对土壤环境响应敏感的稀有类群数最多的出现在植被丰富、土壤疏松和枯枝落叶层厚度最高的森林带(8类),初步认为这些稀有类群对指示土壤肥力质量变化具有巨大潜力.在土壤动物群落多样性研究中,DG指数比Shannon-Wiener多样性指数(H′)更能体现土壤动物群落多样性.群落聚类及排序结果显示,9种不同生境的大型土壤节肢动物群落可以分为3大类:森林类、森林-草甸类和草甸-草原类,同时土壤pH值对土壤节肢动物的类群数影响较大,而土壤温度对土壤节肢动物的个体数影响较大.%To understand the composition and structure of soil macro-arthropod community and diversity of soil macro-arthropod community, soil macro-arthropods were investigated in the forest-steppe ecotone in northern Hebei Province. A total of 2 134 individuals of soil macro-arthropods were collected, which belonged to 6 classes, 18 orders. The dominant orders were Hymenoptera and Araneae, Homoptera, Lepidoptera, Coleoptera, Coleoptera larva, Diptera larva, Lithobiomorpha and Geophilomorpha were common orders, and others were rare orders. The highest groups of soil arthropod were in the forest zone, and the increased abundance of rare groups in the forest zone with the richer vegetation, higher arthropod abundance and more substantial litter depth, could be interpreted as a reaction to the suitable soil environment. And these rare groups were sensitive to

  18. Composition and Structure of the Arthropod Community in the Mango Field%芒果园地面节肢动物群落的组成与结构

    Institute of Scientific and Technical Information of China (English)

    李建宇; 董铁生; 傅建炜; 游泳; 张莉; 占志雄

    2012-01-01

    对福建省惠安县芒果园节肢动物群落进行系统调查,结果表明:芒果园地面的节肢动物有2纲,17目,80科,203种,其中植食性昆虫106种(占群落总物种数的52.22%),捕食性与寄生性昆虫31种(占15.27%),腐生性昆虫14种(占6.90%),蜘蛛52种(占25.62%).植食性昆虫优势种为红脊长蝽Tropidothorax elegans Distant和电光叶蝉Recilia dorsalis (Motschlsky);寄生性昆虫优势种为红蚂蚁Tetramorium guineense Fabricius和瓢虫啮小蜂Tetrastichus coccinellae Kurju-mov;腐生性昆虫优势种为蝇科Musicdae;蜘蛛优势种为金蝉蛛Phintella sp.1.%The composition and structure of arthropod community in mango field were investigated in this study, and the characterization of arthropod was also described. They will enrich the theoretical foundation for ecological of pests in mango orchard. The composition and diversity of arthropod communities in mango orchards were investigated in Hui an country, Fujian Province, China in this study. The results showed that all the collected arthropod individuals belong to 2 classes, 17 orders, 80 families and 203 species. Among them, 106 species were herbivores (52. 22%), 31 species were predators and parasitoids (15. 27%), 14 species were detritivores (6. 90%) and 52 species were spiders (25. 62%). The main dominant herbivores were Tropidothorax elegans Distant and Recilia dorsalis (Motschlsky) , and the main dominant predators and parasitoids were Tetrastichus coccinellae Kurju-mov and Tetramorium guineense Fabricius, and the main dominant detritivores was Musicdae, and the main dominant spiders was Phintella sp. 1.

  19. 猕猴桃园节肢动物群落演替的突变模型研究及稳定性分析%Studies on catastrophe model and stability for arthropod community succession in kiwifruit orchards

    Institute of Scientific and Technical Information of China (English)

    李建峰; 赵惠燕; 杜超; 孟庆祥; Piyaratne MKDK

    2012-01-01

    【目的】分析猕猴桃从野生到大面积栽培过程中节肢动物群落的演变过程。【方法】采用时空替代方案,调查了陕西周至和眉县不同栽植年限猕猴桃园的节肢动物群落种类和数量,计算出多样性指数(H′)、丰富度指数(MD)、均匀度指数(J)和害虫与天敌数量比例,建立了猕猴桃园节肢动物群落椭圆突变模型,并对群落稳定性进行分析。【结果】3年生和9年生的猕猴桃园节肢动物群落害虫亚群落处于不稳定区域,发生了突变;14年生和野生的猕猴桃园节肢动物群落相对稳定,处于稳定安全区,没有发生突变;说明随着猕猴桃从野生到栽培年限的增加,群落稳定性增强。3年生园和9年生园在发生突变之前控制变量w的值由w≥0变为w<0,验证了控制变量是稳定性判定的重要指标。【结论】害虫亚群落的稳定性程度是影响虫害暴发的关键因素,亚群落指标对控制变量作用均衡的系统是比较稳定的系统,不宜发生突变造成危害。%【Objective】The study was to analyze the process of arthropod community succession and stability.【Method】The elliptic umbilic catastrophe model is developed based on diversity index,richness index,evenness index and the ratio of pests and natural enemies of arthropod community in kiwifruit orchards,which include 3-year,9-year,14-year and wild kiwifruit orchard.【Result】The results show that pests of arthropod community are instable in 3-and 9-year kiwifruit orchard,and pests of arthropod community are stable in 14-year and wild kiwifruit orchard.It reflects that the longer kiwifruit orchard is planted,the more stable the arthropod community is,which is an important index on judging stability or instability.【Conclusion】From the principal component analysis,we know that the stability level is a key factor in forecasting damage by insects and system,which is influenced by the

  20. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Liessa, Thomas

    2004-12-31

    Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many

  1. 枣与农作物间作系统节肢动物时序动态%Temporal Dynamics of Arthropod Communities in Orchard-Crop Intercropping Systems

    Institute of Scientific and Technical Information of China (English)

    阿地力·沙塔尔; 李宏; 李兰; 程晓甜

    2012-01-01

    A systematic survey on arthropods was carried out in jujube-crop intercropping systems in Aksu region of southern Xinjiang. The temporal dynamics of arthropod communities were studied by the methodology of plant population ecology research. Results showed that the seasonal dynamics of evenness and diversity of arthropod communities in the jujube-crop intercropping systems were basically consistent, both fluctuating up and down, and they reached the maximum in June and then remained stable. Among three types of jujube yards, the diversity index and evenness index of the jujube-wheat intercropping system were the highest, followed by jujube-cotton intercropping system and single jujube yard, while the dominant concentration index was in vice versa. The highest diversity index and evenness index were both found in the jujube-wheat intercropping system; therefore, jujube-wheat intercropping system can effectively control the pest occurrence by improving management level.%主要针对南疆阿克苏地区枣树与农作物间作系统节肢动物开展系统的调查,以群落生态学方法研究枣园节肢动物的时序动态.结果表明:枣园与农作物间作系统节肢动物群落均匀度的季节动态与多样性季节动态呈现基本一致的趋势,多样性时高时低,均匀度也有相应的高低变化,在6月份达到最大并保持稳定.3种类型枣园中,多样性指数与均匀性指数均值大小排序是枣+小麦间作>枣+棉花间作>单一枣园,而优势集中性指数反之.3种类型枣园中枣和小麦间作系统多样性指数和均匀性指数均值最大.可见,在枣和小麦间作系统中通过提高管理水平可有效控制害虫的发生.

  2. Ecology of herbivorous arthropods in urban landscapes.

    Science.gov (United States)

    Raupp, Michael J; Shrewsbury, Paula M; Herms, Daniel A

    2010-01-01

    Urbanization affects communities of herbivorous arthropods and provides opportunities for dramatic changes in their abundance and richness. Underlying these changes are creation of impervious surfaces; variation in the density, diversity, and complexity of vegetation; and maintenance practices including pulsed inputs of fertilizers, water, and pesticides. A rich body of knowledge provides theoretical underpinnings for predicting and understanding impacts of urbanization on arthropods. However, relatively few studies have elucidated mechanisms that explain patterns of insect and mite abundance and diversity across urbanization gradients. Published accounts suggest that responses to urbanization are often taxon specific, highly variable, and linked to properties of urbanization that weaken top-down and/or bottom-up processes, thereby destabilizing populations of herbivores and their natural enemies. In addition to revealing patterns in diversity and abundance of herbivores across urbanization gradients, a primary objective of this review is to examine mechanisms underlying these patterns and to identify potential hypotheses for future testing.

  3. Effects of vegetated field borders on arthropods in cotton fields in eastern North Carolina.

    Science.gov (United States)

    Outward, Randy; Sorenson, Clyde E; Bradley, J R

    2008-01-01

    The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurred. Early season thrips populations appeared to be unaffected by the presence of a border. Pitfall sampling disclosed no differences in ground-dwelling predaceous arthropods but did detect increased populations of crickets around fields with borders. Cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) populations were too low during the study to adequately assess border effects. Heliothines, Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), egg numbers and damage rates were largely unaffected by the presence or absence of a border, although in one instance egg numbers were significantly lower in fields with borders. Overall, foliage-dwelling predaceous arthropods were somewhat more abundant in fields with borders than in fields without borders. Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae) were significantly more abundant in fields with borders, but stink bugs, Acrosternum hilare (Say), and Euschistus servus (Say) (Hemiptera: Pentatomidae) numbers appeared to be largely unaffected by border treatment. Few taxa clearly exhibited distributional edge effects relative to the presence or absence of border vegetation. Field borders like those examined in this study likely will have little impact on insect pest management in cotton under current insect management regimens.

  4. 辽宁清原山区3种林型地表蜘蛛多样性比较研究%Biodiversity of ground-dwelling spiders in three forest types in Qingyuan Mountain Area, Liaoning

    Institute of Scientific and Technical Information of China (English)

    佟艳丰; 赵丽; 刘悦

    2013-01-01

    2008年5月,采用陷阱法在辽宁省清原县大苏河乡大湖生态站选取杂木林、红松林和落叶松林3种森林植被类型收集地表蜘蛛.共采集成熟蜘蛛标本1 825头,隶属于13科49种.调查发现:1)皿蛛科、漏斗蛛科及平腹蛛科是该地区的优势科,旋卷隙蛛Alloclubionoides circinalis 及皿蛛科一未定种为该地区的优势种;2)3种森林植被类型的地表蜘蛛群落组成存在明显的差异,杂木林中物种最丰富,分布有13科39种,红松林中分布有10科29种,而落叶松林中有8科28种;平腹蛛科在杂木林中最丰富,而在红松林、落叶松林中数量稀少;3)多样性指数存在一定差异,杂木林中个体数量最多,红松林中个体数量最少,Margalef指数及Menhinick指数最低值均出现在红松林,而最高值出现在落叶松林.%In May 2008, the composition and distribution of ground-dwelling spiders were investigated using pitfall trapped method to assess the impact of forest type on spider diversity. Three forest types, i. e. , miscellaneous wood forest, broad-leaved Korean pine forest and deciduous Korean Pine forest were surveyed in Dahu Ecological Station in Dasuhe Town, Qingyuan County, Liaoning Province. A total of 1825 adult individuals were collected, belonging to 13 families and 49 species. The results showed: 1) Linyphiidae, Agelenidae and Gnaphosidae were dominant families, Alloclubionoid.es circinalis and one unidentified species of Linyphiidae were the dominant species; 2) the ground spider community composition were significantly different in the three forest types, 13 families and 39 species were collected from miscellaneous wood forest, 10 families and 29 species were collected from broad-leaved Korean pine forest and 8 families and 28 species were from deciduous Korean Pine forest; gnaphosid spiders were most abundant in miscellaneous wood forest, but sparse in the other two forest types; 3) the diversity indices were also different; the

  5. Studies on Diversity of Arthropod Community in Orchards of Apricot-wheat Intercropping System%不同树龄杏麦间作园节肢动物群落多样性研究

    Institute of Scientific and Technical Information of China (English)

    张滋林; 赵莉; 范毅; 张鲁豫; 贾晓江

    2011-01-01

    The series dynamics were systematically studied to reveal the composition structure and species diversity of arthropods community in different aged apricot orchard under apricot-wheat intercropping system. The survey uncovered that 189 species in 61 families from 13 orders were obtained from young apricot orchards intercropped with wheat,and 192 species in 59 families from 13 orders of old apricot orchards intercropped with wheat,and 120 species in 46 families from 12 orders of old apricot orchards intercropped without wheat. Homoptera insects were the dominant herbivorous groups. There are more arthropod species in old apricot orchards than young apricot orchards intercropped with wheat. The result showed that species diversity related to the phenological period of the apricots and were affected by the intercropping plants and environment coditions. The related correlations between different subunit systems were analyzed with Jaccard similarity indexes and cluster methodology. The result showed that apricot orchards intercropped with wheat can increase the arthropod species and improve the stability of the apricot system.%为揭示在杏麦间作模式下不同树龄杏园节肢动物群落的组成结构及多样性时序动态,调查发现在幼龄的杏麦间作园有节肢动物13目61科189种,老龄杏麦间作园有节肢动物13目59科192种,老龄不间作杏园有节肢动物12目46科120种,同翅目昆虫为优势种,是主要的植食性类群,间作小麦的老龄杏园比幼龄杏园聚集着较为丰富的物种.杏园节肢动物群落的物种多样性与杏树的物候期有关,并受间作物和环境条件的影响,用Jaccard 相似性系数和系统聚类法分析了各亚系统之间的相关关系,结果表明杏园间作小麦可以增加杏园节肢动物的物种数和提高系统的稳定性.

  6. Efeito da solarização e da adubação sobre artrópodes em solo cultivado com alface Solarization, organic and chemical fertilization combined effects on arthropods community in soil cultivated with lettuce

    Directory of Open Access Journals (Sweden)

    Marlene G da Silva

    2009-12-01

    Full Text Available Avaliou-se o efeito da solarização e da adubação química e orgânica na comunidade de artrópodes de solo na cultura da alface, cv. Verônica. Foram conduzidos dois experimentos, em blocos ao acaso, um com solarização e o outro sem solarização, em casa de vegetação, ambos com cinco tratamentos: adubação orgânica; nitrogênio na forma amoniacal (NH4; adubação com NPK; adubação orgânica + NPK; testemunha (sem adubação. No experimento solarizado, o solo foi coberto durante 132 dias com plástico transparente. Os artrópodes foram coletados por meio de armadilhas tipo alçapão em três épocas (antes da implantação do experimento, após a solarização e após a colheita. Foram utilizados índices faunísticos e de diversidade em cada experimento, tratamento e épocas. Os principais grupos coletados foram: Collembola (82,8%, Acari (7,1%, Hymenoptera (6,1% Coleoptera (1,3% e outros (2,7%. A classe Collembola foi a mais abundante, mesmo na colheita, quando a subordem Acari aumentou substancialmente. As espécies de Collembola predominantes foram: Proisotoma tenella (Reuter (34,3%; Seira atrolutea (Arlé (29%; Folsomides centralis (Denis (7,2%; Isotomurus sp. 161 (2,4% e Sminthurides sp. 98 (1,6%. Observou-se que a diversidade e abundância da comunidade de artrópodes não foi influenciada pela solarização ou adubação.To evaluate the effect of solarization, chemical and organic fertilization on soil arthropods community in lettuce, two blocks plots trials were carried out in Brasília, Brazil. One research was conducted with solarization and the other without solarization in a soil cultivated with lettuce, cv Veronica, under protected cultivation. Each trial consisted of five fertilization treatments: T1= organic fertilization; T2= amoniacal nitrogen (ammonium sulphate; T3= chemical fertilization; T4= organic and chemical fertilization; T5= control (without fertilization. In the solarized trial, the soil was covered for 132

  7. Containment of arthropod disease vectors.

    Science.gov (United States)

    Scott, Thomas W

    2005-01-01

    Effective containment of arthropod vectors of infectious diseases is necessary to prevent transmission of pathogens by released, infected vectors and to prevent vectors that escape from establishing populations that subsequently contribute to increased disease. Although rare, past releases illustrate what can go wrong and justify the need for guidelines that minimize risks. An overview of recommendations for insectary facilities, practices, and equipment is provided, and features of four recently published and increasingly rigorous arthropod containment levels (ACLs 1-4) are summarized. ACL-1 is appropriate for research that constitutes the lowest risk level, including uninfected arthropods or vectors that are infected with micro-organisms that do not cause disease in humans, domestic animals, or wildlife. ACL-2 is appropriate for indigenous and exotic arthropods that represent a moderate risk, including vectors infected or suspected of being infected with biosafety level (BSL)-2 infectious agents and arthropods that have been genetically modified in ways that do not significantly affect their fecundity, survival, host preference, or vector competence. ACL-3 is recommended for arthropods that are or may be infected with BSL-3 infectious agents. ACL-3 places greater emphasis on pathogen containment and more restricted access to the insectary than ACL-2. ACL-4 is intended for arthropods that are infected with the most dangerous BSL-4 infectious agents, which can cause life-threatening illness by aerosol or arthropod bite. Adherence to these guidelines will result in laboratory-based arthropod vector research that minimizes risks and results in important new contributions to applied and basic science.

  8. Efeito de herbicidas sobre a comunidade de artrópodes do solo do feijoeiro cultivado em sistema de plantio direto e convencional Effect of herbicides on soil arthropod community of bean cultivated under no-tillage and conventional systems

    Directory of Open Access Journals (Sweden)

    J.L. Pereira

    2007-03-01

    of herbicide mixture (fomesafen + fluazifop on the soil arthropod communities associated to the common bean in two cropping systems (conventional and no-tillage. The experiment was carried out on Red-yellow Podzol, in Coimbra, Minas Gerais, Brazil. The studied treatments in both cropping system were represented by the mixture of herbicide Robust® (fluazifop + fomesafen (dosage of 0.8 L ha-1 applied two weeks after planting and control without herbicide application. A complete randomized block design with five replications was used in the experiment. The soil arthropod communities were sampled 1, 8, 21 and 42 days after herbicide application. The data were submitted to the canonical variate analysis (CVA. CVA is an indirect ordination technique that reduces the size of the original data set. The CVA techniques can be used to illustrate graphically the relative positions and the coordinates of the community's structure for each treatment. The differences between the treatments in the abundance of the selected arthropods had been determined by repeated measure analysis of variance considering the sampling data as repeated measure. The canonical variate analysis for cropping systems and herbicide application indicated differences between the arthropod densities in the different treatments considering the composition and the species abundance. In this study, differences in the set data of collected soil arthropods were observed through ordination diagrams under the two cropping systems. Herbicide application affected all arthropods associated to the common beans in both cropping systems, except Solenopsis sp. The cultivation system affected the densities of all species studied.

  9. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    Science.gov (United States)

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind.

  10. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    Science.gov (United States)

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  11. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    Science.gov (United States)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  12. Community diversity of mosquitoes and their microbes across different habitats endemic for West Nile Virus and other arthropod-borne diseases

    Science.gov (United States)

    Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.

    2013-12-01

    Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.

  13. Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation%桃园生草对桃树节肢动物群落多样性与稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    蒋杰贤; 万年峰; 季香云; 淡家贵

    2011-01-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1. 48, 1. 84 and 0. 64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon' s diversity, and Pielou' s evenness index of the arthropods in the orchard with ground cov-er vegetation were 83. 733±4. 932, 4. 966±0. 110, and 0. 795±0. 014, respectively, being signifi-cantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker' s dominance index was 0. 135±0. 012, being significantly lower than that (0. 184±0. 018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0. 883±0. 123. 1714±0. 683, and 0. 781 ±0. 040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson' s cor-relation analysis indicated that in the orchard with ground cover vegetation, the Shannon' s diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the di-versity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp ,Sn/Sp, and S/N.%对种植白三叶草的桃园(生草桃园)和非生草桃园的桃树节肢动物群落进行分析比较.结果表明:生草桃园桃树天敌、中性类群和植食类群数量分别是非生草桃园的1.48、1.84和0.64倍,而节肢动物群落个体总数无显著差异;与非

  14. Diversity and temporal dynamics of a litchi orchard arthropod community in Guangzhou%广州荔枝园节肢动物群落多样性及时空动态

    Institute of Scientific and Technical Information of China (English)

    孟翔; 欧阳革成; 刘慧; 黄寿山; 郭明昉

    2015-01-01

    Objectives] To provide a theoretical basis for forecasting and scientific biological control of major litchi orchard pests. [Methods] The structure and dynamics of the arthropod community in a litchi orchard in Conghua, Guangzhou was investigated in the field from 2012 to 2013. [Results] 3 542 arthropod specimens, belonging to 15 orders, 113 families and 204 species, were recorded. The main taxa were Hymenoptera, Homoptera and Araneae. Herbivorous species were predominant. Different micro-environments within the orchard could have a different community composition; the index of arthropod community diversity was higher in the canopy than in the herb layer but arthropod abundance in the canopy was lower than in the herb layer. There were two obvious peaks in species abundance with the main peak occurring between April and June. Herbivorous insects significantly increased during the green fruit and ripening periods. Seasonal variation in community composition was also relatively obvious in the canopy and herb layer. The dominant pest species were Tessaratoma papillosa, Cletus punctiger, Conopomorpha sinensis, Eriophyes litchii and Thalassodes proquadraria, and the dominant natural enemies were Leucauge magnifica, Oxyopes sertatus, Chrysopa carnea, Menochilus sexmaculataand Propylea japonica. [Conclusion] Litchi orchards have high arthropod species diversity. The number and occurrence of dominant pests and their predatory natural enemies are closely related to the growth and development of litchi fruit.%【目的】调查研究荔枝园节肢动物群落多样性及时空动态,为荔枝园主要害虫的预测预报和以天敌为主的科学防治提供理论依据。【方法】2012―2013年以广州市从化区黄围村的荔枝园为样地进行节肢动物群落系统调查及多样性动态规律分析。【结果】调查共获得节肢动物标本3542号,分属于15目113科204种。其中,以膜翅目、同翅目和蜘蛛目为主要类群。在营

  15. 锥栗林节肢动物群落的结构与多样性%Structure and diversity of arthropod community in Castanea henryi forest

    Institute of Scientific and Technical Information of China (English)

    叶世森; 赵士熙; 施丹阳; 黄金聪; 胡凤玉

    2012-01-01

    Based on a systematic investigation at 20 representative sampling sites in the Castanea henryi forest in Jian'ou, Fujian for 1 year, the results showed that there were 209 spicies of arthropod belonging to 2 classes, 17 orders, 100 families, thereinto, 176 species were collected from the canopy of forest belonging to 94 families, and 177 species from the underlayer of forest belonging to 89 families. The number of orders, families, species were similar between the canopy groups and the underlayer groups, but the distribution characteristics of individuals number, the dominant concentration of all the orders, the diversity of the groups, the structure characteristics of all the function groups were different obviously. The individuals number of Homoptera and Asterolecaniidae were the largest in the canopy, but the individuals number of Diptera and Tipulidae were the largest in the underlayer. The species diversity of the spider groups was the highest in the canopy, but the species diversity of the phytophagous groups was the highest in the underlayer. The species diversity, evenness, species richness of the underlayer arthropod groups were higher than the canopy, but the dominant concentration was lower.%通过对福建建瓯市20块锥栗林试验标准地节肢动物群落la的系统调查,结果表明,在锥栗林中共采集到节肢动物209种,它们分别隶属于2纲17目100科,其中林冠层有94科176种,下木层有89科177种.林冠层与下木层节肢动物类群的目、科、物种的数量较相近,但个体数量分布特征、各目优势集中性、类群多样性、各功能集团结构特征有明显差异.林冠层类群以同翅目、链蚧科的个体数为最多,下木层类群以双翅目、大蚊科的个体数为最多.从各功能集团的物种多样性指数来看,林冠层以蜘蛛类集团为最高,下木层以植食性集团为最高.下木层类群的物种多样性、均匀度和物种丰富度比林冠层类群高,优势集中性则比林冠层类群低.

  16. Study on Community Structure of Arthropod in Different Ecotypes of Maize Fields%不同生态型夏玉米田节肢动物群落特征的研究

    Institute of Scientific and Technical Information of China (English)

    辛肇军; 李照会; 叶保华

    2012-01-01

    The composition of arthropod communities in different ecotypes of maize fields were investigated, and the arthropod community characteristics and the relative abundance of each group were analyzed in this paper. The individual numbers, richness, diversity index and evenness index in maize - vegetable and maize - fruit fields were higher than those in maize fields, but the ecological dominance was lower. The number of predacious and parasitic natural enemies in maize fields was less than that in maize - vegetable and maize -fruit fields. The species richness changed obviously in different time series in summer maize fields, which increased rapidly from the middle of July and reached the largest as 61 kinds at August 13, and then decreased gradually until to the lowest point on September 29.%分析了泰安市3种不同生态型夏玉米田节肢动物群落结构组成及相关特征指数、优势种群和优势度,并研究了不同生态型夏玉米田节肢动物群落中各类群的相对多度.结果表明,粮菜区和粮果区节肢动物丰富度、个体总数、多样性指数和均匀度指数均明显高于纯粮区,而生态优势度均明显低于纯粮区,纯粮区捕食性和寄生性天敌种群数量少于粮菜区和粮果区.夏玉米田物种丰富度在不同时间序列上差异明显,自7月中旬开始物种丰富度呈急剧增大趋势,8月13日物种丰富度达最大值61种,此后物种丰富度逐渐波动减少,9月29日达最低点.

  17. Ethanol fuel improves arthropod capture in pitfall traps and preserves DNA

    Directory of Open Access Journals (Sweden)

    Neucir Szinwelski

    2012-05-01

    Full Text Available We tested the value of ethanol fuel as a killing solution in terms of sampling efficiency (species richness and accumulated abundance and DNA preservation of Ensifera ground-dwelling specimens. Sampling efficiency was evaluated comparing abundance and species richness of pitfall sampling using 100% ethanol fuel, with two alternative killing solutions. We evaluated the DNA preservation efficiency of the killing solutions and of alternative storage solutions. Ethanol fuel was the most efficient killing solution, and allowed successful DNA preservation. This solution is cheaper than other preserving liquids, and is easily acquired near field study sites since it is available at every fuel station in Brazil and at an increasing number of fuel stations in the U.S. We recommend the use of ethanol fuel as a killing and storage solution, because it is a cheap and efficient alternative for large-scale arthropod sampling, both logistically and for DNA preservation. For open habitat sampling with high day temperatures, we recommend doubling the solution volume to cope with high evaporation, increasing its efficacy over two days.

  18. The community composition and temporal dynamic of canopy arthropods on Citrus in Nanchang, Jiangxi Province%江西南昌柑橘冠层节肢动物群落组成及时序动态研究

    Institute of Scientific and Technical Information of China (English)

    李小珍; 王建国; 肖海军; 刘伟; 鲍涵涵; 廖琪

    2013-01-01

    采用叶面观察和诱捕相结合的方法调查了江西南昌柑橘冠层节肢动物群落.共调查到节肢动物数量144037头,分属25种.其中,高密度种类有2种即柑橘全爪螨和矢尖蚧;常见种类有13种,包括桔小实蝇、柑橘花蕾蛆、柑橘木虱和中华草蛉等;其它为低密度种类.在群落结构指数的变化过程中,分别于5月下旬和9月下旬出现Shannon-Wiener多样性指数极大值和Simpson优势度指数极小值.对高密度种类和部分常见种类的种群动态进行了分析,表明柑橘全爪螨在5月下旬至6月上旬发生严重,矢尖蚧则于7~8月发生严重;柑橘花蕾蛆幼虫和柑橘木虱发生动态相似,均仅于柑橘春梢阶段出现最高密度;桔小实蝇成虫则在9月下旬出现密度高峰;中华草蛉的发生动态与其主要捕食对象一柑橘全爪螨的相似.研究结果初步明确南昌柑橘冠层节肢动物的重要成分及重要类群的时序动态,为该地区柑橘重要害虫的防治与控制,天敌昆虫的保护与利用提供基础信息.%The composition and structure of the arthropod communities in orange orchard were investigated in Nanchang,Jiangxi Province,using the leaf observational method and the trapping technique from April to December 2012.A total of 144037 individuals,belonging to 25 species,were founded in our investigation.Among them,the high density species included with Panonychus citri MeGregor and Unaspis yanonensis (Kuwana),13 kinds of common species including Diaphorina Citri (Kuwayama),Bactrocera dorsalis Hendel,Contarinia citri Barnes,Chrysoperla sinica (Tjeder) and so on,and others were the low density species.During the change of arthropod community indexes,Shannon -Wiener diversity index reached their maximum values,and Simpson dominance index appeared their minimum values in late May and late September,respectively.Subsequently,we described the population dynamics of high density species and some common species

  19. 转基因杨棉复合系统对节肢动物群落结构的影响%Effects of Transgenic Poplar-Cotton Compound Ecosystem on the Structure of Arthropod Community

    Institute of Scientific and Technical Information of China (English)

    陈辉惶; 温俊宝; 朱银飞; 李洪清

    2012-01-01

    The present research were designed to reveal arthropod community of 4 different poplar-cottons compound ecosystem:Bt poplar+Bt cotton patterns,Bt poplar+non Bt cotton patterns,non Bt poplar + Bt cotton patterns and non Bt patterns+non Bt cotton patterns,and to analyze the influence of Bt poplar cotton compound ecosystem on the community structure by using community ecological principals and method. The results indicated that the transgenic Bt poplar and transgenic Bt cotton agro-forestry ecosystem had dramatic effect on the community structure of arthropod by comparison with other 3 compound e-cosystems had significant impact on controlling the numbers and species of target insects and helped to control occurence of target insects,but to cause the increase of the numbers and species of other nontarget insects. Meanwhiles the Bt polar-Bt cotton compound system can increase the numbers and species of non-target inscets,and become a dominance population with natural pests. From the view of bollworm-resist-ant,it is worth spreading the agro-forestry arrangement patterns, because the average ratio between good and harm of Bt transgenic cotton of Bt transgenic cotton was 0. 5622. While,analyzing the diversity index, richness index , evenness index of Bt polar - Bt cotton ecosystem community structure , which revealed that the stability of community was decreasing,its dominant populations became singleness,maybe disturb the eco-nutrition recycle. Accordingly, in order to keep the stability of the compound ecosystem, the transgenic agroforestrial ecosystem,the strategy of ecological management should be introduced.%通过对转基因杨+转基因棉、转基因杨+非转基因棉、非转基因杨+转基因棉、非转基因杨+非转基因棉4种杨棉复合系统节肢动物群落进行调查,运用群落生态学原理和方法分析了转基因杨棉复合系统对节肢动物群落结构的影响.研究表明,与其他3种复合系统相比,转基因杨棉复合系

  20. Methane production in terrestrial arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, J.H.P.; Stumm, C.K. (Catholic Univ. of Nijmegen (Netherlands))

    1994-06-07

    The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.

  1. Path Analysis of the Diversity Index and Other Components of Arthropod Communities in Tea Garden of Qianshan Area%潜山县茶园节肢动物群落多样性与相应组分的通径分析

    Institute of Scientific and Technical Information of China (English)

    周夏芝; 柯胜兵; 毕守东; 林源

    2012-01-01

    [ Objective ] The research aimed to study the relationship between the diversity index and other ecological indies of arthropod community in tea garden of Qianshan area. [ Method ] The relationship between the diversity index and other ecological indies of arthropod community in tea garden of Qianshan area were analyzed by path analysis. [ Result] Pielou index of arthropod community had a direct effect on diversity index of 0. 813 0. The dominant concentration had a negative correlation with the diversity index of -0. 361 4. These two indexes had obvious effects on diversity index. [ Conclusion] The research was favorable for illuminating the relationship between the diversity and other components of arthropod community.%[目的]研究潜山县茶园节肢动物群落的多样性与其他结构特征指数的关系.[方法]采用通径分析方法,对潜山县茶园节肢动物群落的多样性与其他特征指数的关系进行分析.[结果]群落均匀度指数对多样性的直接作用为0.8130,优势集中性指数对多样性的直接作用为-0.3614,它们对多样性的作用较为明显.[结论]该研究有助于阐明茶园节肢动物群落多样性与其他组分的关系.

  2. 不同生境类型枣园中节肢动物群落结构特征%Structure characteristics of the arthropod community in the jujube orchards with different habitats

    Institute of Scientific and Technical Information of China (English)

    师光禄; 赵莉蔺; 苗振旺; 刘素琪; 曹挥; Shiyou LI; Bruce PIKE

    2005-01-01

    在山西太谷枣区对不同间作生境组合类型枣园的节肢动物群落结构特征进行了研究,结果表明,在有杂草的枣园与其他枣园相比,节肢动物的物种数最大(P0.05),但捕食性的物种数有大豆的枣园明显(P0.05).多样性均匀度和相对稳定性指数研究结果表明有杂草的枣园明显(P0.05) of species and individuals within the parasitoid group between the treatment with soybean and the treatment without weeds. The analysis based on the Shannon-Wiener diversity index and relative stability values suggested that the richer the plant diversity, the better regulation ability among arthropod communities. More crops and properly remaining weeds could reduce the possibility of natural enemies migrating out. In addition, intercropping more crops in jujube orchards was more beneficial not only in getting a larger net return but also in increasing diversity and evenness of beneficial insects and decreasing the degree of pest dominance.

  3. Composition and Diversity of Soil Arthropods of Rajegwesi Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Hasan Zayadi

    2013-09-01

    Full Text Available Meru Betiri National Park (MBNP is one of the nature conservation area that has the potential of flora, fauna, and ecosystems that could develop as a nature-based tourism attraction. The existence of certain indicator species was related to estimation of stress level and disturbance on ecosystem stability for making strategic decisions about the restoration in this area. One of the important indicator species at forest ecosystem were soil arthropods. Aim this research were analyzed composition and diversity of soil arthropods at Rajegwesi, MBNP areas. The methods in this research used pitfall trap, measurement of distribution structure and soil arthropods composition based on the Shannon - Wiener index, Morisita similarity index and Importance Value Index (IVI. The number of families and individuals of soil arthropods found in the coastal area of Rajegwesi consists of 10 order with 21 families (702 individual. The number of individuals of the order Hymenoptera, Coleoptera, Collembola and Araneida was more widely found. Soil arthropods diversity index on each land use indicated that soil arthropod diversity in these areas were moderate. Soil arthropod community of orchards and forest had a similarity of species composition, whereas soil arthropod community of savanna had a similarity of species composition with paddy fields.

  4. Community structure and guild feature of soil arthropod animal in different forest types in the West Lake mountainous area in spring, Hangzhou%杭州西湖山区春季不同林型土壤节肢动物群落结构与功能团特征磁

    Institute of Scientific and Technical Information of China (English)

    潘林; 黄杰灵; 罗媛媛; 邵晨

    2016-01-01

    In May 2009, a survey of soil arthropod communities was conducted in five typical types of forest communities in West Lake mountainous area by pitfall traps.6 891 soil arthropod fauna individuals were sam-pled, which were classified into 24 groups.Group numbers of soil arthropod communities in five forest types were significantly different.Deciduous broadleaved forest had the highest αdiversity indices of soil arthropod community, while the bamboo forest had the lowest indices.The Sørensen similarity coefficients of soil arthro-pod communities in different forest types changed little, while the Morisita-Horn similarity coefficients varied greatly.The saprozoic group accounted for 35.15%of the arthropods.The results showed that: coleopteran,hymenoptera , collembola and psocoptera constituted the dominant group of soil arthropod fauna;soil arthropod fauna in deciduous broadleaved forest had the most complicated community structure, while the bamboo forest had the simplest; analysis of Sørensen and Morisita-Horn similarity coefficients showed that different forest types had little effect on community structures, but had a great impact on relative abundance; the saprozoic group formed the main body of guilds in study area.%2009年5月,应用陷阱法对西湖山区5种典型森林群落类型中的土壤节肢动物群落进行了调查.共采集到土壤节肢动物6891个,隶属于24个类群.不同林型间土壤节肢动物类群数存在显著差异.落叶阔叶林的土壤节肢动物群落α多样性指数最高,毛竹林最低.不同林型间土壤节肢动物群落Sørensen相似性系数变化不大,Morisita-Horn相似性系数变化较大.腐食性类群占个体总数的35.15%.研究结果表明:鞘翅目、膜翅目、弹尾目和啮虫目是西湖山区土壤节肢动物群落中的优势类群;落叶阔叶林的土壤节肢动物群落结构最复杂,毛竹林中的最简单;Sørensen

  5. Arthropod Envenomation in North America.

    Science.gov (United States)

    Erickson, Timothy B; Cheema, Navneet

    2017-05-01

    Arthropods (phylum Arthopoda) account for a higher percentage of morbidity and mortality to humans than do mammalian bites, snake bites, or marine envenomation. They are ubiquitous in domestic dwellings, caves, and campsites and in wilderness settings such as deserts, forests, and lakes. Although arthropods are most intrusive during warmer months, many are active throughout the winter, particularly indoors. Arthropods are also nocturnal and often bite unsuspecting victims while they are sleeping. Encounters with humans are generally defensive, accidental, or reactive. An individual stung by an insect or bitten by an arachnid may experience pain and local swelling, an anaphylactic reaction, or life-threatening toxicity. This review discusses the clinical presentation and latest treatment recommendations for bites and stings from spiders, scorpions, bees, ants, ticks and centipedes of North America. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Testing the effects of an introduced palm on a riparian invertebrate community in southern California.

    Directory of Open Access Journals (Sweden)

    Theresa Sinicrope Talley

    Full Text Available Despite the iconic association of palms with semi-arid regions, most are introduced and can invade natural areas. Along the San Diego River (San Diego, California, USA, the introduced Canary Island date palm (Phoenix canariensis forms dense patches among native riparian shrubs like arroyo willow (Salix lasiolepis. The structural differences between the palm and native shrubs are visually obvious, but little is known about palm's effects on the ecosystem. We tested for the effects of the palm on a riparian invertebrate community in June 2011 by comparing the faunal and environmental variables associated with palm and willow canopies, trunks and ground beneath each species. The palm invertebrate community had lower abundance and diversity, fewer taxa feeding on the host (e.g., specialized hemipterans, and more taxa likely using only the plant's physical structure (e.g., web-builders, oak moths, willow hemipterans. There were no observed effects on the ground-dwelling fauna. Faunal differences were due to the physical and trophic changes associated with palm presence, namely increased canopy density, unpalatable leaves, trunk rugosity, and litter accumulations. Palm presence and resulting community shifts may have further ecosystem-level effects through alteration of physical properties, food, and structural resources. These results were consistent with a recent study of invasive palm effects on desert spring arthropods, illustrating that effects may be relatively generalizable. Since spread of the palm is largely localized, but effects are dramatic where it does occur, we recommend combining our results with several further investigations in order to prioritize management decisions.

  7. Watershed clearcutting and canopy arthropods

    Science.gov (United States)

    Barbara C. Reynolds; Timothy D. Schowalter; D.A. Crossley

    2014-01-01

    The southern Appalachian forests are home to myriad species of insects, spiders, and other arthropods. There are more than 4,000 invertebrate species know in the Great Smoky Mountains National Park , and easily a thousand insect species in the Coweeta basin alone. The forest environment, with its favorable microclimates and structural diversity, offers a large variety...

  8. The effects of a winter cover crop on Diabrotica virgifera (Coleoptera: Chrysomelidae) populations and beneficial arthropod communities in no-till maize.

    Science.gov (United States)

    Lundgren, Jonathan G; Fergen, Janet K

    2010-12-01

    The effects of an autumn-planted, spring-killed, grass cover crop (Elymus trachycaulus [Link] Gould ex Shinners) on populations of Diabrotica virgifera virgifera LeConte and its predator community were evaluated in South Dakota maize fields over two seasons. Abundance and size of D. virgifera larvae and adults and sex ratio of adults were measured in maize produced under two treatments (i.e., a winter cover crop or bare soil), as were maize root damage and the abundance and diversity of the predator communities collected on the soil surface and in the soil column. First and second instars and adults of D. virgifera were similarly abundant in the two treatments, but third instars were significantly fewer in maize planted after a winter cover crop. Larvae developed at different rates in the two treatments, and second instars were significantly smaller (head capsule width and body length) in the maize planted after a cover crop. First and third instars and adults were of similar size in the two treatments, and adult sex ratios were also similar. Although initially similar, predator populations increased steadily in the cover-cropped maize, which led to a significantly greater predator population by the time D. virgifera pupated. There was significantly less root damage in the cover-cropped maize. Predator communities were similarly diverse in both treatments. Predator abundance per plot was significantly and negatively correlated with the abundance of third instars per plot. Clearly, winter cover crops reduce D. virgifera performance and their damage to the crop, and we suspect that this reduction is caused by both environmental effects of the treatment on D. virgifera size and development, and of increased predation on the third instars of the pest. Additional data on the impact of cover crops on actual predation levels, grain yield and quality, and farmer profitability, and correlations among pest performance, crop characteristics, and predator populations and

  9. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Directory of Open Access Journals (Sweden)

    Rentao Liu

    Full Text Available In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was

  10. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  11. Characteristics of floor litter and soil arthropod community in different types of subtropical forest in Ailao Mountain of Yunnan, Southwest China%哀牢山不同类型亚热带森林地表凋落物及土壤节肢动物群落特征

    Institute of Scientific and Technical Information of China (English)

    杨赵; 杨效东

    2011-01-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April ( dry and hot season) , June ( rainy season) , and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. Bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind · M-2) in the floor litter layer among the three forests, but the relative density (ind · G-1 ) of soil arthropods was higher in the evergreen broad-leaved forest and P. Bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind · M-2 ) and dominant groups of soil arthropod communities in dry and hot season ( April) , but negative correlations between the existing floor litter mass and the relative density (ind · G-1) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleop-tera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer

  12. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  13. Cyberdiversity: Improving the Informatic Value of Diverse Tropical Arthropod Inventories

    Science.gov (United States)

    Miller, Jeremy A.; Miller, Joshua H.; Pham, Dinh-Sac; Beentjes, Kevin K.

    2014-01-01

    In an era of biodiversity crisis, arthropods have great potential to inform conservation assessment and test hypotheses about community assembly. This is because their relatively narrow geographic distributions and high diversity offer high-resolution data on landscape-scale patterns of biodiversity. However, a major impediment to the more widespread application of arthropod data to a range of scientific and policy questions is the poor state of modern arthropod taxonomy, especially in the tropics. Inventories of spiders and other megadiverse arthropods from tropical forests are dominated by undescribed species. Such studies typically organize their data using morphospecies codes, which make it difficult for data from independent inventories to be compared and combined. To combat this shortcoming, we offer cyberdiversity, an online community-based approach for reconciling results of independent inventory studies where current taxonomic knowledge is incomplete. Participating scientists can upload images and DNA barcode sequences to dedicated databases and submit occurrence data and links to a web site (www.digitalSpiders.org). Taxonomic determinations can be shared with a crowdsourcing comments feature, and researchers can discover specimens of interest available for loan and request aliquots of genomic DNA extract. To demonstrate the value of the cyberdiversity framework, we reconcile data from three rapid structured inventories of spiders conducted in Vietnam with an independent inventory (Doi Inthanon, Thailand) using online image libraries. Species richness and inventory completeness were assessed using non-parametric estimators. Community similarity was evaluated using a novel index based on the Jaccard replacing observed with estimated values to correct for unobserved species. We use a distance-decay framework to demonstrate a rudimentary model of landscape-scale changes in community composition that will become increasingly informative as additional

  14. 不同经营管理方式对锥栗林节肢动物群落结构与多样性的影响%Effects of different management modes on the structure and diversity of arthropod community in Castanea henryi forest

    Institute of Scientific and Technical Information of China (English)

    叶世森; 赵士熙; 施丹阳

    2013-01-01

    An investigation was conducted on the arthropod community in Castanea henryi forest under five different management modes, to study the effects of the management modes on the structure and diversity of arthropod community. Under the five different management modes, the structure and diversity of arthropod community had greater difference. In the C. henryi forest with careful management and no application of chemicals, arthropod community had the highest spe-cies diversity and stability, the diversity index of phytophagous groups was the highest, and the relative abundance of natural enemy groups was also the highest, which had high effectiveness in controlling pests and was disadvantageous to the outbreak of dominant pests. In contrast to the management-abandoned mode, careful management would improve the species diversity of canopy groups, but the use of chemical pesticides would decrease the species diversity and evenness of each functional group, and increase the relative abundance of phytophagous groups.%通过对不同经营管理方式下锥栗林节肢动物群落的调查,研究了生产上典型的5种经营管理方式对锥栗林节肢动物群落结构与多样性的影响.结果表明:5种不同经营管理方式下锥栗林节肢动物群落结构和多样性有较大差别,管理精细未用药型的锥栗林物种多样性和稳定性最高,植食性集团的多样性指数最高,天敌功能集团的相对丰盛度最高,对害虫的自然控制效能高,不利于优势害虫的暴发;相比管理撂荒型,精细的经营管理会提高林冠层物种多样性,而化学农药的使用降低了各功能集团的物种多样性、均匀度,提高了植食性集团的相对丰盛度.

  15. Sophisticated digestive systems in early arthropods

    National Research Council Canada - National Science Library

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-01-01

    .... Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans...

  16. Evaluation of Ground Arthropod Structure in Restoration Area of Talangagung Landfill as Edutourism Attraction, Kepanjen, Malang

    Directory of Open Access Journals (Sweden)

    Dinda Azalia

    2015-09-01

    Full Text Available Aim of this research is to know the composition, community structure and survivality of ground arthropod in restoration area of Talangagung edutourism landfill (TPA Wisata Edukasi Talangagung. Arthopod survey was conducted with four methods, yellow pan trap, pit fall trap, berlesetullgren, and sweep net. The research was done in four different locations with twice repetition. Survey location was devided in three zone, which is zone one with 10 years restoration, zone two with five years restoration, and zone three which not yet restored, and reference site. Abiotic factor which observed in this research such as light intensity, humidity, and air temperature. Analysis of arthropod diversity and community structure in each site was calculated from importance value index (IVI and diversity index (Shannon Wienner Index. The results show that diversity of ground arthropod in zone one, two, three, and reference site was on medium level which each score 1.9, 1.87, 1.71, and 2.08. Community structure with dominant pattern showed with IVI from Acrididae in zone one and zone three with IVI 67.2 % and 53.5 %. Myrmicidae in reference site dominance with IVI 51.4 % and Formicidae in zone one with IVI 48.6 %. Ground arthropod in zone one and reference site had similarity in community structure which showed in same cluster in biplot analysis and zone two and three was in another different cluster. Keywords : Arthropod, diversity, restoration, community structure

  17. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  18. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Directory of Open Access Journals (Sweden)

    Julieta Benítez-Malvido

    Full Text Available Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  19. The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores)

    DEFF Research Database (Denmark)

    Meijer, Seline S.; Whittaker, Robert J.; Borges, P. A. V.

    2011-01-01

    We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abunda...... role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.......We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness...... and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE...

  20. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  1. Future rainfall patterns will reduce arthropod abundance in model arable agroecosystems with different soil types

    Science.gov (United States)

    Zaller, Johann; Simmer, Laura; Tabi Tataw, James; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas

    2013-04-01

    Climate change scenarios for eastern Austria predict a seasonal shift in precipitation patterns with fewer but heavier rainfall events and longer drought periods during the growing season and more precipitation during winter. This is expected to alter arthropods living in natural and agricultural ecosystems with consequences for several ecosystem functions and services. In order to better understand the effects of future rainfall patterns on aboveground arthropods inhabiting an agroecosystem, we conducted an experiment where we simulated rainfall patterns in model arable systems with three different soil types. Experiments were conducted in winter wheat cultivated in a lysimeter facility near Vienna, Austria, where three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem) were subjected to long-term current vs. predicted rainfall patterns according to regionalized climate change projections for 2071-2100. Aboveground arthropods were assessed by suction sampling in April, May and June 2012. We found significant differences in mean total arthropod abundances between the sampling dates with 20 ± 2 m-2, 90 ± 20 m-2 and 289 ± 54 m-2 in April, May and June, respectively. Across all three sampling dates, future rainfall patterns significantly reduced the abundance of Araneae (-43%), Auchenorrhyncha (-39%), Coleoptera (-48%), Carabidae (-41%), Chrysomelidae (-64%), Collembola (-58%), Diptera (-75%) and Neuroptera (-73%). Generally, different soil types had no effect on the abundance of arthropods. The diversity of arthropod communities was unaffected by rainfall patterns or soil types. Correlation analyses of arthropod abundances with crop biomass, weed density and abundance suggest that rainfall effects indirectly affected arthropods via changes on crops and weeds. In conclusion, these results show that future rainfall patterns will have detrimental effects on the abundance of a variety of aboveground arthropods in winter wheat with potential

  2. Noninsect Arthropods in Popular Music

    Directory of Open Access Journals (Sweden)

    Joseph R. Coelho

    2011-05-01

    Full Text Available The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility.

  3. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic...

  4. Plants and arthropods: friends or foes ?

    NARCIS (Netherlands)

    Kant, M.; Williams, M.

    2011-01-01

    Plants are the most abundant terrestrial food sources, and arthropods (insects and arachnids) their most abundant consumers. For this reason plants are heavily defended by thorns, thick impervious coverings, and extraordinary toxins. However, plant fitness also depends upon alliances with arthropods

  5. Arthropods of medicoveterinary importance in zoos.

    Science.gov (United States)

    Adler, Peter H; Tuten, Holly C; Nelder, Mark P

    2011-01-01

    Zoos present a unique assemblage of arthropods, captive vertebrates, free-roaming wildlife, humans, and plants, each with its own biota of symbiotic organisms. Arthropods of medicoveterinary importance are well represented in zoos, and an ample literature documents their influence in these animal-rich environments. Mosquitoes are of greatest significance because of the animal and human pathogens they transmit, followed by ectoparasites, many of which are exotic and present health risks to captive and native animals. Biting flies, cockroaches, filth flies, and triatomid bugs represent additional concerns. Integrated management programs for arthropods in zoos are commonplace. Zoos can play a role in biosurveillance, serving as an advanced guard for detecting exotic arthropods and vector-borne diseases. We provide the first review of arthropods of medicoveterinary importance in zoos. A case is made for the value of collaborations between entomologists and zoo personnel as a means of enhancing research and public education while safeguarding the health of captive animals and the public.

  6. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  7. Geographic variation in a facultative mutualism: consequences for local arthropod composition and diversity.

    Science.gov (United States)

    Rudgers, Jennifer A; Savage, Amy M; Rúa, Megan A

    2010-08-01

    Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant-plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant-plant mutualism

  8. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Directory of Open Access Journals (Sweden)

    Heraldo L Vasconcelos

    return interval of only 1-2 years may jeopardize the long-term conservation of litter arthropod communities.

  9. Arthropod diversity in pure oak forests of coppice origin in northern Thrace (Turkey

    Directory of Open Access Journals (Sweden)

    Keten A

    2015-10-01

    Full Text Available Oak (Quercus spp. forests are among the most important forest types in Turkey. In the past, oak forests were managed through coppice clear-cutting, but in recent decades they have mostly been converted to high forest. This study was aimed at explaining how arthropod diversity is affected during conversion from coppice to high oak forest and during the early stages of coppice succession. We tested the hypothesis that arthropod richness, abundance and diversity in coppice oak sites varied according to stand age and a number of other forest characteristics. Arthropod communities were sampled in 50 plots using four different methods: pitfall traps, sweep nets, sticky cards and cloth shaking. A total of 13 084 individuals were collected and classified into 193 Recognizable Taxonomic Units (RTUs, with the most RTUs and the greatest number of specimens captured by sweep netting. We identified 17 taxa within RTU’s with more than 1% of the captured arthropods, which constituted 75% of the total specimens. The number of RTUs varied significantly according to trap type. Arthropod richness and Shannon-Wiener biodiversity index (H′ increased with elevation and precipitation. In young (1-40 yrs-old and middle-aged (41-80 yrs stands, arthropod biodiversity was not significantly affected by stand type, but slightly increased with diameter at breast height and tree height. Forest characteristics, such as the litter layer, understory and crown diameter, weakly influenced arthropod richness and abundance. Cluster analysis revealed that stand types and trap types differed taxonomically. Principal component analysis showed that stand types were clearly separated by the stand parameters measured. Insect families (Formicidae, Thripidae, Lygaeidae, Dolichopodidae, Luaxanidae, Cicadellidae and Ichneumonidae could potentially be used as indicators of coppice oak conditions. As the coppice oak changes to mature forest, further studies are needed to better assess the

  10. Arthropods (http://www.iaees.org/publications/journals/arthropods/online-version.asp

    Directory of Open Access Journals (Sweden)

    arthropods@iaees.org

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  11. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  12. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  13. Cambrian bivalved arthropod reveals origin of arthrodization.

    Science.gov (United States)

    Legg, David A; Sutton, Mark D; Edgecombe, Gregory D; Caron, Jean-Bernard

    2012-12-07

    Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans ('great-appendage' arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids).

  14. 甜槠凋落叶分解中土壤节肢动物群落结构动态及其对森林片段化的响应%Dynamics of soil arthropod community structure and its responses to forest fragmentation during the decomposition of Castanopsis eyrei leaf litter

    Institute of Scientific and Technical Information of China (English)

    罗媛媛; 袁金凤; 沈国春; 赵谷风; 于明坚

    2011-01-01

    选取浙、闽、赣交界山地5个不同的常绿阔叶林群落(1处连续森林和4处片段化森林),对优势种甜槠凋落叶分解过程中土壤节肢动物动态进行了研究.5个研究样地共获得土壤节肢动物899头,分属9纲25目,其中鳞翅目占个体总数的10%以上,为优势类群;膜翅目、弹尾目、双翅目、前气门亚目和地蜈蚣目为常见类群.凋落叶分解速率与土壤节肢动物的类群数、个体数随季节动态呈现相一致的变化趋势.8月凋落物分解最快,土壤节肢动物类群和个体数最多;而4至6月和12月情况与之相反.片段化森林和连续森林在土壤节肢动物的类群数、个体数和物种多样性方面均显示出差异,面积效应和边缘效应在其中都起了一定的作用.%Five evergreen broad-leaved forests (one continuous forest and four fragmented forests)in the mountain areas in the juncture of Zhejiang, Fujian, and Jiangxi Provinces, East China were selected as test objects to study the dynamics of soil arthropod community structure and its responses to forest fragmentation during the decomposition of dominant tree species Castanopsis eyrei leaf litter. A total of 899 soil arthropods were collected, belonging to 9 classes and 25 orders. Lepidoptera was the dominant taxon, accounting for 10% of the individual, while Hymenoptera, Collembola,Diptera, Prostigmata, and Geophilomorpha were the common taxa. The decomposition rate of C.eyrei leaf litter was the highest in August and lower in April-June and December, which was in accordance with the seasonal dynamics of the taxa number and individual number of soil arthropods.Meanwhile, the taxa number, individual number, and species diversity of soil arthropods differed between continuous forest and fragmented forests, suggesting that both area effect and edge effect affected the dynamics of soil arthropod community structure during the decomposition of C. eyrei leaf litter.

  15. Key to marine arthropod larvae

    Directory of Open Access Journals (Sweden)

    John A. Fornshell

    2012-03-01

    Full Text Available The scope of this key is restricted to the larvae of marine arthropods. The key is based solely on their morphology, patterns of body segmentation, numbers of appendages, and mode of locomotion. An effort has been made to treat all traditionally named larval forms, both planktonic and benthic. It is intended that this key be useful for a researcher working with archived museum specimens and therefore, does not include habitat information as a identifying trait, even though this information is usually available in the archived records. Within the phylum Arthropoda there are two sub-phyla and eleven classes having larval stages in the marineenvironment. Where feasible the original names of the various larval types have been used. Because this nomenclature is less commonly used today compared to the past, the more recent taxonomic affinities are included in parentheses after the original larval name. The key includes the following thirty-four larvae: Branchhiopoda nauplii; Cephalocarida nauplii; Mystacocarida nauplii; trilobite larva; protonymphon; hexapod larvae; Remipedia nauplii; nauplius - Y larvae; Cirripedia nauplii; Ascothoracida nauplii; Ostracoda nauplii; Euphausiacea nauplii; Penaeidea nauplii; Cyclopoida nauplii; Calanoida nauplii; Harpacticoida nauplii;Polyarthra nauplii; cypris larva; eryonecius larva; cypris-Y larva; elapthocaris larvae; mysis larvae; lucifer zoea; acetes zoea; acanthosoma larva; phyllosoma; antizoea larva; anomuran zoea; brachyuran zoea; calyptopis larvae; furcilia larva; crytopia larva; puerulus larva; alima larva.

  16. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics.

    Science.gov (United States)

    Beng, Kingsly Chuo; Tomlinson, Kyle W; Shen, Xian Hui; Surget-Groba, Yann; Hughes, Alice C; Corlett, Richard T; Slik, J W Ferry

    2016-04-26

    Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform were used to amplify and sequence a wide variety of litter arthropods using simulated and real-world communities. Quality filtered reads were clustered into 3,624 MOTUs at ≥97% similarity and the taxonomy of each MOTU was predicted. We compared diversity and compositional differences between forests and plantations (rubber and tea) for all MOTUs and for eight arthropod groups. We obtained ~100% detection rate after in silico sequencing six mock communities with known arthropod composition. Ordination showed that rubber, tea and forest communities formed distinct clusters. α-diversity declined significantly between forests and adjacent plantations for more arthropod groups in rubber than tea, and diversity of order Orthoptera increased significantly in tea. Turnover was higher in forests than plantations, but patterns differed among groups. Metabarcoding is useful for quantifying diversity patterns of arthropods under different land-uses and the MiSeq platform is effective for arthropod metabarcoding in the tropics.

  17. Insects as stem engineers: interactions mediated by the twig-girdler Oncideres albomarginata chamela enhance arthropod diversity.

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    Full Text Available BACKGROUND: Ecosystem engineering may influence community structure and biodiversity by controlling the availability of resources and/or habitats used by other organisms. Insect herbivores may act as ecosystem engineers but there is still poor understanding of the role of these insects structuring arthropod communities. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effect of ecosystem engineering by the stem-borer Oncideres albomarginata chamela on the arthropod community of a tropical dry forest for three consecutive years. The results showed that ecosystem engineering by O. albomarginata chamela had strong positive effects on the colonization, abundance, species richness and composition of the associated arthropod community, and it occurred mainly through the creation of a habitat with high availability of oviposition sites for secondary colonizers. These effects cascade upward to higher trophic levels. Overall, ecosystem engineering by O. albomarginata chamela was responsible for nearly 95% of the abundance of secondary colonizers and 82% of the species richness. CONCLUSIONS/SIGNIFICANCE: Our results suggest that ecosystem engineering by O. albomarginata chamela is a keystone process structuring an arthropod community composed by xylovores, predators and parasitoids. This study is the first to empirically demonstrate the effect of the ecosystem engineering by stem-boring insects on important attributes of arthropod communities. The results of this study have important implications for conservation.

  18. Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes

    Science.gov (United States)

    Ann E. Hajek; Patrick C. Tobin

    2010-01-01

    Non-indigenous arthropods are increasingly being introduced into new areas worldwide and occasionally they cause considerable ecological and economic harm. Many invasive arthropods particularly pose problems to areas of human habitation and native ecosystems. In these cases, the use of environmentally benign materials, such as host-specific entomopathogens, can be more...

  19. Opportunity to Improve Public Perceptions of Arthropods and Arthropod-Related Benefits

    Science.gov (United States)

    Harris, Bethany A.; Braman, S. Kristine

    2016-01-01

    The general public may not recognize the value of conserving insects and spiders in home landscapes. We surveyed individuals to assess public perceptions of 10 arthropods--nine common insects and one common spider species--and to determine whether arthropod-related attitudes could be altered. Additionally, we collected data on survey respondent…

  20. Simulation of arthropod abundance from plant composition

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2011-04-01

    Full Text Available The relationship between arthropod abundance and plant composition is extremely complex. It is very hard to develop a mechanistic model to describe the relationship. This study aimed to simulate arthropod abundance from plant composition on grassland using an artificial neural network developed by the author, and to compare simulation performances between the neural network and conventional models. The results revealed that there were complex interactions between plants and arthropods, and the arthropod abundance on grassland was significantly determined of plant families and their cover-degrees rather than plant species and their cover-degrees. Neural network exhibited a better simulation performance than multivariate regression and response surface model. Cross validation indicated that prediction performance of neural network was also superior to these models. It was concluded that neural network is an effective tool to model arthropod abundance from plant composition on grassland. A moderate dimensionality for input space may be determined to produce a reasonably trained neural network. Such procedures for dimensionality reduction as PCE, etc., were suggested being used in the data treatment in neural network modeling. A high dimensionality for input space and a few samples in the input set would result in the deficient learning of neural network. Randomization procedure for sample submission would help to eliminate the sequence correlation but may result in a worse performance in simulation and prediction. It was suggested that randomization procedure could be used to the sample submission for these situations with a lot of samples and a lower dimensionality.

  1. Sophisticated digestive systems in early arthropods.

    Science.gov (United States)

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  2. Species diversity of arthropod community in inefficient Larix pricipis - rupprechtii forest in north mountain of Hebei province%冀北山地华北落叶松低效人工林节肢动物物种多样性研究

    Institute of Scientific and Technical Information of China (English)

    崔立志; 闫菁; 杨晋宇; 金池; 黄选瑞; 徐学华

    2011-01-01

    According to sampling of arthropod in the inefficient Larix pricipis - rupprechtii forest, the arthropod community composition was preliminarily analyzed. And sampled to 5 areas in different management measure,compared the species composition, Shannon- Wiener diversity index,Evenness and Similarity index of the different sample plots of the plantation.The results showed that 'manual promote renew' has the highest species diversity,The overall level of species diversity of the plantation is higher then the usual plot without? Manual processing.%通过对冀北山地华北落叶松低效人工改造林的节肢动物取样调查,采得节肢动物2纲9目60科177种3 985头.并初步统计分析该低效人工林的节肢动物群落组成,对人工林中5种不同处理样地进行分别取样,分析比较各样地节肢动物群落的物种组成、多样性指数、均匀度、相似性指数.结果表明:人工改造林中节肢动物多样性整体水平比未经处理的对照林略高,其中,人工促进更新的针针混交乔灌草复层结构林(样地1)的节肢动物多样性水平最高.

  3. A molecular palaeobiological exploration of arthropod terrestrialization

    DEFF Research Database (Denmark)

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R.

    2016-01-01

    amolecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route...... to the colonization of land is the most likely scenario.Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record,Myriapoda are inferred to have colonized land...

  4. Microbial control of arthropod-borne disease

    Science.gov (United States)

    Saldaña, Miguel A; Hegde, Shivanand; Hughes, Grant L

    2017-01-01

    Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted. PMID:28177042

  5. Microbial control of arthropod-borne disease

    Directory of Open Access Journals (Sweden)

    Miguel A Saldaña

    Full Text Available Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.

  6. Pacific Remote Islands MNM: Initial Survey Instructions for Terrestrial Arthropods

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purposes of the terrestrial arthropod surveys are to: develop a species list of native and non-native terrestrial arthropods on land portions of the refuge;...

  7. Physical conditions affecting pyrethroid toxicity in arthropods.

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.A.J.M.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect model. In

  8. Comparative phylogeography of endemic Azorean arthropods

    DEFF Research Database (Denmark)

    Parmakelis, Aristeidis; Rigal, François; Mourikis, Thanos

    2015-01-01

    Background: For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago...

  9. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  10. Short notes and reviews Phosphatocopine arthropods

    NARCIS (Netherlands)

    Schram, Frederick R.

    2004-01-01

    For anyone interested in the early history and evolution of arthropods, one simply cannot get along without reference to the series of works that have been appearing since the 1970s by Dieter Waloszek and Klaus Müller on the Cambrian Orsten fossils. Of particular importance in this regard is the

  11. Similarity and disparity of arthropod community compositions among ten tea-intercropping plantations with different species of fruits in the Dongtingshan Mountains, Taihu Lake%太湖洞庭山十种茶果间作茶园节肢动物群落组成的异同性

    Institute of Scientific and Technical Information of China (English)

    季小明; 王梦馨; 江丽容; 韩宝瑜

    2011-01-01

    In order to understand the effect of tea-fruit intercropping on the population density and spatial distribution patterns of arthropod communities, ten types of tea-fruit intercropped plantations were investigated in the East Dongtingshan Mountains, Taihu Lake, during the summer( July) harvesting season of 2009. This mountain is the original production site of the famous tea, Dongtingbiluochun, and has & long history of tea and fruit intercropping. The same experimental design; sampling the same ten types of tea-fruit intercropped plantations, was also implemented in the West Dongtingshan Mountains, Taihu Lake, during the spring( April ) harvesting season of 2010. Data on species composition and population densities of arthropods between the intercropped fruit trees at the upper, middle and lower layers of tea bushes, and on and below ground level, were obtained from each experimental plot for both locations and study periods. Our data indicates that: (1) Overall results from the two locations and sampling periods were virtually the sarae. (2) The tea green leafhopper, Empoasca vitis Cothe, and the citrus spiny whitefly, Aleurocanthus spiniferus( Quainlance) were the most dominant pest species regardless of intercropping types and location; there were no significant differences in the species composition of other major pests and dominant natural enemies. (3) Species richness in the upper and middle layers of tea bushes, abundance ( total number of individuals; dominated by Homopteran insects ) in the lower layer of tea bushes and the biodiversity index of the middle layer of tea bushes, were higher than in the other layers. (4) Among different types of tea-fruit intercropped plantations, tea-citrus and tea-chestnut plantations had a higher arthropod species richness, whereas both species richness and overall arthropod abundance were lower in tea-Japanese allspice plantations. This suggests that the rational intercropping of tea plants with fruit trees can increase

  12. Arthropods, plants, and transmission lines in Arizona: secondary succession in a Sonoran Desert habitat

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.D.; Ditsworth, T.M.; Beley, J.R.

    1981-09-01

    Overall arthropod densities were low at this site, but the arthropod densities on the disturbed areas appeared to be enhanced after several years. No taxa were found to be statistically different in density between control and disturbed plots. Diversity decreased on the disturbed area after construction. Arthropod community similarity (C) was lower after construction, but C values appear to be related to presence or absence of annual herbs and grasses and not to total cover. Except for globe mallow, there were no pioneer plant species on the experimental plot. Effects of powerline construction on the experimental plant community were a brief reduction in total cover and a slight increase in cover of herbs and annual grasses. The 1976 and 1977 samples exhibit comparable cover values of these plants on both experimental and control plots. The dominant arthropod taxa on the experimental area (especially Thysanoptera, Cicadellidae, Coccinellidae, and Melyridae) appear to be responding numerically to the annual herbs and grasses which are becoming established on the plot.

  13. Trilobites and the origin of arthropods.

    Science.gov (United States)

    Cisne, J L

    1974-10-04

    While the question of whether the Arthropoda represent more than one phylum of animals is debatable, the jointed exoskeleton, a fundamental feature of arthropods, evolved independently in two groups that shared a worm-like common ancestor. The two major branches of Arthropoda, the primitively marine TCC and the primitively terrestrial (with one exception) Uniramia, independently arrived at arthropodization as the solution to the same problems of adaptation of the body mechanical system. New discoveries on trilobite anatomy show the unity of TCC as a group that shared a trilobite-like ancestor near the beginning of the Cambrian. With change in the constituency of Arthropoda through geologic time, the ways in which it would be categorized as a taxonomic group have also changed. The seeming isolation of the major modern arthropod groups is in large part an artifact of extinction of primitive intermediate forms such as trilobites which, in the Early Paleozoic, made the Arthropoda more diverse in basic modes of body organization than the group is at present. The appearance of fossilizable hard parts in arthropods resulted from shift in supporting function from the body cavity, primitively a hydrostatic skeleton, to the cuticle, which came to be strengthened in becoming an exoskeleton. Energetic efficiency, more than protection from predators or evolutionary size increase in itself, was probably the impetus behind the transition. On the scale provided by the general evolutionary trend toward progressive specialization of segments, TCC became arthropodized at earlier stages than did Uniramia. Among TCC, the shift may have been driven by the evolution of locomotory and feeding mechanisms that were exclusively geared to an aqueous medium.

  14. Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities.

    Science.gov (United States)

    Hoekman, David; Dreyer, Jamin; Jackson, Randall D; Townsend, Philip A; Gratton, Claudio

    2011-11-01

    Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Mývatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Mývatn and spreading their dried carcasses on 1-m2 plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other.

  15. Arthropods of Rose Atoll with special reference to ants and Pulvinaria Urbicola Scales (Hempitera Coccidae) on Pisonia Grandis trees

    Science.gov (United States)

    Banko, Paul C.; Peck, Robert W.; Pendleton, Frank; Schmaedick, Mark; Ernsberger, Kelsie

    2014-01-01

    Rose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.

  16. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-02-06

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  17. Trees as templates for tropical litter arthropod diversity.

    Science.gov (United States)

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.

  18. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    Science.gov (United States)

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  19. Folsomia candida (Collembola): a "standard" soil arthropod.

    Science.gov (United States)

    Fountain, Michelle T; Hopkin, Steve P

    2005-01-01

    Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However, it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review, aspects of the life history, ecology, and ecotoxicology of F. candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F. candida using the protocol published by the International Standards Organization in 1999.

  20. Arthropod pest management in organic crops.

    Science.gov (United States)

    Zehnder, Geoff; Gurr, Geoff M; Kühne, Stefan; Wade, Mark R; Wratten, Steve D; Wyss, Eric

    2007-01-01

    Burgeoning consumer interest in organically produced foods has made organic farming one of the fastest growing segments of agriculture. This growth has not been supported adequately by rigorous research to address challenges such as arthropod pest management. The research that has been conducted, however, is complemented by research in aspects of conventional agriculture that may have applicability in organic systems, as well as by research in underpinning fields such as applied ecology. This article synthesizes the available literature in relation to a conceptual model of arthropod pest management strategies suitable for organic systems. The present work uses the four phases of the model to review the strategies in an agroecological context and provides a synthesis of the factors that influence the success of each phase. Rather than constituting a fringe science, pest management research for organic systems draws on cutting edge science in fields such as landscape and chemical ecology and has a bright future.

  1. Synthesis of (-)-callicarpenal, a Potent Arthropod Repellent

    Science.gov (United States)

    2011-01-01

    these compoundswere evaluated for mosquito biting-deterrent effects against 7e10 days old adult fe- males of Aedes aegypti (Table 1). Analogueswere... history : Received 15 December 2010 Received in revised form 24 February 2011 Accepted 25 February 2011 Available online 4 March 2011 Keywords: Arthropod... aegypti (Table 2). Analogues C8- epi-13, C8-epi-14, C8-epi-15, and C8-epi-()-1 were tested side-by- side against 1 and ethanol control. Again, all of

  2. The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods.

    Science.gov (United States)

    Rust, Jes; Bergmann, Alexandra; Bartels, Christoph; Schoenemann, Brigitte; Sedlmeier, Stephanie; Kühl, Gabriele

    2016-03-01

    The approximately 400-million-year old Hunsrück biota provides a unique window into Devonian marine life. Fossil evidence suggests that this biota was dominated by echinoderms and various classes of arthropods, including Trilobita, stem lineage representatives of Euarthropoda, Chelicerata and Eucrustacea, as well as several crown group Chelicerata and Eucrustacea. The Hunsrück biota's exceptional preservation allows detailed reconstructions and description of key-aspects of its fauna's functional morphologies thereby revealing modes of locomotion, sensory perception, and feeding strategies. Morphological and stratigraphic data are used for a critical interpretation of the likely habitats, mode of life and nutritional characteristics of this diverse fauna. Potential predators include pycnogonids and other chelicerates, as well as the now extinct stem arthropods Schinderhannes bartelsi, Cambronatus brasseli and Wingertshellicus backesi. Mainly the deposit feeding Trilobita, Marrellomorpha and Megacheira, such as Bundenbachiellus giganteus, represents scavengers. Possibly, opportunistic scavenging was also performed by the afore-mentioned predators. Most of the studied arthropods appear to have been adapted to living in relatively well-illuminated conditions within the photic zone. Fossil evidence for associations amongst arthropods and other classes of metazoans is reported. These associations provide evidence of likely community structures.

  3. The effect of repeated release of the predatory mite Neoseiulus (Amblyseius) cucumeris on arthropod communities in citrus ecosystems%多次释放胡瓜新小绥螨对橘园节肢动物群落多样性的影响

    Institute of Scientific and Technical Information of China (English)

    季洁; 张艳璇; 陈霞; 林坚贞; 孙莉

    2012-01-01

    为了探明长期多次释放胡瓜新小绥螨(Neoseiulus (Amblyseius) cucumeris)是否会对橘园节肢动物群落的生物多样性产生影响,我们在福州马尾和晋安试验区的2个橘园分别设置生防园、自然园和化防园,连续两年每月两次在各处理橘园的树冠和地面杂草中采集并记录节肢动物的种类和数量,结果表明两个试验区的物种丰富度(S)均以生防园最高,且都显著高于相应的化防园和自然园;马尾试验区三种处理的多样性指数(H)和均匀度指数(E)的大小依次为生防园>自然园>化防园,晋安试验区则为自然园>生防园>化防园,表明释放胡瓜新小绥螨防治柑橘害螨,减少农药的使用,能恢复或增加橘园节肢动物群落的生物多样性.此外,释放胡瓜新小绥螨未对橘园原有的捕食螨类群产生影响.%In order to study the effect of repeated release of Neoseiulus {Amblyseius) cucumeris on the species composition and diversity of arthropod community in citrus ecosystems, we established bio-control orchards, natural orchards and chemical control orchards in the Mawei and Jin'an experimental field of Fuzhou, China. Our results indicated that the species richness of bio-control orchards was higher than that of natural or chemical control orchards at both sites. Diversity and evenness indices were higher in bio-control orchards than those of other orchards in the Mawei site, and those of chemical control orchards were the lowest. Among the variously managed orchards in Jin'an, evenness and diversity indices were highest in the natural orchards and lowest in chemical orchards. Our study suggests that citrus ecosystem arthropod diversity can be enhanced by releasing N. cucumeris to fight against the citrus pest mites while reducing the spraying of pesticide.

  4. Studies on the Temporal Dynamics of the Arthropod Community in Different Walnut-crop Intercropping Systems at Aksu Area%阿克苏地区不同核农间作系统节肢动物时序动态研究1)

    Institute of Scientific and Technical Information of China (English)

    吐尔逊古丽·托乎提; 亚里坤·努尔

    2014-01-01

    Systematically investigated on the Arthropods in walnut-crop intercropping systems at Aksu area of Xinjiang Region ,found out the occurrence rules of major insect pests ,Provide theo-retical basis for the control of main walnut insect pests and orchard standardization production a-mong southern Xinjiang area .Using the method of community ecology after analyzed the tempo-ral dynamics of arthropod in walnut farmers’ intercropping systems ,the result shows that among the four different types of walnut yards ,the first is intercropping of annual diversity index and evenness index fruiting walnut+cotton ,the second is young walnut+cotton .And the lowest ad-vantage of concentration index is intercropping between fruiting walnut and cotton .Considering the intercropping between walnut and crops ,recommend to choose walnut and cotton intercrop-ping .%对新疆阿克苏地区核桃与农作物间作系统节肢动物进行系统调查,摸清主要害虫的发生规律,为南疆地区核桃主要害虫的控制及果园规范化生产提供理论依据。运用群落生态学方法分析核农间作系统节肢动物的时序动态,结果表明,四种类型核桃园中,全年多样性指数与均匀性指数结果期核桃+棉花间作园最大,幼树龄核桃+棉花间作园次之;而优势集中性指数则是结果期核桃+棉花间作园最低。在核桃与农作物间作时,核桃园建议选择间作棉花。

  5. Skimming the surface with Burgess Shale arthropod locomotion

    OpenAIRE

    Minter, Nicholas J.; Mángano, M. Gabriela; Caron, Jean-Bernard

    2011-01-01

    The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelt...

  6. Arthropods associated with the crown of Mauritia flexuosa (Arecaceae) palm trees in three different environments from Brazilian Cerrado.

    Science.gov (United States)

    Gurgel-Gonçalves, Rodrigo; Palma, Alexandre R T; Motta, Paulo C; Bar, Maria E; Cuba, Cesar A C

    2006-01-01

    Canopy arthropods, mainly from palm trees, are little known in the Brazilian Cerrado. In order to describe the arthropod community structure associated with the crown of Mauritia flexuosa (Arecaceae), we sampled 150 palm trees in six "veredas" of the Federal District, Brazil, in wild, rural and periurban areas in the rainy season. The arthropods within abandoned bird nests, mammal refuges, leaves and organic matter were manually collected, preserved in ethanol 70% and separated by order, family, morphospecies and feeding guilds. Stem height and diameter of the palm crowns were measured and leaves and bird nests were counted. We collected 3,862 arthropods, from 15 orders, 45 families and 135 morphospecies. The most abundant orders were Coleoptera (28.6%), Blattodea (21.8%), Collembola (11.4%) and Hemiptera (10.2%). The families Blaberidae, Entomobryidae, Reduviidae, Oniscidae, Staphylinidae, Carabidae and Formicidae, represented 82.1% of all individuals collected. The majority of morphospecies was not abundant, 71 (52.6%) were represented by less than 1 individual/tree. Coleopterans accounted for the highest number of morphospecies (43.7%) followed by Araneae (20.0%). The analysis of the arthropod feeding guilds showed prevalence of predatory/hematophagous ones (36.0%). Arthropod richness and abundance presented smaller values for periurban environment. The number of bird nests presented positive correlation with abundance and richness; this was not found when considering the measurements of the palm trees. The importance of M. flexuosa for the maintenance of the arthropod fauna of the "veredas" in Cerrado biome is discussed.

  7. New insights on arthropod toxins that potentiate erectile function.

    Science.gov (United States)

    Nunes, Kenia P; Torres, Fernanda S; Borges, Marcia H; Matavel, Alessandra; Pimenta, Adriano M C; De Lima, Maria E

    2013-07-01

    The use of natural substances for the treatment of diseases or injuries is an ancient practice of many cultures. According to folklore, natural aphrodisiacs may help to raise libido and increase desire. The supposed aphrodisiacs mainly include a plethora of preparations of plants, among other substances. However, the real boundary between myth and reality has not been established yet in most cases and such boundaries must be drawn by scientific methods. A growing interest of the scientific community has been focused on animal venoms, especially those from arthropods, i.e. spiders and scorpions, which cause priapism, a prolonged and painful erection. This review highlights the studies that have been performed with venoms and toxins from arthropods known to cause priapism, among other toxic symptoms, pointing out some pharmacological approaches for better understanding this effect. To date, the venom of some spiders, mainly Phoneutria nigriventer, and scorpions, such as the yellow South American scorpion Tityus serrulatus, among others, have been known to cause priapism. Since erectile dysfunction (ED) is a growing health problem in the world, more common in patients with vascular diseases as diabetes and hypertension, the use of animal venoms and toxins as pharmacological tools could not only shed light to the mechanisms involved in erectile function, but also represent a possible model for new drugs to treat ED. Unfortunately, attempts to correlate the structure of those priapism-related toxins were unfruitful. Such difficulties lie firstly on the poor data concerning purified priapism-related toxins, instead of whole venoms and/or semi-purified fractions, and secondly, on the scarce available primary sequences and structural data, mainly from spider toxins. It has been shown that all these toxins modify the sodium (Na(+)) channel activity, mostly slowing down its inactivation current. Improving the knowledge on the tertiary structure of these toxins could provide

  8. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Directory of Open Access Journals (Sweden)

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  9. 浙江东明山森林公园毛竹林节肢动物的组成和多样性%Composition and Diversity of Arthropod Community in Phyllostachys edulis Forest in Doming Mountain Forest Park of Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    舒金平; 刘立伟; 黄照岗; 宋洋; 徐天森; 王浩杰

    2011-01-01

    节肢动物群落结构及其多样性是反映森林生态系统稳定性的重要指标.2005-2007年对浙江东明山森林公园毛竹林节肢动物群落进行了系统调查,共采集到42 439号标本,隶属于17目,126科,511种.结果表明:无论是从种类还是个体数上,均以鳞翅目最为丰富,其次为鞘翅目.毛竹林节肢动物群落多样性呈现明显的季节性变化,在冬季和夏季,相对丰度、Shannon-Wiener多样性指数及Simpson优势集中性指数等指标均有所下降,总体随着季节变化呈现双峰型的变化趋势,高峰期分别出现在每年的6月和9月;从功能集团角度分析,植食性集团无论在物种的种类及个体数上均占有明显优势,其次是天敌集团,中性集团最少.植食性集团中昆虫种类多,但优势物种不突出;中性集团中华按蚊及伊蚊等优势种地位明显;天敌集团中捕食性天敌(蜘蛛和捕食性昆虫)占主导地位.%The structure and diversity are the important indexes of forestry ecosystem stability. During a systematic investigation in bamboo forest ecosystem from 2005 to 2007, 42 439 arthropod samples were obtained, which in-cludes 511 species from 126 families of 17 orders. Lepidoptera insects occupied the largest number of species in the community, followed by Coleoptera and Diptera. The result indicated that, the community diversity of arthropod fol-lowed a obvious seasonal change pattern. The parameters of community composition, diversity and dominant concen-tration decreased in winter and summer when temperature was not suitable, representing double peaks with the sea-son change. The peaks were in June and September separately. Based on the analysis of the functional groups, phy-tophagous group was predominant with species and population, followed by the natural enemy group, and neutral group was the least. In phytophagous group, the predominant species were not clear, and mosquitoes, Anopheles sinensis and Aedes spp. were

  10. Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg;

    2015-01-01

    Naturally disturbed coastal dunes have become strongly reduced during the last century due to the cessation of grazing by domestic herbivores, dune stabilization initiatives, and increasing nitrogen deposition, all promoting encroachment by grasses, shrubs and woody plants. We assessed the effects......, trampled paths and their paired controls. We used Nonmetric Multidimensional Scaling (NMDS) ordination to assess differences in species composition of disturbed areas and controls. Ordination scores were used as response variables in Linear Mixed Effect (LME) models to test for the effects of disturbances...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  11. A molecular palaeobiological exploration of arthropod terrestrialization

    Science.gov (United States)

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  12. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-06-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war.Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war.Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients.Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  13. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  14. Effect of Dimethoate Residues on Soil Micro-arthropods Population ...

    African Journals Online (AJOL)

    Devika

    residues within 0 -15 cm soil layer on the soil micro-arthropods population, which play a very ... sub-stations were from the closest area to the control substations. ... reduced the population of the non-target soil micro-arthropods that included ... the highly mobile invertebrates were strongly .... The organic matter content.

  15. Early Cretaceous arthropods from plattenkalk facies in Mexico

    NARCIS (Netherlands)

    Vega, Francisco J.; Garcia-Barrera, P.; Coutiño, M.; Nyborg, T.; Cifuentes-Ruiz, P.; González-Rodríguez, K.; Martens, A.; Delgado, C.R.; Carbot, G.

    2003-01-01

    Several well-preserved arthropod faunas have been studied in Mexico during the past few years. The purpose of the present note is to outline advances in the study of these arthropods and of their paleoenvironmental implications, from four localities. The age for these localities ranges from the Earl

  16. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Environmental and economic impact of alien terrestrial arthropods in Europe

    Directory of Open Access Journals (Sweden)

    Sibylle Vaes-Petignat

    2014-06-01

    Full Text Available In the last decades abundance and importance of invasive alien species has grown continuously due to the undiminished growth of global trade. In most cases, arthropod introductions were unintended and occurred as hitchhikers or contaminants. Alien arthropods can have significant environmental impacts and can be economically costly. To measure these impacts, we expand the generic impact scoring system initially developed for mammals and birds, and applied it to terrestrial arthropods. The scoring of the 77 most widely distributed arthropod species alien to Europe revealed the mite Varroa destructor as the most harmful species, followed by the Chinese longhorn beetle Anoplophora chinensis and the Argentine ant Linepithema humile. The highest environmental impact is through herbivory, disease transmission, and ecosystem impacts. The highest economic impact is on agriculture and human infrastructure. The generic impact scoring system allows comparing impact scores of vertebrates and arthropods, thus serving as a background for decision making processes of policies and stakeholders.

  18. Composition and genomic organization of arthropod Hox clusters

    Directory of Open Access Journals (Sweden)

    Ryan M. Pace

    2016-05-01

    Full Text Available Abstract Background The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. Results In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. Conclusions The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to

  19. Arthropod assemblage related to volatile cues in flowering wheat: interaction between aphid herbivory and soil conditions as induction factors.

    Science.gov (United States)

    Lenardis, Adriana E; Szpeiner, Alfonsina; Ghersa, Claudio M

    2014-04-01

    Volatile cues released by plants play an important role in plant-insect interactions and are influenced by pests or soil conditions affecting plant metabolism. Field microcosm experiments were used to characterize arthropod spontaneous assemblies in homogenous unstressed wheat patches exposed to volatile cues coming from wheat plants with different levels of stress. The design was a factorial completely randomized block design with three replications. Source wheat pots combined two stress factors: 1) soil degradation level: high and low, and 2) aphid herbivory: with (A) and without (B). Eighteen experimental units consisted of source stressed wheat pots, connected by tubes conducting the volatile cues to sink wheat patches. These patches were located at the end of the tubes placed in a flowering wheat field. Arthropod assemblies on wheat sinks were different between years and they were associated to the source cues. Soil condition was the main discriminating factor among arthropods when a clear contrast between high and low soil degradation was observed, whereas aphid herbivory was the main discriminating factor when soil condition effects were absent. Main soil properties related with arthropods assembly were Mg and K in the first year and cation exchange capacity, total nitrogen, and pH in the second year of experiment. According to this study, spontaneous arthropod distributions in the homogeneous, unstressed wheat patch responded to the volatile cues coming from wheat sources growing in particular soil conditions. It is possible to suggest that soil-plant-herbivore interactions change wheat cues and this phenomenon produces significant differences in neighboring arthropod community structure.

  20. Biochemical and evolutionary aspects of arthropod predation on ferns.

    Science.gov (United States)

    Balick, Michael J; Furth, David G; Cooper-Driver, Gillian

    1978-01-01

    The widely held assumption that very few arthropods feed on ferns was questioned following field observations of arthropod damage on ferns in the state of Veracruz, Mexico. The extent and type of damage was recorded and it was found that in a measured locality, ferns were no less attacked than the angiospermous flora. As chemistry and arthropod host relationships have been shown to be so closely intertwined, plants collected in the field were analysed for both condensed tannins and cyanogenic glycosides, compounds known to be effective deterrents in temperate climates. Although all ferns tested contained tannins these did not appear to inhibit predation. Cyanogenic glycosides were present in only 3% of the fern species analysed, and it is, therefore, unlikely that they play a significant role as defensive compounds in the ferns examined.A literature search revealed a large number of ferns cited as being arthropod hosts. Approximately 420 named species of arthropods have been recorded, the majority of which are from the orders Coleoptera, Hymenoptera, Lepidoptera, and Hemiptera. Both evolutionary primitive (sawflies) and advanced (moths) arthropods are reported to be present on ferns suggesting possible coevolution of arthropods and ferns both before and after the radiation of angiosperms.

  1. The seasonal variation of arthropods living on forest soil at different altitudes in fir (Abies nordmanniana subsp. bornmulleriana ecosystem in Bolu-Aladağ

    Directory of Open Access Journals (Sweden)

    Ahmet Duyar

    2016-07-01

    Full Text Available In the forest ecosystems, soil arthropods (Arthropoda, as primary and secondary consumers, have a significant role in litter decay and decomposition processes. The abundance, diversity and community structure of arthropods in soil ecosystem; give rapid response to change of site characteristics. The current study was aimed to determine of seasonal variation of soil arthropods on forest floor at different altitudes in Uludağ Fir (Abies nordmanniana subsp. bornmulleriana Mattf. ecosystem which is an important forest tree species in Turkey. The study was conducted in pure fir stands at 1200-1600 m altitudes (4 elevation gradients in Aladağ, Bolu. The sampling was carried out for each winter, spring, summer and autumn seasons. The samples were collected from forest floor by pitfall traps. Variations of abundance and diversity of arthropods were evaluated according to seasons and altitudes. The distributions in trophic levels and biological diversity of arthropods were also determined. During the study, the maximum abundance of arthropods was 7576 individuals/m² in summer among seasons, and was 7854 individuals/m² at 1200 m altitude. Shannon-Wiener Index (H′ and Species Richness (S′ values were detected in the pitfall traps (H′= 2.22; S′= 22.

  2. Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

    Directory of Open Access Journals (Sweden)

    Paula Cristina Benetton Vergílio

    2013-10-01

    Full Text Available The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

  3. The Influence of Urbanization on Arthropod Diversity%城镇化对节肢动物多样性影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    李巧

    2015-01-01

    城镇化是世界范围内导致物种多样性丧失的主要驱动力之一. 从栖息地现状、 节肢动物多样性、 节肢动物的作用等3个方面综述了城市节肢动物栖息地的功能及保护现状, 城镇化对节肢动物多样性的影响, 以及节肢动物群落具有的指示城镇化进程对生物多样性的影响的作用; 指出了当前城市景观生物多样性研究中忽视居民区和商业区的小型绿地节肢动物群落调查的问题, 提出了加强城市内不同生境对节肢动物群落及其多样性影响机制研究的建议.%Urbanization is the main driver of species diversity loss in the worldwide .After reviewing the habitats status, arthropod diversity, and arthropod function, this paper summarized the habitat function and conservation situation of urban arthropod, the effect of urbanization on arthropod diversity, and the indication role of arthropod community indicating the impact of urbanization process on biodiversity .The ignorance of arthropod diversity sur-vey in urban landscape planning of residential areas and downtown area was pointed out, and suggestions on strengthening research in the impact mechanism of different habitats on arthropod community and diversity in urban area were proposed .

  4. Insecticide-induced hormesis and arthropod pest management.

    Science.gov (United States)

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas.

  5. Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica

    CSIR Research Space (South Africa)

    Sinclair, BJ

    2006-09-01

    Full Text Available provide the main source of water for streams, surface flooding and small ponds. In the wettest nutrient-rich microhabitats, the blue-green alga, Nostoc commune Vauchere, and the sheet-like green alga, Prasiola crispa (Lightf.) Menegh. form mats... soil All lithosol or mineral soil not covered by stones Guano/ ornithogenic soil All ornithogenic soil not covered by stones Algae (Prasiola) Filamentous algae (Ulothrix) Cyanobacteria (Nostoc) Moss All species combined Rotting moss Dead or decomposing...

  6. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands

    Science.gov (United States)

    Wendy Moore; Wallace M. Meyer; Jeffrey A. Eble; Kimberly Franklin; John F. Wiens; Richard C. Brusca

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically...

  7. Extended studies on the diversity of arthropod-pathogenic fungi in Austria and Poland

    Directory of Open Access Journals (Sweden)

    Cezary Tkaczyk

    2013-12-01

    Full Text Available Results of studies on diversity of arthropod-pathogenic fungi in selected habitats in Austria and Poland carried out in the years 2006-2007 and 2009-2010 are discussed. In total 47 species of entomopathogenic fungi were found as pathogens of different arthropods in Austria. Twenty six entomophthoralean species from different insects and one species from mites were identified and 16 of them are recorded as new to Austria. From among 21 species of anamorphic Hypocreales (Ascomycota affecting arthropods in Austria, 13 species so far have not been known from this country. In total 51 species of fungi affecting different arthropods in Poland were recorded, among them 28 species of Entomophthorales and 23 anamorphic Hypocreales (Ascomycota were separated. The most frequent species of the entomopathogenic fungi both in agricultural and afforested areas in Austria were the common and usually worldwide distributed cordycipitaceous anamorphs Beauveria bassiana, Isaria fumosorosea and in areas of this study less numerous I. farinosa. The most frequent pathogens occurring in mite communities on plants and in wood infested by insects were Hirsutella species. Several entomophthoralean species developed epizootics that caused high reduction in host populations of different arthropods in both countries. Especially interesting is the first record of mycoses (up to 60% mortality, caused by Zoophthora spp. on Phyllobius beetles in a mixed forest near Białowieża. During our joint research, we found the first time in Poland and Europe, the presence of the fungus Furia cf. shandongensis on earwigs and Hirsutella entomophila on Ips typographus adults in forest habitats. From the feeding sites of the latter bark beetle and other subcortical species in oak bark (mostly Dryocoetes villosus and D. alni in black alder over a dozen of various Lecanicillium strains - including few of the features not allowing to classify them to any of so far known species – were

  8. The importance of Acacia trees for insectivorous bats and arthropods in the Arava desert.

    Directory of Open Access Journals (Sweden)

    Talya D Hackett

    Full Text Available Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats.

  9. The role of ecological infrastructure on beneficial arthropods in vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Franin, K.; Barić, B.; Kuštera, G.

    2016-11-01

    Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins) on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive). Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard). Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%); among insects, Coleoptera was the most abundant taxonomic group (10.6%); Neuroptera showed the lowest value (0.88%). Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders) and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46) was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests. (Author)

  10. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  11. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    Science.gov (United States)

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.

  12. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  13. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods.

  14. The occurrence of arthropods in processed rice products in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Mariana A; Heah SK; Wong AL; Ho TM

    2010-01-01

    Objective:To determine distribution of arthropods in processed rice products such as rice flour and rice cereal-based infant food. Methods: Random samples of rice flour and rice cereal-based infant food purchased from commercial outlets were examined for the presence of arthropods using a modified Berlese Tullgren Funnel Method. Mites were mounted prior to identification and weevils were directly identified. Results: For non-expired products, infestation was found in 6.7%of rice flour and none was found in rice cereal-based infant food samples. The arthropods found in the flour samples were Cheyletus spp., Suidasia pontifica (S. pontifica), Tarsonemus spp., Tyrophagus putrescentiae (T. putrescentiae), Sitophilus granarius (S. granarius) and Sitophilus oryzae (S. oryzae). Others which cannot be identified were Oribatid and Prostigmatid mites. The most common mites in rice flour were Tarsonemus spp. (69.1%), followed by S. pontifica (18.2%). For expired products, only one sample of rice cereal-based infant food was infested and the infestation was by mites of the family Tydeidae. Conclusions:This study demonstrates the presence of 4 allergenic species of S. pontifica, T. putrescentiae, S. granarius and S. oryzae in rice flour. These arthropods can contribute to the incidence of anaphylaxis upon consumption by atopic individuals. There was no infestation of arthropods in rice cereal-based infant food surveyed except for an expired product in a moderate rusty tin container.

  15. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods

    Science.gov (United States)

    Bertone, Matthew A.; Bayless, Keith M.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The ‘luxury effect’, in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  16. Skimming the surface with Burgess Shale arthropod locomotion.

    Science.gov (United States)

    Minter, Nicholas J; Mángano, M Gabriela; Caron, Jean-Bernard

    2012-04-22

    The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelte, one of the rarest Burgess Shale animals, is over twice the size of all other benthic arthropods known from this locality, and only its sister taxon, Saperion, from the Lower Cambrian Chengjiang biota of China, approaches a similar size. Biomechanical trackway analysis demonstrates that tegopeltids were capable of rapidly skimming across the seafloor and, in conjunction with the identification of gut diverticulae in Tegopelte, supports previous hypotheses on the locomotory capabilities and carnivorous mode of life of such arthropods. The trackways occur in the oldest part (Kicking Horse Shale Member) of the Burgess Shale Formation, which is also known for its scarce assemblage of soft-bodied organisms, and indicate at least intermittent oxygenated bottom waters and low sedimentation rates.

  17. [Effect of pine plantations on soil arthropods in a high Andean forest].

    Science.gov (United States)

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine

  18. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should be ex....... However, as interactive impacts also differed among environments and parasite manipulation methods, this suggests that the ability of plants to compensate such losses may depend on environmental conditions and probably also overall infection load.......1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...

  19. Arthropods and their products as aphrodisiacs--review of literature.

    Science.gov (United States)

    Pajovic, B; Radosavljevic, M; Radunovic, M; Radojevic, N; Bjelogrlic, B

    2012-04-01

    After a short review of impotence, the definitions of erectants and aphrodisiacs are presented. The Authors propose division of arthropods according to the places of effect. The description of particular arthropods with their pictures and nomenclature, is followed by certain or probable mechanisms of achieving the aphrodisiac and sometimes toxic effect, that were available in the literature since 1929 till nowadays. We mention the most usual locations, mainly in Asia, where they are found and consumed, but also, we describe the manner of preparing and intake. The review includes the following arthropods: lobster, Arizona bark scorpion, deathstalker, banana spider, Mediterranean black widow, Burmeister's triatoma, giant water bug, diving-beetle, Korean bug, diaclina, flannel moth, Spanish fly, migratory locust, red wood ant and honeybee.

  20. [Diversity and stability of arthropod assemblage in tea orchard].

    Science.gov (United States)

    Chen, Yigen; Xiong, Jinjun; Huang, Mingdu; Gu, Dejiu

    2004-05-01

    Two tea orchards, simplex tea orchard with weeds removed manually or by herbicides (STO) and complex tea orchard with the weed Hedyotis uncinella (CTO), each with an area of 0. 4 hm2, were established in 1995 in Yingde Hongxing Tea Plantation, Guangdong Province. The primary eigenvalues, species richness index (R), assemblage diversity index (H'), evenness index (J) and species concentration index (C) of arthropod assemblage were employed and compared to assess the efficacy of STO and CTO on the diversity and stabilityof arthropod assemblage. Stability indexes Ss/Si and Sn/Sp and variation coefficient of diversity index ds/dm were utilized as well. The results demonstrated that the R of arthropod assemblage in CTO ranged from 4 to 8, with the highest of 7.7403, while that in STO varied mainly between 4 to 6. The average R of arthropod assemblage in CTO was 5.4672 +/- 0.3483, higher than that in STO (4.8809 +/- 0.3175). The H' of arthropod in CTO (3.8535 +/- 0.1232) was higher, in contrast to the value in STO (3.4654 +/- 0.1856). The J in CTO was higher, while the species concentration index (C) was lower, in comparison to STO. The stability indexes Ss/Si and Sn/Sp of CTO were greater than those of STO, while the ds/dm in CTO (0.1107) was lower than that in STO (0.1855). All these indicated that the diversity of arthropod assemblage was better preserved in CTO, and the assemblage in CTO was more stable.

  1. [2013 update about arthropod envenomations in French Guyana].

    Science.gov (United States)

    Ganteaume, F; Imbert, C

    2014-02-01

    French Guiana, by its geographical situation, its climate and its biodiversity, is often called "the green hell". Indeed, this French department of America shelters a wildlife rich, abundant among which many species of arthropods, some of which are responsible for envenomations. These accidents consist of scorpion's or hymenoptera's stings or spider's bites. The associated clinical aspect is variable, from simple pain to circulatory collapse, or lung oedema. However, symptomatology is generally mild; four deaths associated to arthropod envenomations have been reported in the past 25 years. This article focuses on envenomations in French Guiana, describing favoring human behavior, risks and venoms associated with the main related animal species.

  2. 40 CFR 180.1124 - Arthropod pheromones; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Arthropod pheromones; exemption from... FOOD Exemptions From Tolerances § 180.1124 Arthropod pheromones; exemption from the requirement of a tolerance. Arthropod pheromones, as described in § 152.25(b) of this chapter, when used in retrievably sized...

  3. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  4. Arthropods associated with medicinal plants in coastal South Carolina

    Institute of Scientific and Technical Information of China (English)

    ROLANDO LOPEZ; B. MERLE SHEPARD

    2007-01-01

    Arthropods were sampled from feverfew [Tanacetum parthenium (L.) SchultzBip], Echinaceapurpurea (L.) Moench, Echinaceapallida (Nutt.) Nutt., Valeriana officinalis L., and St. John's wort (Hypericum perforatum L.) during 1998-2001. In addition,arthropods were sampled on tansy (Tanacetum vulgare L.) from 2001-2004. In general,50-60 arthropod species where collected and identified among all of the medicinal plant species. Among the predators, Orius insidiosus (Say) (Hemiptera: Anthocoridae), Geocoris punctipes (Say) (Hemiptera: Lygaeidae) and spiders were most abundant from 1998-2004.The three-cornered alfalfa hopper, Spissistilus festinus (Say), was the most abundant herbivore found from 1998 to 2001. Orius insidiosus and G. punctipes were 3-4 times more abundant on T. parthenium than on any other medicinal plant species. Based on the numbers of predatory arthropods found on T. parthenium, this crop could be suitable as a companion or "banker" plant to attract and maintain populations of predators, especially O. insidiosus and G. punctipes. Whitefly nymphs attacked by predators with piercing/sucking mouthparts are easily identified using a microscope because of the general appearance of the carcass left by the predators. Thus, populations of predators on T. parthenium suppressed Bemisia tabaci populations on E. purpurea when these crops were planted as companion crops.

  5. Successive gain of insulator proteins in arthropod evolution.

    Science.gov (United States)

    Heger, Peter; George, Rebecca; Wiehe, Thomas

    2013-10-01

    Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that-in contrast to the bilaterian-wide distribution of CTCF-all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism's gene regulatory repertoire and its potential for morphological plasticity.

  6. Arthropod richness in roadside verges in the Netherlands

    NARCIS (Netherlands)

    Noordijk, J.; Raemakers, I.P.; Schaffers, A.P.; Sykora, K.V.

    2009-01-01

    Urbanisation and intensifi cation of agriculture has led to large scale destruction of natural and seminatural areas in Western Europe. Consequentially, the conservation of biodiversity in small landscape units has become a matter of increasing urgency. In this paper, we inventoried the arthropod di

  7. Climate change and arthropods: Pollinators, herbivores, and others (Chapter 3)

    Science.gov (United States)

    Sandra L. Brantley; Paulette L. Ford

    2012-01-01

    The Interior West is rich in arthropod diversity because of its varied topography, which provides a wide range of elevations and levels of isolation for these small animals (Parmenter and others 1995). Some taxa are known rather well, such as butterflies and tiger beetles, but we have little information on many groups, which are known only from a few locations although...

  8. Arthropod richness in roadside verges in the Netherlands

    NARCIS (Netherlands)

    Noordijk, J.; Raemakers, I.P.; Schaffers, A.P.; Sykora, K.V.

    2009-01-01

    Urbanisation and intensifi cation of agriculture has led to large scale destruction of natural and seminatural areas in Western Europe. Consequentially, the conservation of biodiversity in small landscape units has become a matter of increasing urgency. In this paper, we inventoried the arthropod

  9. Stable isotope methods in biological and ecological studies of arthropods

    NARCIS (Netherlands)

    Hood-Nowotny, R.C.; Knols, B.G.J.

    2007-01-01

    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can

  10. Sampling epigeal arthropods: A permanent, sheltered, closeable pitfall trapping station

    Science.gov (United States)

    Epigeal arthropods constitute the bulk of herbivore, predator, and decomposer species in soil and litter ecosystems. Being small and difficult to observe within these sometimes densely vegetated habitats, they are inherently difficult to sample quantitatively. Further, most methods have inherent tax...

  11. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, Byron E.; Barzon, Luisa; Pijlman, Gorben P.; Fuente, de la José; Rizzoli, Annapaola; Wammes, Linda J.; Takken, Willem; Rij, van Ronald P.; Papa, Anna

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex i

  12. [Arthropods as a cause of leisure sickness: ectoparasites].

    Science.gov (United States)

    Kekker, Thecla A M

    2014-01-01

    Ectoparasites are a type of arthropod parasites that live on the body surface of their host. Many ectoparasitic infestations are associated with travel and leisure. Recognition of the specific symptoms of ectoparasitic infestations is important because of the hygienic and therapeutic consequences.

  13. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis.

    Science.gov (United States)

    Greenstone, Matthew H; Weber, Donald C; Coudron, Thomas A; Payton, Mark E; Hu, Jing S

    2012-05-01

    Ecological research requires large samples for statistical validity, typically hundreds or thousands of individuals, which are most efficiently gathered by mass-collecting techniques. For the study of interspecific interactions, molecular gut-content analysis enables detection of arthropod predation with minimal disruption of community interactions. Field experiments have demonstrated that standard mass-collection methods, such as sweep netting, vacuum sampling and foliage beating, sometimes lead to contamination of predators with nontarget DNA, thereby compromising resultant gut-content data. We deliberately contaminated immature Coleomegilla maculata and Podisus maculiventris that had been fed larvae of Leptinotarsa decemlineata by topically applying homogenate of the alternate prey Leptinotarsa juncta. We then attempted to remove contaminating DNA by washing in ethanol or bleach. A 40-min wash with end-over-end rotation in 80% EtOH did not reliably reduce external DNA contamination. Identical treatment with 2.5% commercial bleach removed most externally contaminating DNA without affecting the detectability of the target prey DNA in the gut. Use of this bleaching protocol, perhaps with minor modifications tailored to different predator-prey systems, should reliably eliminate external DNA contamination, thereby alleviating concerns about this possible source of cross-contamination for mass-collected arthropod predators destined for molecular gut-content analysis. Published 2012. This article is a US Government work and is in the public domain in the USA.

  14. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  15. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico

    Science.gov (United States)

    W. Beltran; Joseph Wunderle Jr.

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change.We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod...

  16. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Science.gov (United States)

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  17. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests.

    Science.gov (United States)

    Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K

    2014-06-01

    We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.

  18. Survey of the arthropods on jojoba (Simmondsia chinensis)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, J.D.; Frommer, S.I.

    1980-02-01

    Simmondsia chinensis (jojoba), a plant native to southwestern North America, has become of economic interest due to the various industrial uses of the unique liquid wax found in its seeds. In a survey of arthropods associated with sylvatic jojoba in California and Arizona, we collected 106 species of insects and mites. Of these, 50 are phytophagous, 29 are parasitic, and 18 are predaceous. Most of the phytophagous species are also known to feed on plants other than jojoba; several of these are notorious generalists. The bionomics of the 4 commonest phytophagous species, Asphondylia n. sp. (Cecidomyiidae), Epinotia kasloana (Olethreutidae), Periploca n. sp. (Walshiidae), and Incisitermes fruticavus (Kalotermitidae) are summarized briefly. None of the phytophagous species were observed to cause extensive damage to sylvatic jojoba. The numerous parasitic and predaceous arthropods probably account for the natural control of many of them. These relationships should be kept in mind when planning future commercial plantations of jojoba.

  19. Pathogen-mediated manipulation of arthropod microbiota to promote infection

    Science.gov (United States)

    Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol

    2017-01-01

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373

  20. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    Science.gov (United States)

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States.

  1. Epidemiology and control of malaria and other arthropod born diseases

    Directory of Open Access Journals (Sweden)

    F. J. López-Antuñano

    1992-01-01

    Full Text Available Malaria and other arthropod born diseases remain a serious public health problem affecting the lives and health of certain social groups when the two basic strategies to control fail due to : (1 the lack of effective chemoprophylaxis/chemotherapy or the rapid development of drug resistance of the infectious agents and (2 the ineffectiveness of pesticides or the arthropod vectors develop resistance to them. These situations enhances the need for the design and implementation of other alternatives for sustainable health programmes. The application of the epidemiological methods is essential not only for analyzing the relevant data for the understanding of the biological characteristics of the infectious agents, their reservoirs and vectors and the methods for their control, but also for the assessment of the human behaviour, the environmental, social and economic factors involved in disease transmission and the capacity of the health systems to implement interventions for both changes in human behaviour and environmental management to purpose guaranteed prevention and control of malaria and other arthropod born diseases with efficiency, efficacy and equity. This paper discuss the evolution of the malaria arthropod diseases programmes in the American Region and the perspectives for their integration into health promotion programs and emphasis is made in the need to establish solid basis in the decision-making process for the selection of intervention strategies to remove the risk factors determining the probability to get sick or die from ABDs. The implications of the general planning and the polices to be adopted in an area should be analyzed in the light of programme feasibility at the local level, in the multisectoral context specific social groups and taking in consideration the principles of stratification and equity

  2. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    OpenAIRE

    2007-01-01

    Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agro)ecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators). Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.). Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to...

  3. Preliminary observations of arthropods associated with buried carrion on Oahu.

    Science.gov (United States)

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval.

  4. Genetic diversity in aspen and its relation to arthropod abundance.

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  5. Microbial control of arthropod pests of tropical tree fruits.

    Science.gov (United States)

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  6. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  7. Ant community composition across a gradient of disturbed military landscapes at Fort Benning, Georgia

    Science.gov (United States)

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2008-01-01

    Military training, soil texture, and ground cover influence ant communities at Fort Benning, a military installation in west-central Georgia. We sampled 81,237 ground-dwelling ants (47 species in 20 genera) with pitfall traps at 40 sites on a continuum from nearly pristine forest to highly disturbed training areas. We also measured 15 environmental variables related to vegetation and soil. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and more compact soils with shallower A-horizons than comparable undisturbed sites. Pheidole bicarinata, Dorymyrmex smithi, and Pogonomyrmex badius dominated the most highly disturbed sites. Competitively submissive myrmicines, such as Aphaenogaster and Crematogaster, and formicines, such as Camponotus and Formica, were abundant in the undisturbed sites. Solenopsis invicta occurred in all but the least disturbed sites. Ant community composition was a useful indicator of disturbance at Fort Benning.

  8. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    Science.gov (United States)

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla.

  9. RSS (http://www.iaees.org/publications/journals/arthropods/rss.xml

    Directory of Open Access Journals (Sweden)

    Arthropods (ISSN 2224-4255

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  10. Prototypical Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  11. [The concept of medical entomology: the management of the influence of arthropods on human health].

    Science.gov (United States)

    Rasnitsyn, S P

    1997-01-01

    The tasks of medical entomology are analyzed with special reference to the development of methods of protection against the harmful influence of arthropods on human health and the use of these animals in health sciences. Special attention is paid to the following problems: characterization of individual and group features of humans and their relationship with arthropods, elucidation of the properties of arthropods, determination of the state of their populations, estimation of the efficiency of controlling measures, their ecological consequences, etc.

  12. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    Science.gov (United States)

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

  13. The diversity of arthropods in homes across the United States as determined by environmental DNA analyses.

    Science.gov (United States)

    Madden, Anne A; Barberán, Albert; Bertone, Matthew A; Menninger, Holly L; Dunn, Robert R; Fierer, Noah

    2016-12-01

    We spend most of our lives inside homes, surrounded by arthropods that impact our property as pests and our health as disease vectors and producers of sensitizing allergens. Despite their relevance to human health and well-being, we know relatively little about the arthropods that exist in our homes and the factors structuring their diversity. As previous work has been limited in scale by the costs and time associated with collecting arthropods and the subsequent morphological identification, we used a DNA-based method for investigating the arthropod diversity in homes via high-throughput marker gene sequencing of home dust. Settled dust samples were collected by citizen scientists from both inside and outside more than 700 homes across the United States, yielding the first continental-scale estimates of arthropod diversity associated with our residences. We were able to document food webs and previously unknown geographic distributions of diverse arthropods - from allergen producers to invasive species and nuisance pests. Home characteristics, including the presence of basements, home occupants and surrounding land use, were more useful than climate parameters in predicting arthropod diversity in homes. These noninvasive, scalable tools and resultant findings not only provide the first continental-scale maps of household arthropod diversity, but our analyses also provide valuable baseline information on arthropod allergen exposures and the distributions of invasive pests inside homes. © 2016 John Wiley & Sons Ltd.

  14. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes

    Directory of Open Access Journals (Sweden)

    Matthew A. Bertone

    2016-01-01

    Full Text Available Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA. We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority of this indoor diversity (73% was made up of true flies (Diptera, spiders (Araneae, beetles (Coleoptera, and wasps and kin (Hymenoptera, especially ants: Formicidae. Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae and book lice (Liposcelididae, are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

  15. Potency of Intraguild Predation to Disrupt the Optimum Functions of Predatory Arthropods: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Nugroho Susetya Putra

    2006-12-01

    Full Text Available Some empirical studies have revealed the ecological consequence of interspecific relationships among predatory arthropods that is the disruption of natural functions of indigenous species of predators on their preys, i.e. phytophagous arthropods. In relation to many efforts on the utilization of introduced species of natural enemies, particularly predatory arthropods, the effects oflntraguild Predation (IGP on key predators should be considered carefully to optimize their potency. In addition, understanding the impact of biological traits of each species of predatory arthropods on their ability to adapt from being predated by other species might be important to predict their composition and possibilities for being exist in ecosystem.

  16. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoasucs destructans

    Directory of Open Access Journals (Sweden)

    Karen J. Vanderwolf

    2016-04-01

    Full Text Available The introduction of Pseudogymnoascus destructans (Pd to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans. Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

  17. Implication of haematophagous arthropod salivary proteins in host-vector interactions

    National Research Council Canada - National Science Library

    Fontaine, Albin; Diouf, Ibrahima; Bakkali, Nawal; Missé, Dorothée; Pagès, Frédéric; Fusai, Thierry; Rogier, Christophe; Almeras, Lionel

    2011-01-01

    .... This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species...

  18. Drought negatively affects communities on a foundation tree: growth rings predict diversity.

    Science.gov (United States)

    Stone, Adrian C; Gehring, Catherine A; Whitham, Thomas G

    2010-11-01

    Understanding how communities respond to extreme climatic events is important for predicting the impact of climate change on biodiversity. The plant vigor and stress hypotheses provide a theoretical framework for understanding how arthropods respond to stress, but are rarely tested at the community level. Following a record drought, we compared the communities of arthropods on pinyon pine (Pinus edulis) that exhibited a gradient in physical traits related to environmental stress (e.g., growth rate, branch dieback, and needle retention). Six patterns emerged that show how one of the predicted outcomes of climate change in the southwestern USA (i.e., increased drought severity) alters the communities of a foundation tree species. In accordance with the plant vigor hypothesis, increasing tree stress was correlated with an eight to tenfold decline in arthropod species richness and abundance. Trees that were more similar in their level of stress had more similar arthropod communities. Both foliage quantity and quality contributed to arthropod community structure. Individual species and feeding groups differed in their responses to plant stress, but most were negatively affected. Arthropod richness (r(2) = 0.48) and abundance (r(2) = 0.48) on individual trees were positively correlated with the tree's radial growth during drought. This relationship suggests that tree ring analysis may be used as a predictor of arthropod diversity, which is similar to findings with ectomycorrhizal fungi. A contrast of our findings on arthropod abundance with published data on colonization by mutualistic fungi on the same trees demonstrates that at low stress these two communities respond differently, but at high stress both are negatively affected. These results suggest that the effect of extreme climatic events such as drought on foundation tree species are likely to decrease multi-trophic diversity and shift arthropod community composition, which in turn could cascade to affect other

  19. cuticleDB: a relational database of Arthropod cuticular proteins

    Directory of Open Access Journals (Sweden)

    Willis Judith H

    2004-09-01

    Full Text Available Abstract Background The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. Description cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379 responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. Conclusions CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

  20. Distribution of arthropods in rice grains in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Mariana A; Ho TM; Lau TY; Heah SK; Wong AL

    2009-01-01

    Objective:To determine distribution of arthropods in rice grains obtained from different sources.Methods:Rice samples were randomly collected from public in urban areas,farmers in rice field areas,aborigines in un-developed areas and retailers in commercial premises.Random samples of rice were taken out from each sam-ple for isolation of arthropods using a modified Berlese Tullgren Funnel Method.Mites were mounted prior to i-dentification;weevils were directly identified.Results:Samples of rice from retailers in commercial premises had the highest infestation by arthropods followed by samples from urbanites,aborigines and rice farmers.Two species of weevils,Sitophilus oryzae(S.oryzae)and Sitophilus granarius(S.granarius),were found.Samples from commercial premises had the least percentage of weevils compared to those collected from domestic premi-ses.Depending on the source of samples,densities of S.granarius and S.oryzae ranges from 1 1 -1 03 weevils? kg and 7-80 weevils?kg,respectively.Important species of mites in stored rice identified were mainly members of the families Cheyletidae,Echimyopodidae,Pyroglyphidae,Saproglyphidae and Tenuipalpidae.Among the species of mites identified were Austroglycyphagus malaysiensis,Cheyletus fortis,Cheyletus malaccensis,Der-matophagoides pteronyssinus,Grammolichus malukuensis and Suidasia pontifica.Average density of most of the mites was less than 40 mites?kg of rice grains.In this study,the highest number of mites in rice samples was recovered from commercial premises,followed by samples from urbanites.Samples from farmers and aborigines contained lesser mites.Conclusion:This study demonstrated the presence of 3 allergenic mite species in rice, i.e A.malaysiensis,D.pteronyssinus and S.pontifica.Weevils,S.oryzae and S.granarius that are known to be allergenic,were also found.

  1. Waptia and the Diversification of Brood Care in Early Arthropods.

    Science.gov (United States)

    Caron, Jean-Bernard; Vannier, Jean

    2016-01-11

    Brood care, including the carrying of eggs or juveniles, is a form of parental care, which, like other parental traits [1], enhances offspring fitness with variable costs and benefits to the parents [2]. Attempts to understand why and how parental care evolved independently in numerous animal groups often emphasize the role of environmental pressures such as predation, ephemeral resources, and, more generally, the harshness of environment. The fossil record can, in principle, provide minimum age constraints on the evolution of life-history traits, including brood care and key information on the reproductive strategies of extinct organisms. New, exceptionally preserved specimens of the weakly sclerotized arthropod Waptia fieldensis from the middle Cambrian (ca. 508 million years ago) Burgess Shale, Canada, provide the oldest example of in situ eggs with preserved embryos in the fossil record. The relatively small clutch size, up to 24 eggs, and the relatively large diameter of individual eggs, some over 2 mm, contrast with the high number of small eggs-found without preserved embryos-in the bivalved bradoriid arthropod Kunmingella douvillei from the Chengjiang biota (ca. 515 million years ago). The presence of these two different parental strategies suggests a rapid evolution of a variety of modern-type life-history traits, including extended investment in offspring survivorship, soon after the Cambrian emergence of animals. Together with previously described brooded eggs in ostracods from the Upper Ordovician (ca. 450 million years ago), these new findings suggest that the presence of a bivalved carapace played a key role in the early evolution of parental care in arthropods.

  2. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    Science.gov (United States)

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  3. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2007-01-01

    Full Text Available Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agroecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators. Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.. Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to be quantified as closely as possible through appropriate experimental procedures. Data acquired in tests designed to determined LD50/LC50 values are inadequate for evaluation of pesticide effectiveness in the field as pesticidesalso cause various sublethal effects, generally disregarded in such investigations. The sublethal effects of pesticides refer to any altered behaviour and/or physiology of individuals that have survived exposure to pesticides at doses/concentrations that can be lethal(within range causing mortality in an experimental population that exceeds mortality in an untreated population or sublethal (below that range. Pesticides affect locomotion and mobility, stimulate dispersion of arthropods from treated areas, complicate or prevent their navigation, orientation and ability to locate hosts, and cause changes in their feeding, mating and egg-laying patterns. Sublethal pesticide effects on arthropod physiology reflect on the life span, rate of development, fecundity and/or fertility, sex ratio and immunity of surviving individuals. Different parameters are being used in arthropod bioassays to determine sublethal effects (ED50/EC50, LOEC, NOEC, total effect index. Compared to acute toxicity tests, these parameters improve the quality of evaluation and create a more accurate view of the effects of a pesticide. However, such approach covers mainly fecundity/fertility alone, while all other sublethal effects remain unaccounted for. Besides, it

  4. Ad-Hoc vs. Standardized and Optimized Arthropod Diversity Sampling

    Directory of Open Access Journals (Sweden)

    Pedro Cardoso

    2009-09-01

    Full Text Available The use of standardized and optimized protocols has been recently advocated for different arthropod taxa instead of ad-hoc sampling or sampling with protocols defined on a case-by-case basis. We present a comparison of both sampling approaches applied for spiders in a natural area of Portugal. Tests were made to their efficiency, over-collection of common species, singletons proportions, species abundance distributions, average specimen size, average taxonomic distinctness and behavior of richness estimators. The standardized protocol revealed three main advantages: (1 higher efficiency; (2 more reliable estimations of true richness; and (3 meaningful comparisons between undersampled areas.

  5. Responses of arthropod populations to warming depend on latitude

    DEFF Research Database (Denmark)

    Youngsteadt, Elsa; Ernst, Andrew F.; Dunn, Robert Roberdeau

    2017-01-01

    Biological effects of climate change are expected to vary geographically, with a strong signature of latitude. For ectothermic animals, there is systematic latitudinal variation in the relationship between climate and thermal performance curves, which describe the relationship between temperature...... and an organism's fitness. Here we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment...

  6. The importance of arthropod pests in Belgian pome fruit orchards.

    Science.gov (United States)

    Bangels, Eva; De Schaetzen, Charles; Hayen, Guy; Paternotte, Edouard; Gobin, Bruno

    2008-01-01

    Located in temperate, maritime climate with frequent rainfall, crop protection in Belgian orchards is dominated by fungicides. Though, the importance of arthropod pests should not be underestimated. Pcfruit, the former Research station of Gorsem, has been maintaining a warning system for fruit pests in Belgium since 1944. Therefore, various pests and beneficial's and their life cycle stages have been monitored in Gorsem and in different observation posts across Belgium, being part of a monitoring network. Although up to 3000 arthropod species are present in pome fruit orchards, about 25% can be considered as harmful and another 25% as beneficial. Out of those species, around 100 harmful and 50 beneficial organisms are omnipresent. The list of monitored species is extended yearly for upcoming or difficult to control organisms. Integrated pest management was introduced in the eighties, with the accent on using selective pesticides and saving beneficial organisms. A shift in pesticide use affected the importance of secondary pests, together with recent exceptional climatic conditions. Following many years of monitoring insects and mites and editing warning bulletins in our station, a ranking of the economical importance of different pest species is presented.

  7. A palaeontological solution to the arthropod head problem.

    Science.gov (United States)

    Budd, Graham E

    2002-05-16

    The composition of the arthropod head has been one of the most controversial topics in zoology, with a large number of theories being proposed to account for it over the last century. Although fossils have been recognized as being of potential importance in resolving the issue, a lack of consensus over their systematics has obscured their contribution. Here, I show that a group of previously problematic Cambrian arthropods from the Burgess Shale and Chengjiang faunas form a clade close to crown-group euarthropods, the group containing myriapods, chelicerates, insects and crustaceans. They are characterized by modified or even absent endopods, and two pre-oral appendages. Comparison with reconstructions of the crown-group euarthropod ground plan and recent investigations into onychophorans demonstrates that these two appendages are the first antenna (of extant crustaceans) and a more anterior appendage associated with an ocular segment. The latter appendage has been reduced in all crown-group euarthropods. Its most likely relic is as a component of the labrum. These fossils thus tie together results from disparate living groups (onychophorans and euarthropods).

  8. Emerging arthropod-borne diseases of companion animals in Europe.

    Science.gov (United States)

    Beugnet, Frederic; Marié, Jean-Lou

    2009-08-26

    Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.

  9. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  10. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  11. Enhancing resource availability in agro-ecosystems for beneficial arthropods through floral provisioning

    Science.gov (United States)

    There has been a decline in beneficial arthropods (insects and spiders) including pollinators because of habitat destruction and intense management practices. Enhancing landscapes with additional floral and other non-crop habitats has the potential to attract pollinators, and predatory arthropods wh...

  12. Arthropod succession on pig carcasses in southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    M.S. Ekanem

    2010-01-01

    Full Text Available The domestic pig (Sus scrofa was used as a model to study arthropod succession on carcasses under tree shade and out of shade in southern Nigeria. Carcass decomposition took longer periods under tree shade than in exposed sites, at 24.5 and 16.5 days, respectively. Four decomposition stages - fresh, bloated, decay, and dry - were observed. No significant variabilities were recorded in the types and patterns of infestation of the carcasses by arthropods in both locations. Four classes of arthropods - Insecta, Arachnida, Diplopoda and Crustacea - were recorded. The class Insecta dominated the total arthropods collected with 24 families, and formed 94% of the catches. The other three classes each had one family represented, and contributed only 2% of the total catches. The calliphorids, a phorid, and sarcophagids arrived and bred on the carcasses only a few hours after death of the pigs. Families of coleopterans came during the bloated stage, and fed on the immature dipterous maggots and carrion materials. The ants (Hymenoptera came in large numbers to eat the carcasses, and also preyed on all other fauna of the food resource. A muscid and a stratiomyiid, bred on the carcass as to the decay stage. Other insects and arthropods arrived mostly during the decay stage to feed on the carcasses. Species richness on the carcasses peaked during the decay stage.O porco branco (Sus scrofa foi usado como modelo para o estudo da sucessão de Artrópodes em cadáveres em zonas sombreadas e não sombreadas por árvores no sul da Nigéria. Nos cadáveres em decomposição em zonas sombreadas observou-se um processo de decomposição mais lento que nos expostos ao sol; 24,5 e 16,5 dias, respectivamente. Foram observadas quatro etapas de decomposição; fresco (autólise, intumescido (putrefação, deteriorado e seco (diagênese. Não foram observadas diferenças significativas de tipo e padrão nas infestações dos cadáveres por Artrópodes em ambas as condi

  13. Effect of weed harrowing frequency on plants, beneficial arthropods and crop yield

    DEFF Research Database (Denmark)

    Navntoft, Søren; Kristensen, Kristian; Johnsen, Ib

    2016-01-01

    * Weed harrowing is an alternative to herbicides but it may have negative effects on epigaeic arthropods. We assessed the effects of frequent (four) versus two harrowings during the growing season on the density and diversity of generalist arthropods and the weed flora. Collection by flooding...... was used to estimate arthropod densities, after collection of weeds and crop for biomass estimation. * The predatory guild of spiders Tachyporus spp. carabids was reduced by frequent harrowing. Spiders and Tachyporus spp. were the most sensitive, with up to 38% higher density in plots harrowed only twice...... compared with four times. Furthermore, a marginally significant decrease in arthropod diversity was found after four harrowings. The negative effect of frequent harrowing on arthropods was probably caused by a combination of direct lethal effects and habitat disruption. Additional harrowings reduced weeds...

  14. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  15. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  16. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    Directory of Open Access Journals (Sweden)

    Yves Basset

    Full Text Available Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species, obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days, the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1 models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2 it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3 given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  17. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types

    Directory of Open Access Journals (Sweden)

    Johann G. Zaller

    2014-10-01

    Full Text Available Climate change scenarios for Central Europe predict less frequent but heavier rainfalls and longer drought periods during the growing season. This is expected to alter arthropods in agroecosystems that are important as biocontrol agents, herbivores or food for predators (e.g. farmland birds. In a lysimeter facility (totally 18 3-m2-plots, we experimentally tested the effects of long-term past vs. prognosticated future rainfall variations (15% increased rainfall per event, 25% more dry days according to regionalized climate change models from the Intergovernmental Panel on Climate Change (IPCC on aboveground arthropods in winter wheat (Triticum aestivum L. cultivated at three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem. Soil types were established 17 years and rainfall treatments one month before arthropod sampling; treatments were fully crossed and replicated three times. Aboveground arthropods were assessed by suction sampling, their mean abundances (± SD differed between April, May and June with 20 ± 3 m-2, 90 ± 35 m-2 and 289 ± 93 individuals m-2, respectively. Averaged across sampling dates, future rainfall reduced the abundance of spiders (Araneae, -47%, cicadas and leafhoppers (Auchenorrhyncha, -39%, beetles (Coleoptera, -52%, ground beetles (Carabidae, -41%, leaf beetles (Chrysomelidae, -64%, spring tails (Collembola, -58%, flies (Diptera, -73% and lacewings (Neuroptera, -73% but increased the abundance of snails (Gastropoda, +69%. Across sampling dates, soil types had no effects on arthropod abundances. Arthropod diversity was neither affected by rainfall nor soil types. Arthropod abundance was positively correlated with weed biomass for almost all taxa; abundance of Hemiptera and of total arthropods was positively correlated with weed density. These detrimental effects of future rainfall varieties on arthropod taxa in wheat fields can potentially alter arthropod-associated agroecosystem services.

  18. Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects

    NARCIS (Netherlands)

    Dicke, M.

    2015-01-01

    Plants respond to arthropod herbivory with the induction of volatiles that attract predatory arthropods that attack the herbivores. These so-called herbivore-induced plant volatiles (HIPVs) appear to be important sources of information that mediate many interactions within a plant–arthropod communit

  19. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  20. A Java program for non-parametric statistic comparison of community structure

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2011-09-01

    Full Text Available The Java algorithm to statistically compare structure difference of two communities was presented in this study. Euclidean distance, Manhattan distance, Pearson correlation, Point correlation, quadratic correlation and Jaccard coefficient were included in the algorithm. The algorithm was used to compare rice arthropod communities in Pearl River Delta, China, and the results showed that the family composition of arthropods for Guangzhou, Zhongshan, Zhuhai, and Dongguan are not significantly different.

  1. Elongation factor-2: a useful gene for arthropod phylogenetics.

    Science.gov (United States)

    Regier, J C; Shultz, J W

    2001-07-01

    Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the discrepancy between results derived from molecular and morphological data deserves greater attention.

  2. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  3. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  4. Exploring the possibility of arthropod transmission of HCV.

    Science.gov (United States)

    Houldsworth, Annwyne

    2017-02-01

    Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis, and liver cancer occurring in up to 3% of the world's population. Parenteral exposure to HCV is the major mode of transmission of infection. Once established, infection will persist in up to 85% of individuals with only a minority of patients clearing viremia. Egypt has possibly the highest HCV prevalence in the world where 10-20% of the general population are infected with HCV. Endemic HCV appears to be concentrated in the tropics and sub-tropics where there are higher biting rates from insects. The question as to whether a bridge vector transmission is possible, via arthropods, both between humans and/or from an animal reservoir to humans is explored. Mechanical transmission, as opposed to biological transmission, is considered. Mechanical transmission can be an efficient way of transmitting an infection, as effective as biological transmission. Probability of transmission can increase as to the immediate circumstances and conditions at the time. Several factors may enhance mechanical transmission, including high levels of microbes in the vector, frequent biting, the close proximity, and contact between vectors and recipients as well as high density of insects. HCV has been isolated from bodies or heads of mosquitoes collected from the houses of HCV-infected individuals. The possibility of enzootic cycles of HCV tangential transmission via bridging vectors, such as, arthropods needs to be further investigated and possible animal reservoirs, including domestic rural epizootic cycles for HCV infection, requires further research with particular initial emphasis on equine infections. J. Med. Virol. 89:187-194, 2017. © 2016 Wiley Periodicals, Inc.

  5. Outline-based morphometrics, an overlooked method in arthropod studies?

    Science.gov (United States)

    Dujardin, Jean-Pierre; Kaba, D; Solano, P; Dupraz, M; McCoy, K D; Jaramillo-O, N

    2014-12-01

    Modern methods allow a geometric representation of forms, separating size and shape. In entomology, as well as in many other fields involving arthropod studies, shape variation has proved useful for species identification and population characterization. In medical entomology, it has been applied to very specific questions such as population structure, reinfestation of insecticide-treated areas and cryptic species recognition. For shape comparisons, great importance is given to the quality of landmarks in terms of comparability. Two conceptually and statistically separate approaches are: (i) landmark-based morphometrics, based on the relative position of a few anatomical "true" or "traditional" landmarks, and (ii) outline-based morphometrics, which captures the contour of forms through a sequence of close "pseudo-landmarks". Most of the studies on insects of medical, veterinary or economic importance make use of the landmark approach. The present survey makes a case for the outline method, here based on elliptic Fourier analysis. The collection of pseudo-landmarks may require the manual digitization of many points and, for this reason, might appear less attractive. It, however, has the ability to compare homologous organs or structures having no landmarks at all. This strength offers the possibility to study a wider range of anatomical structures and thus, a larger range of arthropods. We present a few examples highlighting its interest for separating close or cryptic species, or characterizing conspecific geographic populations, in a series of different vector organisms. In this simple application, i.e. the recognition of close or cryptic forms, the outline approach provided similar scores as those obtained by the landmark-based approach.

  6. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.; Hanula, James, L.; Horn, Scott; Ulyshen, Michael, D.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4, P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.

  7. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  9. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  10. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  11. Arthropods of Medical Importance in Brazil: Retrospective Epidemiological Information about Accidents Involving these Animals

    Directory of Open Access Journals (Sweden)

    Danon Clemes Cardoso

    2009-01-01

    Full Text Available Problem statement: The epidemiological information about arthropods bites/sting in Criciúma region no was reported. The aim of this Research was to draw the epidemiologic profile of accidents with arthropods in Criciúma region. Approach: The information regarding accidents with arthropods from 1994-2006 was prospectively collected from SINAN (System of Injury Notification Information files of the 21a Municipal Health Secretary of Criciúma region. Was calculated the frequency for each variable studied and incidence coefficient for period of study. Results: Results were recorded 1821 notifications of accidents with arthropods in region studied. The numbers of occurrence increased along of the years studied. The arthropod that most result in accidents was the spider with 1,126 (75.9% cases followed by Honeybees and others Arthropods with 149 (10.0% cases, Caterpillars including Lonomia genus and others genera (54/3.7% and scorpions with the least number of accidents with 6 (0.4% cases. The incidence of accidents every thousand inhabitants had a significant increase starting in the year of 2000. The majority of accidents occurred in the warmest months, increasing in the spring and summer seasons. Was recorded more than twice of accidents with arthropods in Urban area than in rural areas. The Chi-square test revealed that the frequency of accidents between locations and type of arthropods is different. Likewise, the number the victims and activity type in moment of the bite/sting had been a differ behavior between arthropods type. However, the number of accidents involving victims of male and female gender is equal. Conclusion: Epidemiological studies of this type in the extreme south of Santa Catarina are scarce. Only few studies have reported the patterns of occurrence and incidence of accidents with poisonous animals. These and other studies are of great importance for implementation of measures mitigation programs and education for

  12. Survey of arthropod assemblages responding to live yeasts in an organic apple orchard

    Directory of Open Access Journals (Sweden)

    Stefanos S Andreadis

    2015-10-01

    Full Text Available Associations between yeasts and insect herbivores are widespread, and these inter-kingdom interactions play a crucial role in yeast and insect ecology and evolution. We report a survey of insect attraction to live yeast from a community ecology perspective. In the summer of 2013 we screened live yeast cultures of Metschnikowia pulcherrima, M. andauensis, M. hawaiiensis, M. lopburiensis, and Cryptococcus tephrensis in an organic apple orchard. More than 3,000 arthropods from 3 classes, 15 orders, and 93 species were trapped; ca. 79% of the trapped specimens were dipterans, of which 43% were hoverflies (Syrphidae, followed by Sarcophagidae, Phoridae, Lauxaniidae, Cecidomyidae, Drosophilidae, and Chironomidae. Traps baited with M. pulcherrima, M. andauensis, and C. tephrensis captured typically 2.4 times more specimens than control traps; traps baited with M. pulcherrima, M. hawaiiensis, M. andauensis, M. lopburiensis and C. tephrensis were more species-rich than unbaited control traps. We conclude that traps baited with live yeasts of the genera Metschnikowia and Cryprococcus are effective attractants and therefore of potential value for pest control. Yeast-based monitoring or attract-and-kill techniques could target pest insects or enhance the assemblage of beneficial insects. Manipulation of insect behavior through live yeast cultures should be further explored for the development of novel plant protection techniques.

  13. Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Mouttet

    Full Text Available In ecological systems, indirect interactions between plant pathogens and phytophagous arthropods can arise when infestation by a first attacker alters the common host plant so that although a second attacker could be spatially or temporally separated from the first one, the former could be affected. The induction of plant defense reactions leading to the production of secondary metabolites is thought to have an important role since it involves antagonistic and/or synergistic cross-talks that may determine the outcome of such interactions. We carried out experiments under controlled conditions on young rose plants in order to assess the impact of these indirect interactions on life history traits of three pests: the necrotrophic fungus Botrytis cinerea Pers.: Fr. (Helotiales: Sclerotiniaceae, the aphid Rhodobium porosum Sanderson (Hemiptera: Aphididae and the thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae. Our results indicated (i a bi-directional negative interaction between B. cinerea and R. porosum, which is conveyed by decreased aphid growth rate and reduced fungal lesion area, as well as (ii an indirect negative effect of B. cinerea on insect behavior. No indirect effect was observed between thrips and aphids. This research highlights several complex interactions that may be involved in structuring herbivore and plant pathogen communities within natural and managed ecosystems.

  14. Arthropod trace fossils from the Zhujiaqing Formation (Meishucunian, Yunnan) and their palaeobiological implications

    Institute of Scientific and Technical Information of China (English)

    Bernd WEBER1; ZHU Maoyan

    2003-01-01

    Along with several non-arthropod ichnotaxa and rather non-specific scratchmarks, the Upper Phosphate of the Zhujiaqing Formation (Early Meishucunian Stage) in Eastern Yunnan yielded well-preserved resting and digging traces of the Rusophycus-type interpreted as resting traces of unknown large arthropods (ca. 3~6 cm in length). The discernible morphological details of these trace fossils enable a rough estimation of the body plan characteristics of the trace originators placing the latter doubtless into the early arthropods, if not euarthropods. The spectrum of the Meishucunian ichnoassemblage, especially the different types of arthropod repichnia point to the existence of a complex benthic ecosystem consisting of animals with different behavioural patterns and life styles already during the earliest Cambrian (Nemakit-Daldyn), and demands the assumption of a longer evolutionary past history of the benthic life on earth before the so-called "Cambrian Explosion" of the metazoans.

  15. Seasonal body size reductions with warming covary with major body size gradients in arthropod species

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2017-01-01

    experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic...

  16. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Science.gov (United States)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  17. Manipulation of arthropod sex determination by endosymbionts : Diversity and molecular mechanisms

    NARCIS (Netherlands)

    Ma, W. -J.; Vavre, F.; Beukeboom, L. W.

    2014-01-01

    Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium, Rickettsia, and

  18. Ecdysone receptor agonism leading to lethal molting disruption in arthropods: Review and adverse outcome pathway development

    Science.gov (United States)

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, s...

  19. The tripartite associations between bacteriophage, Wolbachia, and arthropods.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1 variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2 phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3 CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress

  20. Tropical dermatology: Venomous arthropods and human skin: Part II. Diplopoda, Chilopoda, and Arachnida.

    Science.gov (United States)

    Haddad, Vidal; Cardoso, João Luiz Costa; Lupi, Omar; Tyring, Stephen K

    2012-09-01

    Members of arthropod classes Chilopoda (centipedes), Diplopoda (millipedes), and Arachnida (spiders and scorpions) cause tissue injury via bites, stings, and/or a release of toxins. A few members of the Acari subclass of Arachnida (mites and ticks) can transmit a variety of infectious diseases, but this review will cover the noninfectious manifestations of these vectors. Dermatologists should be familiar with the injuries caused by these arthropods in order to initiate proper treatment and recommend effective preventative measures.

  1. Possible developmental mechanisms underlying the origin of the crown lineages of arthropods

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuqiang; CHEN Junyuan

    2004-01-01

    The extraordinarily preserved, diverse arthropod fauna from the Lower Cambrian Maotianshan shale, central Yunnan (southwest China), represents different evolutionary stages stepping from stem lineages towards crown arthropods (also called euarthropods), which makes this fauna extremely significant for discussion of the origin and early diversification of the arthropods. Anatomical analyses of the Maotianshan shale arthropods strongly indicate that the origin of crown arthropods involved three major evolutionary events, arthrodisation, arthropodisation and cephali- zation. We try to explore possible evolutionary changes of the developmental mechanism that may have underlain origins of euarthropod appendage and head. Fossil evidence suggests that the formation of a jointed limb known as arthropodisation and formation of multi-segmented head (called cephalization), which characterize euarthropods, is an event after arthrodisation characterized with the formation of segmented-exoskeleton and the joint membrane between tergites. We propose that the Hox complex was already operating at least as early as in the Early Cambrian and is responsible for the formation of the joint membrane between two semgents through Hox gene regulation along the D-V and P-D axis. Fossil evidence indicates that the head in ground state of arthropods consists only of two segments, an ocular and an antennal one. The formation of multiple segmented, euarthropod head (called syncephalon) from the two-segmented head was a separate event, which is called cephali- zation. Presence of the Hox gene head expression domain and change of developmental mechanism in head segments might be responsible for the formation of the syncephalon and this event has been broadly finished in the Early Cambrian arthropods. The post-oral limbs in the early syncephalons as evidenced from the Lower Cambrian Maotianshan shale arthropods however were almost identical to those in trunk. Therefore we proposed that the Hox

  2. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.

    Directory of Open Access Journals (Sweden)

    João C R Cardoso

    Full Text Available Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs. Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.

  3. Arthropod-borne infections in travelled dogs in Europe

    Directory of Open Access Journals (Sweden)

    Hamel Dietmar

    2013-01-01

    Full Text Available Pet animal movement is ever increasing within the European Union and in that context canine vectorborne infections gained a considerable importance. Information on these infections in travelled dogs is nevertheless limited. A first prospective study on vector-borne infections was conducted in 106 dogs travelling from Germany to countries in South and South-East Europe. The dogs were screened prior to and consecutively up to three times after travel by haematological (Giemsa-stained buffy coat smears, Knott’s-Test, molecular biological (PCR as well as serological (IFAT, DiroChek®-ELISA methods for arthropod-borne infections. Seven animals were seropositive for antibodies against Babesia canis sspp., Leishmania spp. and/or Ehrlichia canis prior to travel to Italy, Spain, France, Croatia, Greece, or Hungary. In the consecutive screening after return there was no increase in the number of seropositive dogs. None was positive in direct methods. The mean duration of the stay was 17 days and 51% of the dogs were prophylactically treated with ectoparasiticidal formulations. Preliminary data from this study on canine vector-borne infections indicate a low risk for infection during a limited single stay in endemic countries.

  4. The ubiquity of intraguild predation among predatory arthropods.

    Directory of Open Access Journals (Sweden)

    Annie-Ève Gagnon

    Full Text Available Intraguild predation (IGP occurs when one predator species attacks another predator species with which it competes for a shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368 predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among predatory arthropods. The finding has important implications for conservation biology and biological control.

  5. The ubiquity of intraguild predation among predatory arthropods.

    Science.gov (United States)

    Gagnon, Annie-Ève; Heimpel, George E; Brodeur, Jacques

    2011-01-01

    Intraguild predation (IGP) occurs when one predator species attacks another predator species with which it competes for a shared prey species. Despite the apparent omnipresence of intraguild interactions in natural and managed ecosystems, very few studies have quantified rates of IGP in various taxa under field conditions. We used molecular analyses of gut contents to assess the nature and incidence of IGP among four species of coccinellid predators in soybean fields. Over half of the 368 predator individuals collected in soybean contained the DNA of other coccinellid species indicating that IGP was very common at our field site. Furthermore, 13.2% of the sampled individuals contained two and even three other coccinellid species in their gut. The interaction was reciprocal, as each of the four coccinellid species has the capacity to feed on the others. To our knowledge, this study represents the most convincing field evidence of a high prevalence of IGP among predatory arthropods. The finding has important implications for conservation biology and biological control.

  6. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  7. Time-invariant differences between plant individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, morphology and floral scent.

    Science.gov (United States)

    Kuppler, Jonas; Höfers, Maren K; Wiesmann, Lisa; Junker, Robert R

    2016-06-01

    The basic units of ecological and evolutionary processes are individuals. Network studies aiming to infer mechanisms from complex systems, however, usually focus on interactions between species, not individuals. Accordingly, the structure and underlying mechanisms of individual-based interaction networks remain largely unknown. In a common garden, we recorded all interactions on flowers and leaves of 97 Sinapis arvensis individuals from seedling stage to fruit set and related interindividual differences in interactions to the plant individuals' phenotypes. The plant individuals significantly differed in their quantitative and qualitative interactions with arthropods on flowers and leaves. These differences remained stable over the entire season and thus were time-invariant. Variation in interacting arthropod communities could be explained by a pronounced intraspecific variability in flowering phenology, morphology and flower scent, and translated into variation in reproductive success. Interestingly, plant individuals with a similar composition of flower visitors were also visited by a similar assemblage of interaction partners at leaves. Our results show that the nonuniformity of plant species has pronounced effects in community ecology, potentially with implications for the persistence of communities and populations, and their ability to withstand environmental fluctuations.

  8. A New Arthropod, Guangweicaris Luo, Fu et Hu gen. nov.from the Early Cambrian Guanshan Fauna, Kunming, China

    Institute of Scientific and Technical Information of China (English)

    LUO Huilin; FU Xiaoping; HU Shixue; LI Yong; HOU Shuguang; YOU Ting; PANG Jiyuan; LIU Qi

    2007-01-01

    The Guanshan Fauna is a soft-bodied fauna dominated by arthropods (including trilobites,trilobitoides, Tuzoia, Isoxys, and bradorids) in association with priapulids, brachiopods,anomalocaridids, vetulicoliids, sponges, chancellorids, and echinoderms. This paper reports and describes a new arthropod from the yellowish green mudstone at the lower part of the Wulongqing Formation, Canglangpuan Stage, Lower Cambrian in Kunming, Yunnan, China. The stratigraphic and geographic distribution, classification, fossil preservation, life style of this new arthropod and comparisons with other fossil arthropods are also discussed in details. The discovery and research of the non-mineralized arthropod, Guangweicaris Luo, Fu et Hu gen. nov. from the Guanshan Fauna adds new members to the taxonomic list and provides new information to the evolution of early arthropods.Furthermore, this study would shed new light into the "Cambrian Explosion" and the evolution of early life.

  9. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  10. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede strigamia maritima

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  11. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    OpenAIRE

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologue...

  12. Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2009-04-01

    Full Text Available Abstract Background Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes. Results Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific. Conclusion All 21 completely sequenced arthropods, including the twelve sequenced Drosophila species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. After this group the rust-red flour beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage leading to the Drosophila species.

  13. Phylogeny and life habits of Early Arthropods-Predation in the Early Cambrian Sea

    Institute of Scientific and Technical Information of China (English)

    Andreas MAAS; Dieter WALOSZEK; CHEN Junyuan; Andreas BRAUN; WANG Xiuqiang; HUANG Diying

    2004-01-01

    We investigated two new arthropods from the Maotianshan-Shale fauna of southern China in the course of our research on life strategies, particularly predation, in Early Cambrian marine macrofaunal biota. One form clearly belongs to the so-called "great-appendage" arthropods, animals that were, most likely, active predators catching prey with their first pair of large, specialized frontoventral appendages. Based on this, we hypothesize that the new species and many others, if not all, of the "great-appendage" arthropods were derivatives of the chelicerate stem lineage and not forms having branched off at different nodes along the evolutionary lineage of the Arthropoda. Rather, we consider the "great-appendage" arthropods as belonging to a monophyletic clade, which modified autapomorphically their first pair of appendages (antennae in general arthropod terminology) into raptorial organs for food capture. The second new form resembles another Maotianshan-Shale arthropod, Fuxianhuia protensa, in sharing a head made of only two separate segments, a small segment bearing oval eyes laterally, and another bearing a large tergite, which forms a wide shield freely overhanging the subsequent narrow trunk segments. This segment bears a single pair of rather short anteriorly directed uniramous appendages, considered as the "still" limb-shaped antennae. Particularly the evolutionary status of head and limbs of these two forms suggests that both are representatives of the early part of the stem lineage toward the crown-group of Arthropoda, the Euarthropoda. These forms appear rather unspecialized, but may have been but simple predators. This adds to our hypothesis that predation was a common, if not dominant feeding strategy in the Cambrian, at least for arthropods.

  14. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    Science.gov (United States)

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape.

  15. Antiparasitic peptides from arthropods and their application in drug therapy

    Directory of Open Access Journals (Sweden)

    Ariane Ferreira Lacerda

    2016-02-01

    Full Text Available Africa, Asia and Latin America are regions highly affected by endemic diseases, such as Leishmaniasis, Malaria and Chagas’ disease. They are responsible for the death of thousands of patients every year, as there is not yet a cure for them and the drugs used are inefficient against the pathogenic parasites. During the life cycle of some parasitic protozoa, insects become the most important host and disseminator of the diseases triggered by these microorganisms. As infected insects do not develop nocive symptoms, they can carry the parasites for long time inside their body, enabling their multiplication and life cycle completion. Eventually, parasites infect human beings after insects transmission through their saliva and/or feces. Hence, host insects and general arthropods, which developed a way to coexist with such parasites, are a promising source for the prospection of antiparasitic compounds, as alternative methods for the treatment of protozoa-related diseases. Among the molecules already isolated and investigated, there are proteins and peptides with high activity against parasites, able to inhibit parasite activity in different stages of development. Although studies are still taking their first steps, initial results show new perspectives on the treatment of parasitic diseases. Therefore, in this report, we describe about peptides from host insect sources with activity against the three most endemic parasites: Leishmania sp, Plasmodium sp. and Trypanosomes. Moreover, we discuss the future application insect peptides as anti-parasitic drugs and the use of non-hosts insect transcriptomes on the prospection of novel molecules for the treatment of parasitic neglected diseases.

  16. Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Marinêz Isaac Marques

    2006-06-01

    Full Text Available Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil. This study represents a contribution to the knowledge of the diversity of arthropods associated to the canopy of Vochysia divergens Pohl (Vochysiaceae. Three trees individuals were sampled during two seasonal periods in this region: a by spraying one tree canopy during high water (February; b by fogging two tree canopies during low water (September/October. The 15,744 arthropods (183.2±38.9 individuals/m² obtained from all three trees (86 m² represented 20 taxonomic orders, 87.1% were Insecta, and 12.9% Arachnida. The dominant groups were Hymenoptera (48.5%; 88.9 individuals/m², mostly Formicidae (44.5%; 81.4 individuals/m², followed by Coleoptera (14.0%; 25.5 individuals/m² and Araneae (10.2%; 19.5 individuals/m², together representing 62.5% of the total catch. Fourteen (70% of all orders occurred on three trees. Dermaptera, Isoptera, Neuroptera, Odonata, Plecoptera and Trichoptera were collected from only one tree. Of the total, 2,197 adult Coleoptera collected (25.5±11.3 individuals/m², 99% were assigned to 32 families and 256 morphospecies. Nitidulidae (17.9% of the total catch; 4.6 individuals/m², Anobiidae (16.7%; 4.3 individuals/m², Curculionidae (13.2%; 3.4 individuals/m² and Meloidae (11.4%; 2.9 individuals/m² dominated. The communitiy of adult Coleoptera on V. divergens indicated a dominance of herbivores (37.8% of the total catch, 127 spp. and predators (35.2%, 82 spp., followed by saprophages (16.2%, 32 spp. and fungivores (10.8%, 15 spp.. The influence of the flood pulse on the community of arboreal arthropods in V. divergens is indicated by the seasonal variation in evaluated groups, causing changes in their structure and composition.Artrópodes terrestres associados a copas de árvores no Pantanal de Mato Grosso, Brasil. Este estudo representa uma contribuição ao conhecimento da diversidade de artrópodes associados à copa de Vochysia

  17. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    Full Text Available Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize, confers resistance to corn rootworms (Diabrotica spp. and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G and two non-Bt reference hybrids (KIPOUS and PR38N86. Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05. Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017 and non-Bt (DK315 untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  18. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    Science.gov (United States)

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  19. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  20. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Science.gov (United States)

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  1. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  2. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    Science.gov (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. A revision of brain composition in Onychophora (velvet worms suggests that the tritocerebrum evolved in arthropods

    Directory of Open Access Journals (Sweden)

    Mayer Georg

    2010-08-01

    Full Text Available Abstract Background The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear. Results Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords. Conclusions Our results contradict the assumptions of a tripartite (three-segmented brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.

  4. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-08-10

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.

  5. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D.; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J. J. A.; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m2 yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  6. Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem

    Directory of Open Access Journals (Sweden)

    Yong-Bok Lee

    2014-03-01

    Full Text Available Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp. and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease.

  7. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs.

    Science.gov (United States)

    Guedes, R N C; Smagghe, G; Stark, J D; Desneux, N

    2016-01-01

    More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.

  8. High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap

    DEFF Research Database (Denmark)

    Hansen, Rikke Reisner; Hansen, Oskar Liset Pryds; Bowden, Joseph James;

    2016-01-01

    . The empirical basis for this assumption, however, is weak. We examine the degree of spatial variation in species diversity and assemblage structure among five habitat types at two sites of similar abiotic conditions and plant species composition in southwest Greenland, using standardized field collection...... drivers of local arthropod assemblages, we used a combination of ordination techniques and linear regression. Species richness and the species pool differed between sites, with the latter indicating high species turnover. Local-scale assemblage patterns were related to soil moisture and temperature. We......Arthropods form a major part of the terrestrial species diversity in the Arctic, and are particularly sensitive to temporal changes in the abiotic environment. It is assumed that most Arctic arthropods are habitat generalists and that their diversity patterns exhibit low spatial variation...

  9. Spatial dynamics of understorey insectivorous birds and arthropods in a southeastern Brazilian Atlantic woodlot

    Directory of Open Access Journals (Sweden)

    MA. Manhães

    Full Text Available Spatial distribution and spatial relationships in capture rates of understorey insectivorous birds and density of arthropods were investigated in a patch of upper montane rain forest in Minas Gerais state, southeastern Brazil, from January to December 2004. The composition of the arthropod fauna collected was similar to that reported for other tropical forests, with predominance of Araneae, Coleoptera, Hymenoptera and Hemiptera non-Heteroptera. A total of 26 bird species were captured, among which the more common were Dysithamnus mentalis, Conopophaga lineata, Platyrinchus mystaceus, Basileuterus culicivorus and Sclerurus scansor. Variation in the bird capture rates among sampling net lines were not correlated with arthropod density. Rather, individual analyses of some bird species suggest that spatial distribution of understorey insectivorous birds is better explained by habitat type.

  10. Function and hydrostatics in the telson of the Burgess Shale arthropod Burgessia.

    Science.gov (United States)

    Lin, Jih-Pai

    2009-06-23

    Burgessia bella is a characteristic Burgess Shale arthropod (508 Ma), but the unusual preservation of its telson in both straight and bent modes leads to contradictory interpretations of its function. A reinvestigation of the fossil material, including burial attitudes, combined with a comparison with the decay sequence and mechanics of the telson in living Limulus, demonstrates that the telson of Burgessia was flexible in its relaxed state but could be stiffened in life. Evidence of fluid within the telson indicates that this manoeuvrability was achieved by changes in hydrostatic pressure and muscular control. The dual mode in the Burgessia telson is, to my knowledge, the first documented among fossil arthropods. It indicates that the requirement for a rigid telson, which is resolved by a thick sclerotized cuticle in most arthropods, may first have been achieved by hydrostatic means.

  11. Potential of intercropping for management of some arthropod and nematode pests of leafy vegetables in Kenya

    Directory of Open Access Journals (Sweden)

    Linguya Kimaru S.

    2015-01-01

    Full Text Available African leafy vegetables (ALVs play an important role as income and food security crops in many households in Kenya. However, their potential in alleviating poverty and ensuring household food and nutrition security has not been fully exploited. The objectives of this study were to identify some arthropod and nematode pests that infest ALVs and to evaluate the effectiveness of intercropping of susceptible and resistant plants for the management purposes. Three vegetable types: African nightshade, sunn hemp and spider plant were used in determining the efficacy of an intercrop of susceptible and non-susceptible types in reducing arthropod and nematode pest effect. The treatments in the field experiment consisted of different intercrop designs and a sole crop design as control while data was taken based on five different variables. Crops in the field were infested with arthropod pests and eight different species were enumerated. The same row and hill intercropping designs were the most effective in reducing the effect of arthropod and nematode pests compared to the control plots. Spider plant and African nightshade intercrops recorded the least arthropod pest damage, higher fresh and dry shoot yields and differed significantly (P≤0.05 to African nightshade planted as a sole crop. A similar trend was observed when the experiment was repeated with a sunn hemp and African nightshade intercrop. It is concluded from this study that intercropping of different crops can be integrated with other methods to provide an easily adaptable technology to apply for effective management of arthropod and nematode pests with low external inputs.

  12. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  13. Equal temperature-size responses of the sexes are widespread within arthropod species

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Horne, Curtis; Atkinson, David

    2015-01-01

    Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species...... arthropod orders examined, five of which (Diptera, Orthoptera, Lepidoptera, Coleoptera and Calanoida) include more than six thermal responses. We suggest that the same proportional T-S response may generally have equivalent fitness costs and benefits in both sexes. This contrasts with effects of juvenile...

  14. Standardization and optimization of arthropod inventories-the case of Iberian spiders

    DEFF Research Database (Denmark)

    Bondoso Cardoso, Pedro Miguel

    2009-01-01

    and optimization of sampling protocols, especially for mega-diverse arthropod taxa. This study had two objectives: (1) propose guidelines and statistical methods to improve the standardization and optimization of arthropod inventories, and (2) to propose a standardized and optimized protocol for Iberian spiders......, by finding common results between the optimal options for the different sites. The steps listed were successfully followed in the determination of a sampling protocol for Iberian spiders. A protocol with three sub-protocols of varying degrees of effort (24, 96 and 320 h of sampling) is proposed. I also...

  15. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, Aafke M. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)], E-mail: a.schipper@science.ru.nl; Wijnhoven, Sander [Centre for Sustainable Management of Resources, Institute for Science, Innovation and Society, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, Monitor Taskforce, P.O. Box 140, 4400 AC Yerseke (Netherlands); Leuven, Rob S.E.W.; Ragas, Ad M.J.; Jan Hendriks, A. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)

    2008-01-15

    Soil metal concentrations, inundation characteristics and abundances of 14 arthropod taxa were investigated in a moderately contaminated lowland floodplain along the Rhine River and compared to the hinterland. Internal metal concentrations were determined for the orders of Coleoptera (beetles) and Araneida (spiders) and were related to soil concentrations. The floodplain was characterized by larger arthropod abundance than the hinterland, in spite of recurrent inundations and higher soil metal concentrations. Most arthropod taxa showed increasing abundance with decreasing distance to the river channel and increasing average inundation duration. For Cd, Cu, Pb and Zn, significant relations were found between arthropod concentrations and concentrations in soil. Significant relations were few but positive, indicating that increasing soil concentrations result in increasing body burdens in arthropods. For arthropod-eating vertebrates, these results might imply that larger prey availability in the floodplain coincides with higher metal concentrations in prey, possibly leading to increased exposure to metal contamination. - Recurrent floodplain inundations affect terrestrial arthropod numbers and metal contamination levels.

  16. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    Science.gov (United States)

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width cepa seed fields in the North and South Islands of New Zealand using window traps revealed that small arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  17. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    NARCIS (Netherlands)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present

  18. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    NARCIS (Netherlands)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present

  19. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  20. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan.

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops (p soil arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in

  1. Field Documentation of Unusual Post-Mortem Arthropod Activity on Human Remains.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric; Tomberlin, Jeffery K; Crippen, Tawni L; Tarone, Aaron M; Singh, Baneshwar; Lenhart, Paul A

    2015-01-01

    During a forensic investigation, the presence of physical marks on human remains can influence the interpretation of events related to the death of an individual. Some tissue injury on human remains can be misinterpreted as ante- or peri-mortem wounds by an investigator when in reality the markings resulted from post-mortem arthropod activity. Unusual entomological data were collected during a study examining the decomposition of a set of human remains in San Marcos, Texas. An adult female Pediodectes haldemani (Girard) (Orthoptera: Tettigoniidae) and an Armadillidium cf. vulgare (Isopoda: Armadilidiidae) were documented feeding on the remains. Both arthropods produced physical marks or artifacts on the remains that could be misinterpreted as attack, abuse, neglect, or torture. Additionally, red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), were observed constructing structures in the mark produced by the P. haldemani feeding. These observations provide insight into the potential of post-mortem arthropod damage to human remains, which previously had not been described for these taxa, and therefore, physical artifacts on any remains found in similar circumstances may result from arthropod activity and not ante- or peri-mortem wounds. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    Science.gov (United States)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  3. Relationships between dead wood and arthropods in the Southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  4. Pheromone-mediated aggregation in nonsocial arthropods : An evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B; van Baalen, EJA; Dicke, M; Vet, LEM

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms. robust data on costs and benefits of aggregation pheromones

  5. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; Baalen, van E.J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones

  6. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression

    NARCIS (Netherlands)

    Schellhorn, N.A.; Bianchi, F.J.J.A.; Hsu, C.L.

    2014-01-01

    Entomophagous arthropods can provide valuable biological control services, but they need to fulfill their life cycle in agricultural landscapes often dominated by ephemeral and disturbed habitats. In this environment, movement is critical to escape from disturbances and to find resources scattered i

  7. ABC transporters in Arthropods: genomic comparison and role in insecticide transport and resistance

    NARCIS (Netherlands)

    Dermauw, W.; Van Leeuwen, T.

    2014-01-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority

  8. Grazed vegetation mosaics do not maximize arthropod diversity : Evidence from salt marshes

    NARCIS (Netherlands)

    van Klink, Roel; Rickert, Corinna; Vermeulen, Rikjan; Vorst, Oscar; WallisDeVries, Michiel F.; Bakker, Jan P.

    2013-01-01

    Light to moderate grazing in grasslands can create vegetation mosaics of short grazed vegetation and tall ungrazed vegetation. These mosaics have been proposed to maximize plant and animal species richness, yet experimental evidence, especially regarding arthropods is scarce. This study compares abu

  9. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the

  10. ABC transporters in Arthropods: genomic comparison and role in insecticide transport and resistance

    NARCIS (Netherlands)

    Dermauw, W.; Van Leeuwen, T.

    2014-01-01

    About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority

  11. Teaching Students about Biodiversity by Studying the Correlation between Plants & Arthropods

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2008-01-01

    On Earth there is a huge diversity of arthropods, many of which are highly adaptive and able to exploit virtually every terrestrial habitat. Because of their prevalence even in urban environments, they make an excellent model system for any life science class. Since plants also exploit virtually every terrestrial habitat, studying the relationship…

  12. Teaching Students about Biodiversity by Studying the Correlation between Plants & Arthropods

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2008-01-01

    On Earth there is a huge diversity of arthropods, many of which are highly adaptive and able to exploit virtually every terrestrial habitat. Because of their prevalence even in urban environments, they make an excellent model system for any life science class. Since plants also exploit virtually every terrestrial habitat, studying the relationship…

  13. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; van Baalen, E-J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones a

  14. Pheromone-mediated aggregation in nonsocial arthropods : An evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B; van Baalen, EJA; Dicke, M; Vet, LEM

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms. robust data on costs and benefits of aggregation pheromones a

  15. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts

    Science.gov (United States)

    Verhoeve, Victoria I.; Jirakanwisal, Krit; Utsuki, Tadanobu; Macaluso, Kevin R.

    2016-01-01

    Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods. PMID:27662479

  16. Hanadirella: A new problematic arthropod(?) from the Lower Ordovician (Llanvirn) Tabuk Formation, central Saudi Arabia

    NARCIS (Netherlands)

    El-Khayal, A.A.

    1985-01-01

    The new genus Hanadirella - with the type species H. bramkampi - from the Lower Ordovician (Llanvirn) of central Saudi Arabia represents a segmented organism which appears to have an arthropod affinity. The problematic genus is oval hat-shaped, less than 1 mm in diameter. Its affinity and palaeoecol

  17. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods

    NARCIS (Netherlands)

    Mumm, R.; Posthumus, M.A.; Dicke, M.

    2008-01-01

    Many plants respond to herbivory by arthropods with an induced emission of volatiles such as green leaf volatiles and terpenoids. These herbivore-induced plant volatiles (HIPVs) can attract carnivores, for example, predators and parasitoids. We investigated the significance of terpenoids in attracti

  18. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the flaviviruses

  19. First record of an arthropod from the Passaic Formation (Late Triassic), near Milford, New Jersey

    Science.gov (United States)

    Metz, Robert

    2012-03-01

    Mudstones of the Triassic Passaic Formation, near Milford, New Jersey, have yielded the first evidence of an arthropod impression in that formation. Associated trace fossils include Helminthoidichnites, Lockeia, Scoyenia, Spongeliomorpha, and the reptile footprint Rhynchosauroides, representing the Scoyenia ichnofacies. Associated sedimentary structures include desiccation cracks and raindrop impressions. The Passaic sediments were deposited under shallow water lacustrine shoreline conditions subject to periodic subaerial exposure.

  20. Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis

    Science.gov (United States)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  1. Gut content analysis of arthropod predators of codling moth in Washington apple orchards

    Science.gov (United States)

    More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...

  2. Removing external DNA decontamination from arthropod predators destined for molecular gut-content analysis

    Science.gov (United States)

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  3. Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene

    NARCIS (Netherlands)

    Meer, van M.M.M.; Witteveldt, J.; Stouthamer, R.

    1999-01-01

    Bacteria of the genus Wolbachia (Rickettsiae) are widespread in arthropods and can induce cytoplasmic incompatibility (CI), thelytoky (T) or feminization (F) in their host. Recent research on the wsp gene of mainly CI inducing Wolbachia has shown that this gene evolves at a much faster rate than pre

  4. Evolutionary genomics place the origin of Wolbachia in nematodes, not arthropods

    Science.gov (United States)

    Wolbachia, the most widely studied endosymbiont in arthropods, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new strain (wPpe) in the plant-parasitic nem...

  5. The colonization of land by animals: molecular phylogeny and divergence times among arthropods

    Directory of Open Access Journals (Sweden)

    Lyons-Weiler Maureen

    2004-01-01

    Full Text Available Abstract Background The earliest fossil evidence of terrestrial animal activity is from the Ordovician, ~450 million years ago (Ma. However, there are earlier animal fossils, and most molecular clocks suggest a deep origin of animal phyla in the Precambrian, leaving open the possibility that animals colonized land much earlier than the Ordovician. To further investigate the time of colonization of land by animals, we sequenced two nuclear genes, glyceraldehyde-3-phosphate dehydrogenase and enolase, in representative arthropods and conducted phylogenetic and molecular clock analyses of those and other available DNA and protein sequence data. To assess the robustness of animal molecular clocks, we estimated the deuterostome-arthropod divergence using the arthropod fossil record for calibration and tunicate instead of vertebrate sequences to represent Deuterostomia. Nine nuclear and 15 mitochondrial genes were used in phylogenetic analyses and 61 genes were used in molecular clock analyses. Results Significant support was found for the unconventional pairing of myriapods (millipedes and centipedes with chelicerates (spiders, scorpions, horseshoe crabs, etc. using nuclear and mitochondrial genes. Our estimated time for the divergence of millipedes (Diplopoda and centipedes (Chilopoda was 442 ± 50 Ma, and the divergence of insects and crustaceans was estimated as 666 ± 58 Ma. Our results also agree with previous studies suggesting a deep divergence (~1100 – 900 Ma for arthropods and deuterostomes, considerably predating the Cambrian Explosion seen in the animal fossil record. Conclusions The consistent support for a close relationship between myriapods and chelicerates, using mitochondrial and nuclear genes and different methods of analysis, suggests that this unexpected result is not an artefact of analysis. We propose the name Myriochelata for this group of animals, which includes many that immobilize prey with venom. Our molecular clock

  6. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands.

    Science.gov (United States)

    Youngsteadt, Elsa; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2017-04-01

    Biological effects of climate change are expected to vary geographically, with a strong signature of latitude. For ectothermic animals, there is systematic latitudinal variation in the relationship between climate and thermal performance curves, which describe the relationship between temperature and an organism's fitness. Here, we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid- and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment consisting of a series of urban warming gradients at different latitudes. Specifically, we sampled arthropods from a single common street tree species across temperature gradients in four US cities, located from 35.8 to 42.4° latitude. We captured 6746 arthropods in 34 families from 111 sites that varied in summer average temperature by 1.7-3.4 °C within each city. Arthropod responses to warming within each city were characterized as Poisson regression coefficients describing change in abundance per °C for each family. Family responses in the two midlatitude cities were heterogeneous, including significantly negative and positive effects, while those in high-latitude cities varied no more than expected by chance within each city. We expected high-latitude taxa to increase in abundance with warming, and they did so in one of the two high-latitude cities; in the other, Queens (New York City), most taxa declined with warming, perhaps due to habitat loss that was correlated with warming in this city. With the exception of Queens, patterns of family responses to warming were consistent with predictions based on known latitudinal patterns in arthropod physiology relative to regional climate. Heterogeneous responses in midlatitudes may be ecologically disruptive if interacting taxa respond oppositely to warming. © 2016 John Wiley & Sons Ltd.

  7. Shared community patterns following experimental fire in a semiarid grassland

    Science.gov (United States)

    Paulette L. Ford

    2007-01-01

    This paper presents a synthesis of experimental research testing effects of seasonal fire on community structure of plants, arthropods, and small mammals in shortgrass steppe. These groups of plants and animals share the same environment, and therefore, the species in the groups were predicted to respond in a similar way to changes in their environment resulting from...

  8. Ten-year responses of ground-dwelling spiders to retention harvest in the boreal forest.

    Science.gov (United States)

    Pinzon, Jaime; Spence, John R; Langor, David W; Shorthouse, David P

    2016-12-01

    The Ecosystem Management Emulating Natural Disturbances (EMEND) project tests the hypothesis that varying levels of green tree retention maintain and retain forest biodiversity better than conventional clear-cutting. We studied epigaeic spiders to assess biodiversity changes 2, 5, and 10 yr following a range of partial retention harvests (clear-cut, 10-75% retention) and unharvested controls in four boreal mixedwood cover types. A total of 56 371 adult spiders representing 220 species was collected using pitfall traps. Lasting effects on forest structure were proportional to harvest intensity. These changes strongly influenced spider richness, abundance, and species composition, as well as assemblage recovery. Distinctive assemblages were associated with disturbance level, especially with partial harvests (≤50% retention), and these were dominated by open-habitat species even 10 yr after harvest. Assemblages were more similar to those of controls in the highest (75%) retention treatment, but significant recovery toward the structure of pre-disturbance assemblages was not detected for any prescription in any cover type. Although early responses to retention harvest suggested positive effects on spider assemblages, these are better explained as lag effects after harvest because assemblages were less similar to those of unharvested controls 5 yr post-harvest, and only minor recovery was observed 10 yr following harvest. Retention of forest biodiversity decreased over time, especially in conifer stands and the lower (10-50%) retention treatments. Overall, retention harvests retained biodiversity and promoted landscape heterogeneity somewhat better than clear-cutting; however, there was a clear gradient of response and no retention "threshold" for conservation can be recommended on the basis of our data. Furthermore, results suggest that retention harvest prescriptions should be adjusted for cover type. We show that low retention ameliorated impacts in broadleaved forests characteristic of earlier stages in mixedwood succession, but only higher retention was associated with less impact in successionally older conifer forests. Although these short-term responses (10 yr) of spider assemblages support use of retention harvests, understanding the true conservation merit of these practices, relative to conventional approaches, requires evaluation over longer time scales, with work more focused on recovery of biodiversity than on its preservation after harvest.

  9. A faunistic study on ground-dwelling spiders (Araneae in the Tirana district, Albania

    Directory of Open Access Journals (Sweden)

    Vrenozi, Blerina

    2012-12-01

    Full Text Available Spiders from the Tirana district of Albania were investigated. Currently, 78 species from 24 families and a collection of 400 specimens from January to August 2010 were recorded for Tirana. A total of 32 new records for the Albanian fauna are included in the present paper. Agraecina lineata (Simon, 1878 is the first record for the Balkan Peninsula. Saitis graecus Kulczyński, 1905 was known before only from Greece and Bulgaria. Presently, 373 spider species are known for Albania.

  10. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  11. A study on the effects of golf course organophosphate and carbamate pesticides on endangered, cave-dwelling arthropods Kauai, Hawaii

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Three endemic species, two arthropods and one isopod, are present in the Kauai caves. These species are critical components of the cave ecosystems and are possibly...

  12. Cysteine-Free Proteins in the Immunobiology of Arthropod-Borne Diseases

    Directory of Open Access Journals (Sweden)

    J. Santiago Mejia

    2010-01-01

    Full Text Available One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, including Plasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.

  13. [Climate change influences the incidence of arthropod-borne diseases in the Netherlands].

    Science.gov (United States)

    Rahamat-Langendoen, J C; van Vliet, J A; Reusken, C B E M

    2008-04-12

    Climate change is associated with changes in the occurrence of arthropod-borne diseases. It is difficult to foresee which arthropod-borne diseases will appear in the Netherlands due to climate change. Climate change influences the prevalence of ticks and may lead to a further increase in Lyme disease and an increased risk of the introduction of rickettsioses. With further warming of the climate there is a real possibility of settlement of the mosquito Aedes albopictus and introduction of the sandfly in the Netherlands. Whether this will lead to circulation of micro-organisms transmitted by these vectors (e.g. West Nile virus, Dengue virus, Leishmania) is not clear. Continued vigilance is necessary, even for vector-borne diseases that appear to be less relevant for the Netherlands.

  14. Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle.

    Science.gov (United States)

    Zheng, Yelong; Lu, Hongyu; Yin, Wei; Tao, Dashuai; Shi, Lichun; Tian, Yu

    2016-10-07

    Forces acted on legs of water-walking arthropods with weights in dynes are of great interest for entomologist, physicists, and engineers. While their floating mechanism has been recognized, the in vivo leg forces stationary have not yet been simultaneously achieved. In this study, their elegant bright-edged leg shadows are used to make the tiny forces visible and measurable based on the updated Archimedes' principle. The force was approximately proportional to the shadow area with a resolution from nanonewton to piconewton/pixel. The sum of leg forces agreed well with the body weight measured with an accurate electronic balance, which verified updated Archimedes' principle at the arthropod level. The slight changes of vertical body weight focus position and the body pitch angle have also been revealed for the first time. The visualization of tiny force by shadow is cost-effective and very sensitive and could be used in many other applications.

  15. [What gene and chromosomes say about the origin and evolution of insects and other arthropods].

    Science.gov (United States)

    Lukhtanov, V A; Kuznetsova, V G

    2010-09-01

    At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha.

  16. Arthropod Pest Control for UK Oilseed Rape – Comparing Insecticide Efficacies, Side Effects and Alternatives

    Science.gov (United States)

    Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G.

    2017-01-01

    Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users’ health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0–1 t/ha less). Alternatives for future oilseed rape

  17. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata

    OpenAIRE

    Sharma, Prashant P.; Gupta, Tripti; Schwager, Evelyn E; Wheeler, Ward C.; Cassandra G Extavour

    2014-01-01

    Background The monophyly of Mandibulata - the division of arthropods uniting pancrustaceans and myriapods - is consistent with several morphological characters, such as the presence of sensory appendages called antennae and the eponymous biting appendage, the mandible. Functional studies have demonstrated that the patterning of the mandible requires the activity of the Hox gene Deformed and the transcription factor cap-n-collar (cnc) in at least two holometabolous insects: the fruit fly Droso...

  18. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata

    OpenAIRE

    Sharma, Prashant P.; Gupta, Tripti; Schwager, Evelyn E; Wheeler, Ward C.; Cassandra G Extavour

    2014-01-01

    Background: The monophyly of Mandibulata - the division of arthropods uniting pancrustaceans and myriapods - is consistent with several morphological characters, such as the presence of sensory appendages called antennae and the eponymous biting appendage, the mandible. Functional studies have demonstrated that the patterning of the mandible requires the activity of the Hox gene Deformed and the transcription factor cap-n-collar (cnc) in at least two holometabolous insects: the fruit fly Dros...

  19. Self-referent phenotype matching and its role in female mate choice in arthropods

    Institute of Scientific and Technical Information of China (English)

    Carie B.WEDDLE; John HUNT; Scott K.SAKALUK

    2013-01-01

    A growing body of empirical evidence shows that females of many animal species gain benefits by mating polyandrously,and often prefer to mate with novel males over previous mates.Although a female preference for novel males has been demonstrated for multiple animal taxa,the mechanisms used by females to discriminate between novel and previous mates remain largely unknown.However,recent studies suggest that in decorated crickets Gryllodes sigillatus,females actually imbue males with their own chemical cues,known as cuticular hydrocarbons (CHCs) during mating,and utilize chemosensory self-referencing to recognize recent mates.Here we review evidence that self-referent phenotype matching is a widespread mechanism of recognition in arthropods,and explore how CHCs are used to facilitate mate-choice decisions.There is substantial evidence that CHCs are used as recognition cues to discriminate between species,kin,sexes,mates,individuals,and self and non-self,and are used to facilitate mate-choice decisions in a wide range of arthropod taxa.There is also evidence that CHCs are often transferred between individuals during direct physical contact,including copulation.Chemosensory self-referencing via cuticular hydrocarbons could provide a simple,but reliable mechanism for identifying individuals from previous mating encounters.This mechanism does not require any specialized cognitive abilities because an individual's phenotype is always available for reference.Given the ubiquitous use of CHCs among arthropods,chemosensory self-referencing may be a widespread mechanism used by female arthropods to facilitate female mate-choice decisions and to enhance opportunities for polyandry.

  20. Self-referent phenotype matching and its role in female mate choice in arthropods

    Directory of Open Access Journals (Sweden)

    Carie B. WEDDLE, John HUNT, Scott K. SAKALUK

    2013-04-01

    Full Text Available A growing body of empirical evidence shows that females of many animal species gain benefits by mating polyandrously, and often prefer to mate with novel males over previous mates. Although a female preference for novel males has been demonstrated for multiple animal taxa, the mechanisms used by females to discriminate between novel and previous mates remain largely unknown. However, recent studies suggest that in decorated crickets Gryllodes sigillatus, females actually imbue males with their own chemical cues, known as cuticular hydrocarbons (CHCs during mating, and utilize chemosensory self-referencing to recognize recent mates. Here we review evidence that self-referent phenotype matching is a widespread mechanism of recognition in arthropods, and explore how CHCs are used to facilitate mate-choice decisions. There is substantial evidence that CHCs are used as recognition cues to discriminate between species, kin, sexes, mates, individuals, and self and non-self, and are used to facilitate mate-choice decisions in a wide range of arthropod taxa. There is also evidence that CHCs are often transferred between individuals during direct physical contact, including copulation. Chemosensory self-referencing via cuticular hydrocarbons could provide a simple, but reliable mechanism for identifying individuals from previous mating encounters. This mechanism does not require any specialized cognitive abilities because an individual’s phenotype is always available for reference. Given the ubiquitous use of CHCs among arthropods, chemosensory self-referencing may be a widespread mechanism used by female arthropods to facilitate female mate-choice decisions and to enhance opportunities for polyandry [Current Zoology 59 (2: 239-248, 2013].

  1. Effects of Vegetated Field Borders on Arthropods in Cotton Fields in Eastern North Carolina

    OpenAIRE

    Outward, Randy; Sorenson, Clyde E.; Bradley, J. R.

    2008-01-01

    The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurr...

  2. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor).

    Science.gov (United States)

    Aggarwal, Rajat; Subramanyam, Subhashree; Zhao, Chaoyang; Chen, Ming-Shun; Harris, Marion O; Stuart, Jeff J

    2014-01-01

    Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins to defeat basal plant immunity and modulate plant growth. Because avirulence (Avr) gene discovery is a reliable method of effector identification, we tested this hypothesis using high-resolution molecular genetic mapping of an Avr gene (vH13) in the Hessian fly (HF, Mayetiola destructor), an important gall midge pest of wheat (Triticum spp.). Chromosome walking resolved the position of vH13, and revealed alleles that determine whether HF larvae are virulent (survive) or avirulent (die) on wheat seedlings carrying the wheat H13 resistance gene. Association mapping found three independent insertions in vH13 that appear to be responsible for H13-virulence in field populations. We observed vH13 transcription in H13-avirulent larvae and the salivary glands of H13-avirulent larvae, but not in H13-virulent larvae. RNA-interference-knockdown of vH13 transcripts allowed some H13-avirulent larvae to escape H13-directed resistance. vH13 is the first Avr gene identified in an arthropod. It encodes a small modular protein with no sequence similarities to other proteins in GenBank. These data clearly support the hypothesis that an effector-based strategy has evolved in multiple lineages of plant parasites, including arthropods.

  3. Diversity of the arthropod fauna in organically grown garlic intercropped with fodder radish.

    OpenAIRE

    Silva, André Wagner Barata; Haro, Marcelo Mendes; Silveira, Luís Cláudio Paterno

    2012-01-01

    The cultivation of garlic faces several problems, which include pest attack, and the diversification of habitat through intercropping with attractive plants comes up as a method to pest management. The objective of this research was to verify the effect of the association of garlic with fodder radish on richness, abundance and diversity of arthropods under organic production system in Lavras, MG, Brazil. The treatments were composed of garlic in monoculture and garlic in association with fodd...

  4. New euthycarcinoids and an enigmatic arthropod from the British coal measures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, H.M.; Almond, J.E. [Univrsity of Maryland, College Park, MD (USA). Dept. Entomology

    2001-07-01

    Two new species of euthycarcinoids (Arthropoda), Kottixerxes anglicus sp. nov. and Smithixerxes pustulosus sp. nov., are described from the Coal Measures of Westhoughton, Lancashire and Coseley, West Midlands (Westphalian A and B respectively). Both genera are previously known from Mazon Creek, USA (Westphalian D). An additional, enigmatic arthropod with possible euthycarcinoid affinities, Arthrogyrinus platyurus gen. et sp. nov., is described from Coseley. Hypotheses concerning the phylogenetic position of euthycarcinoids are critically reviewed.

  5. Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale

    OpenAIRE

    Haug, Joachim T; Caron, Jean-Bernard; Haug, Carolin

    2013-01-01

    Background The Burgess Shale is well known for its preservation of a diverse soft-bodied biota dating from the Cambrian period (Series 3, Stage 5). While previous paleoecological studies have focused on particular species (autecology) or entire paleocommunities (synecology), studies on the ecology of populations (demecology) of Burgess Shale organisms have remained mainly anecdotal. Results Here, we present evidence for mass molting events in two unrelated arthropods from the Burgess Shale Wa...

  6. Costa rican international cooperative biodiversity group: using insects and other arthropods in biodiversity prospecting

    OpenAIRE

    Sittenfeld-Appel, Ana; Tamayo-Castillo, Giselle; Nielsen-Muñoz, Vanessa; Jiménez, Allan; Hurtado, Priscilla; Chinchilla-Carmona, Misael; Guerrero-Bermúdez, Olga Marta; Mora, María Auxiliadora; Rojas, Miguel; Blanco, Roger; Alvarado, Eugenio; Gutiérrez Gutiérrez, José María; Janzen, Daniel Hunt

    1999-01-01

    artículo -- Universidad de Costa Rica. Escuela de Química, Universidad de Costa Rica. Facultad de Microbiología. Departmento Parasitología, Universidad de Costa Rica. Instituto Clodomiro Picado, 1999. Este documento es privado debido a limitaciones de derechos de autor. This paper describes the Costa Rican International Collaborative Biodiversity Group (ICBG), which was designed to introduce insects and other arthropods as a source of pharmaceutical compounds, and to generate knowledge and...

  7. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores

    Science.gov (United States)

    Labandeira, Conrad C.

    2013-04-01

    A survey of the fossil record of land-plant tissues and their damage by arthropods reveals several results that shed light on trophic trends in host-plant resource use by arthropods. All 14 major plant tissues were present by the end of the Devonian, representing the earliest 20 % of the terrestrial biota. During this interval, two types of time lags separate the point between when tissues first originated from their earliest consumption by herbivorous arthropods. For epidermis, parenchyma, collenchyma and xylem, live tissue consumption was rapid, occurring on average 10 m.y. after the earliest tissue records. By contrast, structural tissues (periderm, sclerenchyma), tissues with actively dividing cells (apical, lateral, intercalary meristems), and reproductive tissues (spores, megagametophytes, integuments) experienced approximately a 9-fold (92 m.y.) delay in arthropod herbivory, extending well into the Carboniferous Period. Phloem similarly presents a delay of 85 m.y., but this incongruously long lag-time may be attributed to the lack of preservation of this tissue in early vascular plants. Nevertheless, the presence of phloem can be indicated from planar spaces adjacent well-preserved xylem, or inferred from a known anatomy of the same plant taxon in better preserved material, especially permineralisations. The trophic partitioning of epidermis, parenchyma, phloem and xylem increases considerably to the present, probably a consequence of dietary specialization or consumption of whole leaves by several herbivore functional feeding groups. Structural tissues, meristematic tissues and reproductive tissues minimally have been consumed throughout the fossil record, consistent with their long lags to herbivory during the earlier Paleozoic. Neither angiosperm dominance in floras nor global environmental perturbations had any discernible effect on herbivore trophic partitioning of plant tissues.

  8. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolutionary success of arthropods, the most abundant and diverse animal group, is mainly based on their segmented body and jointed appendages, features that had evolved most likely already before the Cambrian. The first arthropod-like animals, the lobopodians from the Early Cambrian, were unsclerotized and worm-like, and they had unjointed tubular legs. Here we describe the first three-dimensionally preserved Cambrian lobopodian. The material presented of Orstenotubulus evamuellerae gen. et sp. nov. is the smallest and youngest of a lobopodian known. O. evamuellerae shows strikingly detailed similarities to Recent tardigrades and/or onychophorans in its cellular-structured cuticle and the telescopic spines. It also shows similarities to other, longer known lobopodians, but which are ten times as large as the new form. These similarities include the finely annulated body and legs, which is characteristic also for Recent onychophorans, and paired humps continuing into spines situated dorsally to the leg insertions, a feature lacking in the extant forms. The morphology of O. evamuellerae not only elucidates our knowledge about lobopodians, but also aids in a clearer picture of the early evolution of arthropods. An example is the single ventral gonopore between a limb pair of O. evamuellerae, which indicates that a single gonopore, as developed in onychophorans, tardigrades, pentastomids, myriapods and insects, might represent the plesiomorphic state for Arthropoda, while the paired state in chelicerates and crustaceans was convergently achieved. Concerning life habits, the lateral orientation of the limbs and their anchoring spines of the new lobopodian imply that early arthropods were crawlers rather than walkers.

  9. [The concept of medical entomology: the determination of the effect of arthropods on human health].

    Science.gov (United States)

    Rasnitsyn, S P

    1996-01-01

    A new concept of medical entomology is proposed, according to which this discipline should comprehensively study the effects of arthropods on human health and possible control of these effects. Thus, the tasks of medical entomology are markedly widened to embrace cognitively and practically important problems, which have been neglected. This approach does not negate the accepted understanding of medical entomology but includes it as an essential component.

  10. How extensive is the effect of modern farming on bird communities in a sand dune desert?

    Directory of Open Access Journals (Sweden)

    Faris Khoury

    2009-12-01

    Full Text Available Bird community structure and diversity measures in sand dune habitats far from and close to modern farms in Wadi Araba, south-west Jordan, were compared using 52 line transects for breeding birds and habitat variables. A change in the bird community of sand dunes surrounding farming projects was measured to a distance of 1 km, but could neither be related to changes in habitat structure nor to the activity of op- portunistic predators (Red Fox as these did not vary significantly between the two samples. The farms included lines of trees and offered a constant source of water, which attracted a variety of opportunistic species, thus increasing bird diversity and total bird abundances. The absence of characteristic ground-dwelling species of open sand dune habitats in the structurally intact sand dunes surrounding farms was likely to be the result of localized, but effectively far-reaching habitat modification (farms acting as barriers and/or competition with some of the opportunistic species, which were common around farms.

  11. The Increase of Arthropods Biodiversity in Paddy Field Ecosystem Managed by Using Integrated Pest Management at South Borneo

    Directory of Open Access Journals (Sweden)

    Samharinto

    2012-12-01

    Full Text Available We have studied the arthropods biodiversity in two paddy field ecosystems, namely, paddy field ecosystem using Integrated Pest Management (IPM system and non-IPM paddy field ecosystem. This study was conducted from April 2011 – November 2011 in three locations, that is, Pasar Kamis village and Sungai Rangas village in Banjar regency, and Guntung Payung village in Banjarbaru city, South Borneo Province. In this study, we used insect nets, yellow sticky traps, light trap and pitfall trap to get the sample or catch the arthropods in one period of planting season. The arthropods caught were then classified into some classes: pest (herbivore, natural enemy (parasitoid and predator, and other arthropods. After that, the Species Diversity Index was determined using its Shannon-Wiener Index (H’, Evenness (e, Species Richness (R, and Species Similarity Index (IS. The sum of arthropods which have the characteristic of pest and parasitoid were higher in the IPM paddy fields than in the non-IPM paddy fields, and the sum of other arthropods were the same. The highest H’ and e values were in the IPM paddy field in Pasar Kamis village. The IS value for each three locations were 77.5% in Pasar Kamis village, 93.42% in Guntung Payung village, and 78.76% in Sungai Rangas village.

  12. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  13. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Science.gov (United States)

    Lemessa, Debissa; Hambäck, Peter A; Hylander, Kristoffer

    2015-01-01

    Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  14. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  15. Arthropod prey of imported fire ants (Hymenoptera: Formicidae) in Mississippi sweetpotato fields.

    Science.gov (United States)

    Rashid, Tahir; Chen, Jian; Vogt, James T; McLeod, Paul J

    2013-08-01

    The red imported fire ants, Solenopsis invicta (Buren), are generally considered pests. They have also been viewed as beneficial predators feeding on other insect pests of various agroecosystems. This study documents the foraging habits of fire ants in a sweetpotato field in Mississippi. Fire ant foraging trails connecting outside colonies to a sweetpotato field were exposed and foraging ants moving out of the field toward the direction of the colony were collected along with the solid food particles they were carrying. The food material was classified as arthropod or plant in origin. The arthropod particles were identified to orders. Fire ant foragers carried more arthropods than plant material. Coleoptera and Homoptera were the most abundant groups preyed upon. These insect orders contain various economically important pests of sweetpotato. Other major hexapod groups included the orders Hemiptera, Diptera and Collembola. The quantity of foraged material varied over the season. No damage to sweetpotato roots could be attributed to fire ant feeding. Imported fire ant foraging may reduce the number of insect pests in sweetpotato fields. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  16. Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space

    Energy Technology Data Exchange (ETDEWEB)

    Saranathan, Vinod Kumar; Seago, Ainsley E.; Sandy, Alec; Narayanan, Suresh; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui; Osuji, Chinedum O.; Prum, Richard Owen

    2015-05-04

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ~127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  17. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

    Directory of Open Access Journals (Sweden)

    Zhou Liqin

    2008-06-01

    Full Text Available Abstract Background Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys. Results The inclusion of inherited bacteria other than Wolbachia increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst Wolbachia remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the Cardinium, Arsenophonus and Spiroplasma ixodetis clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence. Conclusion This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.

  18. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  19. Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods

    Science.gov (United States)

    Lamsdell, James C.; Stein, Martin; Selden, Paul A.

    2013-09-01

    Kodymirus vagans Chlupáč and Havlíček in Sb Geol Ved Paleontol 6:7-20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate "frontal appendages" consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short "great appendages" consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.

  20. Francisella-Arthropod vector interaction and its role in patho-adaptation to infect mammals

    Directory of Open Access Journals (Sweden)

    Yousef eAbu Kwaik

    2011-02-01

    Full Text Available Francisella tularensis is a Gram-negative, intracellular, zoonotic bacterium, and is the causative agent of tularemia in a broad host range. Arthropods such as ticks, mosquitoes, and flies maintain F. tularensis in nature by transmitting the bacteria among small mammals. While the tick is largely believed to be a biological vector of F. tularensis, transmission by mosquitoes and flies is largely believed to be mechanical on the mouthpart through interrupted feedings. However, the mechanism of infection of the vectors by F. tularensis is not well understood. Since F. tularensis has not been localized in the salivary gland of the primary human biting ticks, it is thought that bacterial transmission by ticks is through mechanical inoculation of tick feces containing F. tularensis into the skin wound. D. melanogaster is an established arthropod-vector model of tularemia, where F. tularensis infects hemocytes, and is found in hemolymph, as seen in ticks. In addition, phagosome biogenesis and robust intracellular proliferation of F. tularensis in arthropod-derived cells are similar to that in mammalian macrophages. Furthermore, bacterial factors required for infectivity of mammals are often required for infectivity of the fly by F. tularensis. Several host factors that contribute to F. tularensis intracellular pathogenesis in D. melanogaster have been identified, and F. tularensis targets some of the evolutionarily conserved eukaryotic processes to enable intracellular survival and proliferation in evolutionarily distant hosts

  1. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas.

    Science.gov (United States)

    Vannier, J; García-Bellido, D C; Hu, S-X; Chen, A-L

    2009-07-22

    Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral 'great appendage'. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.

  2. Development and validation of an arthropod maceration protocol for zoonotic pathogen detection in mosquitoes and fleas.

    Science.gov (United States)

    Harrison, Genelle F; Scheirer, Jessica L; Melanson, Vanessa R

    2015-06-01

    Arthropod-borne diseases remain a pressing international public health concern. While progress has been made in the rapid detection of arthropod-borne pathogens via quantitative real-time (qPCR), or even hand-held detection devices, a simple and robust maceration and nucleic acid extraction method is necessary to implement biosurveillance capabilities. In this study, a comparison of maceration techniques using five types of beads followed by nucleic acid extraction and detection were tested using two morphologically disparate arthropods, the Aedes aegypti mosquito and Xenopsylla spp. flea, to detect the zoonotic diseases dengue virus serotype-1 and Yersinia pestis. Post-maceration nucleic acid extraction was carried out using the 1-2-3 Platinum-Path-Sample-Purification (PPSP) kit followed by qPCR detection using the Joint Biological Agent Identification and Diagnostic System (JBAIDS). We found that the 5mm stainless steel beads added to the beads provided in the PPSP kit were successful in macerating the exoskeleton for both Ae. aegypti and Xenopsylla spp. Replicates in the maceration/extraction/detection protocol were increased in a stepwise fashion until a final 128 replicates were obtained. For dengue virus detection there was a 99% positivity rate and for Y. pestis detection there was a 95% positive detection rate. In the examination of both pathogens, there were no significant differences between qPCR instruments, days ran, time of day ran, or operators. © 2015 The Society for Vector Ecology.

  3. Late quaternary arthropod remains from Sonoran Desert packrat middens, southwestern Arizona and northwestern Sonora

    Science.gov (United States)

    Hall, W. Eugene; Van Devender, Thomas R.; Olson, Carl A.

    1988-05-01

    A total of 50 arthropod taxa were identified from 41 fossil packrat ( Neotoma sp.) middens from 160 to 625 m elevation in three study areas in the Lower Colorado River Valley subdivision of the Sonoran Desert. Radiocarbon dates associated with the middens range from >43,200 to 610 yr B.P. The fauna in the Tinajas Altas Mountains, southwestern Arizona, was relatively modern by ca. 10,000 yr B.P. in the early Holocene although a California juniper woodland persisted in the area until 8970 yr B.P. In contrast the fauna of the Hornaday Mountains, northwestern Sonora, increased dramatically in species richness after 4000 yr B.P. Although we are limited by poor taxonomic resolution and by insufficient knowledge of current distributions, the arthropod fauna may have been much more conservative than the regional flora during the last glacial/interglacial climatic cycle. Decreasing differences between modern and glacial climates (both temperature and precipitation) at lower latitudes and elevations may have resulted in minimal changes in the arthropod fauna of the Sonoran Desert lowlands.

  4. Benchmarking vector arthropod culture: an example using the African malaria mosquito, Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Valerio, Laura; Matilda Collins, C; Lees, Rosemary Susan; Benedict, Mark Q

    2016-05-10

    Numerous important characteristics of adult arthropods are related to their size; this is influenced by conditions experienced as immatures. Arthropods cultured in the laboratory for research, or mass-reared for novel control methods, must therefore be of a standard size range and known quality so that results are reproducible. A simple two-step technique to assess laboratory culture methods was demonstrated using the mosquito Anopheles gambiae s.s. as a model. First, the ranges of key development outcomes were determined using various diet levels. The observed outcomes described the physiologically constrained limits. Secondly, the same outcomes were measured when using a standard operating procedure (SOP) for comparison with the determined ranges. The standard method resulted in similar development rates to those of high and medium diets, wing length between those resulting from the high and medium diets, and larval survival exceeding all benchmark diet level values. The SOP used to produce experimental material was shown to produces high-quality material, relative to the biologically constrained limits. The comparison between all possible phenotypic outcomes, as determined by biological constraints, with those outcomes obtained using a given rearing protocol is termed "benchmarking". A method is here demonstrated which could be easily adapted to other arthropods, to objectively assess important characters obtained, and methods used, during routine culture that may affect outcomes of research.

  5. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts.

    Science.gov (United States)

    Zug, Roman; Hammerstein, Peter

    2015-02-01

    Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia-associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti-pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear-cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia-host interactions.

  6. Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease.

    Science.gov (United States)

    Hughes, G L; Rasgon, J L

    2014-04-01

    The bacterial endosymbiont Wolbachia manipulates arthropod host biology in numerous ways, including sex ratio distortion and differential offspring survival. These bacteria infect a vast array of arthropods, some of which pose serious agricultural and human health threats. Wolbachia-mediated phenotypes such as cytoplasmic incompatibility and/or pathogen interference can be used for vector and disease control; however, many medically important vectors and important agricultural species are uninfected or are infected with strains of Wolbachia that do not elicit phenotypes desirable for disease or pest control. The ability to transfer strains of Wolbachia into new hosts (transinfection) can create novel Wolbachia-host associations. Transinfection has two primary benefits. First, Wolbachia-host interactions can be examined to tease apart the influence of the host and bacteria on phenotypes. Second, desirable phenotypes induced by Wolbachia in a particular insect can be transferred to another recipient host. This can allow the manipulation of insect populations that transmit pathogens or detrimentally affect agriculture. As such, transinfection is a valuable tool to explore Wolbachia biology and control arthropod-borne disease. The present review summarizes what is currently known about Wolbachia transinfection methods and applications. We also provide a comprehensive list of published successful and unsuccessful Wolbachia transinfection attempts.

  7. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  8. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p < 0.05). Cluster analysis revealed four categories of soil arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface

  9. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Directory of Open Access Journals (Sweden)

    Juliana M Silveira

    Full Text Available Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae. In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  10. Selection of nontarget arthropod taxa for field research on transgenic insecticidal crops: using empirical data and statistical power.

    Science.gov (United States)

    Prasifka, J R; Hellmich, R L; Dively, G P; Higgins, L S; Dixon, P M; Duan, J J

    2008-02-01

    One of the possible adverse effects of transgenic insecticidal crops is the unintended decline in the abundance of nontarget arthropods. Field trials designed to evaluate potential nontarget effects can be more complex than expected because decisions to conduct field trials and the selection of taxa to include are not always guided by the results of laboratory tests. Also, recent studies emphasize the potential for indirect effects (adverse impacts to nontarget arthropods without feeding directly on plant tissues), which are difficult to predict because of interactions among nontarget arthropods, target pests, and transgenic crops. As a consequence, field studies may attempt to monitor expansive lists of arthropod taxa, making the design of such broad studies more difficult and reducing the likelihood of detecting any negative effects that might be present. To improve the taxonomic focus and statistical rigor of future studies, existing field data and corresponding power analysis may provide useful guidance. Analysis of control data from several nontarget field trials using repeated-measures designs suggests that while detection of small effects may require considerable increases in replication, there are taxa from different ecological roles that are sampled effectively using standard methods. The use of statistical power to guide selection of taxa for nontarget trials reflects scientists' inability to predict the complex interactions among arthropod taxa, particularly when laboratory trials fail to provide guidance on which groups are more likely to be affected. However, scientists still may exercise judgment, including taxa that are not included in or supported by power analyses.

  11. Mercury Concentration in the Tissue of Terrestrial Arthropods from the Central California Coast

    Science.gov (United States)

    Ortiz, C.; Weiss-Penzias, P. S.; Flegal, A. R.

    2012-12-01

    The primary goal of this project was to obtain a baseline understanding and investigate the concentration of mercury (Hg) in the tissue of arthropods in coastal California. This region receives significant input of fog which may contain enhanced levels of Hg. Currently there is a lack of data on Hg concentration in the tissue of arthropods (Insecta, Malacostraca, and Arachnida). The sample collection sites were Elkhorn Slough Estuarine Reserve in Moss Landing, and the University of California Santa Cruz (UCSC) campus. Samples collected between February and March, 2012 had total Hg (HgT) concentrations in dry weight that ranged from 27 - 39 ng/g in the Jerusalem cricket (Orthoptera Stenopelmatidae); 80 - 110 ng/g in the camel cricket (Orthoptera Rhaphidophoridae); 21 - 219 ng/g in the ground beetle (Coleoptera Carabidae); 100 - 228 ng/g in the pill bug (Isopoda Armadillidiidae); and 285 - 423 ng/g in the wolf spider (Araneae Lycosidae). Monomethyl mercury (MMHg) concentrations in dry weight were determine to be 4.3 -28.2 ng/g for the ground beetle; 45.5 - 87.8 ng/g for the pill bug, and 252.3 - 293.7 ng/g for the wolf spider. Samples collected in July, 2012 had HgT concentrations in dry weight that ranged from 110 - 168 ng/g in the camel cricket; 337 - 562 ng/g in the ground beetle; 25 - 227 ng/g in the pill bug; and 228 - 501 ng/g in the wolf spider. The preliminary data revealed an 18% increase in the concentration of HgT for wolf spiders, and a 146% increase for ground beetles in the summer when compared to those concentrations measured in the spring. It is hypothesized that coastal fog may be a contributor to this increase of Hg concentration in coastal California arthropods.

  12. The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods

    Institute of Scientific and Technical Information of China (English)

    CONRAD LABANDEIRA

    2007-01-01

    The early fossil record of terrestrial arthropod herbivory consists of two pulses.The first pulse was concentrated during the latest Silurian to Early Devonian (417 to 403 Ma),and consists of the earliest evidence for consumption of sporangia and stems (and limited fungivore borings). Herbivorization of most of these tissues was rapid, representing 0 to 20 million-year (m.y.) lags from the earliest occurrences of these organs in the fossil record to their initial consumption (Phase 1). For approximately the next 75 m.y., there was a second,more histologically varied origination and expansion of roots, leaves, wood and seeds,whose earliest evidence for herbivorization occurred from the Middle-Late Mississippian boundary to the Middle Pennsylvanian (327 to 309 Ma). The appearance of this second herbivory pulse during the later Paleozoic (Phase 2) is accompanied by major lags of 98 to 54 m.y. between times of appearance of each of the four organ and tissue types and their subsequent herbivory. Both pulses provide a context for three emerging questions. First is an explanation for the contrast between the near instantaneous consumption of plant tissues during Phase 1, versus the exceptionally long lags between the earliest occurrences of plant tissues and their subsequent herbivorization during Phase 2. Second is the identity of arthropod herbivores for both phases. Third is the cause behind the overwhelming targeting of seed-fern plant hosts during Phase 2. Regardless of the answers to these questions, the trace fossil record of plant-arthropod associations provides primary ecological data that remain unaddressed by the body-fossil record alone.

  13. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans.

    Science.gov (United States)

    Alfsnes, Kristian; Leinaas, Hans Petter; Hessen, Dag Olav

    2017-08-01

    Despite the major role of genome size for physiology, ecology, and evolution, there is still mixed evidence with regard to proximate and ultimate drivers. The main causes of large genome size are proliferation of noncoding elements and/or duplication events. The relative role and interplay between these proximate causes and the evolutionary patterns shaped by phylogeny, life history traits or environment are largely unknown for the arthropods. Genome size shows a tremendous variability in this group, and it has a major impact on a range of fitness-related parameters such as growth, metabolism, life history traits, and for many species also body size. In this study, we compared genome size in two major arthropod groups, insects and crustaceans, and related this to phylogenetic patterns and parameters affecting ambient temperature (latitude, depth, or altitude), insect developmental mode, as well as crustacean body size and habitat, for species where data were available. For the insects, the genome size is clearly phylogeny-dependent, reflecting primarily their life history and mode of development, while for crustaceans there was a weaker association between genome size and phylogeny, suggesting life cycle strategies and habitat as more important determinants. Maximum observed latitude and depth, and their combined effect, showed positive, and possibly phylogenetic independent, correlations with genome size for crustaceans. This study illustrate the striking difference in genome sizes both between and within these two major groups of arthropods, and that while living in the cold with low developmental rates may promote large genomes in marine crustaceans, there is a multitude of proximate and ultimate drivers of genome size.

  14. Some topological properties of arthropod food webs in paddy fields of South China

    Directory of Open Access Journals (Sweden)

    LiQin Jiang

    2015-09-01

    Full Text Available To explore the topological properties of paddy arthropod food webs is of significance for understanding natural equilibrium of rice pests. In present study, we used Pajek software to analyze the topological properties of four full arthropod food webs in South China. The results showed that predators were significantly abundant than preys, and the proportion of predators to preys (3.07 was significantly higher than previously reported by Cohen in 1977 (1.33. In the food webs, the number of top species was the largest, accounted for about 50% of the total. The number of intermediate-intermediate links was far greater than the other three links. The average degree of paddy arthropod food webs is 6.0, 6.04, 5.74 and 7.75, respectively. Average degree and link density did not change significantly with the change of the number of species, but the connectance reduced significantly. In the paddy ecosystems, the increase of species diversity does not lead to an increase proportionally to the links among species. The link density and connectance of food webs of early season rice field were less than that from late season rice field. Cycles of all food webs cycles were 0. The maximum chain length of the basal species was 3, and the largest chain length of the top species was typically 2 or 3. Neutral insects were found to play a very important role in the paddy ecosystem. Nilaparvata lugens and Sogatella furcifera were found to be the dominant species of rice pests. Pardosa pseudoannulata, Tetragnatha maxillosa, Pirata subparaticus, Arctosa stigmosa and Clubiona corrugate were identified as the important predatory species that may effectively control the pest population. The keystone species calculated from keystone index and network analysis are analogous, indicating either keystone index or network analysis can be used in the analysis of keystone species.

  15. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata

    Science.gov (United States)

    Rota-Stabelli, Omar; Campbell, Lahcen; Brinkmann, Henner; Edgecombe, Gregory D.; Longhorn, Stuart J.; Peterson, Kevin J.; Pisani, Davide; Philippe, Hervé; Telford, Maximilian J.

    2011-01-01

    While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree

  16. Diversity and distribution of arthropods in native forests of the Azores archipelago

    Directory of Open Access Journals (Sweden)

    Borges, P.A.V.

    2008-01-01

    Full Text Available Since 1999, our knowledge of arthropods in native forests of the Azores has improved greatly. Under the BALA project (Biodiversity of Arthropods of Laurisilva of the Azores, an extensive standardised sampling protocol was employed in most of the native forest cover of the Archipelago. Additionally, in 2003 and 2004, more intensive sampling was carried out in several fragments, resulting in nearly a doubling of the number of samples collected. A total of 6,770 samples from 100 sites distributed amongst 18 fragments of seven islands have been collected, resulting in almost 140,000 specimens having been caught. Overall, 452 arthropod species belonging to Araneae, Opilionida, Pseudoscorpionida, Myriapoda and Insecta (excluding Diptera and Hymenoptera were recorded. Altogether, Coleoptera, Hemiptera, Araneae and Lepidoptera comprised the major proportion of the total diversity (84% and total abundance (78% found. Endemic species comprised almost half of the individuals sampled. Most of the taxonomic, colonization, and trophic groups analysed showed a significantly left unimodal distribution of species occurrences, with almost all islands, fragments or sites having exclusive species. Araneae was the only group to show a strong bimodal distribution. Only a third of the species was common to both the canopy and soil, the remaining being equally exclusive to each stratum. Canopy and soil strata showed a strongly distinct species composition, the composition being more similar within the same stratum regardless of the location, than within samples from both strata at the same location. Possible reasons for these findings are explored. The procedures applied in the sampling protocol are also discussed.

  17. Water vapor absorption in arthropods by accumulation of myoinositol and glucose

    DEFF Research Database (Denmark)

    Bayley, Mark; Holmstrup

    1999-01-01

    Hydrophilic soil arthropods have been thought to respond to soil desiccation exclusively by migrating to deeper soil layers. Numerous studies have shown that their survival below 90 percent relative humidity dry weight, is limited to hours. However, little attention has been paid to physiological....... A reevaluation of the water physiology of this widespread and diverse animal group is required....... adaptations to more realistic desiccation regimes, such as at the permanent wilting point of plants (98.9 percent relative humidity). A water vapor absorption mechanism is described that allows a common soil collembolan, Folsomia candida, to remain active down to below the permanent wilting point...

  18. Haematophagous arthropod saliva and host defense system: a tale of tear and blood

    Directory of Open Access Journals (Sweden)

    Andrade Bruno B.

    2005-01-01

    Full Text Available The saliva from blood-feeding arthropod vectors is enriched with molecules that display diverse functions that mediate a successful blood meal. They function not only as weapons against host's haemostatic, inflammatory and immune responses but also as important tools to pathogen establishment. Parasites, virus and bacteria taking advantage of vectors' armament have adapted to facilitate their entry in the host. Today, many salivary molecules have been identified and characterized as new targets to the development of future vaccines. Here we focus on current information on vector's saliva and the molecules responsible to modify host's hemostasis and immune response, also regarding their role in disease transmission.

  19. [Dermatitis and arthropods (Anobium punctatum and Cimex lectularius) in summer: three case reports].

    Science.gov (United States)

    Darles, Chrystelle; Pons, Sandrine; Gaillard, Tiphaine; Fournier, Béatrice; Brisou, Patrick

    2013-01-01

    We report three cases of pruritic dermatitis with erythematous maculopapules, having a similar clinical presentation, in summer, and caused by two different arthropods. In wandering diagnosis since sometimes several months, patients have made entomologic investigations in their home. Two of three samples, have shown an infestation by Anobium punctatum, the common furniture beetle, a xylophagous beetle (usually harmless for human). It may be parasited by Pyemotes ventricosus, a mite known since the 19th century to cause this type of hurt. The third sample contained Cimex lectularius or bedbug, haematophagous insect, classically looked for in endemic zone.

  20. Lights, camera and action: vertebrate skin sets the stage for immune cell interaction with arthropod-vectored pathogens

    Directory of Open Access Journals (Sweden)

    Shu Zhen eChong

    2013-09-01

    Full Text Available Despite increasing studies targeted at host-pathogen interactions, vector-borne diseases remain one of the largest economic health burdens worldwide. Such diseases are vectored by hematophagous arthropods that deposit pathogens into the vertebrate host’s skin during a blood meal. These pathogens spend a substantial amount of time in the skin that allows for interaction with cutaneous immune cells, suggesting a window of opportunity for development of vaccine strategies. In particular, the recent availability of intravital imaging approaches has provided further insights into immune cell behavior in living tissues. Here, we discuss how such intravital imaging studies have contributed to our knowledge of cutaneous immune cell behavior and specifically, towards pathogen and tissue trauma from the arthropod bite. We also suggest future imaging approaches that may aid in better understanding of the complex interplay between arthropod-vectored pathogens and cutaneous immunity that could lead to improved therapeutic strategies.

  1. Diurnal activity of soil surface arthropods in agroecosystems: design for an inexpensive time-sorting pitfall trap

    Energy Technology Data Exchange (ETDEWEB)

    Blumberg, A.Y.; Crossley, D.A. Jr.

    1986-01-01

    The design for an inexpensive time-sorting pitfall trap is presented. The basis of the mechanism is a rotary stepping solenoid powered by lantern batteries. Traps were utilized to sample soil surface arthropods at two hour intervals for five 24 hr periods in 1983. One trap each was placed in conventional tillage (CT) and no-tillage (NT) agroecosystems. Soil arthropod surface activity was greatest in CT on 9 July during the dawn and dusk periods but the data did not indicate other dominant trends. Activity in NT was greatest during dusk on 27 June, but again no other dominant trends were evident. When CT and NT are combined over the sample dates, surface soil arthropod activity peaked during dusk, with a smaller activity peak at dawn. 10 refs., 6 figs.

  2. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    Science.gov (United States)

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

  3. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  4. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Ariel D Chipman

    2014-11-01

    Full Text Available Myriapods (e.g., centipedes and millipedes display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations

  5. Testing the effects of ant invasions on non-ant arthropods with high-resolution taxonomic data.

    Science.gov (United States)

    Hanna, Cause; Naughton, Ida; Boser, Christina; Holway, David

    2015-10-01

    Invasions give rise to a wide range of ecological effects. Many invasions proceed without noticeable impacts on the resident biota, whereas others shift species composition and even alter ecosystem function. Ant invasions generate a broad spectrum of ecological effects, but controversy surrounds the extent of these impacts, especially with regard to how other arthropods are affected. This uncertainty in part results from the widespread use of low-resolution taxonomic data, which can mask the presence of other introduced species and make it difficult to isolate the effects of ant invasions on native species. Here, we use high-resolution taxonomic data to examine the effects of Argentine ant invasions on arthropods on Santa Cruz Island, California. We sampled arthropods in eight pairs of invaded and uninvaded plots and then collaborated with taxonomic experts to identify taxa in four focal groups: spiders, bark lice, beetles, and ants. Spiders, bark lice, and beetles made up ~40% of the 9868 non-ant arthropod individuals sampled; the majority of focal group arthropods were putatively native taxa. Although our results indicate strong negative effects of the Argentine ant on native ants, as is well documented, invaded and uninvaded plots did not differ with respect to the richness, abundance, or species composition of spiders, bark lice, and beetles. One common, introduced species of bark louse was more common in uninvaded plots than in invaded plots, and including this species into our analyses changed the relationship between bark louse richness vs. L. humile abundance from no relationship to a significant negative relationship. This case illustrates how failure to differentiate native and introduced taxa can lead to erroneous conclusions about the effects of ant invasions. Our results caution against unqualified assertions about the effects of ant invasions on non-ant arthropods, and more generally demonstrate that accurate assessments of invasion impacts depend on

  6. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  7. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Science.gov (United States)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  8. The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems - OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions.

    Science.gov (United States)

    Wirkner, Christian S; Göpel, Torben; Runge, Jens; Keiler, Jonas; Klussmann-Fricke, Bastian-Jesper; Huckstorf, Katarina; Scholz, Stephan; Mikó, István; J Yoder, Matthew; Richter, Stefan

    2017-09-01

    Morphology, the oldest discipline in the biosciences, is currently experiencing a renaissance in the field of comparative phenomics. However, morphological/phenotypic research still suffers on various levels from a lack of standards. This shortcoming, first highlighted as the "linguistic problem of morphology", concerns the usage of terminology and also the need for formalization of morphological descriptions themselves, something of paramount importance not only to the field of morphology but also when it comes to the use of phenotypic data in systematics and evolutionary biology. We therefore argue, that for morphological descriptions, the basis of all systematic and evolutionary interpretations, ontologies need to be utilized which are based exclusively on structural qualities/properties and which in no case include statements about homology and/or function. Statements about homology and function constitute interpretations on a different or higher level. Based on these "anatomy ontologies", further ontological dimensions (e.g., referring to functional properties or homology) may be exerted for a broad use in evolutionary phenomics. To this end we present the first organ-based ontology for the most species-rich animal group, the Arthropoda. Our Ontology of Arthropod Circulatory Systems (OArCS) contains a comprehensive collection of 383 terms (i.e., labels) tied to 296 concepts (i.e., definitions) collected from the literature on phenotypic aspects of circulatory organ features in arthropods. All of the concepts used in OArCS are based exclusively on structural features, and in the context of the ontology are independent of homology and functional assumptions. We cannot rule out that in some cases, terms are used which in traditional usage and previous accounts might have implied homology and/or function (e.g. heart, sternal artery). Concepts are composed of descriptive elements that are used to classify observed instances into the organizational framework of the

  9. Activity of selected neonicotinoids and dicrotophos on nontarget arthropods in cotton: implications in insect management.

    Science.gov (United States)

    Kilpatrick, A L; Hagerty, A M; Turnipseed, S G; Sullivan, M J; Bridges, W C

    2005-06-01

    Certain neonicotinoids are used in cotton, Gossypium hirsutum (L.), to control various piercing-sucking pests. We conducted field studies using three neonicotinoids (acetamiprid, thiamethoxam, and imidacloprid) and an organophosphate (dicrotophos) to assess the activity of these insecticides against nontarget arthropods, particularly predators, and to determine the potential economic consequences of such activity. Mortality among populations of the big-eyed bug, Geocoris punctipes (Say), and the red imported fire ant, Solenopsis invicta Buren, was highest after thiamethoxam and dicrotophos treatments. Numbers of arachnids were consistently lower after dicrotophos treatments, whereas none of the neonicotinoids caused appreciable mortality. Total predators in pooled data from five separate studies revealed that numbers, compared with untreated plots, were reduced by -75% in dicrotophos, 55-60% in thiamethoxam, and only 30% in both acetamiprid and imidacloprid plots. Acetamiprid and thiamethoxam exhibited significant mortality against field-deposited eggs of bollworm, Helicoverpa zea (Boddie). Both thiamethoxam and dicrotophos plots exhibited bollworm numbers that were approximately three times higher than treatment thresholds (three per 100 plants), whereas numbers in untreated plots were below threshold levels. In one study on Bt cotton, a significant negative correlation was observed between numbers of predators and bollworm larvae. Results demonstrated that neonicotinoids differ in activity against predaceous arthropods and bollworm eggs and that high predator mortality can result in resurgence of bollworm larvae and additional insecticide costs.

  10. Arthropod borne diseases in Italy: from a neglected matter to an emerging health problem

    Directory of Open Access Journals (Sweden)

    Roberto Romi

    2010-12-01

    Full Text Available In medical entomology, "Arthropod Borne Diseases", or "Vector Borne Diseases" (VBD are intended as a group of human and animal infections caused by different pathogen organisms (protozoa, helminthes, bacteria and viruses transmitted by the bite of a bloodsucking insect or arachnid. It is commonly known that the infectious diseases transmitted by Arthropods are mainly affecting tropical and subtropical countries, nevertheless some of them were or are still common also in the northern hemisphere, where they are usually maintained under control. VBD still represent some of the most important public health problems in the endemic areas but are becoming source of concern for developed countries too. Since the last decades of the past century, a number of VBD has been spreading geographically, being recorded for the first time in areas outside their original range. This phenomenon is strictly related to the peculiar epidemiological characteristics of these diseases, that are considered the most susceptible to climatic, environmental and socioeconomic changes. This article is a short overview of the VBD endemic and emerging in Italy. The possibility that some exotic vectors and/or pathogens could be introduced and become established in Italy is also discussed.

  11. A Survey on Residential Areas Infestation to House Pests (Arthropods in Kashan

    Directory of Open Access Journals (Sweden)

    Rouhullah Dehghani

    2013-12-01

    Full Text Available Background: Due to importance of arthropods as urban pest, such Health and Nutritional, Textile, Structural, Storage pest and role of them in human being, this study was done to show determine of houses infestation status to urban pest (Arthropods city of Kashan in 2010. Materials and Methods: A Descriptive-analytical study has been done on houses The houses were selected by cluster random and Urban pests of them, by use of hand lens were identified. The results were analyzed using abundance tables and SPSS-11.5 software and statistic tests χP2P and fisher exact3T. Results: The results of study have shown that prevalence of urban pest, Health pest 99.6%, Nutritional pest 32.6%, textile and structural pest 37.4% were seen3T.3T Out of total houses, 98% mosquitoes, 96.4% ant, 92.6% fly, 78% cockroaches species, 56.8% spider, 37.6% termite, 34.6% storage pests, 12% clothes moth, 8.2% scorpion species, 3.6% bug, 3.2% tick and 2.6% millipede were identified. Conclusion: The prevalence of infestation urban pest is high. Mosquitoes, ant, fly and cockroach were seen more the other. So methods control training, houses protection and solid and water waste management is being suggested.

  12. Nickel levels in arthropods associated with Ni hyperaccumulator plants from an ultramafic site in New Caledonia

    Institute of Scientific and Technical Information of China (English)

    ROBERT S. BOYD; MICHAEL A. WALL; TANGUY JAFFR(E)

    2006-01-01

    Arthropods (mainly insects) were collected from a forest site that contained at least six species of Ni hyperaccumulators. Whole body Ni analysis was performed for 12 arthropod taxa, two of which were studied at different life cycle stages. We found two Nitolerant insects. The pentatomid heteropteran Utana viridipuncta, feeding on fruits of the Ni hyperaccumulator Hybanthus austrocaledonicus, contained a mean of 2 600μg Ni/g in nymphs and 750μg Ni/g in adults. The tephritid fly Bactrocera psidii, feeding on pulp of Sebertia acuminata fruits that contained 6 900μg Ni/g, contained 420μg Ni/g as larvae that had evacuated their guts and significantly less (65μg Ni/g) as adults. European honeybees (Apis mellifera) visiting flowers of the Ni hyperaccumulator H. austrocaledonicus contained significantly more Ni (8-fold more) than those collected from flowers of Myodocarpus fraxinifolius, a non-hyperaccumulator. Our results show that some insects feed on Ni hyperaccumulator plants and that their feeding mobilizes Ni into local food webs.

  13. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    Directory of Open Access Journals (Sweden)

    Christian Stutzer

    2012-11-01

    Full Text Available The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.

  14. Fungal secondary metabolites as modulators of interactions with insects and other arthropods.

    Science.gov (United States)

    Rohlfs, Marko; Churchill, Alice C L

    2011-01-01

    Fungi share a diverse co-evolutionary history with animals, especially arthropods. In this review, we focus on the role of secondary metabolism in driving antagonistic arthropod-fungus interactions, i.e., where fungi serve as a food source to fungal grazers, compete with saprophagous insects, and attack insects as hosts for growth and reproduction. Although a wealth of studies on animal-fungus interactions point to a crucial role of secondary metabolites in deterring animal feeding and resisting immune defense strategies, causal evidence often remains to be provided. Moreover, it still remains an unresolved puzzle as to what extent the tight regulatory control of secondary metabolite formation in some model fungi represents an evolved chemical defense system favored by selective pressure through animal antagonists. Given these gaps in knowledge, we highlight some co-evolutionary aspects of secondary metabolism, such as induced response, volatile signaling, and experimental evolution, which may help in deciphering the ecological importance and evolutionary history of secondary metabolite production in fungi.

  15. The Function and Evolution of the Halloween Genes; the Pathway to the Arthropod Molting Hormone. In Ecdysone, Structures and Functions

    DEFF Research Database (Denmark)

    Gilbert, Lawrence; Rewitz, Kim

    2009-01-01

    as mediating the final steps in the biosynthesis of the arthropod molting hormone, 20-hydroxyecdysone (20E). A fifth has now been studied in detail and shown to be required for ecdysteroidogenesis but its exact function has yet to be elucidated. Since both insects and crustaceans utilize 20E as their principal......, Coleoptera, Hymenoptera and other Diptera allowed the development of a phylogenetic scheme for this gene family and suggests that the Halloween genes and vertebrate steroidogenic P450s originated from common ancestors that were perhaps destined for steroidogenesis, and arose before the deuterostome-arthropod...

  16. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses.

    Science.gov (United States)

    Gilmore, D P; Da Costa, C P; Duarte, D P

    2001-01-01

    This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  17. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses

    Directory of Open Access Journals (Sweden)

    Gilmore D.P.

    2001-01-01

    Full Text Available This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  18. New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests

    DEFF Research Database (Denmark)

    Borges, Paulo A. V.; Gaspar, Clara; Crespo, Luís Carlos Fonseca

    2016-01-01

    Background In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA – Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments inseven of the nine Azorean...... by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats...

  19. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.

  20. Development and Commercialization of Analyte Specific Reagents (ASRs )for the Diagnosis of Selected Arthropod-Borne Viruses on FDA-Cleared Real-time PCR Platforms

    Science.gov (United States)

    2012-10-01

    Analyte Specific Reagents (ASRs )for the Diagnosis of Selected Arthropod-Borne Viruses on FDA-Cleared Real - time PCR Platforms PRINCIPAL...of Analyte Specific Reagents (ASRs) for the Diagnosis of Selected Arthropod-Borne Viruses on FDA-Cleared Real - time PCR Platforms 5c. PROGRAM ELEMENT

  1. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    DEFF Research Database (Denmark)

    Chipman, Ariel D.; Ferrier, David E.K.; Brena, Carlo

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We pres...

  2. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods.

    Science.gov (United States)

    Evans, Luke M; Kaluthota, Sobadini; Pearce, David W; Allan, Gerard J; Floate, Kevin; Rood, Stewart B; Whitham, Thomas G

    2016-07-01

    Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate-driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (Q ST > F ST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate

  3. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  4. Impact of insecticides on non-target arthropods in watermelon cropImpacto de inseticidas em artrópodes não-alvo associados à cultura da melancia

    Directory of Open Access Journals (Sweden)

    Cíntia Ribeiro Souza

    2012-10-01

    Full Text Available Watermelon Citrullus lunatus (Thunberg, Matsumura & Nakai is an ecosystem having a variety of arthropods, each one playing a specific role. Although some of them are considered pest to crops, some others are responsible for soil aeration, nutrient release and predation of pest species and are, therefore, considered beneficial to crops. The intensive farming practiced for watermelon cultivation in Brazil is based on the use of tiamethoxam and deltamethrin, which may not only kill target but also nontarget organisms such as beneficial arthropods. Research data regarding the influence of insecticides on arthropods in watermelon cropping is scarce. This study aimed to evaluate the effect of the insecticides deltamethrin and thiamethoxam on soil surface and watermelon canopy arthropod community. The study was carried out in the State of Tocantins, Brazil. Although the application of thiamethoxam and deltamethrin was efficient in controlling populations of Aphis gossypii (Glover, as we expected, they negatively affected non-target arthropods such as detritivores insects in the canopy and soil surface. Ecological implications of the impact of such pesticides on beneficial arthropod species are discussed.A cultura da melancia Citrullus lunatus (Thunberg, Matsumura & Nakai abriga uma grande diversidade de artrópodes, cada um desempenhando um papel específico. Apesar de alguns desses artrópodes serem considerados pragas, outros são responsáveis pela aeração do solo, liberação de nutrientes e predação das espécies-praga, sendo, dessa forma, considerados benéficos às culturas. A agricultura intensiva praticada no Brasil para o cultivo da melancia é baseada no uso dos inseticidas como tiamethoxam e deltametrina, que pode não só matar as pragas, mas também organismos não-alvo. Pesquisas relacionadas à influência de inseticidas sobre artrópodes benéficos na cultura da melancia são escassas. Este estudo foi realizado com o objetivo de

  5. Impact of invasive Rosa rugosa on the arthropod fauna of Danish yellow dunes

    DEFF Research Database (Denmark)

    Elleriis, Pernille; Pedersen, Morten Lauge; Toft, Søren

    2015-01-01

    We compared the arthropod fauna of Rosa rugosa patches to the adjacent native yellow dune vegetation by pitfall trapping in the National Park Thy at the Danish North Sea coast. R. rugosa changes the vegetation from a dune grassland (dominated by Ammophila arenaria) poor in flowering plants to a l...

  6. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    Science.gov (United States)

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  7. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey.

    Science.gov (United States)

    Sombke, Andy; Lipke, Elisabeth; Michalik, Peter; Uhl, Gabriele; Harzsch, Steffen

    2015-06-01

    Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques. © 2015 Wiley Periodicals, Inc.

  8. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods

    Science.gov (United States)

    Benoit, Joshua B.; Denlinger, David L.

    2010-01-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the prefeeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the nonfeeding, off-host state. PMID:20206630

  9. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects.

    Science.gov (United States)

    LoPresti, E F; Pearse, I S; Charles, G K

    2015-11-01

    Many plants provide predatory arthropods with food or shelter. Glandular trichomes entrap insects and may provision predators with insect carrion, though it has not been clear whether this putative benefit functions with natural amounts of carrion, whether plants actively attract insect "tourists," and how common this provisioning system is. We tested the hypothesis that a sticky columbine (Aquilegia eximia: Ranunculaceae) attracts passerby arthropods (a siren song leading them to their demise); that these entrapped arthropods increased predators on the plant; and that these predators reduced damage to the plant. Sticky traps baited with columbine peduncles entrapped more arthropod carrion than unbaited control traps. Predator abundance correlated positively with carrion abundance observationally, and experimental removal of carrion reduced predator numbers. Experimental removal of carrion also increased damage to reproductive structures, likely due to reductions in predator numbers. This indirect defense may be common; we compiled a list of insect-trapping sticky plants that includes over 110 genera in 49 families, suggesting a widespread convergence of this trait, even in non-carnivorous plants. The ubiquity of this trait combined with these experiments suggest that carrion entrapment should be viewed as a common and active process mediated by the plant for indirect defense.

  10. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants.

    Science.gov (United States)

    Romeis, Jörg; Hellmich, Richard L; Candolfi, Marco P; Carstens, Keri; De Schrijver, Adinda; Gatehouse, Angharad M R; Herman, Rod A; Huesing, Joseph E; McLean, Morven A; Raybould, Alan; Shelton, Anthony M; Waggoner, Annabel

    2011-02-01

    This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the concepts apply to other arthropod-active proteins. A risk may exist if the newly acquired trait of the GE plant has adverse effects on NTAs when they are exposed to the arthropod-active protein. Typically, the risk assessment follows a tiered approach that starts with laboratory studies under worst-case exposure conditions; such studies have a high ability to detect adverse effects on non-target species. Clear guidance on how such data are produced in laboratory studies assists the product developers and risk assessors. The studies should be reproducible and test clearly defined risk hypotheses. These properties contribute to the robustness of, and confidence in, environmental risk assessments for GE plants. Data from NTA studies, collected during the analysis phase of an environmental risk assessment, are critical to the outcome of the assessment and ultimately the decision taken by regulatory authorities on the release of a GE plant. Confidence in the results of early-tier laboratory studies is a precondition for the acceptance of data across regulatory jurisdictions and should encourage agencies to share useful information and thus avoid redundant testing.

  11. Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota

    Science.gov (United States)

    Liu, Yu; Melzer, Roland R.; Haug, Joachim T.; Haug, Carolin; Briggs, Derek E. G.; Hörnig, Marie K.; He, Yu-yang; Hou, Xian-guang

    2016-05-01

    A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.

  12. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods

    NARCIS (Netherlands)

    Van Leeuwen, T.; Demaeght, P.; Osborne, E.J.; Dermauw, W.; Gohlke, S.; Nauen, R.; Grbić, M.; Tirry, L.; Merzendorfer, H.; Clark, R.M.

    2012-01-01

    Because of its importance to the arthropod exoskeleton, chitin biogenesis is an attractive target for pest control. This point is demonstrated by the economically important benzoylurea compounds that are in wide use as highly specific agents to control insect populations. Nevertheless, the target

  13. Trichomycetes (Zygomycota) in the digestive tract of arthropods in Amazonas, Brazil.

    Science.gov (United States)

    Alencar, Yamile B; Ríos-Velásquez, Claudia M; Lichtwardt, Robert W; Hamada, Neusa

    2003-09-01

    Eight species of Harpellales and three species of Eccrinales (Zygomycota: Trichomycetes) were found associated with the digestive tract of arthropods from terrestrial and aquatic environments in the central Amazon region of Brazil. New species of Harpellales include: Harpella amazonica, Smittium brasiliense, Genistellospora tropicalis in Simuliidae larvae and Stachylina paucispora in Chironomidae larvae. Axenic cultures of S. brasiliense were obtained. Probable new species of Enterobryus (Eccrinales), Harpella, and Stachylina (Harpellales) are described but not named. Also reported are the previously known species of Eccrinales, Passalomyces compressus and Leidyomyces attenuatus in adult Coleoptera (Passalidae), and Smittium culisetae and Smittium aciculare (Harpellales) in Culicidae and Simuliidae larvae, respectively. Comments on the distribution of some of these fungi and their hosts in the Neotropics are provided.

  14. Trichomycetes (Zygomycota in the digestive tract of arthropods in Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Yamile B Alencar

    2003-09-01

    Full Text Available Eight species of Harpellales and three species of Eccrinales (Zygomycota: Trichomycetes were found associated with the digestive tract of arthropods from terrestrial and aquatic environments in the central Amazon region of Brazil. New species of Harpellales include: Harpella amazonica, Smittium brasiliense, Genistellospora tropicalis in Simuliidae larvae and Stachylina paucispora in Chironomidae larvae. Axenic cultures of S. brasiliense were obtained. Probable new species of Enterobryus (Eccrinales, Harpella, and Stachylina (Harpellales are described but not named. Also reported are the previously known species of Eccrinales, Passalomyces compressus and Leidyomyces attenuatus in adult Coleoptera (Passalidae, and Smittium culisetae and Smittium aciculare (Harpellales in Culicidae and Simuliidae larvae, respectively. Comments on the distribution of some of these fungi and their hosts in the Neotropics are provided.

  15. Prevalence of ectoparasitic arthropods on wild animals and cattle in the Las Merindades area (Burgos, Spain

    Directory of Open Access Journals (Sweden)

    Domínguez-Peñafiel G.

    2011-08-01

    Full Text Available This paper reports the prevalence of ectoparasitic arthropods in sampled groups of wild (n = 128; 16 species and domestic (n = 69; 3 species animals in the Las Merindades area of the Province of Burgos, Spain. The study revealed that wild animals were more infested and with a wider variety of ectoparasites than domestic animals. The parasitic prevalence was 67% for wild animals and 48% for livestock. In this way, 39% of animals were infected by ticks. Ixodes ricinus and Ixodes hexagonus were the most prevalent species whereas Dermacentor reticulatus showed affinity for the fox and wolf. The overall prevalence of parasitisation by fleas was 27%. Ctenophthalmus spp. showed the wider range host in wild animals, while Pulex irritans was the most frequent specie found. The parasitic prevalences by lice (Trichodectes melis, Trichodectes canis and Trichodectes mustelae and by mite (Neotrombicula spp., Laelaps agilis and Sarcoptes scabiei were 4% and 12%, respectively. In both cases only wild animals were found parasited.

  16. Matching arthropod anatomy ontologies to the Hymenoptera Anatomy Ontology: results from a manual alignment.

    Science.gov (United States)

    Bertone, Matthew A; Mikó, István; Yoder, Matthew J; Seltmann, Katja C; Balhoff, James P; Deans, Andrew R

    2013-01-01

    Matching is an important step for increasing interoperability between heterogeneous ontologies. Here, we present alignments we produced as domain experts, using a manual mapping process, between the Hymenoptera Anatomy Ontology and other existing arthropod anatomy ontologies (representing spiders, ticks, mosquitoes and Drosophila melanogaster). The resulting alignments contain from 43 to 368 mappings (correspondences), all derived from domain-expert input. Despite the many pairwise correspondences, only 11 correspondences were found in common between all ontologies, suggesting either major intrinsic differences between each ontology or gaps in representing each group's anatomy. Furthermore, we compare our findings with putative correspondences from Bioportal (derived from LOOM software) and summarize the results in a total evidence alignment. We briefly discuss characteristics of the ontologies and issues with the matching process.

  17. Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911

    DEFF Research Database (Denmark)

    Stein, Martin

    2013-01-01

    as an evidence for variability of head segment counts in Cambrian arthropods, and to falsify the hypothesis of a head with three postantennular segments in the euarthropod ground pattern. Restudy of a substantial amount of material of S. inexpectans shows that previous interpretations of a short head were based...... understood, but the exopod seemed to differ from that of other artiopodans, except for the shared presence of lamellae. The head was considered to comprise only the ocular and antennular segments, these being covered entirely on the ventral side by a large doublure. This short head was often taken...... postantennular appendage bearing segments. The appendage morphology is shown to be consistent with artiopodan affinities. The exopod is of the bilobate flap-like type with lamellae inserting on the proximal portion, earlier proposed as a potential autapomorphy of Artiopoda. Reinforcement of artiopodan affinities...

  18. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods.

    Science.gov (United States)

    Savage, Harry M; Godsey, Marvin S; Lambert, Amy; Panella, Nicholas A; Burkhalter, Kristen L; Harmon, Jessica R; Lash, R Ryan; Ashley, David C; Nicholson, William L

    2013-09-01

    Heartland virus (HRTV), the first pathogenic Phlebovirus (Family: Bunyaviridae) discovered in the United States, was recently described from two Missouri farmers. In 2012, we collected 56,428 ticks representing three species at 12 sites including both patients' farms. Amblyomma americanum and Dermacentor variabilis accounted for nearly all ticks collected. Ten pools composed of deplete nymphs of A. americanum collected at a patient farm and a nearby conservation area were reverse transcription-polymerase chain reaction positive, and eight pools yielded viable viruses. Sequence data from the nonstructural protein of the Small segment indicates that tick strains and human strains are very similar, ≥ 97.6% sequence identity. This is the first study to isolate HRTV from field-collected arthropods and to implicate ticks as potential vectors. Amblyomma americanum likely becomes infected by feeding on viremic hosts during the larval stage, and transmission to humans occurs during the spring and early summer when nymphs are abundant and actively host seeking.

  19. Occurrence of ectoparasitic arthropods associated with rodents in Hail region northern Saudi Arabia.

    Science.gov (United States)

    Asiry, Khalid A; Fetoh, Badr El-Sabah A

    2014-09-01

    Ectoparasitic arthropods are a diverse element of the Saudi fauna. Due to this, a survey of ectoparasites associated with rodents was conducted as a preliminary study in five districts of Hail region of northern Saudi Arabia for the first time. Ectoparasites extracted from 750 rodents were sampled and identified by recording their frequency of appearance. Results revealed that 1,287 ectoparasites infested 316 of the captured rodent hosts. These ectoparasites parasitized on four species of rodents including three species of rats Rattus rattus rattus, Rattus rattus frugivorus, and Rattus rattus alexandrinus and one species of mouse Acomys dimidiatus (Rodentia: Muridae). The ectoparasites belong to four different groups: ticks, fleas, lice, and mites. Ticks were the highest in the number, while fleas were the lowest among all the extracted ectoparasite groups. The collected ectoparasitic arthropods consisted of seven species. Ticks were of two species: Rhipicephalus turanicus and Rhipicephalus sanguineus (Acari: Ixodidae), fleas were of two species: Xenopsylla cheopis and Xenopsyllus conformis mycerini (Siphonaptera: Pulicidae), lice was a single species: Polyplax serrata (Anoplura: Hoplopleuridae), and mites were of two species: Laelaps nuttali and Laelaps echidninus (Mesostigmata: Laelapidae). The findings of the study showed that the intensity of infestation was varied between rodent host sexes, wherein females had the highest rate of parasitic infestation, and the parasitic index of appearance was very high for one group of parasites (i.e., ticks). The parasitic prevalence was 42.13 % on rodents, and mites were the most prevalent parasite species. Overall, this study was carried out to establish baseline data for ectoparasite-infested rodents in Hail region, Saudi Arabia, and may help for appropriate planning to control zoonotic diseases in this area.

  20. Ground Arthropod Attacks on Groundnut Arachis hypogaea L in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Dicko, IO.

    1999-01-01

    Full Text Available Studies were conducted in five districts of Burkina Faso, West Africa from November to December, 1996. The objectives aimed at establishing spatial distribution and quantifying the level of damages on peanut pods by soil arthropods, termites and millepedes. Twenty seven samples of 100 pods each were taken from farmers' stocks in each district, which made a total of 135 pod samples examined. Damage was determined in each district by counting scarified pods by termites and perforated pods by millepedes and converting obtained numbers in percents. Results show that termites and millepedes cause damages throughout the five districts, with termites causing damages, as high as 30-40 % in some districts, compared to damages caused by millepedes which rarely exceeded 3 %. While damage degrees by termites were found to vary with districts, distribution of millepede damages was fairly uniform throughout the study area. The observed differential distribution of termite damages is thought to be due to farmers growing susceptible varieties in eastern districts, varieties such as Te3, proven to be highly susceptible to termites. Neither peanut pod weight, nor grain weight was significantly correlated with damages by termites and millepedes. However, it is highly likely that damages by the two soil arthropods increase grain contamination by the known carcinogenic substance, aflatoxin, by allowing pod penetration and grain invasion by the aflatoxin-producing fungus, Aspergillus sp. This suggests that there is an urgent need for efficient control methods to be developed and applied, not only to reduce peanut yield loss, but also to help preserve human health. One of these methods could be the use by local farmers of resistant varieties which have been shown by several authors to be efficient against termites and millepedes. Such varieties include Ncac 2243 and Ncac 343.

  1. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    Science.gov (United States)

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  3. Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia

    Science.gov (United States)

    Lee, Michael S. Y.; Jago, James B.; García-Bellido, Diego C.; Edgecombe, Gregory D.; Gehling, James G.; Paterson, John R.

    2011-06-01

    Despite the status of the eye as an ``organ of extreme perfection'', theory suggests that complex eyes can evolve very rapidly. The fossil record has, until now, been inadequate in providing insight into the early evolution of eyes during the initial radiation of many animal groups known as the Cambrian explosion. This is surprising because Cambrian Burgess-Shale-type deposits are replete with exquisitely preserved animals, especially arthropods, that possess eyes. However, with the exception of biomineralized trilobite eyes, virtually nothing is known about the details of their optical design. Here we report exceptionally preserved fossil eyes from the Early Cambrian (~515 million years ago) Emu Bay Shale of South Australia, revealing that some of the earliest arthropods possessed highly advanced compound eyes, each with over 3,000 large ommatidial lenses and a specialized `bright zone'. These are the oldest non-biomineralized eyes known in such detail, with preservation quality exceeding that found in the Burgess Shale and Chengjiang deposits. Non-biomineralized eyes of similar complexity are otherwise unknown until about 85 million years later. The arrangement and size of the lenses indicate that these eyes belonged to an active predator that was capable of seeing in low light. The eyes are more complex than those known from contemporaneous trilobites and are as advanced as those of many living forms. They provide further evidence that the Cambrian explosion involved rapid innovation in fine-scale anatomy as well as gross morphology, and are consistent with the concept that the development of advanced vision helped to drive this great evolutionary event.

  4. Correlating Traits of Gene Retention, Sequence Divergence, Duplicability and Essentiality in Vertebrates, Arthropods, and Fungi

    Science.gov (United States)

    Waterhouse, Robert M.; Zdobnov, Evgeny M.; Kriventseva, Evgenia V.

    2011-01-01

    Delineating ancestral gene relations among a large set of sequenced eukaryotic genomes allowed us to rigorously examine links between evolutionary and functional traits. We classified 86% of over 1.36 million protein-coding genes from 40 vertebrates, 23 arthropods, and 32 fungi into orthologous groups and linked over 90% of them to Gene Ontology or InterPro annotations. Quantifying properties of ortholog phyletic retention, copy-number variation, and sequence conservation, we examined correlations with gene essentiality and functional traits. More than half of vertebrate, arthropod, and fungal orthologs are universally present across each lineage. These universal orthologs are preferentially distributed in groups with almost all single-copy or all multicopy genes, and sequence evolution of the predominantly single-copy orthologous groups is markedly more constrained. Essential genes from representative model organisms, Mus musculus, Drosophila melanogaster, and Saccharomyces cerevisiae, are significantly enriched in universal orthologs within each lineage, and essential-gene-containing groups consistently exhibit greater sequence conservation than those without. This study of eukaryotic gene repertoire evolution identifies shared fundamental principles and highlights lineage-specific features, it also confirms that essential genes are highly retained and conclusively supports the “knockout-rate prediction” of stronger constraints on essential gene sequence evolution. However, the distinction between sequence conservation of single- versus multicopy orthologs is quantitatively more prominent than between orthologous groups with and without essential genes. The previously underappreciated difference in the tolerance of gene duplications and contrasting evolutionary modes of “single-copy control” versus “multicopy license” may reflect a major evolutionary mechanism that allows extended exploration of gene sequence space. PMID:21148284

  5. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  6. 转cry8C/cry3A工程菌BIOT1853A对花生田主要节肢动物类群结构的影响%Effects of Engineered Bacillus thuringiensis with cry8C and cry3A on the Major Arthropod Groups Structure in Peanut Field

    Institute of Scientific and Technical Information of China (English)

    谢明惠; 张海珊; 陈浩梁; 徐德进; 章东方; 张杰; 苏卫华

    2012-01-01

    The effects of engineered Bacillus thuringiensis with cry8C and cry3A on the number of major arthropod groups in peanut field were studied, with receipt strain Bt185 and conventional in- secticide as the controls. The results showed that: the main arthropod groups in peanut field were lo- custs, crickets, whiteflies, leaf beetles, leafhoppers, ladybirds, bugs, lacewings and spiders. Using different concentrations of BIOT1853A had no significant effect on the composition, number and tem- poral dynamics of major arthropod groups. It was apparent that BIOT1853A has no significant nega- tive effect on the peanut field arthropod community.%以受体菌株Bt185和常规化学农药为对照,研究转cry8C/cry3A工程菌BIOT1853A对花生田主要节肢动物类群数量的影响。研究结果表明:花生田地上部分主要节肢动物分为以下9个类群:蝗虫类、蟋蟀类、粉虱类、叶甲类、叶蝉类、瓢虫类、蝽类、草蛉类和蜘蛛类;施加不同浓度工程菌BIOT1853A对主要节肢动物类群的组成、数量和时序动态均无显著性影响。综合分析认为,工程菌BIOT1853A对花生田节肢动物群落无明显的负面影响。

  7. Richness and composition of gall-inducing arthropods at Coiba National Park, Panama

    Directory of Open Access Journals (Sweden)

    José Luis Nieves-Aldrey

    2008-09-01

    Full Text Available Interest in studying galls and their arthropods inducers has been growing rapidly in the last two decades. However, the Neotropical region is probably the least studied region for gall-inducing arthropods. A study of the richness and composition of gall-inducing arthropods was carried out at Coiba National Park in the Republic of Panama. Field data come from samples obtained between August 1997 and September 1999, with three (two-week long more intensive samplings. Seventeen sites, representing the main land habitats of Coiba National Park were surveyed. 4942 galls of 50 insect and 9 mite species inducing galls on 50 vascular plants from 30 botanical families were colleted. 62.7% of the galls were induced by gall midges (Diptera, Cecidomyiidae, 15.3% by mites, Eriophyidae, 8.5% by Homoptera, Psyllidae, 6.8% by Coccidae and 5.1% by Phlaeothripidae (Tysanoptera. The host plant families with the most galls were Myrtaceae with seven, Bignoniaceae with five and Euphorbiaceae, Fabaceae and Melastomataceae with four. Leaf galls accounted for about 93% of collected galls. Most leaf galls were pit/blister galls followed by covering and pouch galls. Gall richness per collecting site was between 1 and 19 species. Coiba’s gall diversity is discussed in relation to data available from other tropical sites from continental Panama and the Neotropical region. Our results support the idea that it may be premature to conclude that species richness of gall inducers declines near the equator. Rev. Biol. Trop. 56 (3: 1269-1286. Epub 2008 September 30.El interés por el estudio de las agallas y los artrópodos que las inducen ha crecido en todo el mundo en los últimos veinte años. Sin embargo, los artrópodos que inducen agallas en la región Neotropical son probablemente los menos estudiados. Un estudio de la riqueza y composición de artrópodos que inducen agallas fue desarrollado en el Parque Nacional Coiba en la Republica de Panamá. Los datos provienen de

  8. Arthropod Distribution and Habitat, Published in 2010, 1:24000 (1in=2000ft) scale, GaDNR/Wildlife Resources Division.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2010....

  9. Plant genetics shapes inquiline community structure across spatial scales.

    Science.gov (United States)

    Crutsinger, Gregory M; Cadotte, Marc W; Sanders, Nathan J

    2009-04-01

    Recent research in community genetics has examined the effects of intraspecific genetic variation on species diversity in local communities. However, communities can be structured by a combination of both local and regional processes and to date, few community genetics studies have examined whether the effects of instraspecific genetic variation are consistent across levels of diversity. In this study, we ask whether host-plant genetic variation structures communities of arthropod inquilines within distinct habitat patches--rosette leaf galls on tall goldenrod (Solidago altissima). We found that genetic variation determined inquiline diversity at both local and regional spatial scales, but that trophic-level responses varied independently of one another. This result suggests that herbivores and predators likely respond to heritable plant traits at different spatial scales. Together, our results show that incorporating spatial scale is essential for predicting the effects of genetically variable traits on different trophic levels and levels of diversity within the communities that depend on host plants.

  10. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods

    Directory of Open Access Journals (Sweden)

    Smith James M

    2008-11-01

    Full Text Available Abstract Background Gene clusters, such as the Hox gene cluster, are known to have critical roles in development. In eukaryotes gene clusters arise primarily by tandem gene duplication and divergence. Genes within a cluster are often co-regulated, providing selective pressure to maintain the genome organisation, and this co-regulation can result in temporal or spatial co-linearity of gene expression. It has been previously noted that in Drosophila melanogaster, three of the four runt-domain (RD containing genes are found in a relatively tight cluster on chromosome 1, raising the possibility of a putative functional RD gene cluster in D. melanogaster. Results To investigate the possibility of such a gene cluster, orthologues of the Drosophila melanogaster RD genes were identified in several endopterygotan insects, two exopterygotan insects and two non-insect arthropods. In all insect species four RD genes were identified and orthology was assigned to the Drosophila sequences by phylogenetic analyses. Although four RD genes were found in the crustacean D. pulex, orthology could not be assigned to the insect sequences, indicating independent gene duplications from a single ancestor following the split of the hexapod lineage from the crustacean lineage. In insects, two chromosomal arrangements of these genes was observed; the first a semi-dispersed cluster, such as in Drosophila, where lozenge is separated from the core cluster of three RD genes often by megabases of DNA. The second arrangement was a tight cluster of the four RD genes, such as in Apis mellifera. This genomic organisation, particularly of the three core RD genes, raises the possibility of shared regulatory elements. In situ hybridisation of embryonic expression of the four RD genes in Drosophila melanogaster and the honeybee A. mellifera shows no evidence for either spatial or temporal co-linearity of expression during embryogenesis. Conclusion All fully sequenced insect genomes

  11. Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites

    Science.gov (United States)

    Cheng, Liang

    Many biological materials possess complicated hierarchical and multiscale structures, after millions of years of evolution. Most of them also demonstrate outstanding mechanical properties, along with multi-functionality. Arthropod is the most widely distributed and the largest phylum of animals in the planet. Their exoskeletons are well-known for excellent mechanical performance and versatility, and consequently emerge among the best sources to study and uncover the mystery of nature in devising its own material systems. This work first investigated the microstructures of the exoskeletons from selected arthropods, including Homarus Americanus, Callinectes sapidus and Popillia japonica, which exhibit highly complex but interesting hierarchical structures. Exoskeletons are chitin-protein based material systems organized into horizontally well-defined multi-region and multi-layer patterns, with elaborate structures interweaving in the vertical direction. Using SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope), the characteristic and distinctive structural features of the exoskeletons were revealed for all the species investigated. In particular, distinct patterns (e.g., stacking sequence of multiple layers) were identified in each region of exoskeletons studied. For example, the "helicoidal structure" is characterized by a stacking sequence in which layers are continuously and unidirectionally rotating a small angle with respect to their adjacent layers. Important mechanical implications of those unique structural features were subsequently evaluated and compared using mechanics-based modeling and analysis, as well as numerical simulation. After the structure-property-function relationship of the investigated biomaterial systems was established, attempts were made to reveal and extract the design strategies employed by nature in designing its own materials and structures. One of the most predominant structural patterns observed in the

  12. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects;