WorldWideScience

Sample records for ground-based sub-mm observations

  1. Coordinated mm/sub-mm observations of Sagittarius A* in May 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kunneriath, D; Eckart, A; Bertram, T; Konig, S [University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany); Vogel, S [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Sjouwerman, L [National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801 (United States); Wiesemeyer, H [IRAM, Avenida Divina Pastora, 7, Nuecleo Central, E-18012 Granada (Spain); Schoedel, R [Instituto de AstrofIsica de AndalucIa, Camino Bajo de Huetor 50, 18008 Granada (Spain); Baganoff, F K [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Morris, M; Mauerhan, J; Meyer, L [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Dovciak, M; Karas, V [Astronomical Institute, Academy of Sciences, BocnI II, CZ-14131 Prague (Czech Republic); Dowries, D [Institut de Radio Astronomie Millimetrique, Domaine Universitaire, 38406 St. Martin d' Heres (France); Krichbaum, T; Lu, R-S [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Krips, M [Harvard-Smithsonian Center for Astrophysics, SMA project, 60 Garden Street, MS 78 Cambridge, MA 02138 (United States); Markoff, S [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098SJ Amsterdam (Netherlands); Duschl, W J, E-mail: eckart@phl.uni-koeln.de (and others)

    2008-10-15

    At the center of the Milky Way, with a distance of {approx}8 kpc, the compact source Sagittarius A* (SgrA*) can be associated with a super massive black hole of {approx}4x 10{sup 6}M{sub o-dot}. SgrA* shows strong variability from the radio to the X-ray wavelength domains. Here we report on simultaneous NIR/sub-millimeter/X-ray observations from May 2007 that involved the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope, the Australian Telescope Compact Array (ATCA), the US mm-array CARMA, the IRAM 30m mm-telescope, and other telescopes. We concentrate on the time series of mm/sub-mm data from CARMA, ATCA, and the MAMBO bolometer at the IRAM 30m telescope.

  2. Ground-Based Global Navigation Satellite System (GNSS) Compact Observation Data (1-second sampling, sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from the NASA Crustal Dynamics...

  3. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  4. Development of optical ground verification method for μm to sub-mm reflectors

    Science.gov (United States)

    Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.

    2017-11-01

    Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to

  5. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-06-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO<sub>2sub>, HCHO, CHOCHO, H<sub>2sub>O, SO<sub>2sub>, and O<sub>3sub> volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed near the surface (2–3 m and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO<sub>2sub> were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  6. Evaluating the performance of an integrated CALPUFF-MM5 modeling system for predicting SO{sub 2} emission from a refinery

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Wahab, Sabah Ahmed [Sultan Qaboos University, Department of Mechanical and Industrial Engineering, College of Engineering, Muscat (Oman); Ali, Sappurd [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan); Sardar, Sabir; Irfan, Naseem [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Al-Damkhi, Ali [Public Authority for Applied Education and Training (PAAET), Department of Environmental Sciences College of Health Sciences, Salmiyah (Kuwait)

    2011-12-15

    Oil refineries are one of the proven sources of environmental pollution as they emit more than 100 chemicals into the atmosphere including sulfur dioxide (SO{sub 2}). The dispersion patterns of SO{sub 2} from emissions of Sohar refinery was simulated by employing California Puff (CALPUFF) model integrated with state of the art meteorological Mesoscale Model (MM5). The results of this simulation were used to quantify the ground level concentrations of SO{sub 2} in and around the refinery. The evaluation of the CALPUFF and MM5 modeling system was carried out by comparing the estimated results with that of observed data of the same area. The predicted concentrations of SO{sub 2} agreed well with the observed data, with minor differences in magnitudes. In addition, the ambient air quality of the area was checked by comparing the model results with the regulatory limits for SO{sub 2} set by the Ministry of Environment and Climate Affairs (MECA) in Oman. From the analysis of results, it was found that the concentration of SO{sub 2} in the nearby communities of Sohar refinery is well within the regulatory limits specified by MECA. Based on these results, it was concluded that no health risk, due to SO{sub 2} emissions, is present in areas adjacent to the refinery. (orig.)

  7. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  8. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  9. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH<sub>4sub>, C<sub>2sub>H>6sub>, N<sub>2sub>O, CHClF<sub>2sub>, and O<sub>3sub> have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  10. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  11. OGLE-2015-BLG-0196: GROUND-BASED GRAVITATIONAL MICROLENS PARALLAX CONFIRMED BY SPACE-BASED OBSERVATION

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Bryden, C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Collaboration: OGLE Collaboration; Spitzer Microlensing Team; and others

    2017-01-01

    In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u {sub 0} < 0 and u {sub 0} > 0, solutions caused by the well-known “ecliptic” degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M {sub 1} = 0.38 ± 0.04 M {sub ⊙} (0.50 ± 0.05 M {sub ⊙}) and M {sub 2} = 0.38 ± 0.04 M {sub ⊙} (0.55 ± 0.06 M {sub ⊙}), and the distance to the lens is D {sub L} = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u {sub 0} < 0 and u {sub 0} > 0 solutions, respectively.

  12. Geometry and bonding in the ground and lowest triplet state of D{sub 6h} symmetric crenellated edged C{sub 6[3m(m-1)+1]}H{sub 6(2m-1)} (m = 2,..., 6) graphene hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, Michael R., E-mail: philpott@imr.edu [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan); Kawazoe, Yoshiyuki [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan)

    2009-03-30

    Ab initio plane wave all valence electron based DFT calculations were used to explore the dichotomy of perimeter vs. interior in the electronic and geometric structure of the D{sub 6h} singlet ground state and D{sub 2h} lowest triplet state of planar graphene hydrocarbon molecules with crenellated (arm chair) edges and the general formula C{sub 6[3m(m-1)+1]} H{sub 6(2m-1)} where m = 2,...,6. The largest molecule C{sub 546}H{sub 66} was 4.78 nm across and contained 2250 valence electrons. These molecules are nominally 'fully benzenoid hydrocarbons'. However with increasing size, the core of central atoms abandoned any fully benzenoid geometry they had in small systems and organized into single layer graphite (graphene) structure. The perimeter atoms of the crenellation adopted a conjugated geometry with unequal bonds and between core and perimeter there were some C{sub 6} rings retaining remnants of aromatic sextet-type properties. Compared to a zigzag edge the crenellated edge conferred stability in all the systems studied as measured by the singlet homo-lumo level gap BG{sub 0} and the singlet-lowest triplet energy gap {Delta}E{sub ST}. For the largest crenellated system (m = 6) BG{sub 0} and {Delta}E{sub ST} were approximately 0.7 eV, larger in value than for similarly sized hexagonal graphenes with zigzag edges. Triplet states were identified for all the molecules in the series and in the case of the m = 2 molecule hexabenzocoronene C{sub 42}H{sub 18}, two conformations with D{sub 2h} symmetry were identified and compared to features on the triplet state potential energy surface of benzene.

  13. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Science.gov (United States)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  14. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  15. The LLAMA 12 m mm/sub-mm radiotelescope in the Andes

    Science.gov (United States)

    Lepine, Jacques; Edemundo Arnal, Marcelo; de Graauw, Thijs; Abraham, Zulema; Gimenez de Castro, Guillermo; de Gouveia Dal Pino, Elisabete; Morras, Ricardo; Larrarte, Juan; Viramontes, José; Finger, Ricardo; Kooi, Jacob; Reeves, Rodrigo; Beaklini, Pedro

    2015-08-01

    LLAMA (Large Latin American Millimetric Array) is a joint Argentinean-Brazilian project of a 12m mm/sub-mm radio telescope similar to the APEX antenna, to be installed at a site at 4800 m altitude near San Antonio de Los Cobres in the Salta Province in Argentine, at 150 km from ALMA. The scientific cases for single dish and VLBI observations include black holes and accretion disks, the molecular evolution of interstellar clouds, the structure of the Galaxy, the formation of galaxies, and much more. The antenna was ordered to the company Vertex Antennentechnik in June 2014, and the construction is progressing quickly; it will be installed at the site in 2016. The radio telescope will be equipped with up to six receivers covering bands similar to those of ALMA. Cryostats with room for 3 cartridges, constructed by NAOJ (Tokyo,Japan), will be installed in each of the two Nasmyth cabins. Among the first receivers we will have an ALMA band 9 provided by NOVA (Groningen, Holland) and a band 5 from the Chalmers University (Sweden). Other receivers are still being discussed at the time of submission of this abstract,At high frequencies, VLBI observations at high frequencies could be made with ALMA, APEX and ASTE, and Northern radiotelescopes. In this way, LLAMA will be a seed for a Latin-American VLBI network.

  16. PWV, Temperature and Wind Statistics at Sites Suitable For mm and Sub-mm Wavelengths Astronomy

    Science.gov (United States)

    Otarola, Angel; Travouillon, Tony; De Breuck, Carlos; Radford, Simon; Matsushita, Satoki; Pérez-Beaupuits, Juan P.

    2018-01-01

    Atmospheric water vapor is the main limiting factor of atmospheric transparency in the mm and sub-mm wavelength spectral windows. Thus, dry sites are needed for the installation and successful operation of radio astronomy observatories exploiting those spectral windows. Other parameters that play an important role in the mechanical response of radio telescopes exposed to the environmental conditions are: temperature, and in particular temperature gradients that induce thermal deformation of mechanical structures, as well as wind magnitude that induce pointing jitter affecting this way the required accuracy in the ability to point to a cosmic source during the observations. Temperature and wind are variables of special consideration when planning the installation and operations of large aperture radio telescopes. This work summarizes the statistics of precipitable water vapor (PWV), temperature and wind monitored at sites by the costal mountain range, as well as on t he west slope of the Andes mountain range in the region of Antofagasta, Chile. This information could prove useful for the planning of the Atacama Large-Aperture Submm/mm Telescope (AtLast).

  17. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    Science.gov (United States)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  18. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    International Nuclear Information System (INIS)

    Rahman, Taibur; Panat, Rahul; Renaud, Luke; Heo, Deuk; Renn, Michael

    2015-01-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10–100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10–100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives. (technical note)

  19. Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Uytterhoeven, K; Poretti, E; Rainer, M; Mantegazza, L [INAF-Brera Astronomical Observatory, Via E. Bianchi 46, 23807 Merate (Italy); Zima, W; Aerts, C; Morel, T; Lefever, K [Institute of Astronomy, KULeuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, Allee du 6 Aout 17, 4000 Liege (Belgium); Amado, P J; MartIn-Ruiz, S [Instituto de AstrofIsica de AndalucIa (CSIC), Apartado 3004, 18080 Granada (Spain); Mathias, P; Valtier, J C [Observatoire de la Cote d' Azur, GEMINI, CNRS, Universite Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Paparo, M; Benkoe, J M [Konkoly Observatory, PO Box 67, 1525 Budapest (Hungary)], E-mail: katrien.uytterhoeven@brera.inaf.it

    2008-10-15

    To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectroscopic and multicolour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the {delta} Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 d{sup -1}, including possibly one radial fundamental mode (6.92 d{sup -1}). Based on more than 600 multi-colour photometric datapoints of the {beta} Cep star HD 180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode {nu}{sub 1} = 5.48695 d{sup -1}, and detect also its first two harmonics. We find evidence for a second mode {nu}{sub 2} = 0.3017 d{sup -1}, possibly a g-mode, and indications for two more frequencies in the 7-8 d{sup -1} domain. From Stromgren photometry we find evidence for the hybrid 5 Sct/{gamma} Dor character of the F0 star HD 44195, as frequencies near 3 d{sup -1} and 21 d{sup -1} are detected simultaneously in the different filters.

  20. Electrode characteristics of the (Mm)Ni 5-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Soo; Choi, Seung Jun; Chang, Min Ho; Choi, Jeon; Park, Choong Nyun [Chonnam National University, Kwangju (Korea, Republic of)

    1995-06-01

    The MmNi-based alloy electrode was studied for use a negative electrode in Ni-MH battery. Alloys with MmNi{sub 5}-{sub x} M{sub x}(M=Co,Al,Mn) composition were synthesized, and their electrode characteristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in MmNi{sub 5}-{sub x} M{sub x} increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is MmNi{sub 3}.5 Co{sub 0}.7 Al{sub 0}.5 Mn{sub 0}.3. (author). 9 refs., 9 figs., 1 tab.

  1. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF B<sub>Z>. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF B<sub>Z> stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  2. Magnetic ground state of Ti{sub 1-x}Sc{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Saoudi, M.; Deportes, J.; Ouladdiaf, B. E-mail: ouladdiaf@ill.fr

    2001-06-01

    The magnetic ground states of the Laves phases Ti{sub 1-x}Sc{sub x}Fe{sub 2} system have been investigated by means of powder neutron diffraction and magnetisation techniques. For x=0.23, a transition is observed from a collinear ferromagnet along the c-axis to a canted one at T{sub f}=200 K. For x=0.27, 0.3, 0.33, an additional first-order transition is observed at T{sub t1}{approx}120 K accompanied by a large magnetovolume anomaly associated to a jump of the magnetic moment of the Fe atoms at the 2a site. The magnetic moment instability in a frustrated lattice should be considered to interpret this transition, although most of the other magnetic states can be discussed within Moriya's theory for itinerant electron systems with competing ferromagnetic and antiferromagnetic spin fluctuations.

  3. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiyun [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116 (China); Tu, Ruikang [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Fang, Xiaoting [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Gu, Quanchao [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Zhou, Yanying [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Cui, Rongjing [Department of Chemistry, Changshu Institute of Technology, Changshu 215500 (China); Han, Zhida, E-mail: han@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Lei; Fang, Yong [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Qian, Bin, E-mail: njqb@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Chengliang [School of Science, Jiangnan University, Wuxi 214122 (China); Jiang, Xuefan [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China)

    2017-03-15

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface. - Highlights: • Magnetoresistance was first used to probe the ground state and ZEB in Ni-Mn-based alloys. • A pure spin-glass ground state is proposed in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. • Field-induced nucleation and growth of ferromagnetic domains in SG results in ZEB.

  4. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  5. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6

    NARCIS (Netherlands)

    Popping, Gergö; van Kampen, Eelco; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S.; Trager, Scott C.

    2016-01-01

    Now that Atacama Large (Sub)Millimeter Array is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J =1-0 out to CO

  6. OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S.; Wibking, B. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Street, R. A. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beichman, C.; Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, C.; Henderson, Calen B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Collaboration: (The Spitzer Microlensing Team; (The OGLE Collaboration; (The RoboNet collaboration; (The MiNDSTEp Consortium; (The μ FUN Collaboration; and others

    2016-09-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.

  7. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  8. Retrieval and analysis of atmospheric XCO2 using ground-based spectral observation.

    Science.gov (United States)

    Qin, Xiu-Chun; Lei, Li-Ping; Kawasaki, Masahiro; Masafumi, Ohashi; Takahiro, Kuroki; Zeng, Zhao-Cheng; Zhang, Bing

    2014-07-01

    Atmospheric CO2 column concentration (column-averaged dry air mole fractions of atmospheric carbon dioxide) data obtained by ground-based hyperspectral observation is an important source of data for the verification and improvement of the results of CO2 retrieval based on satellite hyperspectral observation. However, few studies have been conducted on atmospheric CO2 column concentration retrieval based on ground-based spectral hyperspectral observation in China. In the present study, we carried out the ground-based hyperspectral observation in Xilingol Grassland, Inner Mongolia of China by using an observation system which is consisted of an optical spectral analyzer, a sun tracker, and some other elements. The atmospheric CO2 column concentration was retrieved using the observed hyperspectral data. The effect of a wavelength shift of the observation spectra and the meteorological parameters on the retrieval precision of the atmospheric CO2 concentration was evaluated and analyzed. The results show that the mean value of atmospheric CO2 concentration was 390.9 microg x mL(-1) in the study area during the observing period from July to September. The shift of wavelength in the range between -0.012 and 0.042 nm will generally lead to 1 microg x mL(-1) deviation in the CO2 retrievals. This study also revealed that the spectral transmittance was sensitive to meteorological parameters in the wavelength range of 6 357-6 358, 6 360-6 361, and 6 363-6 364 cm(-1). By comparing the CO2 retrievals derived from the meteorological parameters observed in synchronous and non-synchronous time, respectively, with the spectral observation, it was showed that the concentration deviation caused by using the non-synchronously observed meteorological parameters is ranged from 0.11 to 4 microg x mL(-1). These results can be used as references for the further improvement of retrieving CO2 column concentration based on spectral observation.

  9. Sub-second pulsations simultaneously observed at microwaves and hard X-rays in a solar burst

    International Nuclear Information System (INIS)

    Takakura, T.; Degaonkar, S.S.; Nitta, N.; Ohki, N.

    1982-11-01

    Sub-second time structures have been found in the emissions during solar bursts in mm-waves and, independently, in hard X-rays. However, simultaneous observations of such fast time structure in mm radio and X-ray ranges has not been available so far. Accordingly, coordinated observations of solar bursts in November 1981 with a high time resolution of a few milliseconds were planned. The hard X-rays (30-40 KeV were observed with hard X-ray monitor (HXM) aboard the Hinotori Satellite with a time resolution of 7.81 ms and the radio emissions were observed on the ground with 45ft dish at Itapetinga Radio Observatory with a high time resolution (1 ms) and high sensitivities at 22 GHz and 44 GHz, supplemented by a patrol observation at 7 GHz with time resolution of 100 ms. The pulsations repeated with a period of about 300 ms. The physical implication of the good correlation is not clear at this stage, but it may give a clue to the understanding of the high energy phenomena occuring during the solar flares. (Author) [pt

  10. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M

    2014-01-01

    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  11. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    Science.gov (United States)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  12. Ground and excited state absorption of Ni{sup 2+} ions in MgAl{sub 2}O{sub 4}: Crystal field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G. [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103 (Japan) and Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)]. E-mail: brik@fukui.kyoto-u.ac.jp; Avram, N.M. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Avram, C.N. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Rudowicz, C. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Yeung, Y.Y. [Department of Mathematics, Science, Social Sciences and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories (Hong Kong); Gnutek, P. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland)

    2007-04-25

    The exchange charge model (ECM) of crystal field is utilized to provide the theoretical explanation of the ground state absorption and the excited state absorption observed for the octahedrally coordinated Ni{sup 2+} ions in the spinel MgAl{sub 2}O{sub 4}. The ECM enables modeling of the crystal field parameters (CFPs) for the impurity ions based on the crystal structure data of the host lattice. To ensure the reliability of the CFPs, the convergence of the CFP values with the increasing number of the coordination spheres taken into account in the ECM calculations is considered. The trigonal CFPs B{sub 2}{sup 0},B{sub 4}{sup 0}andB{sub 4}{sup -3} determined by the ECM, together with the appropriate Racah parameters B and C, serve as input to two crystal field analysis computer packages, which compute the energy level schemes within the whole 3d{sup 8} configuration. The cubic approximation utilizing only one CFP Dq is also discussed. Basic features of the ground and excited state absorption spectra observed for MgAl{sub 2}O{sub 4}:Ni{sup 2+} are satisfactorily explained by our crystal field analysis. In order to model the pressure dependence of the CFPs (and thus of the absorption spectra when relevant experimental data become available), the variation of the CFPs induced by possible distortions of the lattice due to, e.g. overall relaxation of the ions or accommodation of the impurity ions in the lattice, is studied. Analysis of the experimental absorption spectra enables us to evaluate also the Huang-Rhys parameter, the effective phonon energy, and the zero-phonon line position.

  13. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  14. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    Science.gov (United States)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  15. Ion cyclotron waves: Direct compariosn between ground-based measurements and observations in the source region

    International Nuclear Information System (INIS)

    Perraut, S.; Gendrin, R.; Roux, A.; de Villedary, C.

    1984-01-01

    Simultaneous measurements of ion cyclotron waves (ICW's) were performed on GEOS spacecraft and in the vicinity of their magnetic footprints with the French Mobile station. The detailed comparison between the two sets of data shown that while ICW's having F + gyrofrequency at the equator, generally propagate to the ground, only 50% of those generated above F/sub He/ can reach the ground station. It is shown that these results are in good agreement with the conclusions that Rauch and Roux [1982] drew on the basis of measurements reported by Young et al 1981]. In an He + -rich plasma, ICW's with F>F/sub He/ suffer a reflection where the frequency locally matches the local bi-ion hybrid frequency. We extend the calculations of Rauch and Roux and calculate, as a function of the He + concentration, the tunneling of ICW's through the stopband induced by the presence of minor He + ions. It is shown that the transmission coefficient strongly depends upon the wave frequency for a given He + abundance ratio. The results obtained are shown to be supported by existing observations

  16. Monitoring of Volcanic Activity by Sub-mm Geodetic Analyses

    Science.gov (United States)

    Miura, S.; Mare, Y.; Ichiki, M.; Demachi, T.; Tachibana, K.; Nishimura, T.

    2017-12-01

    Volcanic earthquakes have been occurring beneath Zao volcano in northern Honshu, Japan since 2013, following the increase of deep low frequency earthquakes from 2012. On account of a burst of seismicity initiated in April 2015, the JMA announced a warning of eruption, however, the seismicity gradually decreased for the next two months and the warning was canceled in June. In the same time period, minor expansive deformation was observed by GNSS. Small earthquakes are still occurring, and low-freq. earthquakes (LPE) occur sometimes accompanied by static tilt changes. In this study, we try to extract the sub-mm displacements from the LPE waveforms observed by broadband seismometers (BBS) and utilize them for geodetic inversion to monitor volcanic activities. Thun et al. (2015, 2016) devised an efficient method using a running median filter (RMF) to remove LP noises, which contaminate displacement waveforms. They demonstrated the reproducibility of the waveforms corresponding to the experimentally given sub-mm displacements in the laboratory. They also apply the method to the field LPE data obtained from several volcanoes to show static displacements. The procedure is outlined as follows: (1) Unfiltered removal of the instrument response, (2) LP noise estimate by LPF with a corner frequency of 5/M, where M (seconds) is the time window of the RMF and should be at least three times the length of the rise time. (3) Subtract the noise estimated from step (2). (4) Integrate to obtain displacement waveforms. We apply the method to the BBS waveform at a distance of about 1.5 km ESE from the summit crater of Zao Volcano associated with a LPE on April 1, 2017. Assuming the time window M as 300 seconds, we successfully obtained the displacement history: taking the rise time of about 2 minutes, the site was gradually uplifted with the amount of about 50-60 µm and then subsided with HF displacements in the next 2 minutes resulting about 20-30 µm static upheaval. Comparing the

  17. Characterization of Jupiter's Atmosphere from Observation of Thermal Emission by Juno and Ground-Based Supporting Observations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Janssen, M. A.; Hansen, C. J.; Bolton, S. J.; Li, C.; Adriani, A.; Mura, A.; Grassi, D.; Fletcher, L. N.; Brown, S. T.; Fujiyoshi, T.; Greathouse, T. K.; Kasaba, Y.; Sato, T. M.; Stephens, A.; Donnelly, P.; Eichstädt, G.; Rogers, J.

    2017-12-01

    Ground-breaking measurements of thermal emission at very long wavelengths have been made by the Juno mission's Microwave Radiometer (MWR). We examine the relationship between these and other thermal emission measurements by the Jupiter Infrared Auroral Mapper (JIRAM) at 5 µm and ground-based supporting observations in the thermal infrared that cover the 5-25 µm range. The relevant ground-based observations of thermal emission are constituted from imaging and scanning spectroscopy obtained at the NASA Infrared Telescope Facility (IRTF), the Gemini North Telescope, the Subaru Telescope and the Very Large Telescope. A comparison of these results clarifies the physical properties responsible for the observed emissions, i.e. variability of the temperature field, the cloud field or the distribution of gaseous ammonia. Cross-references to the visible cloud field from Juno's JunoCam experiment and Earth-based images are also useful. This work continues an initial comparison by Orton et al. (2017, GRL 44, doi: 10.1002/2017GL073019) between MWR and JIRAM results, together with ancillary 5-µm IRTF imaging and with JunoCam and ground-based visible imaging. These showed a general agreement between MWR and JIRAM results for the 5-bar NH3 abundance in specific regions of low cloud opacity but only a partial correlation between MWR and 5-µm radiances emerging from the 0.5-5 bar levels of the atmosphere in general. Similar to the latter, there appears to be an inconsistent correlation between MWR channels sensitive to 0.5-10 bars and shorter-wavelength radiances in the "tails" of 5-µm hot spots , which may be the result of the greater sensitivity of the latter to particulate opacity that could depend on the evolution history of the particular features sampled. Of great importance is the interpretation of MWR radiances in terms of the variability of temperature vs. NH3 abundances in the 0.5-5 bar pressure range. This is particularly important to understand MWR results in

  18. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  19. The isotypic family of the diarsenates MM'As{sub 2}O{sub 7} (M = Sr, Ba; M' = Cd, Hg)

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Matthias [Technische Univ. Wien (Austria). Inst. for Chemical Technologies and Analytics

    2016-08-01

    The diarsenates MM'As{sub 2}O{sub 7} (M = Sr, Ba; M' = Cd, Hg) were prepared under hydrothermal conditions (∝200 C, autogenous pressure), starting from As{sub 2}O{sub 5} and the corresponding metal oxides or precursor compounds thereof in aqueous solutions. Structure analyses on the basis of single crystal X-ray data revealed the four structures to be isotypic. They are the first diarsenates to crystallize in the triclinic BaZnP{sub 2}O{sub 7} structure type (space group P anti 1, Z = 2, a ∼ 5.8 Aa, b ∼ 7.3 Aa, c ∼ 7.6 Aa, α ∼ 101 , β ∼ 91 , γ ∼ 98 ). All related MM'As{sub 2}O{sub 7} diarsenates reported so far (M = Sr, Ba, Pb; M' = Mg, Co, Cu, Zn) crystallize in the monoclinic α-Ca{sub 2}P{sub 2}O{sub 7} structure type (P2{sub 1}/n, Z = 4). Hence, the size of the divalent M' cation determines which of the two structure types is adopted.

  20. Bipolar cloud-to-ground lightning flash observations

    Science.gov (United States)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.

    2013-10-01

    lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.

  1. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  2. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  3. Ground-based multiwavelength observations of comet 103P/Hartley 2

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, A.; Villanueva, G. L.; Cordiner, M. A. [Catholic University of America, Physics Department, 620 Michigan Avenue NE, Washington, DC (United States); Milam, S. N.; Charnley, S. B. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Remijan, A. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Coulson, I. M. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Chuang, Y.-L.; Kuan, Y.-J., E-mail: adeline.gicquel@nasa.gov, E-mail: stefanie.n.milam@nasa.gov, E-mail: geronimo.l.villanueva@nasa.gov, E-mail: steven.b.charnley@nasa.gov, E-mail: martin.a.cordiner@nasa.gov, E-mail: aremijan@nrao.edu, E-mail: i.coulson@jach.hawaii.edu, E-mail: ylchuang@std.ntnu.edu.tz, E-mail: kuan@ntnu.edu.tw [National Taiwan Normal University, 88 Sec. 4 Ting-Chou Road, Taipei 116, Taiwan (China)

    2014-10-10

    The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvous on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here, we report detections of HCN, H{sub 2}CO, CS, and OH and upper limits for HNC and DCN toward 103P using the Arizona Radio Observatory Kitt Peak 12 m telescope (ARO 12 m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT), and the Green Bank Telescope (GBT). The water production rate, Q{sub H{sub 2O}} = (0.67-1.07) × 10{sup 28} s{sup –1}, was determined from the GBT OH data. From the average abundance ratios of HCN and H{sub 2}CO relative to water (0.13 ± 0.03% and 0.14 ± 0.03%, respectively), we conclude that H{sub 2}CO is depleted and HCN is normal with respect to typically observed cometary mixing ratios. However, the abundance ratio of HCN with water shows a large diversity with time. Using the JCMT data, we measured an upper limit for the DCN/HCN ratio <0.01. Consecutive observations of ortho-H{sub 2}CO and para-H{sub 2}CO on November 2 (from data obtained at the JCMT) allowed us to derive an ortho:para ratio (OPR) of ≈2.12 ± 0.59 (1σ), corresponding to T {sub spin} > 8 K (2σ).

  4. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valverde, M. A. [Instituto de Astrofisica de Andalucia, IAA/CSIC, Granada (Spain); Montabone, L. [Space Science Institute, Boulder, CO (United States); Sornig, M.; Sonnabend, G., E-mail: valverde@iaa.es [University of Cologne, KOSMA, Köln (Germany)

    2016-01-10

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.

  5. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  6. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning

    Directory of Open Access Journals (Sweden)

    C. Wespes

    2012-01-01

    Full Text Available In this paper, we analyze tropospheric O<sub>3sub> together with HNO<sub>3sub> during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4 to assist in the interpretation of the observations in terms of the source attribution and transport of O<sub>3sub> and HNO<sub>3sub> into the Arctic (north of 60° N. The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%, but some discrepancies in the model are identified and discussed. The observed correlation of O<sub>3sub> with HNO<sub>3sub> is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses.

    Based on model simulations of O<sub>3sub> and HNO<sub>3sub> tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O<sub>3sub> and HNO<sub>3sub> in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada also show an important impact on tropospheric ozone in the Arctic boundary layer.

    Additional analysis of tropospheric O<sub>3sub> measurements from ground-based FTIR and from the IASI satellite sounder made

  7. Single phase in Ba-dopped Bi-based high-T/sub c/ compound

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2001-01-01

    Ba-doped, Bi-based, high-Tc superconductor was prepared by a solid state reaction method. The nominal composition used was Bi/sub 1.6/Pb/sub 0.4/Sr/sub 1.6/Ba/sub 0.4/Ca/sub 2/Cu/sub 3/O/sub y/. The samples were characterized by dc electrical resistivity and ac magnetic susceptibility both as a function of temperature (T). Room temperature x-ray diffraction studies were also done. Binder chemicals do affect the properties of the samples and it was observed that samples prepared with polyvinyl alcohol binder chemical showed good reproducible results. All the Above measurements showed that in the compound Bi/sub 1.6/Pb/sub 0.4/Ca/sub 2/Cu/sub 3/O/sub y/ there exists a single high-T/sub c/ phase with T/sub c.0≅/109 plus minus 1K. It behaves like an ideal metal before the superconducting transition in ρ-T plot and the Mathiessen's rule could be fitted. The ac susceptibility measurements support the observations of electrical resistivity. The lattice constants of the material are a=5.416(7) degree A, b=5.455(6) degree A, and c=37.26(8) degree A. The c-axis lattice constant slightly increased with Ba-doping. This fact indicated that Ba was probably incorporated into the Sr site of the crystal structure. Large sized samples (Diameter '28mm and length' 11mm) are under investigation for thermal transport properties by transient Plane Source (TPS) method. (author)

  8. A new software suite for NO{sub 2} vertical profile retrieval from ground-based zenith-sky spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Denis, L. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom); Roscoe, H.K. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom)]. E-mail: h.roscoe@bas.ac.uk; Chipperfield, M.P. [Environment Centre, University of Leeds, Leeds LS2 9JT (United Kingdom); Roozendael, M. van [Belgian Institute for Space Aeronomy (BIRA/IASB), 1180 Brussels (Belgium); Goutail, F. [Service d' Aeronomie du CNRS, BP3, 91271 Verrieres le Buisson (France)

    2005-05-15

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO{sub 2}. The motive is to improve the investigation of trends in NO{sub 2}, and is important because the current trend in NO{sub 2} appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO{sub 2} vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO{sub 2} variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring.

  9. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  10. MOLECULAR LINE OBSERVATIONS OF THE CARBON-RICH CIRCUMSTELLAR ENVELOPE CIT 6 AT 7 mm WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Wayne; Zhang Yong; Nakashima, Jun-ichi; Kwok, Sun [Department of Physics, University of Hong Kong (Hong Kong); Deguchi, Shuji [Nobeyama Radio Observatory, National Astronomical Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan)

    2012-11-20

    We present a {lambda}7 mm spectral line survey of the carbon-rich circumstellar envelope (CSE) CIT 6 using the 45 m telescope at the Nobeyama Radio Observatory. A total of 25 spectral features belonging to five molecular species (HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, SiO, and CS) are detected, enabling us to investigate the chemistry of cyanopolyyne chains. The line strengths are compared with those of the proto-typical carbon-rich CSE IRC+10216. The results show that the cyanopolyyne molecules are enhanced in CIT 6, suggesting that it is more evolved than IRC+10216. In order to investigate the structure of CIT 6, we have constructed a three-dimensional spatiokinematic model. By comparing the observed line profiles with the models, we conclude that this envelope is asymmetric and is composed of several incomplete shells.

  11. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    Directory of Open Access Journals (Sweden)

    C. Senten

    2008-07-01

    Full Text Available Ground-based high spectral resolution Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E. These campaigns represent the first FTIR observations carried out at a southern (subtropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O<sub>3sub>, methane (CH<sub>4sub>, nitrous oxide (N<sub>2sub>O, carbon monoxide (CO, ethane (C<sub>2sub>H>6sub>, hydrogen chloride (HCl, hydrogen fluoride (HF and nitric acid (HNO<sub>3sub> total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis and at 2200 m a.s.l. (Maïdo. It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.

  12. Photodissociation dynamics of CH{sub 3}C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2015-11-21

    In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.

  13. Diffusion Monte Carlo studies of MB-pol (H{sub 2}O){sub 2−6} and (D{sub 2}O){sub 2−6} clusters: Structures and binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Mallory, Joel D.; Mandelshtam, Vladimir A. [Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2016-08-14

    We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H{sub 2}O){sub 2−6} clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitive to the isotope substitution. Most remarkably, the ground state of the (H{sub 2}O){sub 6} hexamer is represented by four distinct cage structures, while that of (D{sub 2}O){sub 6} is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H{sub 2}O){sub 6} and (D{sub 2}O){sub 6}, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.

  14. Heteroepitaxial growth of In{sub 0.30}Ga{sub 0.70}As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, David, E-mail: david.kohen@asm.com; Nguyen, Xuan Sang; Made, Riko I; Lee, Kwang Hong; Lee, Kenneth Eng Kian [Low Energy Electronic Systems IRG (LEES), Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore); Yadav, Sachin; Kumar, Annie; Gong, Xiao; Yeo, Yee Chia [National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077 (Singapore); Heidelberger, Christopher [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Yoon, Soon Fatt [Low Energy Electronic Systems IRG (LEES), Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fitzgerald, Eugene A. [Low Energy Electronic Systems IRG (LEES), Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore); Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-08-15

    We report on the growth of an In{sub 0.30}Ga{sub 0.70}As channel high-electron mobility transistor (HEMT) on a 200 mm silicon wafer by metal organic vapor phase epitaxy. By using a 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded strain relaxing buffer, we achieve threading dislocation density of (1.0 ± 0.3) × 10{sup 7} cm{sup −2} with a surface roughness of 10 nm RMS. No phase separation was observed during the InAlAs compositionally graded buffer layer growth. 1.4 μm long channel length transistors are fabricated from the wafer with I{sub DS} of 70 μA/μm and g{sub m} of above 60 μS/μm, demonstrating the high quality of the grown materials.

  15. An empirical assessment of near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) earthquake in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kenneth W

    1984-06-01

    To help assess the impact of the current U.S. Geological Survey position on the seismic safety of nuclear power plants in the Eastern United States (EUS), several techniques for estimating near-source strong ground motion for a Charleston size earthquake were evaluated. The techniques for estimating the near-source strong ground motion for a 6.6 m{sub b} (7.5 M{sub S}) in the Eastern United States which were assessed are methods based on site specific analyses, semi-theoretical scaling techniques, and intensity-based estimates. The first involves the statistical analysis of ground motion records from earthquakes and recording stations having the same general characteristics (earthquakes with magnitudes of 7.5 M{sub S} or larger, epicentral distances of 25 km or less, and sites of either soil or rock). Some recommendations for source and characterization scaling of the bias resulting primarily from an inadequate sample of near-source recordings from earthquakes of large magnitude are discussed. The second technique evaluated requires that semi-theoretical estimates of peak ground motion parameters for a 6.6 m{sub b} (7.5 M{sub S}) earthquake be obtained from scaling relations. Each relation uses a theoretical expression between peak acceleration magnitude and distance together with available strong motion data (majority coming from California) to develop a scaling relation appropriate for the Eastern United States. None of the existing ground motion models for the EUS include the potential effects of source or site characteristics. Adjustments to account for fault mechanisms, site topography, site geology, and the size and embedment of buildings are discussed. The final approach used relations between strong ground motion parameters and Modified Mercalli Intensity in conjunction with two methods to estimate peak parameters for a 6.6 m{sub s} (7.5 M{sub S}) earthquake. As with other techniques, adjustment of peak acceleration estimates are discussed. Each method

  16. FIR and sub-mm direct detection spectrometers for spaceborne astronomy

    Science.gov (United States)

    Wijnbergen, Jan J.; de Graauw, Thijs

    1990-12-01

    Candidate spaceborne sub-mm instrumentation proposed for space projects with large passively cooled telescopes are reviewed. Grating instruments and Fourier transform spectroscopy (FTS) spectrometers are discussed. Particular attention is given to imaging Fabry-Perot spectrometers. The special needs of the Large Deployable Reflector (LDR) and for the Far InfraRed Space Telescope (FIRST) missions in this area are outlined. Possible Fabry-Perot spectrometer setups are diagrammed and outlined. The use of spherical and multiplex Fabry-Perot spectrometers is discussed.

  17. Coordinated polar spacecraft, geosynchronous spacecraft, and ground-based observations of magnetopause processes and their coupling to the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Le

    2004-12-01

    Full Text Available In this paper, we present in-situ observations of processes occurring at the magnetopause and vicinity, including surface waves, oscillatory magnetospheric field lines, and flux transfer events, and coordinated observations at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210° Magnetic Meridian (210MM magnetometer arrays. On 7 February 2002, during a high-speed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for ~3h. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings, as well as the velocity of the cold ion bursts, indicate that the magnetopause was oscillating with an ~6-min period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon, as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning ~4h in local time. These observations suggest that it is unlikely that the Kelvin-Helmholz instability and/or fluctuations in the solar wind dynamic pressure were the direct driving mechanisms for the observed boundary oscillations. Instead, the likely mechanism for the localized boundary oscillations was pulsed reconnection at the magnetopause occurring along the X-line extending over the same 4-h region. The Pc5 band pressure fluctuations commonly seen in high-speed solar wind streams may modulate the reconnection rate as an

  18. Millimetre and sub-mm wavelength radiation sources based on discrete Josephson junction arrays

    International Nuclear Information System (INIS)

    Darula, M.; Beuven, S.; Doderer, T.

    1999-01-01

    This paper reviews the present status and future perspectives of discrete Josephson junction arrays for applications as sub-mm wavelength radiation sources. It is intended to cover the whole field, i.e. theory, fabrication and experimental results. The theoretical part reviews the fundamental aspects of Josephson junctions for oscillator applications and introduces the different possible array types. The recent results of analytical as well as numerical investigations are discussed. After the description of the fabrication of both low-T c as well as high-T c superconductor Josephson junctions and arrays, methods to investigate the array dynamics experimentally are mentioned. Finally, the recent experimental results are reviewed. This topic is divided into two parts, the first dealing with low-T c arrays, the second with high-T c arrays. The different possibilities to design arrays and to include them in practical applications are discussed and compared, with special emphasis on those experiments where radiation was generated successfully. The article is completed with a discussion of the most important experimental results. (author)

  19. Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory

    Science.gov (United States)

    Beaudin, G.; Encrenaz, P.

    Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.

  20. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  1. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  2. Atomic layer deposition of two dimensional MoS{sub 2} on 150 mm substrates

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, Arturo; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of EECS, Oregon State University, Corvallis, Oregon 97331 (United States); Tweet, Douglas J. [Sharp Labs of America, Camas, Washington 98607 (United States)

    2016-03-15

    Low temperature atomic layer deposition (ALD) of monolayer to few layer MoS{sub 2} uniformly across 150 mm diameter SiO{sub 2}/Si and quartz substrates is demonstrated. Purge separated cycles of MoCl{sub 5} and H{sub 2}S precursors are used at reactor temperatures of up to 475 °C. Raman scattering studies show clearly the in-plane (E{sup 1}{sub 2g}) and out-of-plane (A{sub 1g}) modes of MoS{sub 2}. The separation of the E{sup 1}{sub 2g} and A{sub 1g} peaks is a function of the number of ALD cycles, shifting closer together with fewer layers. X-ray photoelectron spectroscopy indicates that stoichiometry is improved by postdeposition annealing in a sulfur ambient. High resolution transmission electron microscopy confirms the atomic spacing of monolayer MoS{sub 2} thin films.

  3. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    Science.gov (United States)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; hide

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  4. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  5. Ground-based measurements of the 1.3 to 0.3 mm spectrum of Jupiter and Saturn, and their detailed calibration

    Science.gov (United States)

    Pardo, Juan R.; Serabyn, Eugene; Wiedner, Martina C.; Moreno, Raphäel; Orton, Glenn

    2017-07-01

    One of the legacies of the now retired Caltech Submillimeter Observatory (CSO) is presented in this paper. We measured for the first time the emission of the giant planets Jupiter and Saturn across the 0.3 to 1.3 mm wavelength range using a Fourier Transform Spectrometer mounted on the 10.4 m dish of the CSO at Mauna Kea, Hawaii, 4100 m above sea level. A careful calibration, including the evaluation of the antenna performance over such a wide wavelength range and the removal of the Earth's atmosphere effects, has allowed the detection of broad absorption lines on those planets' atmospheres. The calibrated data allowed us to verify the predictions of standard models for both planets in this spectral region, and to confirm the absolute radiometry in the case of Jupiter. Besides their physical interest, the results are also important as both planets are calibration references in the current era of operating ground-based and space-borne submillimeter instruments.

  6. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  7. Characterisation of a tertiary mixture of {alpha}-Fe{sub 2}O{sub 3}, {gamma}-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Laboratory (Chemistry Group, BARC) BARC Facilities, Kalpakkam, Tamil Nadu 603 102. (India)

    1998-12-31

    A method has been developed to quantify the individual components of a ternary mixture containing {alpha}-Fe{sub 2}O{sub 3}, {gamma}- Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} based on the preferential dissolution of the components at a fixed time (fixed time - depending on the strength of the chelating agent) in a dilute chemical formulation (containing a chelant and an organic acid) both in presence and absence of reductant. A ternary component diagram was constructed based on the percentage dissolution of the individual components in 2,6-Pyridine dicarboxylic acid (PDCA), Nitrilo triacetic acid (NTA) and EDTA based formulation at 60degC both in presence and absence of reductant. In these formulations, the observed behaviour that the {alpha}-Fe{sub 2}O{sub 3} dissolved very little both in presence and absence of reductant and {gamma}-Fe{sub 2}O{sub 3} dissolved very little in absence of reductant were used for resolving the ternary physical mixture composition. Physical mixtures of Fe{sub 3}O{sub 4}, {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} based on mole ratio were taken such that the total quantity of Fe present would be 1.37 mM for complete dissolution. In presence and absence of reductant, dissolution percentage of Fe observed at fixed time in these formulations, when fit into the already constructed three component phase diagram for each formulation at the same fixed duration, the experimentally resolved composition showed good agreement with that based on individual components. This method is useful to resolve different polymorphs of metal oxides having the metal ions in single and/or multiple oxidation states. (author)

  8. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  9. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations

    Science.gov (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.

    2018-05-01

    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  10. Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign

    Directory of Open Access Journals (Sweden)

    L. J. Nunnermacker

    2008-12-01

    Full Text Available Mixing ratios of hydrogen peroxide and hydroxymethyl hydroperoxide were determined aboard the US Department of Energy G-1 Research Aircraft during the March, 2006 MILAGRO field campaign in Mexico. Ground measurements of total hydroperoxide were made at Tecámac University, about 35 km NW of Mexico City. In the air and on the ground, peroxide mixing ratios near the source region were generally near 1 ppbv. Strong southerly flow resulted in transport of pollutants from Mexico City to two downwind surface sites on several flight days. On these days, it was observed that peroxide concentrations slightly decreased as the G-1 flew progressively downwind. This observation is consistent with low or negative net peroxide production rates calculated for the source region and is due to the very high NO<sub>x> concentrations in the Mexico City plateau. However, relatively high values of peroxide were observed at takeoff and landing near Veracruz, a site with much higher humidity and lower NO<sub>x> concentrations.

  11. Competing ground states in LuFe{sub 4}Ge{sub 2} tuned by external pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ajeesh, Mukkattu Omanakuttan; Weber, Katharina; Reis, Ricardo dos; Geibel, Christoph; Nicklas, Michael [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    Tuning competing ground-state properties using external pressure has attracted much attention in current condensed matter research. This is due to the fact that exotic phenomena and unconventional phases occur in regions of competing energy scales. Here, we present an investigation on LuFe{sub 4}Ge{sub 2} by electrical resistivity experiments under external pressure in order to understand the interplay between competing ground states in a frustrated, itinerant magnetic system. At ambient pressure LuFe{sub 4}Ge{sub 2} orders antiferromagnetically below 32 K. The antiferromagnetic (AFM) transition is connected with a structural transition. We have established the temperature - pressure phase diagram: pressure suppresses the original antiferromagnetically ordered state to zero temperature at around 1.7 GPa. Upon further increasing pressure a new pressure-induced phase emerges. This phase exhibits a qualitatively different magnetoresistance compared with the AFM phase suggesting a different type of ordering than at lower pressures. Furthermore, above 1.5 GPa we find a metamagnetic transition at higher magnetic fields. The onset of this phase shifts to lower fields with increasing pressure. Further studies to understand the nature of the new phases are on the way.

  12. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  13. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  14. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Science.gov (United States)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  15. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    S. Düsing

    2018-01-01

    Full Text Available This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP2 Observational Prototype Experiment (HOPE in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System provided measurements of the aerosol particle number size distribution (PNSD, the aerosol particle number concentration (PNC, the number concentration of cloud condensation nuclei (CCN-NC, and meteorological atmospheric parameters (e.g., temperature and relative humidity. These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc for three wavelengths (355, 532, and 1064 nm. Particle extinction coefficient (σext profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR. A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908, optical aerosol properties under ambient

  16. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  17. On the synthesis and characterization of some new AB{sub 5} type MmNi{sub 4.3}Al{sub 0.3},Mn{sub 0.4}, LaNi{sub 5-{chi}}Si{sub {chi}} ({chi} = 0.1, 0.3, 0.5) and Mg-{chi} wt% CFMmNi{sub 5}-y wt% Si hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Srivistava, S.; Sai Raman, S.S.; Singh, B.K.; Srivistava, O.N. [Banaras Hindu Univ., Varanasi (India). Dept. of Physics

    2000-05-01

    higher storage capacity (1.2 wt%) than bulk version (0.96 wt%). Also the melt-spun version has faster kinetics and improved activation. For example, the kinetics corresponding to the melt-spun version of LaNi{sub 4.7}Si{sub 0.3} is 60% faster than the corresponding bulk. Si substitution results in faster kinetics and improved activation. For example, the kinetics of the melt-spun version of LaNi{sub 4.7}Si{sub 0.3} is 70% faster than the melt-spun form of MmNi{sub 4.3}A1{sub 0.3}Mn{sub 0.4}. These AB{sub 5}-type materials are particularly attractive in relation to MH cathode for high energy density Ni-MH batteries. In addition to the above type AB{sub 5} storage materials, we have also investigated Mg based composites. Of particular interest is the composite material Mg-{chi} wt% CFMmNi{sub 5}-y wt% Si ({chi} = 48; y = 2). The as-synthesized composite materials have been activated at 500{sup o}C under a hydrogen pressure of {approx} 40 bar and their hydrogen storage capacities and kinetics have been evaluated. It has been found that the composite material corresponding to Mg-48 wt% CFMmNi{sub 5}-2 wt% Si has a maximum hydrogen storage capacity of {approx} 5.0 wt% at {approx} 400{sup o}C. The small metalloid (Si) substitution in the present material in contrast to Mg-{chi} wt% CFMmNi{sub 5} improves the absorption and desorption kinetics. Extensive structural and microstructural studies before and after hydrogenation have been carried out to unravel the details of hydrogenation behaviour. These results will be described and discussed. (Author)

  18. Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2007-03-01

    Full Text Available Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations.

  19. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  20. ALMA sub-mm maser and dust distribution of VY Canis Majoris

    Science.gov (United States)

    Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.

    2014-12-01

    Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org

  1. Probing channel temperature profiles in Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistors on 200 mm diameter Si(111) by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, L. M., E-mail: a0048661@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), Singapore 117602 (Singapore); Bera, L. K.; Dolmanan, S. B.; Tan, H. R.; Bhat, T. N.; Tripathy, S., E-mail: tripathy-sudhiranjan@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), Singapore 117602 (Singapore); Liu, Y.; Bera, M. K.; Singh, S. P.; Chor, E. F. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-08-18

    Using micro-Raman and photoluminescence (PL) techniques, the channel temperature profile is probed in Al{sub x}Ga{sub 1-x}N/GaN high electron mobility transistors (HEMTs) fabricated on a 200 mm diameter Si(111) substrate. In particular, RuO{sub x}-based gate is used due to the semitransparent nature to the optical excitation wavelengths, thus allowing much accurate thermal investigations underneath the gate. To determine the channel temperature profile in devices subjected to different electrical bias voltages, the GaN band-edge PL peak shift calibration with respect to temperature is used. PL analyses show a maximum channel temperature up to 435 K underneath the gate edge between gate and drain, where the estimated thermal resistance in such a HEMT structure is about 13.7 KmmW{sup −1} at a power dissipation of ∼10 W/mm. The temperature profiles from micro-Raman measurements are also addressed from the E{sub 2}-high optical phonon peak shift of GaN, and this method also probes the temperature-induced peak shifts of optical phonon from Si thus showing the nature of thermal characteristics at the AlN/Si substrate interface.

  2. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    International Nuclear Information System (INIS)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-01-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd 3 Al 2 Ga 3 O 12 ) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm 2 detector area with 64 channels was used. One channel has a 3 by 3 mm 2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm 2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm 3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137 Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce

  3. Heating of large format filters in sub-mm and fir space optics

    Science.gov (United States)

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  4. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    Science.gov (United States)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC

  5. Solar brightness distribution at 8.6 mm from interferometer observations

    International Nuclear Information System (INIS)

    Kawabata, K.; Fujishita, M.; Kato, T.; Ogawa, H.; Omodaka, T.

    1980-01-01

    The radial brightness distribution of the quiet Sun at 8.6 mm is synthesized from observations using a sixteen element east-west interferometer in Nagoya. The observed brightness is flat from the disk center to 0.8 Rsub(sun). A slight darkening appeared between 0.8 Rsub(sun) and the limb. No evidence if the bright ring near the limb is found. The radio radius at 8.6 mm is 1.015 +- 0.005 Rsub(sun). In addition there exists a coronal component just outside the radio limb. (orig.)

  6. Strategy of thunderstorm measurement with super dense ground-based observation network

    Science.gov (United States)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  7. Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers

    DEFF Research Database (Denmark)

    Mygind, Jesper; Mahaini, C.; Dmitriev, P.

    2002-01-01

    The Josephson flux flow oscillator (FFO) has proven to be one of the best on-chip local oscillators for heterodyne detection in integrated sub-mm receivers based on SIS mixers. Nb-AlOx-Nb FFOs have been successfully tested from about 120 to 700 GHz (gap frequency of Nb) providing enough power...... to pump an SIS mixer (about 1 muW at 450 GHz). Both the frequency and the power of the FFO can be dc-tuned. Extensive measurements of the dependence of the free-running FFO linewidth on the differential resistances associated with both the bias current and the control-line current (applied magnetic field......) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters...

  8. Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS Ground-Based Augmentation System

    Science.gov (United States)

    Saito, S.; Yoshihara, T.

    2017-08-01

    Associated with plasma bubbles, extreme spatial gradients in ionospheric total electron content (TEC) were observed on 8 April 2008 at Ishigaki (24.3°N, 124.2°E, +19.6° magnetic latitude), Japan. The largest gradient was 3.38 TECU km-1 (total electron content unit, 1 TECU = 1016 el m-2), which is equivalent to an ionospheric delay gradient of 540 mm km-1 at the GPS L1 frequency (1.57542 GHz). This value is confirmed by using multiple estimating methods. The observed value exceeds the maximum ionospheric gradient that has ever been observed (412 mm km-1 or 2.59 TECU km-1) to be associated with a severe magnetic storm. It also exceeds the assumed maximum value (500 mm km-1 or 3.08 TECU km-1) which was used to validate the draft international standard for Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS) to support Category II/III approaches and landings. The steepest part of this extreme gradient had a scale size of 5.3 km, and the front-normal velocities were estimated to be 71 m s-1 with a wavefront-normal direction of east-northeastward. The total width of the transition region from outside to inside the plasma bubble was estimated to be 35.3 km. The gradient of relatively small spatial scale size may fall between an aircraft and a GBAS ground subsystem and may be undetectable by both aircraft and ground.

  9. Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

    NARCIS (Netherlands)

    Boers, R.; Baltink, K.H.; Hemink, H.J.; Bosveld, F.C.; Moerman, M.

    2013-01-01

    The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research(51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observationsto investigate the relationship between visibility and radar reflectivity. The fog layer thickness

  10. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  11. Recent Advances in Observations of Ground-level Auroral Kilometric Radiation

    Science.gov (United States)

    Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.

    2011-12-01

    Recently LaBelle and Anderson [2011] reported the first definitive observations of AKR at ground level, confirmed through simultaneous measurements on the Geotail spacecraft and at South Pole Station, Antarctica. The initial observations consisted of three examples recorded in 2004. An Antarctic observing site is critical for observing ground level AKR which is obscured by man-made broadcast signals at northern hemisphere locations. Examination of 2008 austral winter radio data from Antarctic Automatic Geophysical Observatories (AGOs) of the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) network and South Pole Station reveals 37 ground level AKR events on 23 different days, 30 of which are confirmed by correlation with AKR observed with the Geotail spacecraft. The location of the Geotail spacecraft appears to be a significant factor enabling coincident measurements. Six of the AKR events are detected at two or three ground-level observatories separated by approximately 500 km, suggesting that the events illuminate an area comparable to a 500-km diameter. For 14 events on ten nights, photometer and all-sky imager data from South Pole and AGOs were examined; in ten cases, locations of auroral arcs could be determined at the times of the events. In eight of those cases, the AKR was detected at observatories poleward of the auroral arcs, and in the other two cases the aurora was approximately overhead at the observatory where AKR was detected. These observations suggest that the AKR signals may be ducted to ground level along magnetic field lines rather than propagating directly from the AKR source region of approximately 5000 km altitude. Correlations between structures in the AKR and intensifications of auroral arcs are occasionally observed but are rare. The ground-level AKR events have a local time distribution similar to that of AKR observed from satellites, peaking in the pre-midnight to midnight sector. This data base of >30

  12. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  13. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  14. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  15. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  16. Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?

    International Nuclear Information System (INIS)

    Ansmann, Albert

    2006-01-01

    Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground stations can deliver the same results as obtained from space when the Klett formalism is applied to elastic backscatter lidar data for the same aerosol case. This question is investigated based on simulations of observed cases of simple and complex aerosol layering. The results show that the differences between spaceborne and ground-based observations can be as large as20% for the backscatter and extinction coefficients and the optimum estimates of the column lidar ratios. In cases with complex aerosol layering, the application of the two-layer approach can lead to similar results (space, ground) and accurate products provided that horizontally homogeneous aerosol conditions are given

  17. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  18. Anisotropy of superconducting transformation in magnetic fields in Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 monocrystal

    CERN Document Server

    Panova, G K; Chernoplekov, N A; Emelchenko, G A; Malyuk, A N; Lin, S T

    2002-01-01

    The anisotropy of the superconducting properties of the Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 monocrystal is studied by resistance within the temperature range of 2-30 K in the 0, 1, 2, 4, 6 Tl magnetic fields in the a-b plane. The T sub c (H) and H sub c sub 2 (T) strong anisotropy was observed by the magnetic field different orientation in the a-b plane. The zero direction in the gap of the order parameter is determined. The analysis of the experimental data shows, that such a result may be related to the change in the symmetry in the copper atoms surrounding, leading to its reduction from the tetragonal to orthorhombic one in the low-temperature area. The comparison with the La sub 1 sub . sub 8 sub 5 Sr sub 0 sub . sub 1 sub 5 CuO sub 4 gives all grounds to suppose, that the superconductivity mechanism in the electron- and hole-doped superconductor is similar and the observed difference is connected with the structure peculiarities

  19. Multisatellite and ground-based observations of transient ULF waves

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Takahashi, K.; Erlandson, R.E.; Luehr, H.; Marklund, G.T.; Block, L.P.; Blomberg, L.G.; Lepping, R.P.

    1989-01-01

    A unique alignment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE and Viking satellites with respect to the EISCAT Magnetometer Cross has provided an opportunity to study transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite. These observations were acquired during a relatively quiet period on April 24, 1986, during the Polar Region and Outer Magnetosphere International Study (PROMIS) period. An isolated 4-mHz (4-min period) pulsation was detected on the ground which was associated with transverse magnetic field oscillations observed by Viking at a ∼ 2-R E altitude above the auroral zone and by CCE at ∼ 8-R E in the equatorial plane on nearly the same flux tube. CCE detected a compressional oscillation in the magnetic field with twice the period (∼ 10 min) of the transverse waves, and with a waveform nearly identical to an isolated oscillation in the solar wind plasma density measured by IMP 8. The authors conclude that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations inside the magnetosphere at the same frequency which also enhanced resonant oscillations at approximately twice the frequency that were already present. The ground magnetic field variations are due to ionospheric Hall currents driven by the electric field of the standing Alfven waves. The time delay between surface and satellite data acquired at different local times supports the conclusion that the periodic solar wind density variation excites a tailward traveling large-scale magnetosphere wave train which excites local field line resonant oscillations. They conclude that these transient magnetic field variations are not associated with magnetic field reconnection or flux transfer events

  20. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  1. THE BOLOCAM GALACTIC PLANE SURVEY. X. A COMPLETE SPECTROSCOPIC CATALOG OF DENSE MOLECULAR GAS OBSERVED TOWARD 1.1 mm DUST CONTINUUM SOURCES WITH 7.°5 ≤ l ≤ 194°

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, Yancy L.; Svoboda, Brian [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellsworth-Bowers, Timothy P.; Schlingman, Wayne M.; Ginsburg, Adam; Battersby, Cara; Stringfellow, Guy; Glenn, Jason; Bally, John [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics, University of Alberta, 4-181 CCIS Edmonton AB T6G 2E1 (Canada); Gerner, Thomas [Max-Planck-Institut für Astronomie (MPIA), Knigstuhl 17, D-69117 Heidelberg (Germany); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Dunham, Miranda K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-11-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 deg{sup 2}. We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas tracers, HCO{sup +} and N{sub 2}H{sup +} 3-2, for all 6194 sources in the BGPS v1.0.1 catalog between 7.°5 ≤ l ≤ 194°. This is the largest targeted spectroscopic survey of dense molecular gas in the Milky Way to date. We find unique velocities for 3126 (50.5%) of the BGPS v1.0.1 sources observed. Strong N{sub 2}H{sup +} 3-2 emission (T {sub mb} > 0.5 K) without HCO{sup +} 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO{sup +} is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km s{sup –1} consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH{sub 3} observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rather than by variations in molecular column density or abundance. We identify a subset of 113 sources with stronger N{sub 2}H{sup +} than HCO{sup +} integrated intensity, but we find no correlations between the N{sub 2}H{sup +}/HCO{sup +} ratio and 1.1 mm continuum flux density, gas kinetic temperature, or line width. Self-absorbed profiles are rare (1.3%)

  2. Coordinated observation of field line resonance in the mid-tail

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2006-03-01

    Full Text Available Standing Alfvén waves of 1.1 mHz (~15 min in period were observed by the Cluster satellites in the mid-tail during 06:00-07:00 UT on 8 August 2003. Pulsations with the same frequency were also observed at several ground stations near Cluster's footpoint. The standing wave properties were determined from the electric and magnetic field measurements of Cluster. Data from the ground magnetometers indicated a latitudinal amplitude and phase structure consistent with the driven field line resonance (FLR at 1.1 mHz. Simultaneously, quasi-periodic oscillations at different frequencies were observed in the post-midnight/early morning sector by GOES 12 (l<sub>0sub>≈8.7, Polar (l<sub>0sub>≈11-14 and Geotail (l<sub>0sub>≈9.8. The 8 August 2003 event yields rare and interesting datasets. It provides, for the first time, coordinated in situ and ground-based observations of a very low frequency FLR in the mid-tail on stretched field lines.

  3. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    Science.gov (United States)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  4. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014

    Directory of Open Access Journals (Sweden)

    Spiru Paraschiv

    2017-11-01

    Full Text Available In this work we present the evolution of tropospheric nitrogen dioxide (NO2 content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI, while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E, Berlin (52.51° N, 13.41° E, Bucharest (44.43° N, 26.10° E, Madrid (40.38° N, 3.71° W, Lisbon (38.71° N, 9.13° W, Paris (48.85° N, 2.35° E, Rome (41.9° N, 12.50° E, and Rotterdam (51.91° N, 4.46° E. We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50 between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80 between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study.

  5. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  6. Process induced sub-surface damage in mechanically ground silicon wafers

    International Nuclear Information System (INIS)

    Yang Yu; De Munck, Koen; Teixeira, Ricardo Cotrin; Swinnen, Bart; De Wolf, Ingrid; Verlinden, Bert

    2008-01-01

    Micro-Raman spectroscopy, scanning electron microcopy, atomic force microscopy and preferential etching were used to characterize the sub-surface damage induced by the rough and fine grinding steps used to make ultra-thin silicon wafers. The roughly and ultra-finely ground silicon wafers were examined on both the machined (1 0 0) planes and the cross-sectional (1 1 0) planes. They reveal similar multi-layer damage structures, consisting of amorphous, plastically deformed and elastically stressed layers. However, the thickness of each layer in the roughly ground sample is much higher than its counterpart layers in the ultra-finely ground sample. The residual stress after rough and ultra-fine grinding is in the range of several hundreds MPa and 30 MPa, respectively. In each case, the top amorphous layer is believed to be the result of sequential phase transformations (Si-I to Si-II to amorphous Si). These phase transformations correspond to a ductile grinding mechanism, which is dominating in ultra-fine grinding. On the other hand, in rough grinding, a mixed mechanism of ductile and brittle grinding causes multi-layer damage and sub-surface cracks

  7. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data

    Science.gov (United States)

    Chia, Kenny; Lau, Tze Liang

    2017-07-01

    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  8. Multiple ground-based and satellite observations of global Pi 2 magnetic pulsations

    International Nuclear Information System (INIS)

    Yumoto, K.; Takahashi, K.; Sakurai, T.; Sutcliffe, P.R.; Kokubun, S.; Luehr, H.; Saito, T.; Kuwashima, M.; Sato, N.

    1990-01-01

    Four Pi 2 magnetic pulsations, observed on the ground at L = 1.2-6.9 in the interval from 2,300 UT on May 22 to 0300 UT on May 23, 1985, provide new evidence of a global nature of Pi 2 pulsations in the inner (L approx-lt 7) region of the magnetosphere bounded by the plasma sheet during quiet geomagnetic conditions. In the present study, magnetic data have been collected from stations distributed widely both in local time and in latitude, including conjugate stations, and from the AMPTE/CCE spacecraft located in the magnetotail. On the basis of high time resolution magnetic field data, the following characteristics of Pi 2 have been established: horizontal components, H and D, of the Pi 2 oscillate nearly antiphase and in-phase, respectively, between the high- and low-altitude stations in the midnight southern hemisphere. Both the H and D components of the Pi 2 have nearly in-phase relationships between the nightside and the dayside stations at low latitude. The Pi 2 amplitude is larger at the high-latitude station and decreases toward lower latitudes. The dominant periods of the Pi 2 are nearly identical at all stations. Although a direct coincidence between spacecraft-observed and ground-based global Pi 2 events does not exist for these events, the Pi 2 events are believed to be a forced field line oscillation of global scale, coupled with the magnetospheric cavity resonance wave in the inner magnetosphere during the substorm expansive phase

  9. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  10. Heat Transfer Experiments with Supercritical CO{sub 2} in a Vertical Circular Tube (9.0 mm)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Woo Gun; Bae, Yoon Yeong [Hannam University, Daejeon (Korea, Republic of)

    2008-10-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic behaviors of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has critical pressure and temperature which is much lower than water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical circular tube with and inner diameter of 9.0mm has been performed. CO{sub 2} flows downward through the vertical circular tube for the simulation of the water rod which may be used for a moderation of the reactor. The heat transfer characteristics were analyzed and compared with the upward flow test results previously performed at the same test section at KAERI.

  11. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    Science.gov (United States)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  12. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  13. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  14. MnFe{sub 2}O{sub 4} as a gas sensor towards SO{sub 2} and NO{sub 2} gases

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Deepshikha, E-mail: deep.nano@gmail.com; Mitra, Supratim [Department of Natural Sciences, NIIT University, Neemrana, Rajasthan 301705 (India)

    2016-05-06

    The chemical co-precipitation method was used to synthesize MnFe{sub 2}O{sub 4} nanoparticles. Single cubic phase formation of nanoparticles was confirmed by X-ray diffraction technique. The average particle size of MnFe{sub 2}O{sub 4} nanoparticles was found to be 10.7 nm using Scherrer formula. The ultrafine powder of MnFe{sub 2}O{sub 4} nanoparticles was pressed to design pellet of 10 mm diameter and 1mm thickness. Copper electrodes have been deposited on the surface of pellet using silver paste in the form of capacitor. Fabricated gas sensing device of MnFe{sub 2}O{sub 4} nanoparticles was tested towards SO{sub 2} and NO{sub 2} gases. Cole-Cole plot of MnFe{sub 2}O{sub 4} was investigated with the help of electrochemical workstation. The performance of the sensors including sensitivity, response and recovery time was also determined. It was observed that the MnFe{sub 2}O{sub 4} nanoparticles are more sensible for NO{sub 2} gas as compared to SO{sub 2} gas.

  15. Observations of HO{sub x}, NO{sub x}, NO{sub y}, and CO. NO{sub x} control of the photochemical production and removal of ozone in the upper troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, P O; Hanisco, T F; Lanzendorf, E L; Jaegle, L Y; Jacob, D J; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; [Dept. of Earth and Planetary Sciences; Fahey, D W; Gao, R S; Keim, E R [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    In-situ measurements from the NASA ER2 aircraft provide the first observations of the odd-hydrogen radicals in the upper troposphere. A new photochemical model was constructed to explain the observations. Based on the model, the way of NO{sub x} influence on the photochemistry of ozone was determined. The measurements also explain why high NO{sub x}/NO{sub y} ratios are sustained in the upper troposphere. (R.P.)

  16. Observations of HO{sub x}, NO{sub x}, NO{sub y}, and CO. NO{sub x} control of the photochemical production and removal of ozone in the upper troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, P.O.; Hanisco, T.F.; Lanzendorf, E.L.; Jaegle, L.Y.; Jacob, D.J.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry]|[Dept. of Earth and Planetary Sciences; Fahey, D.W.; Gao, R.S.; Keim, E.R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    In-situ measurements from the NASA ER2 aircraft provide the first observations of the odd-hydrogen radicals in the upper troposphere. A new photochemical model was constructed to explain the observations. Based on the model, the way of NO{sub x} influence on the photochemistry of ozone was determined. The measurements also explain why high NO{sub x}/NO{sub y} ratios are sustained in the upper troposphere. (R.P.)

  17. Exploring the relationship between a ground-based network and airborne CCN spectra observed at the cloud level

    Science.gov (United States)

    Corrigan, C.; Roberts, G. C.; Ritchie, J.; Creamean, J.; White, A. B.

    2011-12-01

    Cloud condensation nuclei (CCN) are aerosol particles that participate in the formation of clouds, and consequently, play a significant role in the influence of anthropogenic aerosols on atmospheric processes and climate change. Ultimately, the CCN of the most interest occupy the part of the atmosphere where cloud processes are occurring. A question arises as to whether in-cloud CCN are properly represented by the measurements of CCN at the ground level. While different locations may result in different answers depending upon local meteorology, the data set collected during CalWater 2011 may allow us to answer to what degree the ground-based observations of CCN are sufficient for evaluating cloud micro-physics over California's Central Valley and the lower slopes of the Sierra Nevada Mountains. During CalWater 2011, ground observations were performed at three different altitudes to assess the evolution of cloud-active aerosols as they were transported from sources in California's Central Valley to the lower slopes of the Sierra Nevada Mountains. CCN spectra were collected over a supersaturation range of 0.08 to 0.80%. Results from these data sets show a diurnal cycle with aerosol concentrations increasing during the afternoon and retreating during the night. In addition, a CCN instrument was placed aboard aircraft for several flights and was able to collect vertical profiles that encompassed the altitudes of the ground sites. The flight data shows a large drop in CCN concentration above the boundary layer and suggests the highest altitude ground site at China Wall ( 1540 masl)was sometimes above the Central Valley boundary layer. By using estimates of boundary layer heights over the mid-altitude site at Sugar Pine Dam (1060 masl), the events when the China Wall site is near or above the boundary layer are identified. During these events, the CCN measurements at China Wall best represent in-cloud CCN behavior. The results of this analysis may be applied towards a

  18. Magnetic and mechanical design of a 130 mm aperture Nb{sub 3}Sn dipole magnet

    Energy Technology Data Exchange (ETDEWEB)

    Felice, H.; Vedrine, P. [CEA Saclay, DAPNIA/SACM/LEAS, F-91191 Gif Sur Yvette, (France); Mailfert, A. [LEM, F-54500 Vandoeuvre Les Nancy, (France)

    2007-07-01

    For the next generation of dipoles for accelerators, two main challenges come into play. In one hand, high dipolar fields in the range of 13 to 15 T are targeted. In the other hand, large apertures (above 80 mm) are required in the interaction regions. These two requirements lead to two issues. First, a new superconductor has to replace the NbTi as its limits have been reached around 10 T with the LHC. The superconducting material liable to be its successor is the Nb{sub 3}Sn. However, it is a very mechanical stress sensitive material. Up to now, a mechanical stress of 150 MPa is supposed to degrade its critical properties. Second, large aperture dipole can not be considered with the well-known cosine theta design. Indeed, above 88 mm, azimuthal Lorentz forces in this magnetic configuration produces mechanical stresses on the coil midplane higher than the acceptable limit. In this paper, an alternative coil arrangement based on intersecting ellipses and limiting the mechanical stresses is proposed for a 130 mm aperture dipole. The first part of this paper is dedicated to the magnetic study of this magnet. We can underline the fact that the field quality required in particle accelerators can be reached with a bore field of about 13 T. The second part deals with the mechanical structure of the magnet which is necessary to withstand the Lorentz forces involved and to apply pre-stress. (authors)

  19. Observation of linear spin wave dispersion in the reentrant spin glass Fe sub 0 sub . sub 7 Al sub 0 sub . sub 3

    CERN Document Server

    Shapiro, S M; Raymond, S; Lee, S H; Motoya, K

    2002-01-01

    Fe sub 0 sub . sub 7 Al sub 0 sub . sub 3 is a reentrant spin glass, which undergoes a transition from a paramagnet to a disordered ferromagnet at T sub c propor to 500 K; at a lower temperature the spins progressively freeze and it exhibits a spin-glass-like behavior. In the ferromagnetic phase spin waves with a q sup 2 dispersion are observed at small q, which broaden rapidly and become diffusive beyond a critical wave vector q sub 0. On cooling the spin waves also disappear and a strong elastic central peak develops. For measurements around the (1,1,1) Bragg peak, a new sharp excitation is observed which has a linear dispersion behavior. It disappears above T sub c , but persists throughout the spin-glass phase. It is not present in the stoichiometric Fe sub 3 Al material. (orig.)

  20. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  1. NMR Studies of the Vanadium Spin Dynamics and Spin Structure in LiV<sub>2sub>O>4sub>, CaV<sub>2sub>O>4sub>, and (Li<sub>xV>1-xsub>)>3sub>BO>5sub> (x ≈ 0.33, 0.40)

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Xiaopeng [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Strong electron correlation is believed to be an essential and unifying factor in diverse properties of condensed matter systems. Ground states that can arise due to electron correlation effects include Mott insulators, heavy fermion, ferromagnetism and antiferromagnetism, spin glasses, and high-temperature superconductivity. The electronic systems in transition metal oxide compounds are often highly correlated. In this thesis, the author presents experimental studies on three strongly correlated vanadium oxide compounds: LiV<sub>2sub>O>4sub>, (Li<sub>xV>1-xsub>)>3sub>BO>5sub>, and CaV<sub>2sub>O>4sub>, which have completely different ground states.

  2. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  3. Investigation of ground water aquifer at Karangrowo Site, Undaan District, Kudus Sub Province Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Kudus is one of sub province in central Java with have the fresh water availability problem Condition of insufficiency 'Standard Water has been recognized in some part of regional area, those are Karangrowo area, Undaan District The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process; due the ground water trapped character is briny or brackish. One of the alternatives to overcome water problem is election or delineated of prospect area fur exploiting of ground water. Referring to that problem ''Pusbang Geologi Nuklir BATAN'' means to conduct investigation of ground water in some location problem of clean water. The ground investigation activity is to get information about the geology, geohydrology and sub surface geophysical characterize, which is needed to identification of ground water aquifer. To obtain that target, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo electrical 2-D image measurement Base on the result of analyze, evaluation and discussion was identified the existence of potential aquifer that happened at layer of sand sedimentary, in form of lens trapped in impermeable layer of clay sediment The layer of aquifer pattern follows of Old River in North-South and East-West direction. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement GF. A 4-14, AB 4-11 and B4. Physical characterized of aquifer, resistivity 9-19 Ωm with charge ability 13-53 milliseconds. (author)

  4. Carbon nanotubes rooted montmorillonite (CNT-MM) reinforced nanocomposite membrane for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Dhanagopal, E-mail: dmani_cat@yahoo.co.in [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Mangalaraja, Ramalinga Viswanathan, E-mail: mangal@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Avila, Ricardo E. [Personal Dosimetry Section, Chilean Nuclear Energy Commission, Cas. 188-D, Santiago (Chile); Siddheswaran, Rajendran [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Ananthakumar, Solaiappan [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel montmorillonite-CNT (MM-CNT) nanohybrid materials were produced by CVD. Black-Right-Pointing-Pointer Highly selective crystalline carbon nanotubes were grown over montmorillonite. Black-Right-Pointing-Pointer Fabricated Nafion-MM-CNT nanocomposite membrane by solution casting method. Black-Right-Pointing-Pointer Homogeneous dispersion of MM-CNT in the Nafion matrix was achieved. Black-Right-Pointing-Pointer Combined effect of montmorillonite and CNT improves the thermal stability of Nafion. - Abstract: Nafion based nanocomposite membranes containing montmorillonite-carbon nanotubes (a binary hybrid material) were produced to develop high performance polymer electrolyte fuel cells. Multi walled carbon nanotubes were grown over 20 and 25 wt% iron loaded montmorillonite catalysts by CVD using acetylene as the carbon precursor. Growth experiments were carried out at optimised conditions to obtain highly selective crystalline carbon nanotubes. X-ray diffraction spectra of the catalysts were recorded for the structural characterisation and definition of particle size. The carbon nanotubes obtained were examined by various physico chemical characterisation studies such as SEM, TEM, Raman spectroscopy and TG analyses to understand the morphology and crystallinity of the CNTs. The MM-CNT hybrid material with I{sub D}/I{sub G} ratio of Raman spectral band as 0.53 represents the high selectivity towards CNTs. Thus the hybrid material produced was considered as the best nanofiller to develop polymer nanocomposites. Nafion based nanocomposite membranes were prepared by adding MM-CNT as nanofiller by solution casting method. A better dispersion of MM-CNT into the Nafion matrix was observed and the addition of the MM-CNT improved the thermal stability of the Nafion membrane.

  5. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Directory of Open Access Journals (Sweden)

    F. Sprovieri

    2016-09-01

    Full Text Available Long-term monitoring of data of ambient mercury (Hg on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS project was funded by the European Commission (http://www.gmos.eu and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015, analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  6. Irradiation behaviour of a 500 mm long hollow U{sub 3}Si fuel element irradiated under BLW conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feraday, M A; Chalder, G H; Cotnam, K D

    1969-07-15

    A 500 mm long Zircaloy-clad element of U{sub 3}Si (4.3 wt% Si) containing a 13% central void was irradiated to an average burnup of 3600 MWd/tonne U at an average linear power output of 790 W/cm, in boiling water coolant at 55 bars pressure. A larger diameter increase (1.5%) at the mid-plane of the element than elsewhere was attributed to the reduced restraint imposed on the fuel in this area as a consequence of {beta} annealing a section of the cold worked sheath. Diameter increases in the cold worked portions of the sheath (average 0.7%) were greater than in similar elements irradiated in pressurized water at 96 bars pressure the difference is attributed to higher linear power output of the element in this test. External swelling of the element before filling of the central void was complete is attributed to the higher silicon content of the fuel compared with previous tests. No reaction between U{sub 3}Si and Zircaloy was observed at a fuel sheath interface temperature near 400{sup o}C. (author)

  7. Structural and magnetic properties of Fe{sub 7−n}Pt{sub n} with n = 0, 1, 2, . . . 7, bimetallic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Tadeo, A. P.; Morán-López, J. L., E-mail: joseluis.moran@ipicyt.edu.mx [Instituto Potosino de Investigación Científica y Tenológica, División de Materiales Avanzados (Mexico); Ricardo-Chavez, J. L. [Benemérita Universidad Autónoma de Puebla, Laboratorio Nacional de Supercómputo (Mexico)

    2016-11-15

    An exhaustive study of the structural and magnetic properties of Fe{sub 7−n}Pt{sub n} with n = 0, 1, 2, …7, bimetallic clusters is presented. Based on ab initio density functional theory that includes spin-orbit coupling (SOC) and graph theory, the ground state geometry, the local chemical order, and the orbital and spin magnetic moments are calculated. We show how the systems evolves from the 3-d Fe to the quasi-planar Pt clusters. These calculations show that SOC are necessary to describe correctly the composition dependence of the binding energy of these nanoalloys. We observe that the ground state geometries on the Fe rich side resemble the fcc structure adopted by bulk samples. Furthermore, we observe how the spin and orbital magnetic moments depend on the chemical concentration and chemical order. Based on these results, we estimated the magnetic anisotropy energy and found that the largest values correspond to some of the most symmetric structures, Fe{sub 5}Pt{sub 2} and FePt{sub 6}. To determine the degree of non-collinearity, we define an index that shows that in FePt{sub 6} the total magnetic moments, on each atom, are the less collinear.

  8. Investigation of CO, C2H6 and aerosols over Eastern Canada during BORTAS 2011 using ground-based and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, Debora; Franklin, Jonathan; Parrington, Mark; Whaley, Cynthia; Hopper, Jason; Lesins, Glen; Tereszchuk, Keith; Walker, Kaley A.; Drummond, James R.; Palmer, Paul; Strong, Kimberly; Duck, Thomas J.; Abboud, Ihab; Dan, Lin; O'Neill, Norm; Clerbaux, Cathy; Coheur, Pierre; Bernath, Peter F.; Hyer, Edward; Kliever, Jenny

    2013-04-01

    We present the results of total column measurements of CO and C2H6 and aerosol optical depth (AOD) during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. They were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and in Toronto, Ontario. Measurements of enhanced fine mode AOD were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this study, we will focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre (CMC) as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto did originate from forest fires in Northwestern Ontario, that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6-CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. The C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to other geographical regions. The ground-based CO and C2H6 observations were compared with output from the 3-D global chemical transport model GEOS-Chem, using the inventory of the Fire Locating And Monitoring of Burning Emissions (FLAMBE). Good agreement was found for

  9. Structural and electronic properties of V{sub 2}B{sub n} (n = 1–10) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Nan; Jia, Jianfeng, E-mail: jiajf@dns.sxnu.edu.cn; Wu, Hai-Shun, E-mail: wuhs@mail.sxnu.edu.cn

    2015-09-28

    Highlights: • Ground state isomers of V{sub 2}B{sub n} clusters are presented. • The growth pattern of V{sub 2}B{sub n} clusters is discussed. • V{sub 2}B{sub 6} is found to be the magically stable cluster. • The different ground state structure of V{sub 2}B{sub n} from that of Ta{sub 2}B{sub n} is caused by the small atomic radius of V atom. - Abstract: Inspired by the discovery of a series of Ta{sub 2}B{sub n} clusters, the geometric structures, stabilities, and electronic properties of V{sub 2}B{sub n} clusters up to n = 10 have been systematically investigated based on the density-functional B3LYP method and the CCSD(T) method. Among the small size clusters, the V{sub 2}B{sub 5} cluster was observed to have different geometric motif than Sc{sub 2}B{sub 5}, Ti{sub 2}B{sub 5} and Ta{sub 2}B{sub 5}. For V{sub 2}B{sub n} clusters with an n ⩾ 6, the bipyramidal structure is energetically favored, as for Sc{sub 2}B{sub n} and Ti{sub 2}B{sub n}. The second-order difference of energies, binding energies, dissociation energies, vertical ionization potentials, vertical electron affinities and chemical hardness of the V{sub 2}B{sub n} clusters were calculated and analyzed. The V{sub 2}B{sub 6} cluster was determined to be stable thermodynamically and might be observed in a future experiment. To understand the stability of the V{sub 2}B{sub 6} cluster, a detailed inspection of its occupied valence orbitals was performed.

  10. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  11. Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B magnets characterisation and modelling for cryogenic permanent magnet undulator applications

    Energy Technology Data Exchange (ETDEWEB)

    Benabderrahmane, C., E-mail: chamseddine.benabderrahmane@synchrotron-soleil.fr [Synchrotron SOLEIL, St Aubin (France); Berteaud, P.; Valleau, M.; Kitegi, C.; Tavakoli, K.; Bechu, N.; Mary, A.; Filhol, J.M.; Couprie, M.E. [Synchrotron SOLEIL, St Aubin (France)

    2012-03-21

    Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE{sub 2}Fe{sub 14}B (Rare Earth based magnets) at cryogenic temperatures for achieving short period high magnetic field. In particular, using Praseodymium instead of Neodymium generally employed for insertion devices avoids limitation due to Spin Reorientation Transition phenomenon. Magnetic properties of magnet samples (Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B) versus temperature have been investigated and applied to a 20 mm period Nd{sub 2}Fe{sub 14}B (BH50) and to a 18 mm period Pr{sub 2}Fe{sub 14}B (CR53) systems. Four period undulators have been built, characterised and compared to the models.

  12. SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1

    International Nuclear Information System (INIS)

    Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.; Vaillancourt, John E.; Krejny, M.

    2016-01-01

    We present 11.1 to 37.1 μ m imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 μ m) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 μ m shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO.

  13. Sub-Doppler spectroscopy of thioformaldehyde: Excited state perturbations and evidence for rotation-induced vibrational mixing in the ground state

    International Nuclear Information System (INIS)

    Clouthier, D.J.; Huang, G.; Adam, A.G.; Merer, A.J.

    1994-01-01

    High-resolution intracavity dye laser spectroscopy has been used to obtain sub-Doppler spectra of transitions to 350 rotational levels in the 4 1 0 band of the A 1 A 2 --X 1 A 1 electronic transition of thioformaldehyde. Ground state combination differences from the sub-Doppler spectra, combined with microwave and infrared data, have been used to improve the ground state rotational and centrifugal distortion constants of H 2 CS. The upper state shows a remarkable number of perturbations. The largest of these are caused by nearby triplet levels, with matrix elements of 0.05--0.15 cm -1 . A particularly clear singlet--triplet avoided crossing in K a ' = 7 has been shown to be caused by interaction with the F 1 component of the 3 1 6 2 vibrational level of the a 3 A 2 state. At least 53% of the S 1 levels show evidence of very small perturbations by high rovibronic levels of the ground state. The number of such perturbations is small at low J, but increases rapidly beyond J=5 such that 40%--80% of the observed S 1 levels of any given J are perturbed by ground state levels. Model calculations show that the density and J dependence of the number of perturbed levels can be explained if there is extensive rotation-induced mixing of the vibrational levels in the ground state

  14. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  15. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    Science.gov (United States)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the

  16. SUBMILLIMETER ARRAY OBSERVATIONS TOWARD THE MASSIVE STAR-FORMING CORE MM1 OF W75N

    International Nuclear Information System (INIS)

    Minh, Y. C.; Su, Y.-N.; Liu, S.-Y.; Yan, C.-H.; Chen, H.-R.; Kim, S.-J.

    2010-01-01

    The massive star-forming core MM1 of W75N was observed using the Submillimeter Array with ∼1'' and 2'' spatial resolutions at 217 and 347 GHz, respectively. From the 217 GHz continuum we found that the MM1 core consists of two sources, separated by about 1'': MM1a (∼0.6 M sun ) and MM1b (∼1.4 M sun ), located near the radio continuum sources VLA 2/VLA 3 and VLA 1, respectively. Within MM1b, two gas clumps were found to be expanding away from VLA 1 at about ±3 km s -1 , as a result of the most recent star formation activity in the region. Observed molecular lines show emission peaks at two positions, MM1a and MM1b: sulfur-bearing species have emission peaks toward MM1a, but methanol and saturated species at MM1b. We identified high-temperature (∼200 K) gas toward MM1a and the hot core in MM1b. This segregation may result from the evolution of the massive star-forming core. In the very early phase of star formation, the hot core is seen through the evaporation of dust ice-mantle species. As the mantle species are consumed via evaporation the high-temperature gas species (such as the sulfur-bearing molecules) become bright. The SiO molecule is unique in having an emission peak exactly at the VLA 2 position, probably tracing a shock powered by VLA 2. The observed sulfur-bearing species show similar abundances both in MM1a and MM1b, whereas the methanol and saturated species show significant abundance enhancement toward MM1b, by about an order of magnitude, compared to MM1a.

  17. LLAMA: A new mm and submm observing facility

    Science.gov (United States)

    Arnal, E. M.; Abraham, Z.; Cappa, C.; Giménez de Castro, G.; da Gouveia dal Pino, E. M.; Larrarte, J. J.; Lepine, J.; Viramonte, J.

    2017-07-01

    The current status of the project LLAMA, acronym of Large Latin American Millimetre Array is very briefly described in this paper. This project is a joint scientific and technological undertaking of Argentina and Brazil on the basis of an equal investment share, whose mail goal is both to install and to operate an observing facility capable of exploring the Universe at millimetre and sub/millimetre wavelengths. This facility will be erected in the argentinean province of Salta, at a site located 4830m above sea level.

  18. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  19. Coordinated mm/sub-mm observations of Sagittarius A* in May 2007

    Czech Academy of Sciences Publication Activity Database

    Kunneriath, D.; Eckart, A.; Vogel, S.; Sjouwerman, L.; Wiesemeyer, H.; Schödel, R.; Baganoff, F. K.; Morris, M.; Bertram, T.; Dovčiak, Michal; Downes, D.; Duschl, W.J.; Karas, Vladimír; König, S.; Krichbaum, T.P.; Krips, M.; Lu, R.-S.; Markoff, S. B.; Mauerhan, J.; Meyer, L.; Moultaka, J.; Muzic, K.; Najarro, F.; Schuster, K.; Straubmeier, C.; Thum, C.; Witzel, G.; Zamaninasab, M.; Zensus, A.

    2008-01-01

    Roč. 131, - (2008), s. 1-7 ISSN 1742-6588. [The Universe under the Microscope – Astrophysics at High Angular Resolution. Bad Honnef, 21.04.2008-25.04.2008] Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  1. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    Science.gov (United States)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  2. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  3. Thermoluminescence and optically stimulated luminescence properties of Dy{sup 3+}-doped CaO–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}-based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yahaba, T., E-mail: takuma.yahaba.s1@dc.tohoku.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Fujimoto, Y. [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Yanagida, T. [Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma 630-0192 (Japan); Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K. [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2017-02-01

    We developed Dy{sup 3+}-doped CaO–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} transitions of Dy{sup 3+} were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} transition of Dy{sup 3+} was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1–90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy{sup 3+}-doped CaO–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}-based glasses are applicable as TL materials.

  4. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  5. Comparison in processing routes by copper mold casting injection and suction in the Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} vitreous alloy; Comparacao entre as rotas de processamento por fundicao com injecao e com succao da liga vitrea Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, W.; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    To expand the application of glassy metals, the development of processing routes and compositions that allow the production of parts with dimensions of millimeters or even centimeters, is very important. The present work aims the contribution to the technological development of processing routes for the production of Cu-based bulk metallic glasses. Wedge-shaped samples of Cu{sub 46}Zr{sub 42}Al{sub 7}Y{sub 5} (atom percent) chemical composition were processed using copper mold casting by suction and injection. Characterization was made combining scanning electron microscopy, x-ray diffraction and differential scanning calorimetry. The critical amorphous thickness obtained by those two different routes was carefully observed. The suction route allow obtaining the best results with critical amorphous thickness about 8 mm. This result was analyzed considering the different extrinsic parameters to the glass forming ability of the alloy. (author)

  6. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdelraheem, Wael H.M. [Chemistry Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang; Duan, Xiaodi [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus)

    2015-01-23

    Graphical abstract: - Highlights: • UV-254 nm/H{sub 2}O{sub 2} AOP was utilized for the degradation and mineralization of PBSA and BSA. • Promotion of k{sub obs} with [H{sub 2}O{sub 2}]{sub 0} ≤ 4 mM and inhibition at higher [H{sub 2}O{sub 2}]{sub 0} were observed. • The S and N were released and monitored as SO{sub 4}{sup 2−} and NH{sub 4}{sup +}, respectively. • Br{sup −} inhibited both the degradation and mineralization much more significantly than Cl{sup −}. • There was an increase in [NH{sub 4}{sup +}] at higher [H{sub 2}O{sub 2}]{sub 0} and its further destruction at higher UV fluence. - Abstract: Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254 nm/H{sub 2}O{sub 2} advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0 mM [H{sub 2}O{sub 2}]{sub 0}, a complete removal of 40.0 μM parent PBSA and 25% decrease in TOC were achieved with 190 min of UV irradiation; SO{sub 4}{sup 2−} was formed and reached its maximum level while the release of nitrogen as NH{sub 4}{sup +} was much lower (around 50%) at 190 min. Sulfate removal was strongly enhanced by increasing [H{sub 2}O{sub 2}]{sub 0} in the range of 0–4.0 mM, with slight inhibition in 4.0–12.0 mM. Faster and earlier ammonia formation was observed at higher [H{sub 2}O{sub 2}]{sub 0}. The presence of Br{sup −} slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl{sup −}. Our study provides important technical and fundamental results on the HO{sup ·} based degradation and

  7. A multicentre observational study of the outcomes of screening detected sub-aneurysmal aortic dilatation

    DEFF Research Database (Denmark)

    Wild, J B; Stather, P W; Biancari, F

    2013-01-01

    of patients with screening detected sub aneurysmal aortic dilatation. DESIGN AND METHODS: Individual patient data was obtained from 8 screening programmes that had performed long term follow up of patients with sub aneurysmal aortic dilatation. Outcome measures recorded were the progression to true aneurysmal...... dilatation (aortic diameter 30 mm or greater), progression to size threshold for surgical intervention (55 mm) and aneurysm rupture. RESULTS: Aortic measurements for 1696 men and women (median age 66 years at initial scan) with sub-aneurysmal aortae were obtained, median period of follow up was 4.0 years...... (range 0.1-19.0 years). Following Kaplan Meier and life table analysis 67.7% of patients with 5 complete years of surveillance reached an aortic diameter of 30 mm or greater however 0.9% had an aortic diameter of 54 mm. A total of 26.2% of patients with 10 complete years of follow up had an AAA...

  8. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  9. First observation of the nuclei {sup 45}Fe and {sup 49}Ni (T{sub Z} = - 7/2) and {sup 42}Cr (T{sub Z} = - 3); Premiere observation des noyaux {sup 45}Fe et {sup 49}Ni (T{sub Z} = - 7/2) et {sup 42}Cr (T{sub Z} = - 3)

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B.; Czajkowski, S.; Davi, F.; Del Moral, R.; Fleury, A.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Dufour, J.P. [URA 451, Gradignan (France); Benlliure, J.; Boue, F.; Collatz, R.; Heinz, A.; Hellstroem, M.; Hu, Z.; Roeckl, E.; Shibata, M.; Suemmerer, K. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Janas, Z.; Karny, M.; Pfuetzner, M. [Institute of Experimental Physics, University of Warsaw, PL-00 681 Warszawa (Poland); Lewitowicz, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1997-06-01

    The two-proton radioactivity from the ground states was predicted by V.I. Goldanskii; it can take place either by {sup 2}He emission or by the simultaneous emission of two spatially non-correlated protons. For the nuclei liable to this type of radioactivity the single proton emission is energetically forbidden. The two-proton decay was observed for {sup 6}Be{sup 2} and {sup 12}O{sup 3} but the Q-value of the reaction is high above the Coulomb barrier and as such does not permit a decay process of a sufficient long lifetime. Theoretical calculations by B.A. Brawn predict {sup 39}Ti, {sup 45}Fe and {sup 48}Ni as the best candidates with the 2p emission lifetime within 1{mu}s to 150 ms. Only {sup 39}Ti decay has been observed so far. As candidate for 2p radioactivity nuclei we studied {sup 38}Ti, {sup 42}Cr, {sup 45}Fe and {sup 48`49}Ni. A primary beam of {sup 58}Ni at 600 MeV/nucleon from the SIS synchrotron at GSI was used to produce proton-rich isotopes in the titanium-to-nickel region by projectile fragmentation on a beryllium target. The fragment were separated by the projectile-fragment separator FRS and unambiguously identified by means of its standard detection set-up using a ToF-{Delta}E-B{rho} analysis. We report here the first observation of the T{sub Z} = - 7/2 nuclei {sup 45}Fe and {sup 49}Ni, the most proton-rich nuclei ever synthesized with an excess and seven protons. In addition, the new isotope {sup 42}Cr (T{sub Z} -3) was also identified. These isotopes are, according to commonly used mass predictions, all unbound with respect to two-proton emission from their ground states. However, we did not observe any count corresponding to {sup 38}Ti (T{sub Z} -3) although we expected about 5 counts in a setting optimized for this isotope 6 refs.

  10. New developments of radio-astronomy in the sub-mmwave region

    International Nuclear Information System (INIS)

    Matthews, H.E.

    1989-01-01

    Astronomy at submillimeter wavelengths is a technically demanding discipline which is coming of age through the recent construction of several large ground-based facilities and continuing advances in receiver technology. The current status of the field is reviewed with attention being paid particularly to the potential contributions to astrophysics and to the major difficulties facing the observer at these wavelengths. The results of surveys for molecular transitions and examples of the uses of such lines in determining excitation and other parameters of circum- and interstellar material is discussed. Observations of continuum radiation, principally of cold dust, is also touched upon. Both line and continuum studies have great potential at these wavelengths in the study of protostellar objects, as well as in the late stages of stellar evolution. Prospects for the future development of sub-mm astronomy are bright; plans to overcome the limitations imposed by the atmosphere using satellite technology, and to increase angular resolution by the use of interferometry are reviewed

  11. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  12. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  13. High Resolution Sub-MM Fiberoptic Endoscope Final Report CRADA No. TSB-1447-97

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Gary F. [Univ. of California, Livermore, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, John [CML Fiberoptics, Inc., Auburn, NY (United States)

    2018-01-22

    At the time of the CRADA, LLNL needed to develop a sub-mm outer diameter fiberoptic endoscope with 25pm or better resolution at 3-lOmm working distance to support the Enhanced Surveillance Program (ESP) and the Core Surveillance Program for DOE. The commercially available systems did not meet the image resolution requirements and development work was needed to reach three goals. We also needed to perform preliminary investigations into the production of such an endoscope with a steerable-articulated distal end. The goal of such an endoscope was to allow for a 45 degree inspection cone including the lens field of view.

  14. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  15. Observation of stimulated Raman scattering in polar tetragonal crystals of barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Rhee, Hanjo; Eichler, Hans J.; Lux, Oliver [Institute of Optics and Atomic Physics, Technical University of Berlin (Germany); Nemec, Ivan [Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague (Czech Republic); Yoneda, Hitoki; Shirakawa, Akira [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan); Becker, Petra; Bohaty, Ladislav [Section Crystallography, Institute of Geology and Mineralogy, University of Cologne (Germany)

    2017-04-15

    The non-centrosymmetric polar tetragonal (P4{sub 1}) barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O, was found to be an attractive novel semi-organic crystal manifesting numerous χ{sup (2)}- and χ{sup (3)}-nonlinear optical interactions. In particular, with picosecond single- and dual-wavelength pumping SHG and THG via cascaded parametric four-wave processes were observed. High-order Stokes and anti-Stokes lasing related to two SRS-promoting vibration modes of the crystal, with ω{sub SRS1} ∼ 575 cm{sup -1} and ω{sub SRS2} ∼ 2940 cm{sup -1}, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS-active vibration modes is discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    Science.gov (United States)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  17. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  18. Single-layer and double-layer microwave absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Zhongzhu, E-mail: wangzz@ahu.edu.cn [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Peihong; Liao, Yanlin [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Bi, Hong [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China)

    2017-03-01

    Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were synthesized by hydrothermal method. The complex permeability and complex permittivity of the as-prepared powders dispersing in wax (60 wt% powder) were measured using a vector network analyzer in 2–18 GHz frequency range. The calculated microwave absorption of single-layer and double-layer absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were analyzed in 2–18 GHz frequency range. The results show that the Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}nanocrystals with the relatively low permittivity and Co{sub 67}Ni{sub 33} microspheres with the relatively high dielectric loss and magnetic loss can be used as proper matching layer and excellent absorption layer, respectively. The double-layer absorber with a coating thickness of 2.1 mm exhibits a maximum reflection loss of −43.8 dB as well as a bandwidth (reflection loss less than −10 dB) of 5 GHz. Moreover, their absorption peak and the absorption intensity can be adjusted easily through changing the stacking order and each layer thickness. - Highlights: • Ni-Zn ferrite nanocrystals can use as matching layer in double-layer absorbers. • Co{sub 67}Ni{sub 33} microspheres with high dielectric loss can use as absorption layer. • Double-layer absorbers exhibits an excellent microwave absorption in 2–18 GHz.

  19. Magnetovolume effects of quasi-one-dimensional itinerant electron magnets (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Y. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: rk04j052@stkt.u-hyogo.ac.jp; Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Nakamura, H. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)

    2006-05-01

    Magnetovolume effects of 3d heavy-electron compounds with linear spin chains, (La{sub 1-x}Y{sub x})Mn{sub 4}Al{sub 8} with x=<0.15 and =1, have been investigated to get information on the ground state of LaMn{sub 4}Al{sub 8} and the nature of spin fluctuations in this system. The negative thermal expansion observed for LaMn{sub 4}Al{sub 8} is suppressed by the substitution of a small amount of Y for La. Together with the field-cooled effect in the susceptibility, the magnetovolume effect suggests the development of short-range magnetic correlation in LaMn{sub 4}Al{sub 8} at low temperatures.

  20. Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Iowa State University, Aerospace Engineering Department, Ames, IA (United States); University of Minnesota, Saint Anthony Falls Laboratory, Minneapolis, MN (United States); Sarkar, Partha P. [Iowa State University, Aerospace Engineering Department, Ames, IA (United States)

    2012-02-15

    The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03-0.3 (vane angle {theta}{sub v} = 15 -60 ), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, {theta}{sub v} = 15 ) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1-0.3, {theta}{sub v} = 30 -60 ). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio ({theta}{sub v} = 45 ) that at the low swirl ratio ({theta}{sub v} = 15 ), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the

  1. The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars

    Science.gov (United States)

    Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.

    2008-12-01

    In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.

  2. In situ observation of transformation in alpha-Fe sub 2 O sub 3 under hydrogen implantation

    CERN Document Server

    Watanabe, Y; Ishikawa, N; Furuya, K; Kato, M

    2002-01-01

    An in situ observation of the alpha-Fe sub 2 O sub 3 -to-Fe sub 3 O sub 4 transformation has been performed using a dual-ion-beam accelerator interfaced with a transmission electron microscope (TEM). During the hydrogen-ion implantation of alpha-Fe sub 2 O sub 3 , transformation into the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) was observed. It was also found that the orientation relationship between alpha-Fe sub 2 O sub 3 and the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) satisfies the Shoji-Nishiyama relationship, in agreement with previous experiments. It was also found that the nearest interatomic distance does not vary by the implantation until the re-stacked phase appears, although when the re-stacked phase is formed, the lattice expansion is observed in the transformed (re-stacked) phase. Judging from these results, we have concluded that the alpha-Fe sub 2 O sub 3 to Fe sub 3 O sub 4 transformation is induced during the hydrogen ion implantation of alpha-Fe sub 2 O sub 3.

  3. Valence behavior of Eu-ions in intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek, E-mail: apandey@ameslab.gov [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Mazumdar, Chandan, E-mail: chandan.mazumdar@saha.ac.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Ranganathan, R. [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Raghavendra Reddy, V.; Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandawa Road, Indore (India)

    2011-12-15

    We have studied the valence behavior of rare-earth ions, in particular Eu-ions, in a cubic intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} which is a homogeneous solid solution of two mixed-valent compounds CePd{sub 3} and EuPd{sub 3}B. Results of {sup 151}Eu Moessbauer spectroscopic measurements show that two different valence states, i.e., divalent- and trivalent-like states of Eu-ions exist in the compound. The possible reason for the observed heterogeneous valency vis-a-vis the variation in the chemical environment and the number of nearest-neighbor B atoms surrounding the Eu-ions has been discussed. Our results demonstrate that B incorporation in such Eu-based cubic intermetallic compounds leads to a situation where heterogeneous-valence state of Eu-ions is an energetically favorable ground state. - Highlights: > Intermetallic compound Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} crystallizes in a single phase. > Eu-ions in Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}B{sub 0.5} are charge-ordered compared to +2.3 valency in Ce{sub 0.5}Eu{sub 0.5}Pd{sub 3}. > B incorporation makes charge-ordered state of Eu-ions energetically more favorable. > Nearest-neighbor chemical environment affects the Eu valency.

  4. CT-based postimplant dosimetry of prostate brachytherapy. Comparison of 1-mm and 5-mm section CT

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Kanematsu, Masayuki; Matsuo, Masayuki; Hoshi, Hiroaki; Nakano, Masahiro; Maeda, Sanaho; Deguchi, Takashi; Hoshi, Hiroaki

    2007-01-01

    The aim of this study was to compare the outcomes between 1-mm and 5-mm section computed tomography (CT)-based postimplant dosimetry. A series of 21 consecutive patients underwent permanent prostate brachytherapy. The postimplant prostate volume was calculated using 1-mm and 5-mm section CT. One radiation oncologist contoured the prostate on CT images to obtain the reconstructed prostate volume (pVol), prostate V 100 (percent of the prostate volume receiving at least the full prescribed dose), and prostate D 90 (mean dose delivered to 90% of the prostate gland). The same radiation oncologist performed the contouring three times to evaluate intraobserver variation and subjectively scored the quality of the CT images. The mean ±1 standard deviation (SD) postimplant pVol was 20.17±6.66 cc by 1-mm section CT and 22.24±8.48 cc by 5-mm section CT; the difference in the mean values was 2.06 cc (P 100 was 80.44%±7.06% by 1-mm section CT and 77.33%±10.22% by 5-mm section CT. The mean postimplant prostate D 90 was 83.28%±10.81% by 1-mm section CT and 78.60%±15.75% by 5-mm section CT. In the evaluation of image quality, 5-mm section CT was assigned significantly higher scores than 1-mm section CT. In regard to intraobserver variation, 5-mm section CT revealed less intraobserver variation than 1-mm section CT. Our current results suggested that the outcomes of postimplant dosimetry using 1-mm section CT did not improved the results over those obtained using 5-mm section CT in terms of the quality of the CT image or reproducibility. (author)

  5. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  6. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill

    2017-06-21

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  7. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Poleski, Radoslaw; Penny, Matthew; Street, Rachel A.; Bennett, David P.; Hogg, David W.; Gaudi, B. Scott; Zhu, W.; Barclay, T.; Barentsen, G.; hide

    2016-01-01

    K2's Campaign 9 (K2C9) will conduct a approximately 3.7 sq. deg survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax Pi(sub E) for approximately greater than 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

  8. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio

    2017-10-01

    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  9. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    Science.gov (United States)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  10. The management-retrieval code of the sub-library of atomic mass and characteristic constants for nuclear ground state

    International Nuclear Information System (INIS)

    Su Zongdi; Ma Lizhen

    1994-01-01

    The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields

  11. Development and design of a UF{sub 6} gas pressure meter for 42 mm pipes

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.; Wichers, V.A.

    1995-08-01

    X-ray fluorescence (XRF) has proved to be a feasible method of measuring the pressure of UF{sub 6}-gas for enrichment verification purposes. Complications will arise under extreme conditions, such as high uranium deposit to gas ratios, pipe diameters smaller than 40 mm and pressures less than 100 Pa. This report presents an experimental analysis of the XRF method for design worst case conditions for 42 outer diameter cascade-to-header pipes and the development of a prototype measurement device. This prototype is integrated in the construction of the enrichment verification system. (orig.).

  12. Comparison of OMI NO2 Observations and Their Seasonal and Weekly Cycles with Ground-Based Measurements in Helsinki

    Science.gov (United States)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Boersma, Folkert; Hovila, Jari; Tamminen, Johanna

    2016-01-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from standard product (SP) and DOMINO algorithm, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora 21 and OMI SP retrievals is 4 and 6 for clear sky and all sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about 5 and 14 for clear sky and all sky conditions, respectively. Large differences often correspond to cloudy autumn-winter days with solar zenith angles above 65. Nevertheless, the differences remain within the retrieval uncertainties. Furthermore, the weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as result of reduced emissions from traffic and industrial activities. Also the seasonal cycle shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in an urban site at high latitudes (60N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes.

  13. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  14. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  15. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    Science.gov (United States)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  16. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    International Nuclear Information System (INIS)

    Lopez-Valverde, M. A.; Montabone, L.; Sornig, M.; Sonnabend, G.

    2016-01-01

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO 2 planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations

  17. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  18. Surgery for Pulmonary Multiple Ground Glass Opacities

    Directory of Open Access Journals (Sweden)

    Qun WANG

    2016-06-01

    Full Text Available The incidence of pulmonary ground glass opacity (GGO has been increasing in recent years, with a great number of patients having multiple GGOs. Unfortunately, the management of multiple GGOs is still controversial. Pulmonary GGO is a radiological term, consisting of different pathological types. Some of the GGOs are early-staged lung cancer. GGO is an indolent nodule, only a small proportion of GGOs change during observation, which does not influence the efficacy of surgery. . The timing of surgery for multiple GGOs mainly depends on the predominant nodule and surgery is recommended if the solid component of the predominant nodule >5 mm. Either lobectomy or sub-lobectomy is feasible. GGOs other than the predominant nodule can be left unresected. Multiple GGOs with high risk factors need mediastinal lymph node dissection or sampling.

  19. An Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Quadrupling of the Millimeter Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, T. R.; Brogan, C. L.; Indebetouw, R. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); MacLeod, G. [Hartebeesthoek Radio Astronomy Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Cyganowski, C. J. [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Chandler, C. J. [NRAO, P.O. Box O, Socorro, NM 87801 (United States); Chibueze, J. O. [Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Carver Building, 1 University Road, Nsukka (Nigeria); Friesen, R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Thesner, C. [Centre for Space Research, Physics Department, North-West University, Potchefstroom 2520 (South Africa); Young, K. H., E-mail: thunter@nrao.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Based on sub-arcsecond Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array (SMA) 1.3 mm continuum images of the massive protocluster NGC 6334I obtained in 2015 and 2008, we find that the dust emission from MM1 has increased by a factor of 4.0 ± 0.3 during the intervening years, and undergone a significant change in morphology. The continuum emission from the other cluster members (MM2, MM4, and the UCH ii region MM3 = NGC 6334F) has remained constant. Long-term single-dish maser monitoring at HartRAO finds that multiple maser species toward NGC 6334I flared beginning in early 2015, a few months before our ALMA observation, and some persist in that state. New ALMA images obtained in 2016 July–August at 1.1 and 0.87 mm confirm the changes with respect to SMA 0.87 mm images from 2008, and indicate that the (sub)millimeter flaring has continued for at least a year. The excess continuum emission, centered on the hypercompact H ii region MM1B, is extended and elongated (1.″6 × 1.″0 ≈ 2100 × 1300 au) with multiple peaks, suggestive of general heating of the surrounding subcomponents of MM1, some of which may trace clumps in a fragmented disk rather than separate protostars. In either case, these remarkable increases in maser and dust emission provide direct observational evidence of a sudden accretion event in the growth of a massive protostar yielding a sustained luminosity surge by a factor of 70 ± 20, analogous to the largest events in simulations by Meyer et al. This target provides an excellent opportunity to assess the impact of such a rare event on a protocluster over many years.

  20. The seeding effect of floating zone growth on Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 and Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta single crystals

    CERN Document Server

    Lin, C T; Liang, B

    2002-01-01

    Single crystals with the [100] orientation were selected and used as seeds to investigate the effect of travelling solvent floating zone growth on superconducting oxides of Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 and Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta. The number of nuclei was remarkably reduced and random nuclei could be eased when the seeding was applied during the growth of Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 single crystals, compared to the crystals grown without seed. The crystal could preferentially grow on the seed although some additional nuclei occurred at the solid-liquid interface during the initial growth process. In consequence, the crystal ingot obtained is a large single grain having dimensions of 5 mm in diameter and 40 mm in length. The orientation of the seeded growth crystal was found to be 5deg off the [100] seed identified by an x-ray Laue pattern. For the growth of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub - subdelta, it...

  1. A novel method for sub-arc VMAT dose delivery verification based on portal dosimetry with an EPID.

    Science.gov (United States)

    Cools, Ruud A M; Dirkx, Maarten L P; Heijmen, Ben J M

    2017-11-01

    The EPID-based sub-arc verification of VMAT dose delivery requires synchronization of the acquired electronic portal images (EPIs) with the VMAT delivery, that is, establishment of the start- and stop-MU of the acquired images. To realize this, published synchronization methods propose the use of logging features of the linac or dedicated hardware solutions. In this study, we developed a novel, software-based synchronization method that only uses information inherently available in the acquired images. The EPIs are continuously acquired during pretreatment VMAT delivery and converted into Portal Dose Images (PDIs). Sub-arcs of approximately 10 MU are then defined by combining groups of sequentially acquired PDIs. The start- and stop-MUs of measured sub-arcs are established in a synchronization procedure, using only dosimetric information in measured and predicted PDIs. Sub-arc verification of a VMAT dose delivery is based on comparison of measured sub-arc PDIs with synchronized, predicted sub-arc PDIs, using γ-analyses. To assess the accuracy of this new method, measured and predicted PDIs were compared for 20 clinically applied VMAT prostate cancer plans. The sensitivity of the method for detection of delivery errors was investigated using VMAT deliveries with intentionally inserted, small perturbations (25 error scenarios; leaf gap deviations ≤ 1.5 mm, leaf motion stops during ≤ 15 MU, linac output error ≤ 2%). For the 20 plans, the average failed pixel rates (FPR) for full-arc and sub-arc dose QA were 0.36% ± 0.26% (1 SD) and 0.64% ± 0.88%, based on 2%/2 mm and 3%/3 mm γ-analyses, respectively. Small systematic perturbations of up to 1% output error and 1 mm leaf offset were detected using full-arc QA. Sub-arc QA was able to detect positioning errors in three leaves only during approximately 20 MU and small dose delivery errors during approximately 40 MU. In an ROC analysis, the area under the curve (AUC) for the combined full-arc/sub-arc approach was

  2. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part II: Pebble properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • The mechanical strength of Li{sub 4}SiO{sub 4}-based breeder pebbles can be improved by adding either LMT, LAO or LLTO as second phase. • The increase in strength is closely linked to a reduction of the open porosity of the pebbles. • All fabricated pebbles show a highly homogenous microstructure with mostly low closed porosity. • Adding LLTO, although it decomposes during sintering, greatly improves the strength of the pebbles. - Abstract: The pebble properties of novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3} are evaluated in this work as a function of the second phase concentration and the microstructure of the pebbles. The characterization focused on the mechanical strength, microstructure and open as well as closed porosity. Therefore crush load tests, SEM analyses as well as helium pycnometry and optical image analysis were performed, respectively. This work shows that generally additions of a second phase to Li{sub 4}SiO{sub 4} considerably improve the mechanical strength. It also shows that the fabrication processes have to be well-controlled to achieve high mechanical strengths. When Li{sub 2}TiO{sub 3} is added in different concentrations, the determinant for the crush load seems to be the open porosity of the pebbles. The strengthening effect of LiAlO{sub 2} compared to Li{sub 2}TiO{sub 3} is similar, while additions of Li{sub x}La{sub y}TiO{sub 3} increase the mechanical strength much more. Yet, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases upon sintering. In general the pebble properties of all samples are favorable for use within a fusion breeder blanket.

  3. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  4. Magnetic ordering in single crystals of PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta

    CERN Document Server

    Uma, S; Gmelin, E; Rangarajan, G; Skanthakumar, S; Lynn, J W; Walter, R; Lorenz, T; Büchner, B; Walker, E; Erb, A

    1998-01-01

    Heat capacity measurements on pure but twinned single crystals of PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta reveal a sharp peak at T sub N sup P sup sub T =16.6 K, which according to thermal expansion, neutron diffraction, and magnetic susceptibility measurements originates from an antiferromagnetic ordering of the Pr-ion moments. A modest coupling to the Cu(2) spin system is observed. Below T sub N sup P sup sub T a first-order transition in the magnetic structure of the Pr spin system (at 13.4 K in warming; approx. 11 K in cooling) is found. Field-dependent heat capacity data show anisotropic temperature dependences of the c sub p -peaks and recover a Schottky-like anomaly due to the crystal-field-split ground state of the Pr sup 3 sup +. (author). Letter-to-the-editor

  5. Structure and magnetic properties of new Be-substituted langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=Pr, Nd, and Sm)

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.Z., E-mail: sharmaa5@myumanitoba.ca [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Silverstein, H.J. [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Hallas, A.M. [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Luke, G.M. [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Canadian Institute for Advanced Research, 180 Dundas Street W, Suite 1400, Toronto, ON, Canada M5G 1Z8 (Canada); Wiebe, C.R. [Department of Chemistry, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, Canada R3T 2N2 (Canada); Department of Chemistry, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, Canada R3B 2E9 (Canada); Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, Canada L8S 4M1 (Canada); Canadian Institute for Advanced Research, 180 Dundas Street W, Suite 1400, Toronto, ON, Canada M5G 1Z8 (Canada)

    2016-01-15

    Langasites have been studied extensively in past for their functional properties and use in telecommunication. A thorough understanding of their ground state is limited by the difficulty in synthesizing new members belonging to this series due to the formation of competing phases such as the garnets. Three magnetic langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=Pr, Nd, and Sm) and a non-magnetic lattice standard La{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} were synthesized using the ceramic method. These were further characterized by X-ray diffraction, magnetization, magnetic susceptibility and heat capacity measurements. All three langasites exhibit net antiferromagnetic interactions at low temperatures and no evidence of long range magnetic ordering was observed down to 0.350 K. - Graphical abstract: Kagome network formed by the magnetic ions in the new Be-langasites. The ground states of three new members were explored using different physical property measurements such as X-ray diffraction, magnetization, magnetic susceptibility and heat capacity (a–d show refinement patterns for the langasites). These can be added to the list of candidate spin liquid materials. - Highlights: • Four new langasites A{sub 3}Ga{sub 3}Ge{sub 2}BeO{sub 14} (A=La, Pr, Nd, and Sm) were synthesized. • These were characterized using physical and magnetic property measurements. • These langasites exhibit net antiferromagnetic interactions at low temperatures. • No evidence of long range magnetic ordering was observed down to 0.350 K. • Can be potential Spin liquid candidates.

  6. Direct observation of the crystal structure changes in the Mg{sub x}Zn{sub 1−x}O alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Jo; Lee, Ji-Hyun; Kim, Chang-Yeon [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Chang Hoi [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Shin, Jae Won [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Kim, Hong Seung, E-mail: hongseung@hhu.ac.kr [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Kim, Jin-Gyu, E-mail: jjintta@kbsi.re.kr [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2015-08-03

    We directly observed the crystal structure changes of the Mg{sub x}Zn{sub 1−x}O alloy thin film deposited on Si (111) substrates. Through the in situ heating transmission electron microscopy study, it was determined that the crystal structure changes did not occur up to at 400 °C, whereas the disappearance of the hexagonal structure was observed at 500 °C in the layer of nanosized grains. Additionally, the decreased intensity of the Zn L-edge was analyzed in the comparison of the core loss electron energy loss spectroscopy spectra of the Zn L-edge and the Mg K-edge obtained at room temperature and 500 °C. Based on these experimental results, the process of crystal structure changes could be explained by the evaporation of Zn atoms in the Mg{sub x}Zn{sub 1−x}O alloy system. This phenomenon is prominent in the improvement of the microstructure of the Mg{sub x}Zn{sub 1−x}O alloy thin film by controlling the thermal annealing temperature. - Highlights: • Mg{sub x}Zn{sub 1−x}O thin films coexisting with cubic and hexagonal structures were deposited. • Crystal structure changes of the thin films were directly observed at 500 °C. • The process of microstructure changes could be caused by the evaporation of Zn atoms.

  7. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  8. Prediction of atmospheric δ13CO<sub>2sub> using fossil plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Johns Hopkins Univ., Baltimore, MD (United States); Arens, Nan Crystal [Hobart and William Smith Colleges, Geneva, NY (United States); Harbeson, Stephanie A. [Johns Hopkins Univ., Baltimore, MD (United States); Univ. of Virginia, Charlottesville, VA (United States)

    2008-06-30

    To summarize the content: we presented the results of laboratory experiments designed to quantify the relationship between plant tissue δ13C and δ13CO<sub>2sub> values under varying environmental conditions, including differential pCO<sub>2sub> ranging from 1 to 3 times today’s levels. As predicted, plants grown under elevated pCO2 showed increased average biomass compared to controls grown at the same temperature. Across a very large range in δ13Ca (≈ 24 ‰) and pCO<sub>2sub> (≈ 740 ppmv) we observed a consistent correlation between δ13Ca and δ13Cp (p<0.001). We show an average isotopic depletion of -25.4 ‰ for above-ground tissue and -23.2 ‰ for below-ground tissue of Raphanus sativus L. relative to the composition of the atmosphere under which it formed. For both above- and below-ground tissue, grown at both ~23 °C and ~29 °C, correlation was strong and significant (r2 ≥ 0.98, p<0.001); variation in pCO<sub>2sub> level had little or no effect on this relationship.

  9. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    Science.gov (United States)

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS{sub 2} hybrid structure with TiO{sub 2}-SiO{sub 2} composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, J.B.; Prajapati, Y.K. [Motilal Nehru National Institute of Technology, Electronics and Communication Engineering Department, Allahabad, Uttar Pradesh (India); Singh, V. [Banaras Hindu University, Department of Physics, Varanasi, Uttar Pradesh (India); Saini, J.P. [Bundelkhand Institute of Engineering and Technology, Electronics and Communication Engineering Department, Jhansi, Uttar Pradesh (India)

    2015-11-15

    In this paper, surface plasmon resonance (SPR) sensor based on graphene-MoS{sub 2} hybrid structure with composite layer of TiO{sub 2}-SiO{sub 2} is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO{sub 2}, SiO{sub 2} and gold layers are optimized for the monolayer graphene and MoS{sub 2}. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene-MoS{sub 2}-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO{sub 2}-SiO{sub 2} composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene-MoS{sub 2}-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS{sub 2} and graphene layers. It is also observed that four layers of MoS{sub 2} and monolayer graphene are best selection for the maximum enhancement of the sensitivity. (orig.)

  11. Fabrication of Li{sub 4}SiO{sub 4} pebbles by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)], E-mail: zywen@mail.sic.ac.cn; Xu Xiaogang; Liu Yu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2010-04-15

    Li{sub 4}SiO{sub 4} pebbles are considered as candidate ceramic breeder materials in many blanket designs. In this work, Li{sub 4}SiO{sub 4} pebbles with adequate sphericity were fabricated by a water-based sol-gel process using LiOH and SiO{sub 2} (aerosil) as the raw materials, which has not been reported for fabrication of Li{sub 4}SiO{sub 4} pebbles previously. Thermal analysis, phase analysis and morphological observations were carried out systematically. The effects of LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratios and sintering temperature on the microstructure and density of the pebbles were discussed. Experimental results showed that when the LiOH/C{sub 6}H{sub 8}O{sub 7} molar ratio was 3, the microstructure of the Li{sub 4}SiO{sub 4} pebbles was the most favorable. While sintered at 900 deg. C for 4 h, Li{sub 4}SiO{sub 4} pebbles with about 1.2 mm in diameter were obtained and the density of the pebbles achieved about 74%.

  12. Alpha spectroscopy by the Φ25 mm×0.1 mm YAlO{sub 3}:Ce scintillation detector under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kvasnicka, Jiri [Radiation Detection Systems, Unit 10, 186 Pulteney Street, Adelaide SA 5000 (Australia); Urban, Tomas, E-mail: tomas.urban@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 78/7, 115 19 Prague, Czech Republic (Czech Republic); Tous, Jan; Smejkal, Jan; Blazek, Karel [Crytur Ltd, Palackeho 175, 511 01 Turnov (Czech Republic); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague (Czech Republic)

    2017-06-01

    The YAlO{sub 3}:Ce scintillation crystal has excellent mechanical properties and is not affected if used in chemically aggressive environments. The detector with the diameter of Φ25.4 mm and thickness of 0.1 mm was coupled with the PMT, associated electronics and the MCA in order to study its alpha spectroscopy properties. The measured alpha spectra of the surface calibration sources of {sup 241}Am and {sup 230}Th were compared with results of a Monte Carlo simulation. The experiment and the simulation were carried out for three distances between the detector and the surface alpha source in order to assess the effect of the distance on the detected energy of alpha radiation. Finally, the detector was used for the monitoring of radon ({sup 222}Rn) decay products (radon daughters) in the air. It was concluded that the detector is suitable for the in-situ alpha spectroscopy monitoring under ambient atmospheric conditions. Nevertheless, in order to identify radionuclides and their activity from the measured alpha spectra a computer code would need to be developed. - Highlights: • Thin YAP: Ce scintillator crystal is proposed to be used for alpha spectrometry. • Experimental alpha spectra were compared with Monte Carlo simulated spectra. • The proposed detector assembly is suitable for the monitoring of radon decay products in air. • The results give a good potential for a quantitative analysis of the spectrum.

  13. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  14. Synthesis and crystal structure of K{sub 2}NiF{sub 4}-type novel Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x} oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Masubuchi, Yuji, E-mail: yuji-mas@eng.hokudai.ac.jp; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2014-01-05

    Highlights: • Novel gadolinium calcium aluminum oxynitride was prepared by solid state reaction. • Crystal structure of the oxynitride was refined by using synchrotron X-ray diffraction. • Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} has a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. • Nitride ions preferentially occupy the apical site of aluminum octahedron. -- Abstract: Novel gadolinium calcium aluminum oxynitrides, Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x}, were prepared in x = 0.15–0.25 by the solid state reaction of a nitrogen–rich mixture with AlN as an aluminum source; the mixture was sintered twice at 1500 °C for 5 h under 0.5 MPa of nitrogen gas. Shift in the optical absorption edge was observed in their diffuse reflectance spectra from 4.46 eV for the oxide (x = 0) to 2.94 eV for the oxynitride at x = 0.2. The crystal structure of Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} at x = 0.2 was refined using a synchrotron X-ray diffraction data as a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. Longer Al–O/N bond lengths in the oxynitride than those in GdCaAlO{sub 4} suggest that the nitride ions are in the apical site of aluminum polyhedron, similar to those in Nd{sub 2}AlO{sub 3}N.

  15. Experimental Approach for the Uncertainty Assessment of 3D Complex Geometry Dimensional Measurements Using Computed Tomography at the mm and Sub-mm Scales.

    Science.gov (United States)

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A; Ontiveros, Sinué; Tosello, Guido

    2017-05-16

    validation workpiece are, respectively, 0.27 (VDI) and 0.35 (MPE), by assuring tolerances in the range of ± 20-30 µm. For the dental file, the E N < 1 value analysis is favorable in the majority of the cases (70.4%) and 2U/T is equal to 0.31 for sub-mm measurands (L < 1 mm and tolerance intervals of ± 40-80 µm).

  16. Structural and magnetic properties of Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Tiberto, P. [INRIM, Electromagnetism Division, Torino (Italy); Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Sirkin, H. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [GIM - IESIING, Universidad Catolica de Salta, INTECIN (UBA-CONICET) (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy in ribbons and 1 mm and 2 mm rod samples. Black-Right-Pointing-Pointer Good glass forming ability with {Delta}T = 50 K and {gamma} = 0.37 and off-eutectic composition. Black-Right-Pointing-Pointer Good soft magnetic properties with magnetization saturation of 1.44 T. Black-Right-Pointing-Pointer Geometrical factors are the primary causes of magnetic losses in frequencies above 10 Hz. - Abstract: Recently, bulk amorphous alloys were produced in the Fe-B-Si-P-C system with high glass forming ability, excellent magnetic properties and the advantage of containing no expensive glass-forming elements, such as Ga, Y, Cr or Nb, having, therefore, a good perspective of commercial applications. In the present work, the Fe{sub 76}P{sub 5}(Si{sub 0.3}B{sub 0.5}C{sub 0.2}){sub 19} amorphous alloy prepared by two quenching techniques has been studied. Amorphous ribbons of about 40 {mu}m thick were obtained by planar-flow casting together with cylinders having 1 and 2 mm diameter produced by copper mold injection casting. All the samples appear fully amorphous after X-ray diffraction analysis. A comprehensive set of thermal data (glass, crystallization, melting and liquidus temperatures) were obtained as well as a description of the melting and solidification processes. Mechanical microhardness tests showed that the samples have a hardness of 9.7 {+-} 0.3 GPa. Good soft-magnetic properties were obtained, including a high magnetization of 1.44 T and a low coercivity (4.5 A/m for ribbons and 7.5 A/m in the case of 1 mm rod samples, both in as-cast state). Thermomagnetic studies showed a Curie temperature around 665 K and the precipitation of new magnetic phases upon temperatures of 1000 K. Furthermore, the frequency dependence of magnetic losses at a fixed peak induction was studied. The results suggest the occurrence of a fine magnetic domain structure in bulk

  17. Observation and characterization of the smallest borospherene, B{sub 28}{sup −} and B{sub 28}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying-Jin; Chen, Qiang; You, Xue-Rui; Ou, Ting; Zhao, Xiao-Yun; Li, Si-Dian, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Zhao, Ya-Fan; Li, Jun, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Wei-Li; Jian, Tian; Wang, Lai-Sheng, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Zhai, Hua-Jin, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006 (China)

    2016-02-14

    Free-standing boron nanocages or borospherenes have been observed recently for B{sub 40}{sup −} and B{sub 40}. There is evidence that a family of borospherenes may exist. However, the smallest borospherene is still not known. Here, we report experimental and computational evidence of a seashell-like borospherene cage for B{sub 28}{sup −} and B{sub 28}. Photoelectron spectrum of B{sub 28}{sup −} indicated contributions from different isomers. Theoretical calculations showed that the seashell-like B{sub 28}{sup −} borospherene is competing for the global minimum with a planar isomer and it is shown to be present in the cluster beam, contributing to the observed photoelectron spectrum. The seashell structure is found to be the global minimum for neutral B{sub 28} and the B{sub 28}{sup −} cage represents the smallest borospherene observed to date. It is composed of two triangular close-packed B{sub 15} sheets, interconnected via the three corners by sharing two boron atoms. The B{sub 28} borospherene was found to obey the 2(n + 1){sup 2} electron-counting rule for spherical aromaticity.

  18. Structure and dielectric properties of (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ghoudi, Hanen; Khirouni, Kamel [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Chkoundali, Souad [Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia); Aydi, Abdelhedi [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia)

    2017-11-15

    (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T{sub C} (the Curie temperature) or T{sub m} (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time. (orig.)

  19. Effect of CH stretching excitation on the reaction dynamics of F + CHD{sub 3} → DF + CHD{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiayue; Zhang, Dong; Chen, Zhen; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Blauert, Florian [Dynamics at Surfaces, Faculty of Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen (Germany); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Zhang, Donghui; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-28

    The vibrationally excited reaction of F + CHD{sub 3}(ν{sub 1} = 1) → DF + CHD{sub 2} at a collision energy of 9.0 kcal/mol is investigated using the crossed-beams and time-sliced velocity map imaging techniques. Detailed and quantitative information of the CH stretching excitation effects on the reactivity and dynamics of the title reaction is extracted with the help of an accurate determination of the fraction of the excited CHD{sub 3} reagent in the crossed-beam region. It is found that all vibrational states of the CHD{sub 2} products observed in the ground-state reaction, which mainly involve the excitation of the umbrella mode of the CHD{sub 2} products, are severely suppressed by the CH stretching excitation. However, there are four additional vibrational states of the CHD{sub 2} products appearing in the excited-state reaction which are not presented in the ground-state reaction. These vibrational states either have the CH stretching excitation retained or involve one quantum excitation in the CH stretching and the excitation of the umbrella mode. Including all observed vibrational states, the overall cross section of the excited-state reaction is estimated to be 66.6% of that of the ground-state one. Experimental results also show that when the energy of CH stretching excitation is released during the reaction, it is deposited almost exclusively as the rovibrational energy of the DF products, with little portion in the translational degree of freedom. For vibrational states of the CHD{sub 2} products observed in both ground- and excited-state reactions, the CH stretching excitation greatly suppresses the forward scattered products, causing a noticeable change in the product angular distributions.

  20. A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS and the Resultant Hyperspectral Field Goniometer System

    Directory of Open Access Journals (Sweden)

    Marcel Buchhorn

    2013-11-01

    Full Text Available This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI. The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.

  1. Approaching the event horizon: 1.3mmλ VLBI of SgrA*

    International Nuclear Information System (INIS)

    Doeleman, Sheperd

    2008-01-01

    Advances in VLBI instrumentation now allow wideband recording that significantly increases the sensitivity of short wavelength VLBI observations. Observations of the super-massive black hole candidate at the center of the Milky Way, SgrA*, with short wavelength VLBI reduces the scattering effects of the intervening interstellar medium, allowing observations with angular resolution comparable to the apparent size of the event horizon of the putative black hole. Observations in April 2007 at a wavelength of 1.3mm on a three station VLBI array have now confirmed structure in SgrA* on scales of just a few Schwarzschild radii. When modeled as a circular Gaussian, the fitted diameter of SgrA* is 37 μas (+16,-10; 3σ), which is smaller than the expected apparent size of the event horizon of the Galactic Center black hole. These observations demonstrate that mm/sub-mm VLBI is poised to open a new window onto the study of black hole physics via high angular resolution observations of the Galactic Center.

  2. Measurements of the ground-state ionization energy and wavelengths for the 1snp {sup 1}P{sub 1}{sup *}-1s{sup 2} {sup 1}S{sub 0} (n=4-9) lines of Mg XI and F VIII

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [Multicharged Ions Spectra Data Centre of VNIIFTRI, Mendeleevo (Russian Federation)). E-mail: vitpal@mail.ru; Ya Faenov, A.; Yu Skobelev, I. [Multicharged Ions Spectra Data Centre of VNIIFTRI, Mendeleevo (RU)] [and others

    2002-06-28

    The wavelengths of the 1snp {sup 1}P{sub 1}{sup 0}-1s{sup 2} {sup 1}S{sub 0} transitions in the He-like Mg XI (n = 4-9) and F VIII (n=4-8) have been measured in laser-produced plasmas. The accuracy of the present measurements (0.4-1.6 mA) is a large improvement over previous results. The Rydberg series is used to determine the ground-state ionization energy of F VIII and Mg XI: E{sub i}on (F VIII) 953.96{+-}0.11 eV, E{sub i}on (Mg XI)=1761.88{+-}0.15 eV. These experimental results are compared with theoretical data calculated by the 1/Z-expansion method and the HFR and MCDF approaches. Fairly good agreement between theory and experiment is observed with a precision up to 5x10{sup -5}. Radiative corrections to the 1s{sup 2} {sup 1}S{sub 0} state are analysed and compared with experiments. It is found that QED corrections to the ground-state ionization energy are significant at the present level of experimental accuracy. (author)

  3. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE

    Science.gov (United States)

    Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.

    2005-03-01

    Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.

  4. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    Science.gov (United States)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  5. Basic study of single crystal fibers of Pr:Lu{sub 3}Al{sub 5}O{sub 12} scintillator for gamma-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13 Kannondai, Tukuba Ibaragi 305-0856 (Japan); Kawaguchi, Noriaki [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui; Chani, Valery; Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2011-10-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) melts by the micro-pulling down ({mu}-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm{sup 3}) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The {mu}-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm{sup 2}x20 pixels and O 0.3x10 mm{sup 2}x30 pixels coated by a BaSO{sub 4} reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  6. Crystal structure of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O with isolated boron triangles

    Energy Technology Data Exchange (ETDEWEB)

    Topnikova, A. P.; Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.; Volkov, A. S. [Moscow State University, Faculty of Geology (Russian Federation)

    2016-11-15

    Crystals of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O were prepared by hydrothermal synthesis. The crystals are orthorhombic, a = 7.2295(7) Å, b = 11.2523(8) Å, c = 5.1285(6) Å, Z = 2, sp. gr. C2mm (Amm2), R = 0.0253. The formula of the compound was derived from the structure determination. The Ce and Na atoms are coordinated by nine and six O atoms, respectively. The Ce position is split, and a small amount of Ce is incorporated into the Na1 site with the isomorphous substitution for Na. The anionic moieties exist as isolated BO{sub 3} and BO{sub 2}(OH) triangles. The planes of the BO{sub 2}(OH) triangles with mm2 symmetry are parallel to the ab plane. The planes of the BO{sub 3} triangles with m symmetry are perpendicular to the ab plane and are rotated in a diagonal way. The splitting of the Ce positions and the polar arrangement of the BO{sub 2}(OH) triangles, water molecules, and Na atoms are observed along the polar a axis. The new structure is most similar to the new borate NaCa{sub 4}[BO{sub 3}]{sub 3} (sp. gr. Ama2), in which triangles of one type are arranged in a polar fashion along the c axis. Weak nonlinear-optical properties of both polar borates are attributed to the quenching of the second-harmonic generation due to the mutually opposite orientation of two-thirds of B triangles in the unit cell.

  7. Partitioning CO<sub>2sub> fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Davidson, Eric [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States). Dept. of Biology; Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States). Dept. of Organismic and Evolutionary Biology

    2016-01-28

    This project combines automated in situ observations of the isotopologues of CO<sub>2sub> with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below ground using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  8. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bhat Zahoor; Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in [Solid State Research Laboratory, Department of Physics, University of Kashmir, Srinagar 190006 (India)

    2016-04-14

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C{sub 4}H{sub 5}O{sub 6})(C{sub 4}H{sub 4}O{sub 6})][3H{sub 2}O]. X-ray crystal structure analyses reveal that it crystallizes in the P4{sub 1}2{sub 1}2 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau– Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  9. Observation of the strain-driven charge-ordered state in La sub 0 sub . sub 7 sub C a sub 0 sub . sub 3 MnO sub 3 sub - sub d elta thin film with oxygen deficiency

    CERN Document Server

    Prokhorov, V G; Kaminsky, G G; Svetchnikov, V L; Zandbergen, H W; Lee, Y P; Park, J S; Kim, K W

    2003-01-01

    The magnetic and transport properties of La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 sub - sub d elta films with an oxygen deficiency (delta approx 0.1) and a La sub 0 sub . sub 9 Ca sub 0 sub . sub 1 MnO sub 3 film with the stoichiometric oxygen content are investigated in a wide temperature range. It is shown that the charge-ordered insulating (COI) state is observed for a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with thickness d <= 30 nm, which manifests mainly a cubic crystal structure with an anomalously small lattice parameter for this composition. An increase in the film thickness (d approx 60 nm) leads to a structural transition from the lattice-strained cubic to the relaxed rhombohedral phase, is accompanied by a shift of the Curie point (T sub C) to lower temperature and a frustration of the COI state. The magnetic and transport properties of the La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with d approx 60 nm are similar to those exhibi...

  10. Implementing a Nitrogen-Based Model for Autotrophic Respiration Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The rate of carbon accumulation by terrestrial plant communities in a process-level, mechanistic modeling is the difference of the rate of gross photosynthesis by a canopy (A(sub g)) and autotrophic respiration (R) of the stand. Observations for different biomes often show that R to be a large and variable fraction of A(sub g), ca. 35% to 75%, although other studies suggest the ratio of R and A(sub g) to be less variable. Here, R has been calculated according to the two compartment model as being the sum of maintenance and growth components. The maintenance respiration of foliage and living fine roots for different biomes has been determined objectively from observed nitrogen content of these organs. The sapwood maintenance respiration is based on pipe theory, and checked against an independently derived equation considering sapwood biomass and its maintenance coefficient. The growth respiration has been calculated from the difference of A(sub g) and maintenance respiration. The A(sub g) is obtained as the product of biome-specific radiation use efficiency for gross photosynthesis under unstressed conditions and intercepted photosynthetically active radiation, and adjusted for stress. Calculations have been done using satellite and ground observations for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) of boreal forests, crop land, temperate deciduous forest, temperate grassland, tropical deciduous forest, tropical evergreen forest, tropical savanna, and tundra. The ratio of annual respiration and gross photosynthesis, (R/A(sub g)), is found to be 0.5-0.6 for temperate and cold adopted biome areas, but somewhat higher for tropical biome areas (0.6-0.7). Interannual variation of the fluxes is found to be generally less than 15%. Calculated fluxes are compared with observations and several previous estimates. Results of sensitivity analysis are presented for uncertainties in parameterization and input data. It is found that

  11. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. R.; Watson, C. A.; Pollacco, D. [Astrophysics Research Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Littlefair, S. P.; Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gibson, N. P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Marsh, T. R., E-mail: jburton04@qub.ac.uk [Department of Physics and Astronomy, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  12. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  13. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO{sub 2} under phosphorus limitation

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, J.S.; Gwynn-Jones, D.; Griffith, G.W.; Scullion, J. (Aberystwyth Univ., IBERS, Wales (United Kingdom))

    2012-08-15

    UV-B radiation and elevated CO{sub 2} may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO{sub 2}. This study investigated UV-B exposure and elevated CO{sub 2} effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m-2day-1) and CO{sub 2} (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO{sub 4}) a further factor. It was hypothesized that UV-B exposure and elevated CO{sub 2} would change plant resource allocation, with CO{sub 2} mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO{sub 2} to give a greater root biomass. Elevated CO{sub 2} altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO{sub 2} did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO{sub 2} treatments, UV-B modified these CO{sub 2} responses significantly. These interactions have implications for plant responses to future atmospheric conditions. (Author)

  14. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  15. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  16. Variation of magnetic properties with mischmetal content in the resource saving magnets of MM-Fe-B ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu-bai, E-mail: lzbgj@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Li-chen [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Geng, Xiao-peng [Inner Mongolia Baotou Steel Rare Earth Magnetic Materials Co.Ltd, Baotou 014030 (China); Hu, Feng-xia; Sun, Ji-rong; Shen, Bao-gen [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-15

    Magnetic materials of MM-Fe-B (MM=mischmetal) ribbons were prepared using melt spinning method by varying the content of MM. The ribbons contain minor phases besides the main phase of Re{sub 2}Fe{sub 14}B. X-ray techniques show that the diffraction peak intensities of the minor phase Fe{sub 3}B vary with the content of constituent elements, indicating that the amount of minor phase could be tunable. The squareness of hysteresis loop is the best in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons, which should mainly ascribe to the less amount of minor phase. Henkel plots verify the more uniform magnetization reversals in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons, and the energy product achieves to the maximum of 12.74 MGOe with the coercivity of 6.50 kOe. With the increase of MM content the coercivity increases monotonically, and reaches to 9.13 kOe in MM{sub 15}Fe{sub 77.5}B{sub 7.5} ribbons, which should be related with the nature of the defects in the main phase. These investigations show that optimizing the content of constituent elements and phase constitution could improve magnetic properties in the resource-saving magnets of MM-Fe-B ribbons. - Highlights: • MM-Fe-B (MM=mischmetal) ribbons contains the minor phases besides the main phase of Re{sub 2}Fe{sub 14}B. • The amount of minor phases varies with the content of constituent elements. • The energy product of 12.74 MGOe is obtained in MM{sub 13}Fe{sub 80.5}B{sub 6.5} ribbons by optimizing the phase constitution.

  17. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  18. Near ultraviolet photodissociation spectroscopy of Mn{sup +}(H{sub 2}O) and Mn{sup +}(D{sub 2}O)

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Wright L.; Copeland, Christopher; Kocak, Abdulkadir; Sallese, Zachary; Metz, Ricardo B., E-mail: rbmetz@chem.umass.edu [Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 (United States)

    2014-11-28

    The electronic spectra of Mn{sup +}(H{sub 2}O) and Mn{sup +}(D{sub 2}O) have been measured from 30 000 to 35 000 cm{sup −1} using photodissociation spectroscopy. Transitions are observed from the {sup 7}A{sub 1} ground state in which the Mn{sup +} is in a 3d{sup 5}4s{sup 1} electronic configuration, to the {sup 7}B{sub 2} (3d{sup 5}4p{sub y}) and {sup 7}B{sub 1} (3d{sup 5}4p{sub x}) excited states with T{sub 0} = 30 210 and 32 274 cm{sup −1}, respectively. Each electronic transition has partially resolved rotational and extensive vibrational structure with an extended progression in the metal−ligand stretch at a frequency of ∼450 cm{sup −1}. There are also progressions in the in-plane bend in the {sup 7}B{sub 2} state, due to vibronic coupling, and the out-of-plane bend in the {sup 7}B{sub 1} state, where the calculation illustrates that this state is slightly non-planar. Electronic structure computations at the CCSD(T)/aug-cc-pVTZ and TD-DFT B3LYP/6-311++G(3df,3pd) level are also used to characterize the ground and excited states, respectively. These calculations predict a ground state Mn-O bond length of 2.18 Å. Analysis of the experimentally observed vibrational intensities reveals that this bond length decreases by 0.15 ± 0.015 Å and 0.14 ± 0.01 Å in the excited states. The behavior is accounted for by the less repulsive p{sub x} and p{sub y} orbitals causing the Mn{sup +} to interact more strongly with water in the excited states than the ground state. The result is a decrease in the Mn-O bond length, along with an increase in the H-O-H angle. The spectra have well resolved K rotational structure. Fitting this structure gives spin-rotation constants ε{sub aa}″ = −3 ± 1 cm{sup −1} for the ground state and ε{sub aa}′ = 0.5 ± 0.5 cm{sup −1} and ε{sub aa}′ = −4.2 ± 0.7 cm{sup −1} for the first and second excited states, respectively, and A′ = 12.8 ± 0.7 cm{sup −1} for the first excited state. Vibrationally mediated

  19. Environmental isotope observations on Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    Environmental isotope measurements have been conducted on the outputs of some of the main dewatering points in both north and south mining areas as well as on numerous other observation points in the Sishen compartment. The effect of the dykes bounding the compartment could be observed from the behaviour of the isotopic composition of ground waters in the conduit zone. Measurements were done on radiocarbon, tritium oxygen-18 and carbon-13

  20. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  1. Observation of Λ-hypernuclei in the reaction 12C(π+,K+)/sub Λ/12C

    International Nuclear Information System (INIS)

    Milner, E.C.

    1985-12-01

    The observation of Λ-hypernuclear levels in /sub Λ/ 12 C by associated production through the (π + ,K + ) reaction is reported. Spectrometers used in the measurements are discussed. The /sub Λ/ 12 C excitation energy spectra were recorded at laboratory scattering angles of 5.6 0 , 10.3 0 , and 15.2 0 . The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup π/ = 2 + states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (π + ,K + ) reaction, compared to the (K - ,π - ) reaction in which lower spin states are excited. 29 refs., 40 figs

  2. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  3. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Directory of Open Access Journals (Sweden)

    I. R. Burling

    2011-12-01

    Full Text Available We have measured emission factors for 19 trace gas species and particulate matter (PM<sub>2.5sub> from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NO<sub>x> emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  4. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    Science.gov (United States)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for

  5. Kinematics of a Young Low-mass Star-forming Core: Understanding the Evolutionary State of the First-core Candidate L1451-mm

    Energy Technology Data Exchange (ETDEWEB)

    Maureira, María José; Arce, Héctor G. [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Dunham, Michael M. [Department of Physics, State University of New York at Fredonia, Fredonia, NY 14063 (United States); Pineda, Jaime E. [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Fernández-López, Manuel [Instituto Argentino de Radioastronomía, CCT-La Plata (CONICET), C.C.5, 1894, Villa Elisa (Argentina); Chen, Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mardones, Diego, E-mail: mariajose.maureira@yale.edu, E-mail: hector.arce@yale.edu [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2017-03-20

    We use 3 mm multiline and continuum CARMA observations toward the first hydrostatic core (FHSC) candidate L1451-mm to characterize the envelope kinematics at 1000 au scales and investigate its evolutionary state. We detect evidence of infall and rotation in the NH{sub 2}D(1{sub 1,1}–1{sub 0,1}), N{sub 2}H{sup +}(1–0), and HCN(1–0) molecular lines. We compare the position–velocity diagram of the NH{sub 2}D(1{sub 1,1}–1{sub 0,1}) line with a simple kinematic model and find that it is consistent with an envelope that is both infalling and rotating while conserving angular momentum around a central mass of about 0.06 M {sub ⊙}. The N{sub 2}H{sup +}(1–0) LTE mass of the envelope along with the inferred infall velocity leads to a mass infall rate of approximately 6 × 10{sup −6} M {sub ⊙} yr{sup −1}, implying a young age of 10{sup 4} years for this FHSC candidate. Assuming that the accretion onto the central object is the same as the infall rate, we obtain a minimum source size of 1.5–5 au, consistent with the size expected for a first core. We do not see any evidence of outflow motions or signs of outflow–envelope interaction at scales ≳2000 au. This is consistent with previous observations that revealed a very compact outflow (≲500 au). We conclude that L1451-mm is indeed at a very early stage of evolution, either a first core or an extremely young Class 0 protostar. Our results provide strong evidence that L1451-mm is the best candidate for being a bona fide first core.

  6. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Directory of Open Access Journals (Sweden)

    E. C. Turner

    2016-11-01

    Full Text Available The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0° clear-sky submillimetre spectrum from 30 mm (10 GHz to 150 µm (2000 GHz at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr, hydrogen bromide (HBr, perhydroxyl radical (HO2 and nitrous oxide (N2O the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate

  7. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...... is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  8. Theory of the orthogonal dimer Heisenberg spin model for SrCu sub 2 (BO sub 3) sub 2

    CERN Document Server

    Miyahara, S

    2003-01-01

    The magnetic properties of SrCu sub 2 (BO sub 3) sub 2 are reviewed from a theoretical point of view. SrCu sub 2 (BO sub 3) sub 2 is a new two-dimensional spin gap system and its magnetic properties are well described by a spin-1/2 antiferromagnetic Heisenberg model of the orthogonal dimer lattice. The model has a dimer singlet ground state whose exactness was proven by Shastry and Sutherland for a topologically equivalent model more than 20 years ago. The exactness of the ground state is maintained even if interlayer couplings are introduced for SrCu sub 2 (BO sub 3) sub 2. In the two-dimensional model, quantum phase transitions take place between different ground states for which three phases are expected: a gapped dimer singlet state, a plaquette resonating valence bond state and a gapless magnetic ordered state. Analysis of the experimental data shows that the dimer singlet ground state is realized in SrCu sub 2 (BO sub 3) sub 2. The orthogonality of the dimer bonds, which is the underlying symmetry of th...

  9. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    Science.gov (United States)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  10. On the N{sub f}-dependence of gluonic observables

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mattia; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-12-15

    We compute t{sub 0}, w{sub 0} and the topological susceptibility, defined at finite gradient flow time for two-flavour QCD. The use of three lattice spacings and pion masses between 192 and 500 MeV together with a careful error analysis allow to approach the continuum limit of the two-flavour theory despite significant auto-correlations. A comparison to N{sub f}=0 results shows the size of sea quark effects in t{sup 2}{sub 0}{chi}, with {chi} the topological susceptibility, and low energy observables such as t{sub 0}/w{sup 2}{sub 0} and t{sub 0}/r{sup 2}{sub 0}.

  11. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    International Nuclear Information System (INIS)

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  12. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  13. Cast iron (CI) based soft magnetic BMG Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35}

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S N; Lee, H J; Jeong, Y H [Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784 Pohang (Korea, Republic of); Varga, L K, E-mail: varga@szfki.h [RISSPO, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest (Hungary)

    2009-01-01

    Thermal stability, structure, and magnetic properties of bulk type Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35} alloy in ribbon form have been studied using differential thermal analysis, x-ray diffraction and magnetic measurements. Results reveal that crystallization peak temperature (T{sub x}) and Curie temperature (T{sub c}) of the as-cast alloy are respectively 513 and 370 deg. C. Crystallization of the specimen starts after annealing at 460 deg. C and alpha-Fe is precipitated out. Annealing at temperatures higher than 515 deg. C, produces apart from alpha-Fe, hard magnetic precipitants (Fe{sub 2}B, Fe{sub 3}B), which deteriorate the soft magnetic properties. Lowest coercive field - 9.8 A/m, highest saturation of induction - 1.55 Tesla and best losses - 0.42 W/kg (at 50 Hz and 0.4 kA/m) were obtained for as-cast specimen. Observed good soft magnetic properties of these low cost cast-iron based alloys suggest perspective applications of these soft magnetic alloys as an alternative to the conventional Fe-Si electrical steel and Mn-Zn ferrites.

  14. Visible-blind and solar-blind ultraviolet photodiodes based on (In{sub x}Ga{sub 1−x}){sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Wenckstern, Holger von; Lenzner, Jörg; Lorenz, Michael; Grundmann, Marius [Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstraße 5, 04103 Leipzig (Germany)

    2016-03-21

    UV and deep-UV selective photodiodes from visible-blind to solar-blind were realized based on a Si-doped (In{sub x}Ga{sub 1–x}){sub 2}O{sub 3} thin film with a monotonic lateral variation of 0.0035 < x < 0.83. Such layer was deposited by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. The photo response signal is provided from a metal-semiconductor-metal structure upon backside illumination. The absorption onset was tuned from 4.83 to 3.22 eV for increasing x. Higher responsivities were observed for photodiodes fabricated from indium-rich part of the sample, for which an internal gain mechanism could be identified.

  15. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  16. Preparation and properties of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Ma, XiuHua [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Li, Qiang, E-mail: qli@xju.edu.cn [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Zhang, Jijun [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Dong, Yaqiang; Chang, Chuntao [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-09-01

    Highlights: • Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20–50 at.%) BMGs were prepared by fluxing and J-quenching techniques. • The highest GFA is reached at x = 40 and the corresponding critical diameter is up to 2.5 mm. • The present FeNi-based BMGs exhibit very large ε{sub p} and the ε{sub p} of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG is 11.7%. • The present FeNi-based BMGs have much higher corrosion resistance than stainless steel. - Abstract: Bulk Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) glassy alloy rods with the diameters of 1.0–2.5 mm were synthesized by combining fluxing technique and J-quenching technique. The glassy alloy rods were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). It is found that the range of supercooled liquid region (ΔT{sub x}) is 27–32 K. The saturation magnetization of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) bulk glassy alloys gradually decreases from 1.13 T to 0.58 T with increasing Ni content from x = 20 to x = 50. More importantly, the present quaternary FeNiPB bulk metallic glasses (BMGs) shows a significant plastic strain, in particular, the plastic strain of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG reaches as high as 11.7%. The corrosion resistance of the present FeNiPB BMGs was studied by weight-loss method, potentiodynamic polarization curves and scanning electron microscopy (SEM). It is shown that the corrosion resistance of the present FeNiPB BMGs in 0.5 M NaCl and 1 M HCl solution increases with Ni content, and further the present FeNiPB BMGs exhibit larger E{sub corr} values and lower I{sub corr} values, i.e. higher corrosion resistances, than that of stainless steel.

  17. Semiconductor CdF<sub>2sub>:Ga and CdF<sub>2sub>:In Crystals as Media for Real-Time Holography

    Directory of Open Access Journals (Sweden)

    Alexander E. Angervaks

    2012-05-01

    Full Text Available Monocrystalline cadmium fluoride is a dielectric solid that can be converted into a semiconductor by doping with donor impurities and subsequent heating in the reduction atmosphere. For two donor elements, Ga and In, the donor (“shallow” state is a metastable one separated from the ground (“deep” state by a barrier. Photoinduced deep-to-shallow state transition underlies the photochromism of CdF<sub>2sub>:Ga and CdF<sub>2sub>:In. Real-time phase holograms are recorded in these crystals capable of following up optical processes in a wide frequency range. The features of photochromic transformations in CdF<sub>2sub>:Ga and CdF<sub>2sub>:In crystals as well as holographic characteristics of these media are discussed. Exemplary applications of CdF<sub>2sub>-based holographic elements are given.

  18. Observation of chemical separation of In{sub 3}Sb{sub 1}Te{sub 2} thin film during phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M.; Baik, J.; Shin, H.-J. [Beamline Division, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Y.S. [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 680-749 (Korea, Republic of); Yoon, S.G., E-mail: sgyoon@cnu.ac.kr [Brain Korea 21 Project (BK21) and Department of Materials Engineering, Chungnam University, Daejeon 305-764 (Korea, Republic of); Jung, M.-C., E-mail: mcjung@oist.jp [Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 (Japan); Qi, Y.B. [Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495 (Japan)

    2014-02-15

    We investigated the chemical states of In{sub 3}Sb{sub 1}Te{sub 2} (IST) thin film using high-resolution X-ray photoelectron spectroscopy (HRXPS) with the synchrotron radiation during in-situ annealing in ultra-high vacuum. To obtain the oxygen-free amorphous IST (a-IST), we performed the mild Ne{sup +} ion sputtering. And also we confirmed the relative a-IST stoichiometry to be 54%:17%:29% based on HRXPS data. At the first and second phase transition temperatures of 350 and 400 °C, we observed the dramatic changes of chemical states from a-IST to InSb and the mixture of crystalline-IST and InTe, respectively. There was a depletion of Sb atoms on the surface after annealing at 750 °C. We assume that Sb atom is a key for the phase transition in IST. However, chemical state of the Sb in IST is unstable during the phase transition and it will be caused with the non-reversible process by this structural instability.

  19. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  20. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  1. First ground-based 200-μm observing with THUMPER on JCMT - sky characterization and planet maps

    Science.gov (United States)

    Ward-Thompson, D.; Ade, P. A. R.; Araujo, H.; Coulson, I.; Cox, J.; Davis, G. R.; Evans, Rh.; Griffin, M. J.; Gear, W. K.; Hargrave, P.; Hargreaves, P.; Hayton, D.; Kiernan, B. J.; Leeks, S. J.; Mauskopf, P.; Naylor, D.; Potter, N.; Rinehart, S. A.; Sudiwala, R.; Tucker, C. R.; Walker, R. J.; Watkin, S. L.

    2005-12-01

    We present observations that were carried out with the Two HUndred Micron PhotometER (THUMPER) mounted on the James Clerk Maxwell Telescope (JCMT) in Hawaii, at a wavelength of 200 μm (frequency 1.5 THz). The observations utilize a small atmospheric window that opens up at this wavelength under very dry conditions at high-altitude observing sites. The atmosphere was calibrated using the sky-dipping method and a relation was established between the optical depth, τ, at 1.5 THz and that at 225 GHz: τ1.5THz= (95 +/- 10) ×τ225GHz. Mars and Jupiter were mapped from the ground at this wavelength for the first time, and the system characteristics measured. A noise-equivalent flux density (NEFD) of ~ 65 +/- 10 Jy (1σ 1s) was measured for the THUMPER-JCMT combination, consistent with predictions based upon our laboratory measurements. The main beam resolution of 14 arcsec was confirmed and an extended error beam detected at roughly two-thirds of the magnitude of the main beam. Measurements of the Sun allow us to estimate that the fraction of the power in the main beam is ~15 per cent, consistent with predictions based on modelling the dish surface accuracy. It is therefore shown that the sky over Mauna Kea is suitable for astronomy at this wavelength under the best conditions. However, higher or drier sites should have a larger number of useable nights per year.

  2. The structural, electronic and magnetic properties of Ga{sub 8−x}Mn{sub x}As{sub 8} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Gangxu [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Xiang, Gang, E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Luo, Jia; Tang, Zhijie [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Zhang, Xi, E-mail: xizhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2015-06-15

    We systematically investigate the ground-state magnetic properties of Ga{sub 8−x}Mn{sub x}As{sub 8} clusters (x=0, 2, 4, 6, and 8) within the framework of density functional theory (DFT) using a strategy that successively adopts the particle swarm optimization (CALYPSO) code and fixed spin-moment (FSM) method. The results show that for Ga{sub 8−x}Mn{sub x}As{sub 8} in the ground states or low-lying isomers, Mn atoms tend to assemble at the core of the clusters and the ferrimagnetic Mn–Mn couplings are identified for Ga{sub 8−x}Mn{sub x}As{sub 8} (x=4, 6, and 8), while Ga{sub 8}As{sub 8} and Ga{sub 6}Mn{sub 2}As{sub 8} are nonmagnetic. The possibility of multiple ground states of Ga{sub 8−x}Mn{sub x}As{sub 8} (x=4, 6, and 8) is also demonstrated. The binding energy and LUMO–HOMO gap analysis show that Ga{sub 8−x}Mn{sub x}As{sub 8} clusters with large x are more likely synthesized and exhibit stronger chemical reactivity. - Highlights: • The ground-state structural and magnetic configurations of Ga{sub 8-x}Mn{sub x}As{sub 8} clusters are predicted by using the particle swarm optimization (CALYPSO) code and fixed spin-moment method. • For the ground state and low-lying isomers of Ga{sub 8−x}Mn{sub x}As{sub 8} clusters, Mn atoms are gathered at the core of cluster, and ferrimagnetic Mn–Mn coupling is found. • Ga{sub 8−x}Mn{sub x}As{sub 8} with large x is more likely formed and reacts with each other to create larger clusters.

  3. Estimation of Source and Attenuation Parameters from Ground Motion Observations for Induced Seismicity in Alberta

    Science.gov (United States)

    Novakovic, M.; Atkinson, G. M.

    2015-12-01

    We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.

  4. Pseudo Jahn–Teller distortion for a tricyclic carbon sulfide (C{sub 6}S{sub 8}) and its suppression in S-oxygenated dithiine (C{sub 4}H{sub 4}(SO{sub 2}){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Pratik, Saied Md.; Chowdhury, Chandra; Bhattacharjee, Rameswar; Jahiruddin, Sk.; Datta, Ayan, E-mail: spad@iacs.res.in

    2015-10-16

    Highlights: • DFT calculations show that sulfur rich cyclic molecules are generally distorted. • Such distortions are shown to arise from Pseudo Jahn–Teller (PJT) effects. • Low OMO–UMO gaps leads to strong vibronic instability for these systems. • Increasing the OMO–UMO gaps by substituting electronegative groups on the cyclic rings decreases PJT effects. • Suppressed PJT instability lead to planar sulfur rich cyclic molecules. - Abstract: The tricyclic carbon-sulfide, C{sub 6}S{sub 8} molecule containing two S-atoms in the 1,4-position of the central six-membered ring and one disulfide (S−S) and one thione (C=S) bond on the five membered rings on its either side (1) possesses a “butterfly flapping” type distorted ground state in the gas-phase and also in β-phase of the crystal. For the isolated molecule, better consideration of the S…S non-bonding interactions in the dithiine ring in the bent form at the M06-2X/6-31+G(d,p) level leads to a significant barrier for inversion of 2.4 kcal/mol which is 2–3 times more than that previously obtained by Weber and Dolg at the B3LYP/cc-pVTZ level due to underestimation of dispersion interactions at the B3LYP level. The origin of the distortion leading to lowering of symmetry for 1 (C{sub 2h} → C{sub 2}) is traced to vibronic mixing between the ground state (Ag) and the low lying excited states of A{sub u} symmetry through the a{sub u} normal mode, a (1A{sub g} + 1A{sub u} + 2A{sub u} + 3A{sub u}) × a{sub u} pseudo Jahn–Teller effect (PJTE) problem. Based on fitting of the ground state APES to the lowest root of the 4 × 4 secular determinant, we calculate the linear vibronic coupling constants (F{sub 0i}) between the relevant states. Similar in class to 1, the S-oxygenated derivative of dithiine, C{sub 4}H{sub 4}(SO{sub 2}){sub 2} (2) unlike most other dithiines, remains planar. The absence of the butterfly-type puckered structure in 2 is traced to the enhanced gap (Δ{sub 0}) and very small

  5. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  6. A ground-based optical transmission spectrum of WASP-6b

    International Nuclear Information System (INIS)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus; Eyheramendy, Susana; Sing, David K.; Désert, Jean-Michel; Bakos, Gáspár Á.; Fortney, Jonathan J.; López-Morales, Mercedes; Szentgyorgyi, Andrew; Maxted, Pierre F. L.; Triaud, Amaury H. M. J.

    2013-01-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  7. Core losses of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bitoh, T; Ishikawa, T; Okumura, H, E-mail: teruo_bitoh@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, 015-0055 (Japan)

    2011-01-01

    The soft magnetic properties of ring-shaped (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} cast bulk metallic glass (BMG) with thickness of 0.3-1.0 mm have been investigated. The BMG specimens exhibit high relative permeability of (9-29)x10{sup 3} at 0.40 A/m and 50 Hz and low coercivity of 4.0 A/m. The core losses of the 0.3 mm thick BMG specimen are lower than those of commercial Fe-6.5 mass% Si steel (6.5Si) with the same thickness, and are comparable to those of the 0.10 mm thick 6.5Si. The low core losses of the BMG originate from the low coercivity and high electrical resistivity.

  8. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  9. Estimating the seismotelluric current required for observable electromagnetic ground signals

    Directory of Open Access Journals (Sweden)

    J. Bortnik

    2010-08-01

    Full Text Available We use a relatively simple model of an underground current source co-located with the earthquake hypocenter to estimate the magnitude of the seismotelluric current required to produce observable ground signatures. The Alum Rock earthquake of 31 October 2007, is used as an archetype of a typical California earthquake, and the effects of varying the ground conductivity and length of the current element are examined. Results show that for an observed 30 nT pulse at 1 Hz, the expected seismotelluric current magnitudes fall in the range ~10–100 kA. By setting the detectability threshold to 1 pT, we show that even when large values of ground conductivity are assumed, magnetic signals are readily detectable within a range of 30 km from the epicenter. When typical values of ground conductivity are assumed, the minimum current required to produce an observable signal within a 30 km range was found to be ~1 kA, which is a surprisingly low value. Furthermore, we show that deep nulls in the signal power develop in the non-cardinal directions relative to the orientation of the source current, indicating that a magnetometer station located in those regions may not observe a signal even though it is well within the detectable range. This result underscores the importance of using a network of magnetometers when searching for preseismic electromagnetic signals.

  10. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca{sub 0.9}La{sub 0.1}FeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z. T.; Li, M. Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Wang, Z. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); Xing, X. Z.; Zhou, W.; Sun, Y.; Shi, Z. X. [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Yao, Q. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); Li, W. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); Shen, D. W., E-mail: dwshen@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-07-25

    CaFeAs{sub 2} is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs{sub 2}. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S{sub 4} symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs{sub 2} would provide us a unique opportunity to realize and explore Majorana fermion physics.

  11. Experimental studies on the evaporative heat transfer and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2010-08-15

    Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)

  12. Ground tests with prototype of CeBr{sub 3} active gamma ray spectrometer proposed for future venus surface missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Sanin, A.B.; Golovin, D.V. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA (United States); Mitrofanov, I.G. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Vostrukhin, A.A. [Space Research Institute, RAS, Moscow 117997 (Russian Federation)

    2017-03-11

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr{sub 3}) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1–10% for the particular chemical element being studied.

  13. Synthesis, magnetism and electronic structure of YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) isolated from Al flux

    Energy Technology Data Exchange (ETDEWEB)

    Xiuni, Wu [Department of Physical Sciences, Rhode Island College, Providence, RI 02908 (United States); Francisco, Melanie [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Rak, Zsolt [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Bakas, T [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2008-12-15

    The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) which adopts the CaCo{sub 2}Al{sub 8} structure type with a=14.458(3) A, b=12.455(3) A, c=3.9818(8) A and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated {mu}{sub eff}=2.19 {mu}{sub B}. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f{sup 13} configuration in the ground state. - Graphical abstract: The reaction of ytterbium, nickel, iron in aluminum flux gives crystals of the intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.96) which adopts the CaCo{sub 2}Al{sub 8} structure, ab initio electronic structure calculations within density functional theory using LDA+U approximation suggest an f{sup 13} configuration in the ground state.

  14. Methodological tools for the collection and analysis of participant observation data using grounded theory.

    Science.gov (United States)

    Laitinen, Heleena; Kaunonen, Marja; Astedt-Kurki, Päivi

    2014-11-01

    To give clarity to the analysis of participant observation in nursing when implementing the grounded theory method. Participant observation (PO) is a method of collecting data that reveals the reality of daily life in a specific context. In grounded theory, interviews are the primary method of collecting data but PO gives a distinctive insight, revealing what people are really doing, instead of what they say they are doing. However, more focus is needed on the analysis of PO. An observational study carried out to gain awareness of nursing care and its electronic documentation in four acute care wards in hospitals in Finland. Discussion of using the grounded theory method and PO as a data collection tool. The following methodological tools are discussed: an observational protocol, jotting of notes, microanalysis, the use of questioning, constant comparison, and writing and illustrating. Each tool has specific significance in collecting and analysing data, working in constant interaction. Grounded theory and participant observation supplied rich data and revealed the complexity of the daily reality of acute care. In this study, the methodological tools provided a base for the study at the research sites and outside. The process as a whole was challenging. It was time-consuming and it required rigorous and simultaneous data collection and analysis, including reflective writing. Using these methodological tools helped the researcher stay focused from data collection and analysis to building theory. Using PO as a data collection method in qualitative nursing research provides insights. It is not commonly discussed in nursing research and therefore this study can provide insight, which cannot be seen or revealed by using other data collection methods. Therefore, this paper can produce a useful tool for those who intend to use PO and grounded theory in their nursing research.

  15. DETECTION OF SOLAR-LIKE OSCILLATIONS, OBSERVATIONAL CONSTRAINTS, AND STELLAR MODELS FOR θ CYG, THE BRIGHTEST STAR OBSERVED BY THE KEPLER MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, J. A. [Los Alamos National Laboratory, XTD-NTA, MS T-082, Los Alamos, NM 87545 (United States); Houdek, G.; Chaplin, W. J.; Antoci, V.; Bedding, T. R.; Huber, D.; Kjeldsen, H. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Smalley, B. [Astrophysics Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG (United Kingdom); Kurtz, D. W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Mullally, F.; Rowe, J. F. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bryson, S. T.; Still, M. D. [NASA Ames Research Center, Bldg. 244, MS-244-30, Moffett Field, CA 94035 (United States); Appourchaux, T. [Institut d’Astrophysique Spatiale, Universitè de Paris Sud–CNRS, Batiment 121, F-91405 ORSAY Cedex (France); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Benomar, O. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Garcia, R. A. [Laboratoire AIM, CEA/DRF—CNRS—Univ. Paris Diderot—IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Latham, D. W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Metcalfe, T. S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2016-11-01

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June–September) and subsequently in Quarters 8 and 12–17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000–2700 μ Hz, a large frequency separation of 83.9 ± 0.4 μ Hz, and maximum oscillation amplitude at frequency ν {sub max} = 1829 ± 54 μ Hz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T {sub eff} = 6697 ± 78 K, radius 1.49 ± 0.03 R {sub ⊙}, [Fe/H] = -0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35–1.39 M {sub ⊙} and ages of 1.0–1.6 Gyr. θ Cyg’s T {sub eff} and log g place it cooler than the red edge of the γ Doradus instability region established from pre- Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1–3 cycles per day (11 to 33 μ Hz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μ Hz) may be attributable to a faint, possibly background, binary.

  16. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    Science.gov (United States)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is

  17. Structural and magnetic properties of Sr{sub 2}Y{sub 1+x}Ir{sub 1-x}O{sub 6} materials

    Energy Technology Data Exchange (ETDEWEB)

    Aslan Cansever, Gizem; Geyer, Maximilian; Blum, Christian G.F.; Gass, Sebastian; Corredor, Laura T.; Maljuk, Andrey; Wolter, A.U.B. [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Manna, Kaustuv [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Hammerath, Franziska; Wurmehl, Sabine; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany)

    2016-07-01

    Ir-based materials have attracted a lot of attention because of the competition between the spin-orbit coupling, Coulomb interaction and crystal field. Sr{sub 2}YIrO{sub 6} double perovskites with Ir{sup +5} (5d{sup 4}) ions are generally considered to have a nonmagnetic ground state (J=0). However, Sr{sub 2}YIrO{sub 6} double perovskites have been reported to exhibit long-range magnetic order at low temperature and the distorted IrO{sub 6} octahedra were discussed to cause the magnetism in this compound [2]. In this study Sr{sub 2}Y{sub 1+x}Ir{sub 1-x}O{sub 6} materials were investigated in relation to structural and magnetic properties with varying Y and Ir concentrations. The samples were prepared by solid-state chemical reaction method. Magnetic susceptibility measurements were performed down to 0.4 K.

  18. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    Science.gov (United States)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  19. Observation of large low field magnetoresistance in ramp-edge tunneling junctions based on doped manganite ferromagnetic electrodes and a SrTiO{sub 3} insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, C.; Jia, Q.X.; Fan, Y.; Hundley, M.F.; Reagor, D.W.; Hawley, M.E.; Peterson, D.E.

    1998-07-01

    The authors report the fabrication of ferromagnet-insulator-ferromagnet junction devices using a ramp-edge geometry based on (La{sub 0.7}Sr{sub 0.3})MnO{sub 3} ferromagnetic electrodes and a SrTiO{sub 3} insulator. The multilayer thin films were deposited using pulsed laser deposition and the devices were patterned using photolithography and ion milling. As expected from the spin-dependent tunneling, the junction magnetoresistance depends on the relative orientation of the magnetization in the electrodes. The maximum junction magnetoresistance (JMR) of 30% is observed below 300 Oe at low temperatures (T < 100 K).

  20. Structure of the demesmaekerite, Pb/sub 2/Cu/sub 5/(SeO/sub 3/)/sub 6/(UO/sub 2/)/sub 2/(OH)/sub 6/. 2H/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Ginderow, D [Laboratoire de Mineralogie-Cristallographie, Universite Pierre et Marie Curie, Paris, France; Cesbron, F [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France)

    1938-07-15

    Msub(r) = 2172, triclinic, P1-bar, a = 11.955(5), b = 10.039(4), c = 5.639(2) A, ..cap alpha.. = 89.78(4), ..beta.. = 100.36(4), ..gamma.. = 91.34(4)/sup 0/, Z = 1, V = 666 A/sup 3/, Dsub(x) = 5.42(5), Dsub(m) = 5.28(4) Mg m/sup -3/, ..mu..(Mo K..cap alpha..) = 36.57 mm/sup -1/, F(000) = 1217, T = 295 K. The final R value is 0.060 for 3329 observed reflexions. The crystal structure consists of layers of (Cu(O,OH,H/sub 2/O)/sub 6/) octahedra parallel to (010) and linked to each other by oblique chains which are formed by oxygen bridges linking uranyl and selenium ions.

  1. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  2. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  3. In-situ observation of domain wall motion in Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dabin; Cai, Changlong [Laboratory of Thin Film Techniques and Optical Test, Xi' an Technological University, Xi' an 710032 (China); Li, Zhenrong, E-mail: zhrli@mail.xjtu.edu.cn; Li, Fei; Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Education Ministry and International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shujun, E-mail: soz1@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Cheng, Yaojin [Science and Technology on Low-Light-Level Night Vision Laboratory, Xi' an 710065 (China)

    2014-07-21

    Various domain structures, including wave-like domains, mixed needle-like and laminar domains, typical embedded 90° and 180° domains, have been observed in unpoled rhombohedral, monoclinic, and tetragonal Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} (PIN-PMN-PT) crystals by polarizing light microscope; while in poled tetragonal crystals, the parallel 180° domains were reversed and only vertical 90° domain walls were observed. For 0.24PIN-0.42PMN-0.34PT crystals with morphotropic phase boundary composition, the domain wall motion was in-situ observed as a function of applied electric field along crystallographic [100] direction. With increasing the electric field from 0 to 12 kV/cm, the rhombohedral (R) domains were found to change to monoclinic (M) domains and then to tetragonal (T) domains. The electric field-induced phase transition was also confirmed by X-ray diffraction and the temperature-dependent dielectric behavior.

  4. Electrospun ZnFe{sub 2}O{sub 4}-based nanofiber composites with enhanced supercapacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Agyemang, Frank Ofori; Kim, Hern, E-mail: hernkim@mju.ac.kr

    2016-09-15

    Highlights: • Electrospun ZnFe{sub 2}O{sub 4}-based nanofibers were successfully fabricated. • The electrochemical properties of ZnFe{sub 2}O{sub 4} were enhanced by addition of ZnO and Fe{sub 2}O{sub 3.} • A specific capacitance of 590 F g{sup −1} was achieved from a CV curve at a scan rate of 5 mV s{sup −1.} • The electrode materials poses excellent cycling stability even after 3000 cycles. - Abstract: Herein, we are reporting a facile method to synthesis ZnFe{sub 2}O{sub 4}-based nanofibers (ZnFe{sub 2}O{sub 4}, ZnO–ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3}–ZnFe{sub 2}O{sub 4}) via the electrospinning technique using zinc acetonate and ferric acetonate as the metal oxide precursor and polyvinyl pyrrolidone (PVP) as the polymer. The as-prepared electrospun nanofiber composites were calcined at 500 °C to obtain crystalline porous nanofibers. The effect of different compositions on the morphology of each sample as well as their electrochemical properties when employed as electrode materials was studied. The results show that the as-prepared electrodes exhibited excellent performance with their specific capacitances calculated from the CV curves as 590, 490 and 450 F g{sup −1} for Fe{sub 2}O{sub 3}–ZnFe{sub 2}O{sub 4}, ZnO–ZnFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} respectively at a scan rate of 5 mV s{sup −1}. Excellent stability of the electrodes was also observed even after 3000 cycles. The results obtained suggest these electrode materials might be promising candidates for supercapacitor application.

  5. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base

    International Nuclear Information System (INIS)

    Poon, C.-S.; Qiao, X.C.; Chan, Dixon

    2006-01-01

    The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5 mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6 mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate

  6. The ferromagnetic Kondo-lattice compound SmFe sub 4 P sub 1 sub 2

    CERN Document Server

    Takeda, N

    2003-01-01

    We report on the magnetic properties of a filled skutterudite compound, SmFe sub 4 P sub 1 sub 2. Magnetic susceptibility and specific heat measurements revealed a ferromagnetic transition at 1.6 K. The temperature dependence of the electrical resistivity exhibits a Kondo-lattice behaviour and the electronic specific heat coefficient attains values as large as 370 mJ mol sup - sup 1 K sup - sup 2. This compound is thereby the first Sm-based heavy-fermion system found with a ferromagnetic ground state. The Kondo temperature is estimated to be about 30 K. (letter to the editor)

  7. Passage kinetics of digesta in horses fed with coastcross hay ground to different degrees

    Directory of Open Access Journals (Sweden)

    Vinicius Pimentel Silva

    2014-10-01

    Full Text Available This study was conducted to evaluate the kinetics, physicochemical characteristics and particle size of digesta in the right ventral colon (RVC of horses fed coastcross hay ground to different degrees. Four horses fitted with cannulae in the RVC were used and were fed the following forms of hay: long, chopped, ground to 5 mm and ground to 3 mm. A Latin Square 4x4 study design was used. Each experimental period included 10 days for diet adaptation, four days for feces collection and one day for digesta collection. The kinetics of the particulate and solute phases of digesta were evaluated based on the mean retention time (MRT, passage rate (k and transit time (TT using two external markers: Cr-NDF and Co-EDTA. The TT of solid phase digesta was 3 hours longer (P0.05 in k or MRT in either the liquid or solid phase of digesta as a function of the different degrees of hay grinding. However, the liquid phase of digesta presented a higher k than the solid phase, with values of 3.28 and 2.73 h-1 being obtained, respectively. The smallest particle size and the lowest neutral detergent fiber contents in colon digesta were observed when hay ground to 3 mm was offered, leading to values of 0.51 mm and 53.46%, respectively. Grinding the hay increased the transit time of the liquid phase in the digestive tract of the horses, whereas no change in the kinetics of the solid phase digesta was observed. The grinding of hay reduced the NDF and the average particle size in the right ventral colon.

  8. Observations on dual-ended readout of 100 mm long LYSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ur-Rehman, Fazal, E-mail: Fazal@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); McIntosh, Bryan [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Goertzen, Andrew L. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2011-10-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm{sup 3} polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm{sup 3} crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm{sup 3} crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4{+-}0.4%, 16.0{+-}1.2% and 28.3{+-}2.1% with mean spatial resolutions of 7.0{+-}1.0, 9.4{+-}3.3 and 26.0{+-}5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  9. A Panoramic View of Star Formation in Milky Way: Recent Results from Galactic Plane FIR/Sub-mm Surveys

    Science.gov (United States)

    Elia, Davide

    2017-11-01

    The star formation process involves a continuous gas flow from galactic (kpc) down to stellar (AU) scales. While targeted observations of single star forming sources are needed to understand the steps of this process with increasing detail, large unbiased Galactic plane surveys permit to reconstruct the map of star forming sites across the Milky Way, considered as an unique star formation engine. On the one hand, such surveys provide the community with a huge number of candidate targets for future follow-up observations with state-of-the-art telescope facilities, on the other hand they can provide reliable estimates of global parameters, such as Galactic star formation efficiency and rate, through which it is possible to establish comparisons with other galaxies. In this talk I will review the main results of recent FIR/sub-mm continuum emission Galactic surveys, with special attention to the Hi-GAL Herschel project, having the advantage (but also the complication) of being a multi-wavelength survey covering the spectral range in which the cold interstellar dust is expected to emit. The subsequent VIALACTEA project represents an articulate effort to combine Hi-GAL with other continuum and line surveys to refine the census of star forming clumps in the Galactic plane, and to use it to describe the Milky Way as a whole. Interpretation limitations imposed by the loss of detail with increasing distance are also discussed.

  10. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  11. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  12. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    International Nuclear Information System (INIS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-01-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples

  13. A phase-contrast X-ray imaging system—with a 60×30 mm field of view—based on a skew-symmetric two-crystal X-ray interferometer

    Science.gov (United States)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu, Jin; Thet-Thet-Lwin; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system—with a 60×30 mm field of view—for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60×30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  14. Observation of W{yields} {tau}{nu}{sub {tau}} decays with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Hanninger, Guilherme

    2011-04-15

    Physics studies of processes with {tau} leptons in the final state, while challenging at hadron colliders, are of great importance at the LHC. The {tau} leptons provide important signatures in searches for the Higgs boson as well as for new physics in a wide range of theoretical models. Decays of Standard Model particles to {tau} leptons, in particular Z {yields} {tau}{tau} and W {yields} {tau}{nu}{sub {tau}}, are important background processes in those searches and their cross sections need to be measured first. This thesis reports the first observation of W {yields} {tau}{nu}{sub {tau}} decays and of hadronically decaying {tau} leptons with the ATLAS experiment at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 546 nb{sup -1}, which was recorded at a proton-proton centre-of-mass energy of 7TeV. A total of 78 data events are selected, with an estimated background of 11.1 {+-} 2.3{sub (stat.)} {+-} 3.2{sub (syst.)} events from QCD processes, and of 11.8 {+-} 0.4{sub (stat.)} {+-} 3.7{sub (syst.)} events from other W and Z decays. The observed excess of data events over the total background is compatible with the SM expectation for W {yields} {tau}{nu}{sub {tau}} decays, both in the number of events and in the shapes of distributions of characteristic variables. (orig.)

  15. Observations of magnetohydrodynamic waves on the ground and on a satellite

    International Nuclear Information System (INIS)

    Lanzerotti, L.J.; Fukunishi, H.; Maclennan, C.G.; Cahill, L.J. Jr.

    1976-01-01

    A comparison is made of magnetohydrodynamic waves observed near the equator on Explorer 45 and at an array of ground stations in the northern hemisphere and at their conjugate station at Siple, Antartica. The data comparisons strongly support the notion that the observed waves can be considered odd mode standing waves in the magnetosphere. This conclusion has important implications for the interpretation of single-point satellite and/or ground measurements of ULF plasma wave phenomena in the magnetosphere. Further, the data comparisons strongly suggest that the overall ULF (approx.5-30 mHz) power levels are quite similar in the magnetosphere and on the ground, at least during the intervals studied

  16. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  17. Constraints on spatially oscillating sub-mm forces from the Stanford Optically Levitated Microsphere Experiment data

    Science.gov (United States)

    Antoniou, I.; Perivolaropoulos, L.

    2017-11-01

    A recent analysis by one of the authors [L. Perivolaropoulos, Phys. Rev. D 95, 084050 (2017), 10.1103/PhysRevD.95.084050] has indicated the presence of a 2 σ signal of spatially oscillating new force residuals in the torsion balance data of the Washington experiment. We extend that study and analyze the data of the Stanford Optically Levitated Microsphere Experiment (SOLME) [A. D. Rider et al., Phys. Rev. Lett. 117, 101101 (2016), 10.1103/PhysRevLett.117.101101] (kindly provided by A. D. Rider et al.) searching for sub-mm spatially oscillating new force signals. We find a statistically significant oscillating signal for a force residual of the form F (z )=α cos (2/π λ z +c ) where z is the distance between the macroscopic interacting masses (levitated microsphere and cantilever). The best fit parameter values are α =(1.1 ±0.4 )×10-17N , λ =(35.2 ±0.6 ) μ m . Monte Carlo simulation of the SOLME data under the assumption of zero force residuals has indicated that the statistical significance of this signal is at about 2 σ level. The improvement of the χ2 fit compared to the null hypothesis (zero residual force) corresponds to Δ χ2=13.1 . There are indications that this previously unnoticed signal is indeed in the data but is most probably induced by a systematic effect caused by diffraction of non-Gaussian tails of the laser beam. Thus the amplitude of this detected signal can only be useful as an upper bound to the amplitude of new spatially oscillating forces on sub-mm scales. In the context of gravitational origin of the signal emerging from a fundamental modification of the Newtonian potential of the form Veff(r )=-G M/r (1 +αOcos (2/π λ r +θ ))≡VN(r )+Vosc(r ) , we evaluate the source integral of the oscillating macroscopically induced force. If the origin of the SOLME oscillating signal is systematic, the parameter αO is bounded as αOchameleon oscillating potentials etc.).

  18. Observations of the neutral atmosphere between 100 and 200 km using ARIA rocket-borne and ground-based instruments

    International Nuclear Information System (INIS)

    Hecht, J.H.; Christensen, A.B.; Gutierrez, D.J.

    1995-01-01

    The atmospheric response in the aurora (ARIA) rocket was launched at 1406 UT on March 3, 1992, from Poker Flat, Alaska, into a pulsating diffuse aurora; rocket-borne instruments included an eight-channel photometer, a far ultraviolet spectrometer, a 130.4-nm atomic oxygen resonance lamp, and two particle spectrometers covering the energy range of 1-400 eV and 10 eV to 20 keV. The photometer channels were isolated using narrow-band interference filters and included measurements of the strong permitted auroral emissions N 2 (337.1 nm), N 2 + (391.4 nm), and O I (844.6 nm). A ground-based photometer measured the premitted N 2 + (427.8 nm), the forbidden O I (630.0 nm), and the premitted O I (844.6 nm) emissions. The ground-based instrument was pointed in the magnetic zenith. Also, the rocket payload was pointed in the magnetic zenith from 100 to 200 km on the upleg. The data were analyzed using the Strickland electron transport code, and the rocket and ground-based results were found to be in good agreement regarding the inferred characteristic energy of the precipitating auroral flux and the composition of the neutral atmosphere during the rocket flight. In particular, it was found that the O/N 2 density ratio in the neutral atmosphere diminished during the auroral substorm, which started about 2 hours before the ARIA rocket flight. The data showed that there was about a 10-min delay between the onset of the substorm and the decrease of the O/N 2 density ratio. At the time of the ARIA flight this ratio had nearly returned to its presubstorm value. However, the data also showed that the O/N 2 density ratio did not recover to its presubstorm value until nearly 30 min after the particle and joule heating had subsided. Both the photometer and oxygen densities in the region above 130 km. The observed auroral brightness ratio B 337.1 /B 391.4 equaled 0.29 and was in agreement with other recent measurements

  19. Optical absorption and spectroscopic properties of thulium doped (TeO{sub 2})(Nb{sub 2}O{sub 5})(TiO{sub 2}) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kabalci, Idris [Department of Physics Education, Education Faculty, Harran University, Sanliurfa (Turkey); Tay, Turgay [Department of Chemistry, Science Faculty, Anadolu University, Eskisehir (Turkey); Oezen, Goenuel [Department of Physics, Science and Arts Faculty, Istanbul Technical University, Istanbul (Turkey)

    2011-09-15

    A type of thulium doped tellurite based optical glasses was prepared through conventional melt quenching technique. In the experiments, the effect of different Tm{sup 3+} ion concentration and glass composition on optical properties of (TeO{sub 2}){sub (1-x-y)}(Nb{sub 2}O{sub 5}){sub (x)}(TiO{sub 2}){sub (y)} (x=0.05, 0.10, 0.15, and 0.20 mol) glasses have been investigated by using UV-VIS-NIR optical spectrophotometry measurements in a wavelength range 400-2000 nm. Considering absorption measurements for the 1.0mol% Tm{sup 3+} doped of (TeO{sub 2}){sub 0.9}(Nb{sub 2}O{sub 5}){sub 0.05}(TiO{sub 2}){sub 0.05} glass, {sup 1}G{sub 4}, {sup 3}F{sub 2}, {sup 3}F{sub 3}, {sup 3}F{sub 4}, {sup 3}H{sub 5}, and {sup 3}H{sub 4} absorption bands were observed from the {sup 3}H{sub 6} ground level, at 463, 660, 687, 793, 1211 and 1700 nm wavelengths, respectively. Furthermore, spontaneous emission probabilities, and the radiative lifetimes for the 4f-4f transitions of the Tm{sup 3+} ions were calculated. The spectral intensities were determined in terms of Judd-Ofelt parameters ({omega}{sub 2}, {omega}{sub 4}, {omega}{sub 6}). Luminescence analysis was realized for the different Tm{sup 3+} ion concentration (0.002, 0.005 and 0.01mol) at room temperature. The luminescence band intensity of the {sup 3}F{sub 4}{yields}{sup 3}H{sub 4} transition was measured as a function of Tm{sup 3+} ion concentration (0.002, 0.005 and 0.01mol). Furthermore, luminescence data of the thulium doped glass samples were used to determine the compositional dependence of the emission cross sections at 1470 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. A New Generation of Sub Mm Telescopes, Made of Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Mezger, P.; Baars, J. W. M.; Ulich, B. L.

    1984-01-01

    Carbon fiber reinforced plastic (CFRP) appears to be the material most suited for the construction of submillimeter telescopes (SMT) not only for ground-based use but also for space applications. The accuracy of the CFRP reflectors needs to be improved beyond value of the 17 micron rms envisaged for the 10 m SMT.

  1. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    Science.gov (United States)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  2. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  3. COST Action TU1206 "SUB-URBAN - A European network to improve understanding and use of the ground beneath our cities"

    Science.gov (United States)

    Campbell, Diarmad; de Beer, Johannes; Lawrence, David; van der Meulen, Michiel; Mielby, Susie; Hay, David; Scanlon, Ray; Campenhout, Ignace; Taugs, Renate; Eriksson, Ingelov

    2014-05-01

    Sustainable urbanisation is the focus of SUB-URBAN, a European Cooperation in Science and Technology (COST) Action TU1206 - A European network to improve understanding and use of the ground beneath our cities. This aims to transform relationships between experts who develop urban subsurface geoscience knowledge - principally national Geological Survey Organisations (GSOs), and those who can most benefit from it - urban decision makers, planners, practitioners and the wider research community. Under COST's Transport and Urban Development Domain, SUB-URBAN has established a network of GSOs and other researchers in over 20 countries, to draw together and evaluate collective urban geoscience research in 3D/4D characterisation, prediction and visualisation. Knowledge exchange between researchers and City-partners within 'SUB-URBAN' is already facilitating new city-scale subsurface projects, and is developing a tool-box of good-practice guidance, decision-support tools, and cost-effective methodologies that are appropriate to local needs and circumstances. These are intended to act as catalysts in the transformation of relationships between geoscientists and urban decision-makers more generally. As a result, the importance of the urban sub-surface in the sustainable development of our cities will be better appreciated, and the conflicting demands currently placed on it will be acknowledged, and resolved appropriately. Existing city-scale 3D/4D model exemplars are being developed by partners in the UK (Glasgow, London), Germany (Hamburg) and France (Paris). These draw on extensive ground investigation (10s-100s of thousands of boreholes) and other data. Model linkage enables prediction of groundwater, heat, SuDS, and engineering properties. Combined subsurface and above-ground (CityGML, BIMs) models are in preparation. These models will provide valuable tools for more holistic urban planning; identifying subsurface opportunities and saving costs by reducing uncertainty in

  4. Observations on dual-ended readout of 100 mm long LYSO crystals

    International Nuclear Information System (INIS)

    Ur-Rehman, Fazal; McIntosh, Bryan; Goertzen, Andrew L.

    2011-01-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm 3 polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm 3 crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm 3 crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4±0.4%, 16.0±1.2% and 28.3±2.1% with mean spatial resolutions of 7.0±1.0, 9.4±3.3 and 26.0±5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  5. Crystal structure of the alluaudite Ag{sub 2}Mn{sub 3}(VO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, Hamdi Ben; Essehli, Rachid; Belharouak, Ilias [Hamad Bin Khalifa Univ., Doha (Qatar). Qatar Environment and Energy Research Inst.; Shikano, Masahiro [National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy

    2016-07-01

    The new compound Ag{sub 2}Mn{sub 3}(VO4){sub 3} was synthesized by hydrothermal and solid state reaction routes, and its crystal structure was determined from single-crystal X-ray diffraction data. Ag{sub 2}Mn{sub 3}(VO4){sub 3} crystallizes with a monoclinic symmetry, space group C2/c, with a=11.8968(11) Aa, b=13.2057(13) Aa, c=6.8132(7) Aa, β=111.3166(15) ( ) and V=997.16(17) Aa{sup 3} (Z=4). Its crystal refinement yielded the residual factors R(F)=0.0249 and wR(F{sup 2})=0.0704 for 95 parameters and 1029 independent reflections at a 3σ(I) level. Ag{sub 2}Mn{sub 3}(VO4){sub 3} can be considered as a new member of the AA{sup '}MM{sup '}{sub 2}(XO4){sub 3} alluaudite family. The specific arrangement of M and M{sup '} octahedral sites and of X tetrahedral sites gives rise to two different channels aligned along the crystallographic c-axis and containing the A and A{sup '} sites. The A, A{sup '}, M, and X sites are fully occupied by Ag{sup +}, Mn{sup 2+}, and V{sup 5+}, respectively; whereas a Mn{sup 2+}/Mn{sup 3+} mixture is observed in the M{sup '} site.

  6. Tunneling in the CH{sub 3} + H{sub 2} {yields} CH{sub 4} + H reaction and its isotopic analog: an anomalous isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Takayanagi, Toshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    Vibrationally adiabatic ground-state potential curves for the CH{sub 3} + H{sub 2} {yields} CH{sub 4} + H (I) and CD{sub 3} + H{sub 2} {yields} CD{sub 4}H + H (II) reactions were obtained by adding zero-point energies of harmonic vibrations orthogonal to intrinsic reaction coordinate (IRC) to bare potential curves along IRC. It was clarified that both the barrier height and barrier width of reaction II are smaller than those of reaction I. This computational result qualitatively explains the experimental observation of Momose et al. (J. Chem. Phys. 108 (1998) 7334) that reaction II occurs but reaction I does not occur in solid parahydrogen at 5 K. (author)

  7. Strain effects on electronic structure of Fe{sub 0.75}Ru{sub 0.25}Te

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, M.J., E-mail: M.Winiarski@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław (Poland); Samsel-Czekała, M. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław (Poland); Ciechan, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668, Warsaw (Poland)

    2017-01-15

    Structural and electronic properties of a hypothetical Fe{sub 0.75}Ru{sub 0.25}Te alloy and the parent FeTe compound have been investigated from first principles within the density functional theory (DFT). For both systems the double-stripe antiferromagnetic ground state is predicted at ambient pressure. The incorporation of Ru atoms into FeTe in the nonmagnetic phase leads to a deep valley of density of states in the vicinity of the Fermi level and the DOS at the Fermi level is significantly diminished in the considered solid solution. The single-stripe antiferromagnetic phase in Fe{sub 0.75}Ru{sub 0.25}Te may be induced by tensile strain. These findings suggest that strained thin films of Fe{sub 1−x}Ru{sub x}Te are good candidates for new superconducting Fe-based materials. - Highlights: • Ru-doped FeTe systems are investigated by density-functional theory methods. • Structural and electronic properties of Fe{sub 0.75}Ru{sub 0.25}Te and parent FeTe are studied. • The double-stripe antiferromagnetic ground state is predicted for both systems. • The single-stripe antiferromagnetic phase may be induced by tensile strain. • Tensile strained Fe{sub 0.75}Ru{sub 0.25}Te is a candidate for a new Fe-based superconductor.

  8. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  9. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  10. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} in Atomic Thallium

    Science.gov (United States)

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ½} ground state to the 7{sup 2}P{sub ½} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ½} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ½} and 7{sup 2}P{sub ½} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  11. Spectroscopic properties of K{sub 5}Li{sub 2}UF{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Karbowiak, M. [Faculty of Chemistry, University of WrocIaw, ul. F. Joliot-Curie 14, 50-383 WrocIaw (Poland)]. E-mail: karb@wchuwr.chem.uni.wroc.pl; Gajek, Z. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Drozdzynski, J. [Faculty of Chemistry, University of WrocIaw, ul. F. Joliot-Curie 14, 50-383 WrocIaw (Poland)

    2005-04-04

    A new uranium (III) fluoro-complex of the formula K{sub 5}Li{sub 2}UF{sub 10} has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 A, V = 1121.89 A{sup 3}, Z = 4 and is isostructural with its K{sub 5}Li{sub 2}NdF{sub 10} and K{sub 5}Li{sub 2}LaF{sub 10} analogous. The absorption spectrum of a polycrystalline sample of K{sub 5}Li{sub 2}UF{sub 10} was recorded at 4.2 K in the 3500-45,000 cm{sup -1} range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U{sup 3+} with a relatively small r.m.s. deviation of 37 cm{sup -1}. The total splitting of 714 cm{sup -1} was calculated for the {sup 4}I{sub 9/2} ground multiplet.

  12. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  13. On the “alpha-phase” of Ca{sub 2−x}Sr{sub x}MnO{sub 4} and extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} to y>1

    Energy Technology Data Exchange (ETDEWEB)

    Craddock, Sarah; Senn, Mark S.

    2017-04-15

    There has been renewed interest in the Ruddlesden-Popper phase (n=2) of composition Ca{sub n+1}Mn{sub n}O{sub 3} {sub n+1} in the light of recent research that has highlighted the nature of the improper ferroelectric ground state, which arises due to the couplings between specific combinations of MnO{sub 6} octahedral rotations and tilts. A fruitful route to control these octahedral degrees of freedom, and hence such desired physical properties, is through chemical substitution on the A–site cation i.e. Ca{sub 2−x}Sr{sub x}MnO{sub 4} for n =1, and in light of this, we have reinvestigated the chemistry of this solid solution. Here we focus on a common impurity phase observed during this synthesis which has been termed the “alpha-phase” in the literature. We show that this impurity phase is actually comprised mainly of a structure related to Sr{sub 7}Mn{sub 4}O{sub 15} but is found here with significantly higher Ca substitution than previously believed possible. Sr{sub 7}Mn{sub 4}O{sub 15} is an interesting structural type in its own right, but has been mainly overlooked to date, exhibiting interesting physics related to low dimensional magnetic ordering and dimer interactions, and we show here that the structural type is a likely candidate for exhibiting a multiferroic ground state. The prospect of being able to tune the lattice and the exchange interactions through further chemical substitution is likely to lead to a renewed interest in this material. - Graphical abstract: Extending the chemistry of Sr{sub 7−y}Ca{sub y}Mn{sub 4}O{sub 15} beyond y>1, revealing highly anisotropic cation ordering and tunable magnetic properties. - Highlights: • Chemistry of the unique structural type Sr{sub 7}Mn{sub 4}O{sub 15} is extended to high Ca concentrations. • Cation occupancy model is determined, showing highly anisotropic solubility of Ca on the 7 unique Sr crystallographic sites. • Anomalies in the magnetic susceptibility data are discussed with reference to

  14. Continuum and Line Emission Simulation of Star-Forming Galaxies and Development of a New Sub-mm Inte

    Science.gov (United States)

    Lagache, Guilaine

    2018-01-01

    Nowadays, most of the constraints on the dusty star formation at high z comes from deep continuum surveys. We developed a new simulation of the dusty extragalactic sky with a realistic clustering. The comparison between single-dish and interferometric data showed that the clustering inside the beam of a single-dish instrument can seriously bias their measurements. Fortunately, these simulations also show that the beam of a >30-meter dish in the mm should not be affected by serious multiplicity effects. We will give predictions for important characteristics of future AtLAST surveys (as confusion limit, number of detections, properties of detected galaxies). These simulations can also include line emission to prepare a future sub-mm low-resolution spectroscopic survey at high z with AtLAST. Such a survey could be built on the legacy of the CONCERTO survey, that will map the fluctuations of the CII line intensity in the reionisation and post-reionisation epoch. A "super-CONCERTO" instrument on AtLAST would be a perfect first-light instrument to unveil the gigantic potential of this telescope.

  15. Study of the unknown hemisphere of mercury by ground-based astronomical facilities

    Science.gov (United States)

    Ksanfomality, L. V.

    2011-08-01

    The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°-180°W, 215°-350°W, and 50°-90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°-290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.

  16. Magnetic field induced low temperature upturn of magnetization in highly Ca-doped La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} polycrystalline compound

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kalipada, E-mail: kalipadadasphysics@gmail.com [Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032 (India); Dasgupta, P.; Poddar, A. [CMP Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2017-06-15

    Highlights: • Magnetic field induced super paramagnetic nanoclusters formation. • Magnetic field dependent change of the curvature of the magnetization. • We report the training effect in polycrystalline La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3} compound. - Abstract: In our present study we have reported the magnetic properties of highly Ca-doped polycrystalline compound La{sub 0.1875}Ca{sub 0.8125}MnO{sub 3}. Along with the conventional charge ordered antiferromagnetic ground state, a small ferromagnetic phase fraction is present at the low temperature. The effect of the external magnetic field markedly modifies the ground state of the compound. Our experimental results indicate that in addition to the ferromagnetic phase fraction, another field induced super paramagnetic phase grow at low temperature (T < 50 K) above H = 10 kOe magnetic field within the charge ordered antiferromagnetic matrix. The nature of the temperature dependent magnetization curves influenced by the external applied magnetic field was observed and analyzed using Langevin theory of super paramagnetism.

  17. Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison

    Science.gov (United States)

    He, Jing; Rodriguez, Juan V.

    2018-03-01

    The early detection of solar proton event onsets is essential for protecting humans and electronics in space, as well as passengers and crew at aviation altitudes. Two commonly compared methods for observing solar proton events that are sufficiently large and energetic to be detected on the ground through the creation of secondary radiation—known as ground level enhancements (GLEs)—are (1) a network of ground-based neutron monitors (NMs) and (2) satellite-based particle detectors. Until recently, owing to the different time resolution of the two data sets, it has not been feasible to compare these two types of observations using the same detection algorithm. This paper presents a comparison between the two observational platforms using newly processed >100 MeV 1 min count rates and fluxes from National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) 8-12 satellites, and 1 min count rates from the Neutron Monitor Database. We applied the same detection algorithm to each data set (tuned to the different background noise levels of the instrument types). Seventeen SPEs with GLEs were studied: GLEs 55-70 from Solar Cycle 23 and GLE 71 from Solar Cycle 24. The median difference in the event detection times by GOES and NM data is 0 min, indicating no innate benefit in time of either system. The 10th, 25th, 75th, and 90th percentiles of the onset time differences (GOES minus NMs) are -7.2 min, -1.5 min, 2.5 min, and 4.2 min, respectively. This is in contrast to previous studies in which NM detections led GOES by 8 to 52 min without accounting for different alert protocols.

  18. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC are associated with

  19. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  20. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  1. First retrievals of methane isotopologues from FTIR ground-based observations

    Science.gov (United States)

    Bader, Whitney; Strong, Kimberly; Walker, Kaley; Buzan, Eric

    2017-04-01

    Whitney Bader has received funding from the European Union's Horizon2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n˚ 704951, and from the University of Toronto through a Faculty of Arts & Science Postdoctoral Fellowship Award. References Bader, W., Bovy, B., Conway, S., Strong, K., Smale, D., Turner, A. J., Blumenstock, T., Boone, C., Coulon, A., Garcia, O., Griffith, D. W. T., Hase, F., Hausmann, P., Jones, N., Krummel, P., Murata, I., Morino, I., Nakajima, H., O'Doherty, S., Paton-Walsh, C., Robinson, J., Sandrin, R., Schneider, M., Servais, C., Sussmann, R. and Mahieu, E.: Ten years of atmospheric methane from ground-based NDACC FTIR observations, Atmos. Chem. Phys. Discuss., 1-31, doi:10.5194/acp-2016-699, 2016. Buzan, E. M., Beale, C. A., Boone, C. D. and Bernath, P. F.: Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas. Tech., 9(3), 1095-1111, doi:10.5194/amt-9-1095-2016, 2016. Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N. and Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM), J. Clim., 26(19), 7372-7391, doi:10.1175/JCLI-D-12-00558.1, 2013. Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G. and Wagner, G.: The HITRAN2012 molecular spectroscopic

  2. Translating PI observing proposals into ALMA observing scripts

    Science.gov (United States)

    Liszt, Harvey S.

    2014-08-01

    The ALMA telescope is a complex 66-antenna array working in the specialized domain of mm- and sub-mm aperture synthesis imaging. To make ALMA accessible to technically inexperienced but scientifically expert users, the ALMA Observing Tool (OT) has been developed. Using the OT, scientifically oriented user input is formatted as observing proposals that are packaged for peer-review and assessment of technical feasibility. If accepted, the proposal's scientifically oriented inputs are translated by the OT into scheduling blocks, which function as input to observing scripts for the telescope's online control system. Here I describe the processes and practices by which this translation from PI scientific goals to online control input and schedule block execution actually occurs.

  3. Effects of mid-latitude ionosphere observed from ground-based ionosonde data obtained at Alma-Ata station during strong geomagnetic storms

    International Nuclear Information System (INIS)

    Gordienko, G.I.; Vodynnikov, V.V.; Yakovets, A.E.

    2006-01-01

    The ionospheric effects of fourteen great geomagnetic storms occurred in the 1986-2005 time period observed over Alma-Ata (43.25 N , 76.92 E ) were studied experimentally using ground-based ionosonde. The observations showed a number of unusual (for the Alma-Ata location) ionospheric phenomena during the active phase of geomagnetic storms, along with a negative phase in the ionospheric F2-layer disturbance an anomalous formation of the E, E2, and F1 layers at nighttime, and the appearance of aurora-type sporadic E layers were found. Processes of interaction of energetic neutrals with the upper atmosphere modeled by Bauske et al. (1997) for magnetically distributed condition seem to explain the phenomena of ionization of F1 and E region at night. (author)

  4. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  5. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  6. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  7. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  8. Ground-glass opacity at high resolution CT: an approach for differential diagnosis

    International Nuclear Information System (INIS)

    Spina, Juan C.; Rogondino, Jose; Vidales, Valeria; Rolnik, Maria C.; Montanari, Mariano; Salazar, Santiago N.

    2004-01-01

    Purpose: To evaluate the Ground-Glass Opacity in high resolution computed tomography (HRCT) with its underlying abnormality and anatomic distribution and its correlation with different etiologies. Methods: A 38 patients series, (32 men, 16 women, mean age 54,6 years, range 20-28) was retrospectively analyzed. They were evaluated with high resolution computed tomography, 2 mm thick sections and 10 mm of interval. Contrast intravenous iodinated contrast (no-ionic) was injected in 11 patients. The final diagnosis was made with sputum analysis, bronchioalveolar lavage, trans bronchial biopsy and open lung biopsy. Results: The differential diagnosis of ground glass opacity is based on analyzing their anatomic resolution and the underlying pathology in the lung parenchyma. Centrilobular distribution indicated early air-spaces pathology produced in our series by 21 infections, 4 pulmonary hemorrhages, 1 hypersensitivity pneumonitis and 1 descamative interstitial pneumonitis. Panlobular distribution, alveolar proteinosis (1 case) sarcoidosis (1 case) drug toxicity 1 case and one case of pneumocystis carinii. Peripherical distribution typical of early idiopathic fibrosis (1). Bronchiolitis obliterans with organizing pneumonia (1). Structural alterations of the lung parenchyma with bronchiectasias was seen in 16 cases, cystic lesions in 3 cases, sub pleural linear opacities 4 cases, peribronchovascular interstitial thickening or nodularity and emphysema in 10 cases. Conclusion: HRCT is useful to evaluate ground glass opacities pattern with the anatomic distribution and the underlying structural pathology. These findings under some clinical circumstances can suggest a specific diagnosis in most cases, indicating a potentially treatable disease. (author)

  9. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al{sub 2}O{sub 3} gate oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig [Department of Electrical Engineering and Institute for Nano Science, Korea University, Seoul 136-701 (Korea, Republic of)], E-mail: sangsig@korea.ac.kr

    2008-10-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al{sub 2}O{sub 3} tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I{sub DS}-V{sub GS}) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper.

  10. Amperometric glucose sensor based on the Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode obtained from a thin Ni{sub 3}Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Magdalena, E-mail: jarosz@chemia.uj.edu.pl [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow (Poland); Jóźwik, Paweł [Faculty of Advanced Technology and Chemistry, Military University of Technology, Kaliskiego 2, 00908 Warsaw (Poland); Sulka, Grzegorz D. [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland)

    2017-06-30

    Highlights: • Chemical etching of Ni{sub 3}Al alloy in an acidic mixture was performed. • Electrochemical activity of samples was achieved by their oxidation in NaOH. • Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode showed electrochemical activity towards glucose. • Synthesized material is characterized by high sensitivity and short response time. - Abstract: In this report, we present a facile and relatively fast method to roughen the surface of Ni{sub 3}Al–based intermetallic foil, and test it as an amperometric non-enzymatic glucose sensor. The alloy samples underwent chemical etching in a H{sub 3}PO{sub 4}:CH{sub 3}COOH (HAc):HNO{sub 3}:H{sub 2}O (24:1:1:7 in volume) solution in order to achieve a high surface area with more electroactive sites. The Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrode was fabricated using potential cycling technique in a highly concentrated alkaline solution. The electrodes were tested electrochemically for oxidation of glucose. We have demonstrated that Ni(OH){sub 2}/Al(OH){sub 4}{sup −} electrodes exhibit high sensitivity towards glucose detection (796 μAmM{sup -1}cm{sup -2}) and short response time (3 s) upon successive addition of glucose. Moreover, as for a non-nanometric material, prepared electrodes show a relatively good linear correlation between current density and glucose concentration (0.025–0.45 mM) and limit of detection (47.6 μM). For more in-depth characterization of presented material, electrodes were examined using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  11. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  12. Low temperature plasma-enhanced ALD TiN ultrathin films for Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based ferroelectric MIM structures

    Energy Technology Data Exchange (ETDEWEB)

    Kozodaev, M.G.; Chernikova, A.G.; Markeev, A.M. [Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); Lebedinskii, Y.Y. [Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); National Research Nuclear University MEPhI, Moscow Engineering Physics Institute, Kashirskoye Shosse 31, 115409 Moscow (Russian Federation); Polyakov, S.N. [Technological Institute for Superhard and Novel Carbon Materials, Tsentral' naya str. 7a, 142190, Troitsk, Moscow (Russian Federation)

    2017-06-15

    In this work chemical and electrical properties of TiN films, grown by low temperature plasma-enhanced atomic layer deposition (PE-ALD) process from TiCl{sub 4} and NH{sub 3}, were investigated. Electrical resistivity as low as 250 μOhm x cm, as well as the lowest Cl impurity content, was achieved at 320 C. Full-ALD Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based metal-ferroelectric-metal capacitor with TiN electrodes was fabricated and its electrical properties were investigated. It was also shown that the proposed PE-ALD process provides an early film continuity, which was confirmed by ultrathin fully continuous film growth. Such ultrathin (3 nm) and fully continuous TiN film was also successfully implemented as the top electrode to Hf{sub 0.5}Zr{sub 0.5}O{sub 2}-based ferroelectric capacitor. Angle-resolved X-ray photoelectron spectroscopy (AR-XPS) was used for its thickness determination and a visible wake-up effect in underlying Hf{sub 0.5}Zr{sub 0.5}O{sub 2} layer was clearly observed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2004-06-01

    Full Text Available A ground-based microwave radiometer dedicated to chlorine monoxide (ClO measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude. It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O<sub>3sub>, ClO and NO<sub>2sub>, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1 the weak sensitivity of the instrument that obliges to make time averages over several hours; 2 the site location where measurements of good opacities are possible for only a few days per year; 3 the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4 the slow drift of some components affecting frequencies by 3-4MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995 from 35-50km are consistent with model results and satellite data, particularly at the peak altitude around 40km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O<sub>3sub> information from 30-60km whilst the instrument is not optimized at all for this molecule. Retrievals of O<sub>3sub> are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO<sub>2sub> are detected at 40km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude

  14. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}: Structures, optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Jeongho; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Tapp, Joshua; Möller, Angela [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2016-04-15

    Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The

  15. A review on g-C{sub 3}N{sub 4}-based photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiuqing; Xie, Jun [College of Materials and Energy, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642 (China); Chen, Xiaobo, E-mail: chenxiaobo@umkc.edu [Department of Chemistry, University of Missouri – Kansas City, Kansas City, MO, 64110 (United States); Li, Xin, E-mail: Xinliscau@yahoo.com [College of Materials and Energy, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642 (China)

    2017-01-01

    Graphical abstract: The photocatalytic fundamentals, versatile properties, design strategies and potential applications of g-C{sub 3}N{sub 4}-based photocatalysts were systematically summarized and addressed. - Highlights: • The photocatalytic fundamentals of g-C{sub 3}N{sub 4} were systematically summarized. • The versatile properties of g-C{sub 3}N{sub 4} photocatalysts were highlighted. • The different design strategies of g-C{sub 3}N{sub 4} photocatalysts were reviewed. • The important photocatalytic applications of g-C{sub 3}N{sub 4} were also addressed. - Abstract: As one of the most appealing and attractive technologies, heterogeneous photocatalysis has been utilized to directly harvest, convert and store renewable solar energy for producing sustainable and green solar fuels and a broad range of environmental applications. Due to their unique physicochemical, optical and electrical properties, a wide variety of g-C{sub 3}N{sub 4}-based photocatalysts have been designed to drive various reduction and oxidation reactions under light irradiation with suitable wavelengths. In this review, we have systematically summarized the photocatalytic fundamentals of g-C{sub 3}N{sub 4}-based photocatalysts, including fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C{sub 3}N{sub 4}-based photocatalysts. The versatile properties of g-C{sub 3}N{sub 4}-based photocatalysts are highlighted, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties. Various design strategies are also thoroughly reviewed, including band-gap engineering, defect control, dimensionality tuning, pore texture tailoring, surface sensitization, heterojunction construction, co-catalyst and nanocarbon loading. Many important applications are also addressed, such as photocatalytic water splitting (H{sub 2} evolution and overall water

  16. M<sub>5sub>Si>3sub>(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti<sub>5sub>Si>3sub>-based alloys was investigated. Oxidation behavior of Ti<sub>5sub>Si>3sub>-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti<sub>5sub>Si>3sub> by nucleation and growth of nitride subscale. Ti<sub>5sub>Si>3.2sub>and Ti<sub>5sub>Si>3sub>C>0.5sub> alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi<sub>2sub> coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo<sub>3sub>Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo<sub>3sub>Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb<sub>ss> (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb<sub>SS> + NbB was determined to occur at 2104 ± 5 C by DTA.

  17. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  18. Observation of hyperfine transitions in trapped ground-state antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: A. Olin for the ALPHA Collaboration

    2015-08-15

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  19. Observation of the domain structures in ferromagnetically coupled (Fe{sub 97}Al{sub 3}){sub 85}N{sub 15}/Al{sub 2}O{sub 3} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stobiecki, T.; Zoladz, M. [Department of Electronics, University of Mining and Metallurgy, 30-059 Krakow (Poland); Otto, M.; Roell, K. [Universitaet Gesamthochschule Kassel, Experimentalphysik IV, 34132 Kassel (Germany); Maass, W. [Unaxis GmbH, Alzenau (Germany)

    2003-03-01

    The strength of ferromagnetic (FM) coupling as a function of the spacer thickness of Al{sub 2}O{sub 3} was investigated by means of the Kerr microscopy used for analysis of magnetic domains. It was found that strong FM-coupling, strong uniaxial anisotropy and coherent rotation of the magnetization have been observed for the spacer thickness in the range of 0.2 nm{<=}t{<=}1 nm, however weak FM-coupling, patch domains and 360 -walls occur for the spacer thickness of t=2.5 nm. At a spacer thickness of t{>=}5 nm transition takes place from weak FM-coupling to the decoupled state where complex interlayer interactions and different types of the domain walls were observed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  1. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  2. Synthesis of Bi{sub 25}FeO{sub 39} by molten salts method and its Mössbauer spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Flores Morales, Shirley Saraí; León Flores, Jesús A.; Pérez Mazariego, José Luis, E-mail: mazariego@ciencias.unam.mx; Marquina Fábrega, Vivianne; Gómez González, Raúl W.

    2017-01-01

    A sample of Bi{sub 25}FeO{sub 39} was synthesized by the molten salts method in 2 h at 750 °C with KCl-KBr as reaction media. The sample was characterized with X-ray powder diffraction and Mössbauer spectroscopy. The Rietveld refinement of the X-ray diffraction confirms that a sillenite type structure with a cell parameter a=10.190(4) Å was achieved, with only small traces of Bi{sub 2}O{sub 3}. In order to get a Mössbauer spectrum with a good signal to noise ratio, the synthesis was made using 95% enriched α–{sup 57}Fe{sub 2}O{sub 3}. To our knowledge, this is the first time that a Mössbauer spectrum for the Bi{sub 25}FeO{sub 39} has been recorded. The nonappearance of a magnetic sextet confirms its paramagnetic behavior. The measured Mössbauer parameters (IS=0.20±0.004 mm/s and QS=0.2±0.07 mm/s) correspond to Fe{sup +3} in very symmetric surroundings, and rule out some interpretations given to the doublet observed in some Mössbauer spectra of BiFeO{sub 3}.

  3. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  4. Pressure Dependence of Coherence-Incoherence Crossover Behavior in KFe<sub>2sub>As>2sub> Observed by Resistivity and 75As-NMR/NQR.

    Energy Technology Data Exchange (ETDEWEB)

    Wiecki, P.; Taufour, V.; Chung, D. Y.; Kanatzidis, M. G.; Bud' ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2018-02-13

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe<sub>2sub>As>2sub> under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T *). T * is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbitalderived bands with the itinerant electron bands. No anomaly in T * is seen at the critical pressure pc = 1.8 GPa where a change of slope of the superconducting (SC) transition temperature Tc(p) has been observed. In contrast, Tc(p) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T1 data, although such a correlation cannot be seen in the replacement effects of A in the KFe<sub>2sub>As>2sub> (A = K, Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1/T1L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe<sub>2sub>As>2sub> under pressure.

  5. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  6. Sugar supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction by the cyanobiont Anabaena azollae

    Energy Technology Data Exchange (ETDEWEB)

    Rozen, A.; Tel-Or, E.

    1986-01-01

    Sugar supported activities of H/sub 2/ production and C/sub 2/H/sub 2/ reduction were characterized in axenic cell cultures of the cyanobiont Anabaena azollae isolated from the water fern Azolla filiculoides. Fructose was found to be the favoured substrate, enhancing activities in both the light and the dark even at relatively low concentrations of 0.5-1.0 mM. Higher concentrations of sucrose, (10-20mM) also supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction, while glucose was less effective. Levels of H/sub 2/ production were always lower than those of C/sub 2/H/sub 2/ reduction. 13 references.

  7. Microwave-derived soil moisture over Mediterranean land uses: from ground-based radiometry to SMOS first observations

    Science.gov (United States)

    Saleh, Kauzar; Antolín, Carmen; Juglea, Silvia; Kerr, Yann; Millán-Scheiding, Cristina; Novello, Nathalie; Pardé, Mickael; Wigneron, Jean-Pierre; Zribi, Mehrez; López-Baeza, Ernesto

    2010-05-01

    plant growing cycle. 2) Airborne-based experiments. 2.1) ESA's SMOS Rehearsal 2008. For this campaign an area of 100 km2 of vineyards in winter-like conditions was flown on four days using the EMIRAD radiometer. Soil moisture could be retrieved with good accuracy but only after surface roughness was determined. In fact, the campaign highlighted that close to specular modelling of the surface reflectivity using 0-6 cm measurements of soil moisture underestimated the surface emission. This was observed also in other airborne data sets (Saleh et al. 2009). 2.2) CNES CAROLS campaigns. In 2009, the L-band CAROLS radiometer was flown on three occasions over an area of 1500 km2 covering vineyards, shrub land and Mediterranean pine forest. Main results of CAROLS 2009 will be presented in this communication, and the emphasis will be on comparing local to regional scale results given that CAROLS flights were performed at ~4000 m above the surface. For soil moisture, SVAT-derived, field soil moisture, and surface-type derived soil moisture will be used as ground truth. 3) SMOS data Finally, the results of the above mentioned experiments concerning L-MEB parameterisations will be the basis for comparisons between simulated brightness temperatures (TB) and measured TBs from SMOS at the VAS site. These exercises will be conducted in order to have an assessment of the L-MEB performance in a highly studied and monitored area, and to help pinpointing future areas of investigation in microwave radiometry. References Cano A., Saleh K., Wigneron J.P., Antolín C., Balling J., Kerr Y.H., Kruszewski A., Millán-Scheiding C., Søbjaerg S.S., Skou N., López-Baeza E. (2009), The SMOS Medierranean Ecosystem L-band experiment (MELBEX-I) over natural shrubs, Remote Sensing of Environment, in press. Saleh K., Kerr Y.H., Richaume P., Escorihuela, M.J., Panciera R., Delwart S., Walker J., Boulet G., Maisongrande P., Wursteisen P., Wigneron, J.P. (2009), Soil moisture retrievals at L-band using a two

  8. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  9. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  10. Effect of antisymmetric C–H stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} → OH + CH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric C–H stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} → OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric C–H stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%–60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  11. Ab initio studies on electronic and magnetic properties of X{sub 2}PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: aparnachakrabarti@gmail.com [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Chakrabarti, Aparna [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2017-02-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X{sub 2}PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn{sub 2}PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr{sub 2}PtGa and Mn{sub 2}PtGa possess ferrimagnetic configuration whereas Fe{sub 2}PtGa and Co{sub 2}PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X{sub 2}PtGa (X=Cr, Mn, Fe, Co). • Co{sub 2}PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co{sub 2}PtGa.

  12. Examining the impact of introducing ICD-MM on observed trends in maternal mortality rates in the UK 2003-13.

    Science.gov (United States)

    Knight, Marian; Nair, Manisha; Brocklehurst, Peter; Kenyon, Sara; Neilson, James; Shakespeare, Judy; Tuffnell, Derek; Kurinczuk, Jennifer J

    2016-07-20

    The causes of maternal death are now classified internationally according to ICD-MM. One significant change with the introduction of ICD-MM in 2012 was the reclassification of maternal suicide from the indirect group to the direct group. This has led to concerns about the impact of this reclassification on calculated mortality rates. The aim of this analysis was to examine the trends in maternal deaths in the UK over the past 10 years, and to investigate the impact of reclassification using ICD-MM on the observed rates. Data about all maternal deaths between 2003-13 in the UK were included in this analysis. Data about maternal deaths occurring prior to 2009 were obtained from previously published reports. The deaths of women from 2009-13 during or after pregnancy were identified through the MBRRACE-UK Confidential Enquiry into Maternal Deaths. The underlying causes of maternal death were reclassified from a disease-based system to ICD-MM. Maternal mortality rates with 95 % confidence intervals were calculated using national data on the number of maternities as the denominator. Rate ratios with 95 % CI were calculated to compare the change in rates of maternal death as per ICD-MM relative to the old classification system. There was a decrease in the maternal death rate between 2003-05 and 2011-13 (rate ratio (RR) 0.65; 95 % CI 0.54-0.77 comparing 2003-5 with 2011-13; p = 0.005 for trend over time). The direct maternal death rate calculated using the old classification decreased with a RR of 0.47 (95 % CI 0.34-0.63) when comparing 2011-13 with 2003-05; p = 0.005 for trend over time. Reclassification using ICD-MM made little material difference to the observed trend in direct maternal death rates, RR = 0.51 (95 % CI 0.39-0.68) when comparing 2003-5 with 2011-13; p = 0.005 for trend over time. The impact of reclassifying maternal deaths according to ICD-MM in the UK was minimal. However, such reclassification raises awareness of maternal suicides

  13. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  14. Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Kosc, I., E-mail: ivan.kosc@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Hotovy, I. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Roch, T.; Plecenik, T.; Gregor, M. [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Predanocy, M. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Cehlarova, M.; Kus, P.; Plecenik, A. [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia)

    2014-09-01

    Highlights: • Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection were studied. • Structural, compositional and morphological properties were investigated. • XPS spectra of TiO{sub 2} and NiO{sub x} were identified. • P- and n-type of response to hydrogen were presented. • Inversion of conductivity response type was confirmed. - Abstract: Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection were studied. Two layouts with opposite position of functional films were deposited via DC magnetron sputtering method and annealed at 600 °C. The compositional, structural, morphological, electrical and gas sensing parameters were investigated. The depth profiles and the chemical state of the thin films elements were explored by X-ray photoelectron spectroscopy (XPS). Differences between the surface and subsurface NiO{sub x} were confirmed. In this way the formation of surface oxides and subsurface metallic Ni were observed. The structural changes and polycrystalline character were noticed by X-ray diffraction (XRD). The atomic force microscopy (AFM) revealed nanocrystalline character of the examined surfaces (both layouts). Different position of TiO{sub 2} and NiO{sub x} functional films brought difference in the type of response to reducing gas. Moreover, inversion of response type due to different H{sub 2} concentrations was confirmed.

  15. Ground and space-based separate PSF photometry of Pluto and Charon from New Horizons and Magellan

    Science.gov (United States)

    Zangari, Amanda M.; Stern, S. A.; Young, L. A.; Weaver, H. A.; Olkin, C.; Buratti, B. J.; Spencer, J.; Ennico, K.

    2013-10-01

    While Pluto and Charon are easily resolvable in some space-based telescopes, ground-based imaging of Pluto and Charon can yield separate PSF photometry in excellent seeing. We present B and Sloan g', r', i', and z' separate photometry of Pluto and Charon taken at the Magellan Clay telescope using LDSS-3. In 2011, observations were made on 7, 8, 9, 19, and 20 March, at 9:00 UT, covering sub-Earth longitudes 130°, 74°, 17°, 175° and 118°. The solar phase angle ranged from 1.66-1.68° to 1.76-1.77°. In 2012, observations were made on February 28, 29 and March 1 at 9:00 UT covering longitudes 342°, 110° and 53° and on May 30 and 31 at 9:30 UT and 7:00 UT, covering longitudes 358° and 272°. Solar phase angles were 1.53-1.56° and 0.89°-0.90° degrees. All longitudes use the convention of zero at the sub-Charon longitude and decrease in time. Seeing ranged from 0.46 to 1.26 arcsecond. We find that the mean rotationally-averaged Charon-to-Pluto light ratio is 0.142±0.003 for Sloan r',i' and z'. Charon is brighter in B and g', with a light ratio of 0.182±0.003 and 0.178±0.002 respectively. Additionally, we present separate PSF photometry of Pluto and Charon from New Horizons images taken by the LORRI instrument on 1 and 3 July 2013 at 17:00 UT and 23:00 UT, sub-Earth longitude 251° and 125°. We find that the rotation-dependent variations in the light ratio are consistent with earlier estimates such as those from Buie et al. 2010, AJ 139, 1117-1127. However, at a solar phase angle of 10.9°, Charon appears 0.25 magnitudes fainter relative to Pluto at the same rotational phase than measurements from the ground with the largest possible solar phase angle. Thus we provide the first estimate of a Pluto phase curve beyond 2°. These results represent some of the first Pluto science from New Horizons. This work has been funded in part by NASA Planetary Astronomy Grant NNX10AB27G and NSF Award 0707609 to MIT and by NASA's New Horizons mission to Pluto.

  16. Ferromagnetic correlations in Yb based heavy fermions probed by NMR relaxation: YbNi{sub 4}P{sub 2} vs. Yb(Rh,Ir){sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, M.; Sarkar, R.; Khuntia, P.; Krellner, C.; Geibel, C.; Steglich, F. [Max - Planck Institute of Chemical Physics of Solids, 01187 Dresden, Germany (Germany)

    2012-07-01

    Intersite correlations in Ce-based heavy fermion systems close to the quantum critical point separating the magnetic ordered state from the paramagnetic Kondo lattice are in almost all cases predominantly antiferromagnetic (AFM) in nature. The NMR relaxation of these systems show an evolution from localized fluctuations with 1/T{sub 1} nearly constant above the Kondo temperature T{sub K}, to a linear in T Korringa- like behavior with a constant and enhanced (1/T{sub 1}T)- value below T{sub K}. We report on {sup 31}P-NMR results on the ferromagnetic (FM) quantum critical system YbNi{sub 4}P{sub 2} over a wide range in temperature (2-300 K) and field (0.2 - 9 T). Here, {sup 31}(1/T{sub 1}T)(T) does not show such a signature at T{sub K}, instead a continuous increase of (1/T{sub 1}T) down to lowest T is observed. A similar behavior has been reported for YbRh{sub 2}Si{sub 2}, which also exhibits strong FM correlations evidenced by {sup 29}Si - NMR and an enhanced Wilson ratio. Furthermore, in CeFePO, which is likely unique among Ce-based quantum critical system because of its strong FM correlations, (1/T{sub 1}T) also diverges continuously for T {yields}0. This suggests that the difference in the relaxation between most of the Ce systems and the Yb systems is predominantly related to a change from AFM to FM intersite correlations. NMR-results (shift, line width, T{sub 1}) are analyzed and discussed in different models (Korringa, Moriya).

  17. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  18. Properties of the (Sm sub 0 sub . sub 3 sub 3 Eu sub 0 sub . sub 3 sub 3 Gd sub 0 sub . sub 3 sub 3)Ba sub 2 Cu sub 3 O sub y superconductor prepared by different processes in air

    CERN Document Server

    Giovannelli, F; Monot-Laffez, I

    2003-01-01

    Bars and pellets of the (Sm sub 0 sub . sub 3 sub 3 Eu sub 0 sub . sub 3 sub 3 Gd sub 0 sub . sub 3 sub 3)Ba sub 2 Cu sub 3 O sub x superconductor were processed in air, using the floating zone method and the top-seeded melt-textured growth method, respectively. The samples were prepared using different experimental conditions, i.e. maximal processing temperature, translation rate or cooling rate. Their physical properties and their microstructure were studied. All the samples exhibit a satisfying superconducting transition whereas the critical current density greatly depends on the processing parameters. The sample prepared by the floating zone method at 1070 deg C with a translation rate of 2 mm h sup - sup 1 exhibits a very high J sub c value of 70000 A cm sup - sup 2 in the self-field and more than 30000 A cm sup - sup 2 at 1.7 T. The pellet processed at 1080 deg C with a cooling rate of 2 deg C h sup - sup 1 has a high J sub c reaching about 56000 A cm sup - sup 2 in the self-field and more than 32000 A ...

  19. Observation of lower defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cells by admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Minlin; Lan, Fei; Tao, Quan; Li, Guangyong, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zhao, Bingxin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wu, Jiamin; Gao, Di, E-mail: gaod@pitt.edu, E-mail: gul6@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    2016-06-13

    The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance of CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  20. Structural analysis, optical and dielectric function of [Ba{sub 0.9}Ca{sub 0.1}](Ti{sub 0.9}Zr{sub 0.1})O{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Pérez, G., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), S. C. Miguel de Cervantes 120, Chihuahua 31136, Chihuahua (Mexico); Physics of Materials Department, Centro de Investigación en Materiales Avanzados (CIMAV), S. C. Miguel de Cervantes 120, Chihuahua 31136, Chihuahua (Mexico); Morales, D., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx; Paraguay-Delgado, F.; Reyes-Rojas, A.; Fuentes-Cobas, L. E. [Physics of Materials Department, Centro de Investigación en Materiales Avanzados (CIMAV), S. C. Miguel de Cervantes 120, Chihuahua 31136, Chihuahua (Mexico); Borja-Urby, R. [Centro de Nanociencias Micro y Nanotecnologías, Instituto Politécnico Nacional, 07300 México City (Mexico)

    2016-09-07

    This work presents the identification of inter-band transitions in the imaginary part of the dielectric function (ε{sub 2}) derived from the Kramers–Kronig analysis for [Ba{sub 0.9}Ca{sub 0.1}](Ti{sub 0.9}Zr{sub 0.1})O{sub 3} (BCZT) nanocrystals synthesized by the modified Pechini method. The analysis started with the chemical identification of the atoms that conform BCZT in the valence loss energy region of a high energy-resolution of electron energy loss spectroscopy. The indirect band energy (E{sub g}) was determined in the dielectric response function. This result is in agreement with the UV-Vis technique, and it obtained an optical band gap of 3.16 eV. The surface and volume plasmon peaks were observed at 13.1 eV and 26.2 eV, respectively. The X-ray diffraction pattern and the Rietveld refinement data of powders heat treated at 700 °C for 1 h suggest a tetragonal structure with a space group (P4 mm) with the average crystal size of 35 nm. The average particle size was determined by transmission electron microscopy.

  1. Investigations of the magnetic properties in the pyrochlore Ho{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenemann, Rico; Herrmannsdoerfer, Thomas; Green, Elizabeth Lauren; Wang, Zhaosheng; Wosnitza, Joachim [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Skrotzki, Richard [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Chemistry and Food Chemistry, TU Dresden, Dresden (Germany); Kaneko, Hiroshi; Suzuki, Haruhiko [Faculty of Mathematics and Physics, Kanazawa University, Kanazawa (Japan)

    2013-07-01

    Pyrochlore compounds such as R{sub 2}Ti{sub 2}O{sub 7} (where R is Ho or Dy) have an highly degenerate ground state where the R{sup 3+} moments obey the ''ice rules''. This provides access to study extraordinary physical phenomena, like the formation of magnetic monopoles. Recent publications evidence monopoles which can be probed using high frequency (adiabatic) susceptibility measurements. We performed ac susceptibility measurements on a single-crystal Ho{sub 2}Ti{sub 2}O{sub 7} sample at low temperatures down to 30 mK and magnetic fields up to 14 T. Based on isothermal frequency sweeps we were able to determine spin relaxation rates. Both the real and imaginary parts of the temperature-dependent magnetic susceptibility measurements show the spins freezing below 1 K and provide insight into the magnetic-monopole density.

  2. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  3. Bending strength of glass-ceramics based on 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO glass system; Resistencia a fratura de vitroceramicos do sistema 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO

    Energy Technology Data Exchange (ETDEWEB)

    Daguano, J.K.M.F.; Suzuki, P.A.; Santos, C. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais; Fernandes, M.H.V. [Universidade de Aveiro (UAveiro/CECICO), Aveiro (Portugal). Centro de Investigacao em Materiais Ceramicos e Compositos. Dept. de Engenharia Ceramica e do Vidro; Elias, C.N. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Lab. de Biomateriais

    2009-07-01

    In this work, the Modulus of Rupture of bioactive glass-ceramic based on 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO system was investigated, aiming its use in bone-restorations. The mechanical property was correlated with microstructural and crystallographic features of this material. High-purity starting-powders, CaCO{sub 3}, SiO{sub 2}, MgO, Ca (H{sub 2}PO{sub 4}).H{sub 2}O, were used in this study. The powders were mixed in a stoichiometric ratio, using planetary ball-mill. The suspensions were dried, sieved and melted at 1600 deg C, for 4h. The casting ones were cooled quickly until annealing temperature 700 deg C, in which remained for 2h, with controlled cooling-rate until ambient temperature. Bulks of glass were heat-treated with temperatures varying between 700 deg C and 1100 deg C, for 4h, being after that, cooled at 3 deg C/min. Bioactive glass and glass-ceramic were characterized by HRXRD (high resolution X-ray diffraction), where whitlockite was main phase. The microstructure was analyzed by scanning electronic microscopy. Modulus of Rupture was determined by four-point bending testing using specimens of 1.5 x 2 x 25 mm and glasses presented strength near to 70MPa, while glass ceramics treated at 975 deg C-4h, presented bending strength of 120MPa. (author)

  4. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  5. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  6. Solid-state synthesis of Li{sub 4}Ti{sub 5}O{sub 12} for high power lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung-Woo [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ryu, Ji Heon [Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jeong, Joayoung [Cell Precedence Development Group, Samsung SDI, Yongin 446-577 (Korea, Republic of); Yoon, Dang-Hyok, E-mail: dhyoon@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2013-09-05

    Highlights: •High energy milling using 0.30 and 0.45 mm beads for Li{sub 4}Ti{sub 5}O{sub 12} synthesis. •Synthesis of 162 nm-sized pure Li{sub 4}Ti{sub 5}O{sub 12} by solid-state reaction. •Spray drying using fine starting materials to confer paste tackiness. •High capacity of 174 mAh/g and adequate rate properties for high power LIBs applications. -- Abstract: Li{sub 4}Ti{sub 5}O{sub 12} was synthesized by a solid-state reaction between Li{sub 2}CO{sub 3} and anatase TiO{sub 2} for applications to high power lithium ion batteries. The starting materials underwent 6 h of high energy milling using ZrO{sub 2} beads with two different sizes, 0.30 and 0.45 mm. The smaller ZrO{sub 2} beads resulted in finer starting materials. Spray drying was also performed on the 0.30 mm beads-treated particles to enhance the screen printability of a paste containing this powder. The finer starting materials showed a pure 162 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} due to the decreased diffusion length for a solid-state reaction, whereas the 0.45 mm beads-treated starting materials resulted in a 242 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} phase containing 2 wt.% of rutile TiO{sub 2} that had transformed from the anatase phase during heat treatment at 800 °C for 3 h. The finer Li{sub 4}Ti{sub 5}O{sub 12} showed higher charge capacity and better charge/discharge rates than the coarser particles, which highlights the importance of the primary particle size on the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} for high power applications. The fine Li{sub 4}Ti{sub 5}O{sub 12} particles had a discharge capacity of 174 mAh/g at 0.1 C and capacity retention of 80% at 10.0 C.

  7. Ground state properties of MnB{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Jan Lennart; Steinki, Nico; Schulze Grachtrup, Dirk; Menzel, Dirk; Suellow, Stefan [Institut fuer Physik der Kondensierten Materie, TU Braunschweig (Germany); Knappschneider, Arno; Albert, Barbara [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, TU Darmstadt (Germany)

    2016-07-01

    Recently, single crystalline MnB{sub 4} was synthesized for the first time, yielding microscale crystals with dimensions of the order of 200 μm. Based on band structure calculations, it was argued that the material is semiconducting as result of a Peierls distortion. Conversely, in a study of polycrystalline material it was concluded that the material is a weakly ferromagnetic metal. To establish if MnB{sub 4} is a semiconductor we have carried out single crystal four point resistivity measurements. For this purpose a setup for measuring microscale samples was developed and characterized. Qualitatively, we find semiconducting behavior (increasing resistivity for decreasing temperature), although a band gap could not be derived because of a non-linear Arrhenius plot. Our data are consistent with MnB{sub 4} being a pseudogap/small gap material as proposed. A pronounced sample dependence of the transport properties points to the presence of impurity states. For the single crystals no ferromagnetic signatures could be obtained, suggesting an extrinsic cause of it in polycrystalline material.

  8. Comparison of lidar-derived PM10 with regional modeling and ground-based observations in the frame of MEGAPOLI experiment

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2011-10-01

    Full Text Available An innovative approach using mobile lidar measurements was implemented to test the performances of chemistry-transport models in simulating mass concentrations (PM10 predicted by chemistry-transport models. A ground-based mobile lidar (GBML was deployed around Paris onboard a van during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation summer experiment in July 2009. The measurements performed with this Rayleigh-Mie lidar are converted into PM10 profiles using optical-to-mass relationships previously established from in situ measurements performed around Paris for urban and peri-urban aerosols. The method is described here and applied to the 10 measurements days (MD. MD of 1, 15, 16 and 26 July 2009, corresponding to different levels of pollution and atmospheric conditions, are analyzed here in more details. Lidar-derived PM10 are compared with results of simulations from POLYPHEMUS and CHIMERE chemistry-transport models (CTM and with ground-based observations from the AIRPARIF network. GBML-derived and AIRPARIF in situ measurements have been found to be in good agreement with a mean Root Mean Square Error RMSE (and a Mean Absolute Percentage Error MAPE of 7.2 μg m−3 (26.0% and 8.8 μg m−3 (25.2% with relationships assuming peri-urban and urban-type particles, respectively. The comparisons between CTMs and lidar at ~200 m height have shown that CTMs tend to underestimate wet PM10 concentrations as revealed by the mean wet PM10 observed during the 10 MD of 22.4, 20.0 and 17.5 μg m−3 for lidar with peri-urban relationship, and POLYPHEMUS and CHIMERE models, respectively. This leads to a RMSE (and a MAPE of 6.4 μg m−3 (29.6% and 6.4 μg m−3 (27.6% when considering POLYPHEMUS and CHIMERE CTMs, respectively. Wet integrated PM10 computed (between the ground and 1 km above the ground level from lidar, POLYPHEMUS and CHIMERE results

  9. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  10. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data

    Directory of Open Access Journals (Sweden)

    X. Li

    2010-03-01

    Full Text Available We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs of O<sub>4sub> (O<sub>2sub> dimer absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.

  11. Production and characterization of compounds based on MgB{sub 4}O{sub 7} for application in dosimetry; Producao e caracterizacao de compostos a base de MgB{sub 4}O{sub 7} para aplicacao em dosimetria

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiza Freire de

    2016-07-01

    Many materials with luminescent properties are used for ionizing radiation dosimetry through the thermoluminescence (TL) and optically stimulated luminescence (OSL) techniques. Detectors based on lithium fluoride (LiF), calcium sulphate (CaSO{sub 4}) and aluminum oxide (Al{sub 2}O{sub 3}), doped or codoped with various elements, are the TL or OSL commercial dosimeters most widely used currently. However, several researches are focused to the development of new TL /OSL materials in intention to enhance the dosimetric properties, in view that no TL/OSL dosimeter has all the ideal characteristics for monitoring the radiation. In this context, magnesium tetraborate (MgB{sub 4}O{sub 7}), which has been presented in the literature as a material for dosimetry TL, was investigated in this work. As there are no reports on the structural characterization of this material or regarding to its applicability on OSL dosimetry, the proposal of the present work was to develop compounds based on MgB{sub 4}O{sub 7}, with different doping, by solid state synthesis. It was made the structural, optical, TL and OSL characterization of the compound to verify it feasibility for application on radiation dosimetry. Initially, it was determined the calcination temperature and time for MgB{sub 4}O{sub 7} formation, with the use of thermal analyses and x ray diffraction. The ideal calcination was found at 900 °C for 7 hours. It were produced , in powder form, the compounds: MgB{sub 4}O{sub 7}, MgB{sub 4}O{sub 7}:Dy, MgB{sub 4}O{sub 7}:Dy,Li, MgB{sub 4}O{sub 7}:Ce, MgB{sub 4}O{sub 7}:Ce,Li, MgB{sub 4}O{sub 7}:Nd and MgB{sub 4}O{sub 7}:Nd,Li. For TL and OSL analyses it were produced pellets sintering at 950 °C for 2 hours. The radioluminescence (RL) analyses of MgB{sub 4}O{sub 7}:Dy and MgB{sub 4}O{sub 7}:Dy,Li shows wavelength emissions at 490, 590, 670 and 760 nm. For MgB{sub 4}O{sub 7}:Ce and MgB{sub 4}O{sub 7}:Ce,Li RL was observed wide emission band in the ultraviolet region. For the MgB{sub

  12. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part I: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Mukai, K.; Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • This study shows that the emulsion method can easily be adapted to add different phases into Li4SiO4 breeder pebbles. • Slurries with various compositions to form LOS + LMT, LOS + LAO and LOS + LLTO were processed.The calculated activation behavior shows that samples with added LAO or LLTO qualify as low activation material. • Yet, the long-term activation of the LAO containing samples is problematic as hands-on level activity is not reached quickly. - Abstract: Wet-chemical fabrication processes are highly adaptable to a wide range of raw materials and are therefore well suited for evaluating new material compositions. Here the established emulsion method was modified to fabricate novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3}. As the lithium density of the latter two compounds is relatively low, only moderate contents were added. The Li{sub 2}TiO{sub 3} additions, however, cover the full compositional range. The fabrication process was characterized with regard to its constancy and aptness for the anticipated pebble compositions by optical pebble size measurements. Also the phase content and the elemental composition of the fabricated pebbles were analyzed by XRD and ICP-OES combined with XRF, respectively. This work shows that the emulsion method is an appropriate method to produce pebbles with the anticipated Li{sub 2}TiO{sub 3} and LiAlO{sub 2} concentrations in a Li{sub 4}SiO{sub 4} matrix. However, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases. To evaluate the activation properties of the pebbles, FISPACT calculations with a DEMO relevant neutron source are applied as well. The addition of aluminum seems to be unfavorable for a fusion application, but moderate concentrations of lanthanum can be tolerated.

  13. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in [Magnetic Materials Laboratory, Department of Physics, Indian institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  14. Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America

    Science.gov (United States)

    Barros, Diego; Takahashi, Hisao; Wrasse, Cristiano M.; Figueiredo, Cosme Alexandre O. B.

    2018-01-01

    A ground-based network of GNSS receivers has been used to monitor equatorial plasma bubbles (EPBs) by mapping the total electron content (TEC map). The large coverage of the TEC map allowed us to monitor several EPBs simultaneously and get characteristics of the dynamics, extension and longitudinal distributions of the EPBs from the onset time until their disappearance. These characteristics were obtained by using TEC map analysis and the keogram technique. TEC map databases analyzed were for the period between November 2012 and January 2016. The zonal drift velocities of the EPBs showed a clear latitudinal gradient varying from 123 m s-1 at the Equator to 65 m s-1 for 35° S latitude. Consequently, observed EPBs are inclined against the geomagnetic field lines. Both zonal drift velocity and the inclination of the EPBs were compared to the thermospheric neutral wind, which showed good agreement. Moreover, the large two-dimensional coverage of TEC maps allowed us to study periodic EPBs with a wide longitudinal distance. The averaged values observed for the inter-bubble distances also presented a clear latitudinal gradient varying from 920 km at the Equator to 640 km at 30° S. The latitudinal gradient in the inter-bubble distances seems to be related to the difference in the zonal drift velocity of the EPB from the Equator to middle latitudes and to the difference in the westward movement of the terminator. On several occasions, the distances reached more than 2000 km. Inter-bubble distances greater than 1000 km have not been reported in the literature.

  15. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  16. n-VO{sub 2}/p-GaN based nitride–oxide heterostructure with various thickness of VO{sub 2} layer grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minhuan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bian, Jiming, E-mail: jmbian@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Sun, Hongjun; Liu, Weifeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhang, Yuzhi [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China (China); Luo, Yingmin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2016-12-15

    Graphical abstract: The significant influences of VO{sub 2} layer thickness on the structural, electrical and contact properties of the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure were investigated systemically. - Highlights: • High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). • A distinct reversible SMT phase transition was observed for the n-VO{sub 2}/p-GaN based nitride-oxide heterostructure. • The clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer. • The XPS analyses confirmed the valence state of V in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. • The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure devices will benefit significantly from these achievements. - Abstract: High quality VO{sub 2} films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO{sub 2} layer thickness on the SMT properties of the as-grown n-VO{sub 2}/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO{sub 2}/p-GaN interface were demonstrated before and after SMT of the VO{sub 2} over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO{sub 2} films was principally composed of V{sup 4+} with trace amount of V{sup 5+}. The design and modulation of the n-VO{sub 2}/p-GaN based heterostructure

  17. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  18. Effects of artificial holes in very large single-grain Y{sub 1.5}Ba{sub 2}Cu{sub 3}O{sub 7-y} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. D.; Jun, B. H.; Kim, C. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, H. W. [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2017-09-15

    The effects of artificial holes on the trapped magnetic fields and magnetic levitation forces of very large single-grain Y{sub 1.5}Ba{sub 2}Cu{sub 3}O{sub 7-y} (Y1.5) bulk superconductors were studied. Artificial holes were made for Y1.5 powder compacts by die pressing using cylindrical dies with a diameter of 30 mm or 40 m, or rectangular dies with a side length of 50 mm. The single grain Y1.5 bulk superconductors (25 mm, 33 mm in diameter and 42 mm in side length) with artificial holes were fabricated using a top-seeded melt growth (TSMG) process for the die-pressed Y1.5 powder compacts. The magnetic levitation forces at 77 K of the 25 mm single grain Y1.5 samples with one (diameters of 4.2 mm) or six artificial holes (diameters of 2.5 mm) were 10-17% higher than that of the Y1.5 sample without artificial holes. The trapped magnetic fields at 77 K of the Y1.5 samples with artificial holes were also 9.6-18% higher than that of the Y1.5 sample without artificial holes. The 33 mm and 42 mm single grain Y1.5 samples with artificial holes (2.5 mm and 4.2 mm in diameter) also showed trapped magnetic fields 10-13% higher than that of the Y1.5 samples without artificial holes in spite of the reduced superconducting volume fraction due to the presence of artificial holes. The property enhancement in the large single grain Y1.5 bulk superconductors appears to be attributed to the formation of the pore-free regions near the artificial holes and the homogeneous oxygen distribution in the large Y123 grains.

  19. Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M

    2007-01-01

    We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed

  20. Observation of growth-related magnetic structures in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Brown, G.W.; Kwon, C. [Los Alamos National Lab., NM (United States)

    1998-12-31

    Ambient observation of magnetic structures by magnetic force microscopy (MFM) in La{sub 0.67}Sr{sub 0.33}MnO{sub 3} films has not yet been clearly correlated with stresses induced by the kinetic or thermodynamic growth processes or the compressive (LaAlO{sub 3}) or tensile (SrTiO{sub 3}) nature of the substrate lattice-mismatch. Although domain-like magnetic structures have been seen in some as-grown films on LAO and related to substrate-induced stress and film thickness, no magnetic structure has been seen for films on STO and other films grown under different kinetic conditions on LAO. In this study, the authors have identified a set of pulsed-laser deposition conditions with the substrate temperature as a variable to determine the relationship between growth and stress-induced magnetic structures. Results from scanning tunneling, atomic force, and MFM microscopies, magnetization, and coercivity measurements will be presented.

  1. Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

    Science.gov (United States)

    Zakharenkova, I. E.; Cherniak, Iu. V.; Shagimuratov, I. I.; Klimenko, M. V.

    2018-01-01

    The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°-85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

  2. Preparation and electrical properties of MoO{sub 3}-modified SrBi{sub 2}Nb{sub 2}O{sub 9}-based lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhongran, E-mail: ruiqingchu@sohu.com [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Chu, Ruiqing, E-mail: rqchu@lcu.edu.cn [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Xu, Zhijun; Hao, Jigong; Wei, Denghu; Cheng, Renfei [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Li, Guorong [The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2016-05-05

    Lead-free piezoelectric ceramics, SrBi{sub 2}(Nb{sub 1-x}Mo{sub x}){sub 2}O{sub 9} (SBNM-x), were prepared by a conventional solid-state reaction method. The crystal structure, microstructure and electrical properties were systematically investigated. The X-ray diffraction analysis suggested that the substitution formed layered perovskite structure. Plate-like morphology of the grains which is characteristic for layer-structure Aurivillius compounds was clearly observed for all the samples. The excellent electrical properties (e.g., d{sub 33}∼18 pC/N, 2P{sub r}∼20.34 μC/cm{sup 2}) and a high Curie temperature (e.g., T{sub c}∼458 °C) are simultaneously obtained in the ceramics with x = 0.12. Additionally, thermal annealing studies indicated that piezoelectric constant (d{sub 33}) of SBNM-0.12 ceramic remains almost unchanged (16 pC/N, only decrease by 12%) at temperatures below 400 °C, demonstrating that the Mo-modified SBN-based ceramics are the promising candidates for high-temperature applications. - Highlights: • Higher valent cation Mo{sup 6+} substituted for B-site Nb{sup 5+} in the perovskite layers ions. • The piezoelectric constant (d{sub 33}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 18 pC/N. • The remnant polarization (2P{sub r}) of SrBi{sub 2}Nb{sub 2}O{sub 9} ceramic is increased to be 20.34 μC cm{sup −2}. • SBNM-x ceramics show good temperature stability for high temperature applications.

  3. Phase transitions in complex oxide systems based on Al{sub 2}O{sub 3} and ZrO{sub 2}; Przemiany fazowe w zlozonych ukladach tlenkowych na bazie Al{sub 2}O{sub 3} i ZrO{sub 2} zachodzace w procesach z szybkozmiennym dzialaniem temperatury

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, L [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1999-07-01

    Different compositions of materials based on Al{sub 2}O{sub 3} and ZrO{sub 2} and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al{sub 2}O{sub 3} containing aluminium titanate and coatings based on ZrO{sub 2} stabilised by 7-8% of Y{sub 2}O{sub 3}. (author)

  4. The role of SiO{sub 2} nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Felestin Sq., Saveh (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Nanoparticles in concrete. {yields} Ground granulated blast furnace slag as concrete's binder. {yields} Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO{sub 2} nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO{sub 2} nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO{sub 2} nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH){sub 2} amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO{sub 2} nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH){sub 2} content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO{sub 2} nanoparticles could

  5. Green fabrication of agar-conjugated Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S; Huang, B Y; Lin, P Y; Chang, C W [Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Hsieh, S L [Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan (China); Wu, C C [Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China); Wu, C H [Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung 80811, Taiwan (China); Huang, Y S, E-mail: shsieh@facmail.NSYSU.edu.tw [Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan (China)

    2010-11-05

    Magnetic nanoparticles are of great interest both for fundamental research and emerging applications. In the biomedical field, magnetite (Fe{sub 3}O{sub 4}) has shown promise as a hyperthermia-based tumor therapeutic. However, preparing suitable solubilized magnetite nanoparticles is challenging, primarily due to aggregation and poor biocompatibility. Thus methods for coating Fe{sub 3}O{sub 4} NPs with biocompatible stabilizers are required. We report a new method for preparing Fe{sub 3}O{sub 4} nanoparticles by co-precipitation within the pores of agar gel samples. Permeated agar gels were then dried and ground into a powder, yielding agar-conjugated Fe{sub 3}O{sub 4} nanoparticles. Samples were characterized using XRD, FTIR, TGA, TEM and SQUID. This method for preparing agar-coated Fe{sub 3}O{sub 4} nanoparticles is environmentally friendly, inexpensive and scalable.

  6. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  7. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  8. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  9. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru [Samara State Aerospace University, Samara 443086 (Russian Federation); Lebedev Physical Institute, Samara 443011 (Russian Federation); Mebel, A. M., E-mail: mebela@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 (United States)

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the

  10. Correlation of ground-based on topside photometric observations with auroral electron spectra measurements at rocket altitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Lewis, P.B. Jr.

    1977-01-01

    Spectroscopic measurements of the auroral lines 5577, 4278, and 6300 A made at Fort Yukon, Alaska, are used in the model computations of Rees and Luckey (1974) to predict the energy influx and the characteristic energy of an assumed Maxwellian primary electron spectrum for two auroral displays. Simultaneous with the ground observations, electron detectors aboard a sounding rocket directly measured the primary electron spectrum and energy flux on the field lines which contained the auroral light in the E region observed by the ground photometers (magnetically conjugate in the local sense). For the two auroras studied, the in situ particle measurements show that the model (1) correctly predicts changes in spectral parameters. (2) predicts a precipitated energy flux in good agreement with measured values, and (3) assumes a spectral shape (Maxwellian) not typical of the peaked spectra measured above discrete auroras.One of the rocket flights also carried photometers sensitive to 5577 and 3914 A. Every 0.2 s the photometers sampled the auroral light from the E region magnetically conjugate to the rocket, and they have reaffirmed the very close correlation between emission at 3914 A and that at 5577 A. Finally, by using the measured electron precipitation and current ionospheric models the emissions at 3914, 4278, and 5577 A are calculated. The model computations closely predict the measured light at 3914 and 4278 A. However, the 5577-A emission calculated from dissociative recombination of O 2 + and direct excitation of atomic oxygen using a measured secondary spectrum accounts for only about one third of the observed emission

  11. A discussion of differences in preparation, performance and postreflections in participant observations within two grounded theory approaches.

    Science.gov (United States)

    Berthelsen, Connie Bøttcher; Lindhardt, Tove; Frederiksen, Kirsten

    2017-06-01

    This paper presents a discussion of the differences in using participant observation as a data collection method by comparing the classic grounded theory methodology of Barney Glaser with the constructivist grounded theory methodology by Kathy Charmaz. Participant observations allow nursing researchers to experience activities and interactions directly in situ. However, using participant observations as a data collection method can be done in many ways, depending on the chosen grounded theory methodology, and may produce different results. This discussion shows that how the differences between using participant observations in classic and constructivist grounded theory can be considerable and that grounded theory researchers should adhere to the method descriptions of performing participant observations according to the selected grounded theory methodology to enhance the quality of research. © 2016 Nordic College of Caring Science.

  12. Carbons prepared from coffee grounds by H{sub 3}PO{sub 4} activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL

    Energy Technology Data Exchange (ETDEWEB)

    Reffas, A. [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France); Laboratoire de l' Ingenierie des Procedes, d' Environnement, Departement de Chimie Industrielle, Universite Mentouri, Constantine 25000 (Algeria); Bernardet, V.; David, B.; Reinert, L. [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France); Lehocine, M. Bencheikh [Laboratoire de l' Ingenierie des Procedes, d' Environnement, Departement de Chimie Industrielle, Universite Mentouri, Constantine 25000 (Algeria); Dubois, M.; Batisse, N. [LMI, CNRS, Universite Blaise Pascal, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Duclaux, L., E-mail: laurent.duclaux@univ-savoie.fr [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France)

    2010-03-15

    Activated carbons were prepared by the pyrolysis of coffee grounds impregnated by phosphoric acid at 450 deg. C for different impregnation ratios: 30, 60, 120 and 180 wt.%. Materials were characterized for their surface chemistry by elemental analysis, 'Boehm titrations', point of zero charge measurements, Infrared spectroscopy, thermogravimetric analysis (TGA); as well as for their porous and morphological structure by Scanning Electron Microscopy (SEM) and nitrogen adsorption at 77 K. The impregnation ratio was found to govern the porous structure of the prepared activated carbons. Low impregnation ratios (<120 wt.%) led to essentially microporous and acidic activated carbons whereas high impregnation ratios (>120 wt.%) yielded to essentially mesoporous carbons with specific surface areas as high as 925 m{sup 2} g{sup -1}, pore volume as large as 0.7 cm{sup 3} g{sup -1}, and neutral surface. The activated carbons prepared from coffee grounds were compared to a commercial activated carbon (S{sub BET} {approx} 1400 m{sup 2} g{sup -1}) for their adsorption isotherms of methylene blue and 'Nylosan Red N-2RBL', a cationic and anionic (azo) dye respectively. The mesoporous structure of the material produced at 180 wt.% H{sub 3}PO{sub 4} ratio was found to be appropriate for an efficient sorption of the latter azo dye.

  13. Competition of Kondo spin fluctuations and RKKY interactions in CeRh/sub 2/Si/sub 2-x/Ge/sub x/ and CeM/sub 2/X/sub 2/ compounds: a Kondo necklace problem

    Energy Technology Data Exchange (ETDEWEB)

    Godart, C; Gupta, L C; Tomy, C V; Vijayaraghavan, R; Thompson, J D

    1989-02-15

    We present the results of our measurements of the lattice constants and magnetic susceptibility of the pseudo-ternary system which crystallizes in the tetragonal ThCr/sub 2/Si/sub 2/ structure. Both of the cell constants a and c increase linearly with x. The magnetic ordering temperature T/sub N/ exhibits initially an enhancement with the increase in x and then decreases as x continues to increase further. These results, along with those on the pressure dependence of T/sub N/ in CeRh/sub 2/Si/sub 2/, can be understood on the basis of the Doniach's model of a Kondo necklace. We discuss also the applicability of this model to describe the strong correlation between the structural aspects and the ground-state properties of the whole series of Ce-based ternaries CeM/sub 2/X/sub 2/ (M = 3d, 4d and 5d elements; X = Si, Ge).

  14. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    Science.gov (United States)

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  15. O{sub 2}(X{sup 3}Σ{sub g}{sup −}) and O{sub 2}(a{sup 1}Δ{sub g}) charge exchange with simple ions

    Energy Technology Data Exchange (ETDEWEB)

    Ziółkowski, Marcin; Schatz, George C., E-mail: schatz@chem.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113 (United States); Viggiano, A. A.; Midey, Anthony [Air Force Research Laboratory, Space Vehicles Directorate, 3500 Aberdeen Ave, Kirtland AFB, New Mexico 87117 (United States); Dotan, Itzhak [Air Force Research Laboratory, Space Vehicles Directorate, 3500 Aberdeen Ave, Kirtland AFB, New Mexico 87117 (United States); Open University of Israel, 108 Ravutski St., Raanana 43107 (Israel)

    2014-06-07

    We present theory and experiments which describe charge transfer from the X{sup 3}Σ{sub g}{sup −} and a{sup 1}Δ{sub g} states of molecular oxygen and atomic and molecular cations. Included in this work are new experimental results for O{sub 2}(a{sup 1}Δ{sub g}) and the cations O{sup +}, CO{sup +}, Ar{sup +}, and N{sub 2}{sup +}, and new theory based on complete active space self-consistent field method calculations and an extended Langevin model to calculate rate constants for ground and excited O{sub 2} reacting with the atomic ions Ar{sup +}, Kr{sup +}, Xe{sup +}, Cl{sup +}, and Br{sup +}. The T-shaped orientation of the (X − O{sub 2}){sup +} potential surface is used for the calculations, including all the low lying states up to the second singlet state of the oxygen molecule b{sup 1}Σ{sub g}{sup +}. The calculated rate constants for both O{sub 2}(X{sup 3}Σ{sub g}{sup −}) and O{sub 2}(a{sup 1}Δ{sub g}) show consistent trends with the experimental results, with a significant dependence of rate constant on charge transfer exothermicity that does not depend strongly on the nature of the cation. The comparisons with theory show that partners with exothermicities of about 1 eV have stronger interactions with O{sub 2}, leading to larger Langevin radii, and also that more of the electronic states are attractive rather than repulsive, leading to larger rate constants. Rate constants for charge transfer involving O{sub 2}(a{sup 1}Δ{sub g}) are similar to those for O{sub 2}(X{sup 3}Σ{sub g}{sup −}) for a given exothermicity ignoring the electronic excitation of the O{sub 2}(a{sup 1}Δ{sub g}) state. This means (and the electronic structure calculations support) that the ground and excited states of O{sub 2} have about the same attractive interactions with ions.

  16. Effect of surface treatment of thermoelectric materials on the properties of thermoelements made from solid solutions of Bi/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems

    Energy Technology Data Exchange (ETDEWEB)

    Alieva, T.D.; Abdinov, D.Sh.; Salaev, Eh.Yu.

    1981-10-01

    Effect of surface treatment technology of samples of solid solutions of Ei/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems on their thermoelectric efficiency is studied. Branches of thermoelements have been produced with the help of electroerosion or mechanical cutting of monocrystal ingots of semiconducting solid Bi/sub 2/Te/sub 3/-base solutions. It is shown that in case of the treatment of side surfaces of branches of thermoelements produced of monocrystals of Bi/sub 2/Te/sub 3/ base solid solutions their thermoelectrical efficiency grows considerably. Maximum growth of efficiency (approximately 20%) is observed during mechanical grinding of branches surfaces with diamond paste with the following chemical or electrochemical etching.

  17. Structural, elastic and thermodynamic properties under pressure and temperature effects of MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Haddadi, K. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria); Rached, D. [Department of Physics, Faculty of Science, University of Sidi-Bel-Abbes, 22000 (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-06-15

    A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} aggregates are computed in the framework of the Voigt-Reuss-Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  18. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  19. Phase relationships in the area of the beta aluminate of the system K{sub 2}O-MgO-AL{sub 2}O{sub 3}; Phasenbeziehungen im Bereich der Beta-Aluminate des Systems K{sub 2}O-MgO-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P de

    1996-12-01

    The aim of this work was to be able to make statements about the thermodynamic stability of K-{beta}``-Al{sub 2}O{sub 3} in the pseudo-binary system K{sub 2}O-Al{sub 2}O{sub 3} and in the pseudo-ternary system K{sub 2}O-MgO-Al{sub 2}O{sub 3} relative to the adjacent phases of KAlO{sub 2} {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} and K-{beta}-Al{sub 2}O{sub 3}. (orig./MM) [Deutsch] Ziel dieser Arbeit war es, Aussagen ueber die thermodynamische Stabilitaet von K-{beta}``-Al{sub 2}O{sub 3} im pseudobinaeren System K{sub 2}O-Al{sub 2}O{sub 3} und im pseudoternaeren System K{sub 2}O-MgO-Al{sub 2}O{sub 3} relativ zu den benachbarten Phasen KAlO{sub 2}, {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} und K-{beta}-Al{sub 2}O{sub 3} machen zu koennen. (orig./MM)

  20. Structural and magnetic properties of nanocrystalline Nd{sub 4.5}Fe{sub 72}Co{sub 2}Cr{sub 3}Al{sub 1}B{sub 17.5} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Pampillo, L.G. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Ciudad de, Buenos Aires (Argentina)]. E-mail: lpampillo@fi.uba.ar; Saccone, F.D. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Ciudad de, Buenos Aires (Argentina); Sirkin, H.R.M. [Laboratorio de Solidos Amorfos, Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Ciudad de, Buenos Aires (Argentina)

    2007-02-01

    In this work, it was made a study on structural and magnetic properties of nanocrystalline Nd{sub 4.5}Fe{sub 72}Co{sub 2}Cr{sub 3}Al{sub 1}B{sub 17.5} ribbons obtained from crystallisation of amorphous precursors. A complex two-step crystallisation process, was found by differential scanning calorimetry (DSC): a first crystallisation peak at around T=570 deg. C exhibiting the precipitation of {alpha}-Fe and t-Fe{sub 3}B phases and a diffusive stage ending in a second exothermic peak. Also, isothermal annealings of 10 min duration were performed at 605, 635, 650 and 685 deg. C . Hysteresis curves of isothermally annealed samples showed magnetic hardening, with coercive fields above 2 kOe and an optimised M {sub R}/M {sub S} ratio of around 0.6. Except for the highest treatment temperature used in this work, the demagnetizing curves of annealed ribbons exhibited a step near zero field. This fact suggests a low exchange coupling between hard and soft phases, which can be attributed to the grain border phases. Otherwise, Moessbauer effect spectroscopy allowed us to determine that the absence of step in the demagnetizing curve of ribbons annealed at 685 deg. C , may be attributed to the formation of a {alpha}-(Fe, Co) solid solution (with hyperfine parameters B {sub HF}=35.5 T and {delta}=-0.11 mm/s). The formation of this solid solution also explains the diffusive process in the second crystallisation stage observed by DSC experiment.

  1. An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Koeth, Timothy W [State Univ. of New Jersey, New Brunswick, NJ (United States)

    2009-05-01

    An experimental program to perform a proof of principle of transverse to longitudinal emittance exchange (ϵ<sub>xin> ↔ ϵ<sub>zout> and ϵ<sub>xin> ↔ ϵ<sub>zout>) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM<sub>110sub> deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as x<sub>in>, x'<sub>in>, y<sub>in>, y'<sub>in>, z<sub>in>, or δ<sub>in>, and measuring the changes in all of the beam output vector's elements, x<sub>out>, x'<sub>out>, y<sub>out>, y'<sub>out>, z<sub>out>, δ<sub>out>, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, ϵ<sub>zin> of 21.1 ± 1.5 mm • mrad was observed to be exchanged with ϵ<sub>xout> of 20.8 ± 2.00 mm • mrad. Diagnostic limitations in the ϵ<sub>zout> measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The ϵ<sub>xin> of 4.67 ± 0.22 mm • mrad was observed to be exchanged with ϵ<sub>zout> of 7.06 ± 0.43 mm • mrad. The apparent ϵ<sub>zout>growth is consistent with calculated values in which the correlation term is neglected.

  2. Measurement of the Relaxation Rate of the Magnetization in Mn{sub 12}O{sub 12} -Acetate Using Proton NMR Echo

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Z. H. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lascialfari, A. [Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Borsa, F. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, 50144 Firenze, (Italy)

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn{sub 12}O {sub 12} -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society.

  3. Observed magnetic dipole transitions in the ground terms of Ti XIV, Ti XV, and Ti XVII

    International Nuclear Information System (INIS)

    Suckewer, S.; Fonck, R.; Hinnov, E.

    1979-09-01

    Four observed spectrum lines in titanium-containing tokamak discharges have been identified as follows: TiXIV 2s 2 2p 5 2 P/sub 1/2/ → 2 P/sub 3/2/ at 2115.3 A, TiXV 2s 2 2p 4 3P 1 → 3 P 2 at 2544.8 A, TiXVII 2s 2 2p 2 3 P 2 → 3 P 1 at 3834.4 A and 3 P 1 → 3 P 0 at 3371.5 A. The identifications are based on observed time behavior and correlation with intensities of resonance lines of other titanium ions, and on general agreement with predicted wavelengths and intensities

  4. A compact D-band monolithic APDP-based sub-harmonic mixer

    Science.gov (United States)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  5. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  6. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  7. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  8. Fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang; Chen, Yong [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Peng, Juan; Lai, Xiaoyong [Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021 (China); Tu, Jinchun, E-mail: tujinchun@hainu.edu.cn [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China)

    2017-02-28

    Highlights: • Porous NiCo{sub 2}O{sub 4} hollow nanospheres were synthesized via a facile “CEP” approach and the synthesis mechanism was discussed. • The NiCo{sub 2}O{sub 4} hollow nanospheres possess superior electron-transfer capability and electrocatalytic activity. • The sensitivity is as high as 1917 μA·mM{sup −1}·cm{sup −2} and the detection limit is as low as 0.6 μM (S/N = 3). - Abstract: In this paper, we report the fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres via a polycrystalline Cu{sub 2}O-templated route based on the elaborately designed “coordinating etching and precipitating” process. The composition and morphology of the porous NiCo{sub 2}O{sub 4} hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo{sub 2}O{sub 4} was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni{sup 2+}/Ni{sup 3+} and Co{sup 2+}/Co{sup 3+} ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM{sup −1}·cm{sup −2} at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  9. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations

    Directory of Open Access Journals (Sweden)

    T. Alberti

    2016-11-01

    Full Text Available We used the empirical mode decomposition (EMD to investigate the time variation of the magnetospheric and ground-based observations of the Earth's magnetic field during both quiet and disturbed periods. We found two timescale variations in magnetospheric data which are associated with different magnetospheric current systems and the characteristic diurnal orbital variation, respectively. On the ground we identified three timescale variations related to the solar-wind–magnetosphere high-frequency interactions, the ionospheric processes, and the internal dynamics of the magnetosphere. This approach is able to identify the different physical processes involved in solar-wind–magnetosphere–ionosphere coupling. In addition, the large-timescale contribution can be used as a local index for the identification of the intensity of a geomagnetic storm on the ground.

  10. Spectroscopy and picosecond dynamics of aqueous NO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gadegaard, Ane Riis; Thøgersen, Jan; Jensen, Svend Knak; Nielsen, Jakob Brun; Jensen, Frank; Keiding, Søren Rud, E-mail: keiding@chem.au.dk [Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C (Denmark); Jena, Naresh K.; Odelius, Michael [Department of Physics, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-08-14

    We investigate the formation of aqueous nitrogen dioxide, NO{sub 2} formed through femtosecond photolysis of nitrate, NO{sub 3}{sup −}(aq) and nitromethane CH{sub 3}NO{sub 2}(aq). Common to the experiments is the observation of a strong induced absorption at 1610 ± 10 cm{sup −1}, assigned to the asymmetric stretch vibration in the ground state of NO{sub 2}. This assignment is substantiated through isotope experiments substituting {sup 14}N by {sup 15}N, experiments at different pH values, and by theoretical calculations and simulations of NO{sub 2}–D{sub 2}O clusters.

  11. The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques

    Science.gov (United States)

    Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison

    2017-11-01

    Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.

  12. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20R<sub>E>. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5R<sub>E> in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  13. Effect of heptadentate (N{sub 4}O{sub 3}) tripodal Schiff base ligand and its yttrium(III) complex on the luminescence and extraction of tris({beta}-diketonato)europium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan)], E-mail: yhasegaw@rs.kagu.tus.ac.jp; Saitou, S.; Nagaoka, D.; Yajima, H. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan); Kanesato, M. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562 (Japan)

    2008-02-28

    In order to learn the effect of a Schiff base and the complex of Y{sup III} on the extraction of Eu{sup III} with {beta}-diketones and on the luminescence of the extracted species, the extraction of Eu{sup III} with 2-thenoyltrifluoroacetone (Htta) and/or these Schiff bases, tris(5-t-butyl)salicylidenaminoethyl amine (H{sub 3}L{sup 1}), and its Y{sup III} complex ([YL{sup 1}]) prepared, into CHCl{sub 3} was examined. Further, the luminescence and excited spectra of CHCl{sub 3} phases extracted Eu{sup III} complexes and the solutions containing tris({beta}-diketonato)Eu{sup III} and/or the Schiff bases were measured. On the measurement of the luminescence spectra, tris(pivaloyltrifluoroacetonato)Eu{sup III} (Eu(pta){sub 3}) as well as Eu(tta){sub 3} was used. Synergistic effect with Htta and these Schiff bases was observed. However, proper effect of Y{sup III} was not observed. The luminescence intensity of Eu(tta){sub 3} at 613 nm decreased with increasing concentration of H{sub 3}L{sup 1} or [YL{sup 1}], whereas that of Eu(pta){sub 3} increased with increasing concentration of the ligands, but no difference between both Schiff bases was observed, because of picking up of Y{sup III} from [YL{sup 1}] with the interaction between [YL{sup 1}] and water.

  14. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  15. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  16. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  17. The Nd-Mn exchange interaction, low temperature specific heat and magnetism of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beznosov, Anatoly [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Fertman, Elena, E-mail: fertman@ilt.kharkov.ua [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Desnenko, Vladimir [B. Verkin Institute for Low Temperature Physics and Engineering NASU, 47 Lenin Avenue, Kharkov 61103 (Ukraine); Kajnakova, Marcela; Feher, Alexander [Centre of Low Temperature Physics of the Faculty of Science UPJS and IEP SAS, Park Angelinum 9, 04154 Kosice (Slovakia)

    2011-10-15

    The low temperature specific heat and magnetic characteristics of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} perovskite are studied in a wide range of magnetic fields (up to 9 T). Temperature dependent specific heat data show a broadened Schottky-like anomaly below 20 K caused by splitting of the Nd{sup 3+} ions ground-state doublet in the effective molecular field H{sub ex}, determined by exchange interaction between Nd and Mn spin systems supplemented by an applied external magnetic field. Existence of the splitting at zero magnetic field and expressed field dependence is the evidence of a strong exchange coupling between Nd and Mn magnetic subsystems. The Nd-ions magnetic ordering leads to an additional contribution to the magnetic moment of the system below 30 K, producing anomalies of the magnetic loss and field-cooled and zero-field-cooled magnetizations. The observed broadened Schottky-like anomalies are fitted for each applied magnetic field by the sum of three Schottky functions. Applied magnetic field extends the anomaly region and shifts it to higher temperatures. Splitting of the higher crystal field Kramers doublets gives an additional contribution to the heat capacity in magnetic fields. The ground state doublet g-factors g{sub ||} and g{sub perpendicular} were estimated to be 3.4 and 2.2, respectively, and H{sub ex} was estimated to be 9 T. The Nd{sup 3+} ions magnetic moment estimated from the magnetization data agrees with the value obtained from the specific heat data. - Highlights: > Low temperature specific heat of Nd{sub 2/3}Ca{sub 1/3}MnO{sub 3} has been measured in magnetic fields up to 9 T. > Schottky-like anomalies are fitted for each magnetic field by a sum of three Schottky functions. > An effective magnetic field of the Mn spin system on Nd ion has been estimated as H{sub ex}=9 T. > Nd{sup 3+} ground-state g-factors have been estimated as g{sub ||}=3.4 and g{sub perpendicular} =2.2. > Magnetic ordering of the Nd subsystem has been revealed below

  18. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Directory of Open Access Journals (Sweden)

    F. De Angelis

    2017-10-01

    Full Text Available Ground-based microwave radiometers (MWRs offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes require an accurate representation of the differences between model (background and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O–B. Monitoring of O–B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O–B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O–B monitoring can effectively detect instrument malfunctions. O–B statistics (bias, standard deviation, and root mean square for water vapour channels (22.24–30.0 GHz are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ∼  2–2.5 K towards the high-frequency wing ( ∼  0.8–1.3 K. Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O

  19. Monitoring geospace disturbances through coordinated space-borne and ground-based magnetometer observations

    Science.gov (United States)

    Balasis, Georgios

    2014-05-01

    Recently automated methods of deriving the characteristics of ultra low frequency (ULF) waves in the magnetosphere have been developed (Balasis et al., 2012, 2013), which can be effectively applied to the huge datasets from the new ESA Swarm mission, in order to retrieve, on an operational basis, new information about the near-Earth electromagnetic environment. Processing Swarm measurements with these methods will help to elucidate the processes influencing the generation and propagation of ULF waves, which in turn play a crucial role in magnetospheric dynamics. Moreover, a useful platform based on a combination of wavelet transforms and artificial neural networks has been developed to monitor the wave evolution from the outer boundaries of Earth's magnetosphere through the topside ionosphere down to the surface. Data from a Low Earth Orbit (LEO) satellite (CHAMP) and two magnetospheric missions (Cluster and Geotail) along with three ground-based magnetic networks (CARISMA, GIMA and IMAGE), during the Halloween 2003 magnetic superstorm when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction, are used to demonstrate the potential of the analysis technique in studying wave evolution in detail.

  20. Temperature-induced spin reorientation and magnetization jump of rare-earth orthoferrite Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohua; Zhao, Weiyao; Cao, Yiming; Kang, Baojuan [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Zhang, Jincang [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China); Ren, Wei, E-mail: renwei@shu.edu.cn [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China); Cao, Shixun, E-mail: sxcao@shu.edu.cn [Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444 (China)

    2016-07-25

    We report temperature-induced spin reorientation and magnetization jump effects in the rare earth (RE) orthoferrite Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal. The single crystal of about 6 mm in diameter and 50 mm in length was successfully grown by optical floating zone method. Both X-ray diffraction and Laue photograph confirmed the homogeneity and high quality of the crystal. Magnetic properties of Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal are studied over a wide temperature range from 2 to 300 K. Spin reorientation transition from Γ{sub 2} to Γ{sub 4} phase is observed in the temperature range of 75–90 K. At lower temperature, the Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} shows an abrupt jump of magnetization along the a-axis, which occurs only in the field-cooling process, and is sensitive to external applied magnetic field. By analyzing the jump temperature and magnitude of the magnetization, we conclude that it is caused by the spin reversal of the rare earth ions. The isothermal magnetization versus field hysteresis loop measurements along a axis explain the spin configuration variation from 3 K to 60 K. - Highlights: • Ho{sub 0.5}Pr{sub 0.5}FeO{sub 3} single crystal was grown by optical floating zone method. • It shows an abrupt jump of magnetization along a axis at low temperature. • The jump height and temperature is sensitive to external applied magnetic field. • It is attributed to the spin reversal of the rare earth ions.

  1. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Directory of Open Access Journals (Sweden)

    M. Haeffelin

    2005-02-01

    Full Text Available Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA, an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO. SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

  2. High pressure phase transitions in Mg{sub 1-x}Ca{sub x}O: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon (India); Padegaonker, Rishikesh [Indian Embassy School, Sana (Yemen)

    2011-08-15

    We have analysed a B1 {yields} B2 structural phase transitions in Mg{sub 1-x}Ca{sub x}O solid solutions and their ground state properties by using first principle density functional theory and charge transfer interaction potential (CTIP) approach. The effects of exchange-correlation interactions are handled by the generalized gradient approximation with Perdew-Burke-Ernzerhof type parameterization. CTIP approach includes the long range modified Coulomb with charge transfer interactions and short range part of this model includes the van der Waals as well as Hafemeister Flygare type overlap repulsive interactions. The study observes a linear variation of calculated transition pressure, bulk modulus and lattice parameter of Mg{sub 1-x}Ca{sub x}O as a function of Ca composition. The observed results for the end point members are in agreement to their experimental counterparts and the deviations have been discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Comparative study of water reactivity with Mo{sub 2}O{sub y}{sup −} and W{sub 2}O{sub y}{sup −} clusters: A combined experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Manisha; Waller, Sarah E.; Saha, Arjun; Raghavachari, Krishnan; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-09-14

    A computational investigation of the Mo{sub 2}O{sub y}{sup −} + H{sub 2}O (y = 4, 5) reactions as well as a photoelectron spectroscopic probe of the deuterated Mo{sub 2}O{sub 6}D{sub 2}{sup −} product have been carried out to understand a puzzling question from a previous study: Why is the rate constant determined for the Mo{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O reaction, the terminal reaction in the sequential oxidation of Mo{sub 2}O{sub y}{sup −} by water, higher than the W{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O reaction? This disparity was intriguing because W{sub 3}O{sub y}{sup −} clusters were found to be more reactive toward water than their Mo{sub 3}O{sub y}{sup −} analogs. A comparison of molecular structures reveals that the lowest energy structure of Mo{sub 2}O{sub 5}{sup −} provides a less hindered water addition site than the W{sub 2}O{sub 5}{sup −} ground state structure. Several modes of water addition to the most stable molecular and electronic structures of Mo{sub 2}O{sub 4}{sup −} and Mo{sub 2}O{sub 5}{sup −} were explored computationally. The various modes are discussed and compared with previous computational studies on W{sub 2}O{sub y}{sup −} + H{sub 2}O reactions. Calculated free energy reaction profiles show lower barriers for the initial Mo{sub 2}O{sub y}{sup −} + H{sub 2}O addition, consistent with the higher observed rate constant. The terminal Mo{sub 2}O{sub y}{sup −} sequential oxidation product predicted computationally was verified by the anion photoelectron spectrum of Mo{sub 2}O{sub 6}D{sub 2}{sup −}. Based on the computational results, this anion is a trapped dihydroxide intermediate in the Mo{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O → Mo{sub 2}O{sub 6}{sup −} + H{sub 2}/D{sub 2} reaction.

  4. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fang [Chinese PLA General Hospital, Department of Radiology, Beijing (China); Capital Medical University, Department of Radiology, Xuanwu Hospital, Beijing (China); Tian, Shu-ping [Navy General Hospital, Department of Radiology, Beijing (China); Jin, Xin; Jing, Rui; Yang, Yue-qing; Jin, Mei; Zhao, Shao-hong [Chinese PLA General Hospital, Department of Radiology, Beijing (China)

    2017-10-15

    To evaluate CT and histopathologic features of lung adenocarcinoma with pure ground-glass nodule (pGGN) ≤10 mm in diameter. CT appearances of 148 patients (150 lesions) who underwent curative resection of lung adenocarcinoma with pGGN ≤10 mm (25 atypical adenomatous hyperplasias, 42 adenocarcinoma in situs, 38 minimally invasive adenocarcinomas, and 45 invasive pulmonary adenocarcinomas) were analyzed for lesion size, density, bubble-like sign, air bronchogram, vessel changes, margin, and tumour-lung interface. CT characteristics were compared among different histopathologic subtypes. Univariate and multivariate analysis were used to assess the relationship between CT characteristics of pGGN and lesion invasiveness, respectively. There were statistically significant differences among histopathologic subtypes in lesion size, vessel changes, and tumour-lung interface (P<0.05). Univariate analysis revealed significant differences of vessel changes, margin and tumour-lung interface between preinvasive and invasive lesions (P<0.05). Logistic regression analysis showed that the vessel changes, unsmooth margin and clear tumour-lung interface were significant predictive factors for lesion invasiveness, with odds ratios (95% CI) of 2.57 (1.17-5.62), 1.83 (1.25-2.68) and 4.25 (1.78-10.14), respectively. Invasive lesions are found in 55.3% of subcentimeter pGGNs in our cohort. Vessel changes, unsmooth margin, and clear lung-tumour interface may indicate the invasiveness of lung adenocarcinoma with subcentimeter pGGN. (orig.)

  5. The Nature of the Distinctive Microscopic Features in R<sub>5sub>(SixGe>1-xsub>)>4sub> Magnetic Refrigeration Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Ozan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    with respect to each other, consistent with the determined orientation relationship, was noted. Both observations are consistent with the stated hypothesis that the growth direction of the thin-plates is parallel to an invariant line direction. Based on the terrace-ledge structure of the thin-plate interface a displacive-diffusional growth mechanism has been proposed to explain the rapid formation of the R<sub>5sub>(Six>, Ge<sub>1-xsub>)>3sub> plates.

  6. Aircraft observations of aerosols O{sub 3} and NO{sub y} in a nighttime urban plume

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, C.M.; Zaveri, R.A.; Xindi Bian; Shiyuan Zhong; Disselkamp, R.S.; Laulainen, N.S.; Chapman, E.G. [Pacific Northwest National Lab., Richland, WA (United States)

    2001-05-01

    Nighttime measurements of aerosol surface area, O{sub 3}, NO{sub y} and moisture were made downwind of Portland, Oregon, as part of a study to characterize the chemistry in a nocturnal urban plume. Air parcels sampled within the urban plume soon after sunset had positive correlations between O{sub 3}, relative humidity, NO{sub y} and aerosol number density. However, the air parcels sampled within the urban plume just before dawn had O{sub 3} mixing ratios that were highly anti-correlated with aerosol number density, NO{sub y} and relative humidity. Back-trajectories from a mesoscale model show that both the post-sunset and pre-dawn parcels came from a common maritime source to the northwest of Portland. The pre-dawn parcels with strong anti-correlations passed directly over Portland in contrast to the other parcels that were found to pass west of Portland. Several gas-phase mechanisms and a heterogeneous mechanism involving the loss of O{sub 3} to the aerosol surface, are examined to explain the observed depletion in O{sub 3} within the pre-dawn parcels that had passed over Portland. (Author)

  7. Magneto-resistive coefficient enhancement observed around Verwey-like transition on spinel ferrites XFe{sub 2}O{sub 4} (X = Mn, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    López Maldonado, K. L., E-mail: liliana.lopez.maldonado@gmail.com; Vazquez Zubiate, L.; Elizalde Galindo, J. T. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), P.O. Box 155, 28230 Las Rozas (Spain); Departamento de Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Matutes Aquino, J. A. [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico)

    2014-05-07

    Manganese and Zinc ferrites were prepared by solid state reaction. The resulting powders were pressed into pellets and heat treated at 1100 °C. The samples were characterized by using X-ray diffraction, pure phases of zinc ferrite (ZnFe{sub 2}O{sub 4}) and manganese ferrite (MnFe{sub 2}O{sub 4}) were obtained. Scanning electron microscopy images showed a good contact between particles. A drop of electrical resistance was found in both samples, MnFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4}, with values going from 2750 to 130 Ω and from 1100 to 55 Ω, respectively. Transition temperatures were determined to be T{sub V} = 225 K for MnFe{sub 2}O{sub 4} and T{sub V} = 130 K for ZnFe{sub 2}O{sub 4}. Magnetoresistance measurements were carried out in the temperature range where R showed the transition, defined as the Verwey-like transition temperature range, ΔT{sub V}. No magnetoresistive effect was observed out of it. The magnetoresistive coefficient (MRC) observed at ΔT{sub V} reached its maximum values of 1.1% for MnFe{sub 2}O{sub 4} and 6.68% for ZnFe{sub 2}O{sub 4}. The differences between MRC values are related to the divalent metal element used. Finally, the magnetoresistive response indicates that the electrical transition observed is strongly influencing the magnetoresistance; where the underlying responsible for this behavior could be a charge reordering occurring at the Verwey-like transition temperature.

  8. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  9. Yb{sup 3+}:Sr{sub 5}(VO{sub 4}){sub 3}F: Crystal growth, spectroscopic characterization and laser development; Yb{sup 3+}:Sr{sub 5}(VO{sub 4}){sub 3}F: Crescimento, caracterizacao espectroscopica e desenvolvimento do laser

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Andrea Nora Pino

    1999-07-01

    Crystal growth, spectroscopic characterization and laser development of Yb{sup 3+}:SVAP [Sr{sub 5}(VO{sub 4}){sub 3}F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb{sub 2} O{sub 3} in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb{sup 3+} ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb{sup 3+}:SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb{sup 3+}:SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  10. Hydrogen permeation on Al{sub 2}O{sub 3}-based nickel/cobalt composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihee; Jung, Miewon [Department of Chemistry/Institute of Basic Science, Sungshin Women' s University, Seoul 136-742 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Science and Engineering/Research Center for Sustainable Eco-Devices and Materials(ReSEM), Chungju National University, Chungju 380-702 (Korea, Republic of)

    2010-12-15

    Al{sub 2}O{sub 3} was synthesized using the sol-gel process with aluminum isopropoxide as the precursor and primary distilled water as the solvent. Nickel and cobalt metal powders were used to increase the strength of the membranes. The Al{sub 2}O{sub 3}-based membranes were prepared using HPS following a mechanical alloying process. The phase transformation, thermal evolution, surface and cross-section morphology of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-based membranes were characterized by XRD, TG-DTA and FE-SEM. The hydrogen permeation of Al{sub 2}O{sub 3}-based membranes was examined at 300-473 K under increasing pressure. Hydrogen permeation flux through an Al{sub 2}O{sub 3}-20wt%Co membrane was obtained to 2.36 mol m{sup -2} s{sup -1}. Reaction enthalpy was calculated to 4.5 kJ/mol using a Van't Hoff's plot. (author)

  11. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  12. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  13. Vapor diffusion synthesis of rugby-shaped CoFe{sub 2}O{sub 4}/graphene composites as absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shenli [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Qingze [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); School of Chemical Engineering and Materials Science, Beijing Institute of Technology, Zhuhai, Zhuhai 519085 (China); Hu, Ju; Li, Jingjing [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Yun, E-mail: zhaoyun@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Li, Hansheng; Wu, Qin [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China)

    2015-05-05

    Graphical abstract: CoFe{sub 2}O{sub 4} rugbies/graphene composites were prepared using a vapor diffusion method followed by calcination. As-synthesized rugby-like CoFe{sub 2}O{sub 4} particles were distributed on the graphene sheet. PVP played a key role for the formation of rugby-shaped morphology of CoFe{sub 2}O{sub 4} particles. A minimum reflection loss of −39.0 dB was observed at 10.9 GHz for the CoFe{sub 2}O{sub 4} rugbies/graphene composites with a thickness of 2 mm, and the effective absorption bandwidth was 4.7 GHz. The CoFe{sub 2}O{sub 4} rugbies/graphene composites exhibited better microwave absorbing performance than that of the CoFe{sub 2}O{sub 4} nanoparticles/graphene composites prepared without PVP. - Highlights: • CoFe{sub 2}O{sub 4} rugbies/graphene hybrids were synthesized using a vapor diffusion method. • PVP played a key role for the formation of CoFe{sub 2}O{sub 4} rugbies. • CoFe{sub 2}O{sub 4} rugbies/graphene composites showed excellent microwave absorbing property. - Abstract: Rugby-shaped CoFe{sub 2}O{sub 4}/graphene composites were synthesized using a vapor diffusion method in combination with calcination. The morphologies and structures of the products were characterized by field emission scanning electron microscopy, X-ray diffractometer, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The magnetic and electromagnetic parameters were measured using a vibrating sample magnetometer and a vector network analyzer, respectively. Results show that rugby-shaped CoFe{sub 2}O{sub 4} particles are distributed on graphene sheets. A minimum reflection loss (RL) of −39.0 dB is observed at 10.9 GHz for the sample with a thickness of 2.0 mm, and the effective absorption frequency (RL < −10 dB) ranges from 9.6 to 14.3 GHz, indicating the excellent microwave absorption performance of the products. The absorbing performance of the CoFe{sub 2}O{sub 4} rugbies/graphene composites is better than that of the CoFe{sub

  14. Observation of. lambda. -hypernuclei in the reaction /sup 12/C(. pi. /sup +/,K/sup +/)/sub. lambda. //sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Milner, E.C.

    1985-12-01

    The observation of ..lambda..-hypernuclear levels in /sub ..lambda..//sup 12/C by associated production through the (..pi../sup +/,K/sup +/) reaction is reported. Spectrometers used in the measurements are discussed. The /sub ..lambda..//sup 12/C excitation energy spectra were recorded at laboratory scattering angles of 5.6/sup 0/, 10.3/sup 0/, and 15.2/sup 0/. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup ..pi../ = 2/sup +/ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (..pi../sup +/,K/sup +/) reaction, compared to the (K/sup -/,..pi../sup -/) reaction in which lower spin states are excited. 29 refs., 40 figs.

  15. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun, E-mail: joindoc@kumamoto-u.ac.jp [Department of Material Science, Magnesium Research Center (MRC), Kumamoto University, Kumamoto, 860-8555 (Japan); Kawamura, Y. [Department of Material Science, Magnesium Research Center (MRC), Kumamoto University, Kumamoto, 860-8555 (Japan)

    2013-06-20

    Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} (RE=La, Ce, Nd and Sm, at. %) alloys were prepared by high-frequency induction melting in an Ar atmosphere. Rods were extruded at 623 K and a ram speed of 2.5 mm·s{sup −1} using a circular die with an extrusion ratio of 10. The microstructure and mechanical properties of the extruded alloys were investigated. The Mg{sub 97}Zn{sub 1}Y{sub 1}Nd{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Sm{sub 1} alloys consisted of only two phases: α-Mg and a Mg-RE intermetallic compound. The Mg{sub 97}Zn{sub 1}Y{sub 1}La{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Ce{sub 1} alloys consisted of three phases: α-Mg, a Mg-RE intermetallic compound, and a Mg{sub 12}ZnY phase with a long-period stacking ordered (LPSO) phase. Additionally, after extrusion, the three-phase Mg{sub 97}Zn{sub 1}Y{sub 1}RE{sub 1} alloys, i.e., those with an LPSO phase, had a stratified microstructure and exhibited better mechanical properties than those without an LPSO. At room temperature, the yield strength and ultimate tensile strength of the three-phase Mg{sub 97}Zn{sub 1}Y{sub 1}La{sub 1} and Mg{sub 97}Zn{sub 1}Y{sub 1}Ce{sub 1} alloys were 381–384 MPa and 427–429 MPa, respectively, and yield strengths greater than 280 MPa were observed at the elevated temperature of 523 K.

  16. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Science.gov (United States)

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  17. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge{sub 4}Ti{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Roland W. [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria); Colinet, Catherine [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Richter, Klaus W., E-mail: klaus.richter@univie.ac.at [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria)

    2013-11-15

    Highlights: •New compound Ge{sub 4}Ti{sub 5} found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi{sub 3}, GeTi{sub 2}, Ge{sub 3}Ti{sub 5}, Ge{sub 4}Ti{sub 5}, Ge{sub 5}Ti{sub 6}, GeTi and Ge{sub 2}Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge{sub 4}Ti{sub 5} (Ge{sub 4}Sm{sub 5}-type, oP36, Pnma) which is formed in a solid state reaction Ge{sub 3}Ti{sub 5} + Ge{sub 5}Ti{sub 6} = Ge{sub 4}Ti{sub 5}. In addition, a significant homogeneity range was observed for the compound Ge{sub 3}Ti{sub 5} and the composition of the liquid phase in the eutectic reaction L = Ge + Ge{sub 2}Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data.

  18. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  19. Survival and photoreactivability of ultraviolet-irradiated cultured fish cells (CAF-MM1)

    International Nuclear Information System (INIS)

    Mano, Y.; Mitani, H.; Etoh, H.; Egami, N.

    1980-01-01

    The sensitivity to ultraviolet light (uv) and photoreactivating ability of cultured fish clone cells (CAF-MM1) were investigated. Dose-survival relationship curves were obtained using the colony-forming technique at various postirradiation temperatures (33, 26, and 20 0 C). At 26 0 C the values of D 0 , D/sub q/, and the extrapolation number (n) were 1.74 J/m 2 , 2.62 J/m 2 , and 4.5, respectively; no marked differences in these values were found among different temperatures. Visible light illumination after uv irradiation produced a marked increase in survival. No photoreactivation effects were observed beyond about 30 h. Caffeine increased uv sensitivity of the CAF-MM1 cells, and from the results it is suggested that the cells have some caffeine-sensitive dark repair mechanisms

  20. Multiwavelength Observations of the Candidate Disintegrating Sub-Mercury KIC 12557548b

    Science.gov (United States)

    Croll, Bryce; Rappaport, Saul; DeVore, John; Gilliland, Ronald L.; Crepp, Justin R.; Howard, Andrew W.; Star, Kimberly M.; Chiang, Eugene; Levine, Alan M.; Jenkins, Jon M.; Albert, Loic; Bonomo, Aldo S.; Fortney, Jonathan J.; Isaacson, Howard

    2014-05-01

    We present multiwavelength photometry, high angular resolution imaging, and radial velocities of the unique and confounding disintegrating low-mass planet candidate KIC 12557548b. Our high angular resolution imaging, which includes space-based Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) observations in the optical (~0.53 μm and ~0.77 μm), and ground-based Keck/NIRC2 observations in K' band (~2.12 μm), allow us to rule out background and foreground candidates at angular separations greater than 0.''2 that are bright enough to be responsible for the transits we associate with KIC 12557548. Our radial velocity limit from Keck/HIRES allows us to rule out bound, low-mass stellar companions (~0.2 M ⊙) to KIC 12557548 on orbits less than 10 yr, as well as placing an upper limit on the mass of the candidate planet of 1.2 Jupiter masses; therefore, the combination of our radial velocities, high angular resolution imaging, and photometry are able to rule out most false positive interpretations of the transits. Our precise multiwavelength photometry includes two simultaneous detections of the transit of KIC 12557548b using Canada-France-Hawaii Telescope/Wide-field InfraRed Camera (CFHT/WIRCam) at 2.15 μm and the Kepler space telescope at 0.6 μm, as well as simultaneous null-detections of the transit by Kepler and HST/WFC3 at 1.4 μm. Our simultaneous HST/WFC3 and Kepler null-detections provide no evidence for radically different transit depths at these wavelengths. Our simultaneous CFHT/WIRCam detections in the near-infrared and with Kepler in the optical reveal very similar transit depths (the average ratio of the transit depths at ~2.15 μm compared with ~0.6 μm is: 1.02 ± 0.20). This suggests that if the transits we observe are due to scattering from single-size particles streaming from the planet in a comet-like tail, then the particles must be ~0.5 μm in radius or larger, which would favor that KIC 12557548b is a sub-Mercury rather than super

  1. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    Science.gov (United States)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to

  2. [sup 57]Fe Moessbauer spectroscopic studies of the ferrocene molecular reorientation in AlPO[sub 4]-5 and AlPO[sub 4]-8 frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lund, A.; Nicholson, D.G. (Department of Chemistry, University of Trondheim, Dragvoll (Norway)); Parish, R.V.; Wright, J.P. (Department of Chemistry, UMIST, Manchester (United Kingdom))

    1994-01-01

    [sup 57]Fe Moessbauer spectroscopic studies were carried out on ferrocene guest molecules in some microporous aluminium phosphate host lattices in order to investigate their behaviour in the aluminium phosphate channels. The 300 K spectra show broad single lines with isomer shifts of 0.39 and 0.41 mm s[sup -1] relative to iron for AlPO[sub 4]-5:ferrocene and AlPO[sub 4]-8:ferrocene inclusion compounds, respectively. The absence of quadrupole splittings for these materials contrasts with the large quadrupole splitting observed for ferrocene itself at the same temperature. The low-temperature spectrum (20 K) for AlPO[sub 4]-5:ferrocene shows a doublet with quadrupole splitting of 2.37 mm s[sup -1] and an isomer shift of 0.55 mm s[sup -1]. The collapse of the quadrupole splitting at room temperature is consistent with the ferrocene molecules rotating within the channels. (au).

  3. Electron transport in diborides: observation of superconductivity in ZrB sub 2

    CERN Document Server

    Gasparov, V A; Zverkova, I I; Kulakov, M P

    2001-01-01

    Results on syntheses and electron transport properties of polycrystalline samples of diborides (AB sub 2) with different transition metals atoms (A = Zr, Nb, Ta) are reported. The temperature dependences of resistivity and ac susceptibility of these samples reveal superconducting transition of ZrB sub 2 with T sub c = 5.5 K, while NbB sub 2 and TaB sub 2 have been observed nonsuperconducting up to 0.37 K. The upper critical field H sub c sub 2 (T) is linear in temperature below T sub c. At T close to T sub c H sub c sub 2 (T) demonstrates a downward curvature. It is concluded that these diborides as well as MgB sub 2 samples behave like simple metals in the normal state with usual Bloch-Grueneisen temperature dependence of resistivity and with Debye temperatures: 280, 460 and 440 K, for ZrB sub 2 , NbB sub 2 and MgB sub 2 , respectively

  4. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  5. Na{sub 2}V{sub 3}O{sub 7}: An unusual low-dimensional quantum magnet

    Energy Technology Data Exchange (ETDEWEB)

    Gavilano, J.L. [Laboratorium fuer Festkoerperphysik, ETHZ, CH-8093 Zurich (Switzerland)]. E-mail: gavilano@phys.ethz.ch; Felder, E. [Laboratorium fuer Festkoerperphysik, ETHZ, CH-8093 Zurich (Switzerland); Rau, D. [Laboratorium fuer Festkoerperphysik, ETHZ, CH-8093 Zurich (Switzerland); Ott, H.R. [Laboratorium fuer Festkoerperphysik, ETHZ, CH-8093 Zurich (Switzerland); Millet, P. [Centre d' Elaboration des Materiaux et d' Etudes Structurales, 29, rue J. Marvig, 31055 Toulouse Cedex (France); Mila, F. [Institute of Theoretical Physics, EPFL, CH - 1015 Lausanne (Switzerland); Cichorek, T. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, 01187 Dresden (Germany); Mota, A.C. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, 01187 Dresden (Germany)

    2006-05-01

    Results of present and previous measurements of the {sup 23}Na NMR response, dc- and ac-magnetic susceptibilities and the specific heat of Na{sub 2}V{sub 3}O{sub 7} at low temperatures suggest that this material is close to a quantum critical point (QCP) at {mu}{sub 0}H=0T. The experimental data can be explained by assuming that below 100K the localized V magnetic moments (S=12) form a collection of dimers, with a broad distribution of singlet-triplet gaps. Most of the dimers adopt a singlet ground state with gaps between 0 and 350K. A small fraction of them forms triplet ground states with gaps between 0 and 15K. The degeneracy of the triplet ground states is lifted by a phase transition at an unusually low temperature of 0.086K. Modest magnetic fields effectively quench this low-temperature state and the system is driven away from the QCP as the applied fields are enhanced to above 1T.

  6. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  7. A full-potential linear-muffin-tin-orbital molecular-dynamics study of B{sub 7}, B{sub 10} and B{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Cao Peilin Cao; Zhao Wei; Li Baoxing; Song Bin; Zhou Xuyan [Department of Physics and State Key Laboratory of Silicon Material, Zhejiang University, Hangzhou, Zhejiang (China)

    2001-06-04

    The structures of B{sub 7}, B{sub 10} and B{sub 13} boron clusters are studied using the full-potential linear-muffin-tin-orbital molecular-dynamics method. Seven stable structures for B{sub 7} and fifteen for B{sub 10} have been obtained. C{sub 2h}-B{sub 10} is the most stable among the 15 structures, but C{sub 2v}-B{sub 10} is not stable. For B{sub 13}, three degenerate ground-state structures have been found. The potential surface near C{sub 2v}-B{sub 7} (ground state) and D{sub 6h}-B{sub 7} is very flat. As a fundamental unit in constructing bigger clusters, C{sub 2v}-B{sub 7} will change its form easily. The most stable structures for B{sub 7}, B{sub 10} and B{sub 13} clusters are two-dimensional (quasi-) planar clusters, rather than the three-dimensional ones. General speaking, these clusters obey the 'Aufbau principle'. (author)

  8. OBSERVATIONS AND SIMULATIONS OF THE Na i D{sub 1} LINE PROFILES IN AN M-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Grant, S. D. T.; Kawate, T.; Keenan, F. P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Christian, D. J. [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States); Kowalski, A. F.; Allred, J. C. [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Simões, P. J. A. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-12-01

    We study the temporal evolution of the Na i D{sub 1} line profiles in the M3.9 flare SOL2014-06-11T21:03 UT, using observations at high spectral resolution obtained with the Interferometric Bidimensional Spectrometer instrument on the Dunn Solar Telescope combined with radiative hydrodynamic simulations. Our results show a significant increase in the intensities of the line core and wings during the flare. The analysis of the line profiles from the flare ribbons reveals that the Na i D{sub 1} line has a central reversal with excess emission in the blue wing (blue asymmetry). We combine RADYN and RH simulations to synthesize Na i D{sub 1} line profiles of the flaring atmosphere and find good agreement with the observations. Heating with a beam of electrons modifies the radiation field in the flaring atmosphere and excites electrons from the ground state 3s {sup 2}S to the first excited state 3p {sup 2}P, which in turn modifies the relative population of the two states. The change in temperature and the population density of the energy states make the sodium line profile revert from absorption into emission. Furthermore, the rapid changes in temperature break the pressure balance between the different layers of the lower atmosphere, generating upflow/downflow patterns. Analysis of the simulated spectra reveals that the asymmetries of the Na i D{sub 1} flare profile are produced by the velocity gradients in the lower solar atmosphere.

  9. Anomaly observed in Moessbauer spectra near the neel temperature of FeBr sub 2

    CERN Document Server

    Naili Di

    2003-01-01

    In several decades, iron(II) bromide (FeBr sub 2) has been investigated as a typical Ising-type antiferromagnet by several kinds of experimental techniques. By the Moessbauer measurements, it was normally observed that only the magnetic spectrum appeared just below Neel temperature in FeBr sub 2. However, we found the anomalous spectra, in which paramagnetic component coexisted with magnetic one near Neel temperature. For two kinds of single crystal FeBr sub 2 samples, IM and IIM, we determined the Moessbauer parameters of the observed spectra by the computer analyses: the relative absorption intensity I sub p of the paramagnetic component to the total absorption area of the best fitting spectrum and the value of the hyperfine field H sub h sub f of the magnetic component and values of the quadrupole splitting 1/2 centre dot e sup 2 qQ of the magnetic and the paramagnetic components. The temperature variation of H sub h sub f is unique and the same as that observed for the sample in which the anomaly was not ...

  10. Ground state properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Battal Gazi

    2016-06-15

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L2{sub 1} structure (prototype: Cu{sub 2}MnAl, Fm-3m 225). This result is confirmed for Ru{sub 2}VSi and Ru{sub 2}VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru{sub 2}VSi, Ru{sub 2}VGe, and Ru{sub 2}VSn, respectively. The total spin magnetic moment (M{sub tot}) of the considered compounds satisfies a Slater–Pauling type rule for localized magnetic moment systems (M{sub tot}=(N{sub V}−24)µ{sub B}), where N{sub V}=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZT{sub MAX} values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds. - Graphical abstract: Temperature dependence of figure of merit for Ru{sub 2}VZ (Z=Si, Ge, and Sn) compounds. - Highlights: • The ground state and thermoelectric properties are reported for the first time. • Ru{sub 2}VZ are found to be a half-metallic ferromagnetic full Heusler compound. • The

  11. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  12. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    Science.gov (United States)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  13. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  14. Investigation of luminescence mechanism in La{sub 0.2}Y{sub 1.8}O{sub 3} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Sahi, Sunil [Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059 (United States); Wang, Zhiqiang [Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7 (Canada); Luo, Junming [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Groza, Michael [Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208-3051 (United States); Li, Jiang [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Junying [Department of Physics, Beihang University, Beijing 100191 (China); Chen, Wei, E-mail: weichen@uta.edu [Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059 (United States); Pan, Yubai [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Burger, Arnold [Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208-3051 (United States); Sham, Tsun-Kong [Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7 (Canada)

    2016-05-15

    La{sub 0.2}Y{sub 1.8}O{sub 3} is a new and promising scintillator which is based on the host material without doping. Here the time gated X-ray excited optical luminescence is measured by using the excitation energy below, above and at the La L{sub 3}-edge. A relatively slow and broad emission with peak at 415 nm has been observed as the dominant emission. Also, a weak emission at 360 nm is observed at the fast window, associated with the recombination of trapped excitons in Y{sub 2}O{sub 3} host. The observations show that the broad emission at 415 nm is most likely due to the recombination of trapped excitons associated with the La{sup 3+} doping into Y{sub 2}O{sub 3} sites.

  15. CHEMICAL COMPLEXITY IN THE HELIX NEBULA: MULTI-LINE OBSERVATIONS OF H{sub 2}CO, HCO{sup +}, AND CO

    Energy Technology Data Exchange (ETDEWEB)

    Zack, L. N.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu [Department of Chemistry, University of Arizona, P.O. Box 210041, Tucson, AZ 85721 (United States)

    2013-03-10

    Observations of CO, HCO{sup +}, and H{sub 2}CO have been carried out at nine positions across the Helix Nebula (NGC 7293) using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. Measurements of the J = 1 {yields} 0, 2 {yields} 1, and 3 {yields}2 transitions of CO, two transitions of HCO{sup +} (J = 1 {yields} 0 and 3 {yields}2), and five lines of H{sub 2}CO (J{sub Ka,Kc} = 1{sub 0,1} {yields} 0{sub 0,0}, 2{sub 1,2} {yields} 1{sub 1,1}, 2{sub 0,2} {yields} 1{sub 0,1}, 2{sub 1,1} {yields} 1{sub 1,0}, and 3{sub 0,3} {yields}2{sub 0,2}) were conducted in the 0.8, 1, 2, and 3 mm bands toward this highly evolved planetary nebula. HCO{sup +} and H{sub 2}CO were detected at all positions, along with three transitions of CO. From a radiative transfer analysis, the kinetic temperature was found to be T{sub K} {approx} 15-40 K across the Helix with a gas density of n(H{sub 2}) {approx} 0.1-5 Multiplication-Sign 10{sup 5} cm{sup -3}. The warmer gas appears to be closer to the central star, but high density material is distributed throughout the nebula. For CO, the column density was found to be N{sub tot} {approx} 0.25-4.5 Multiplication-Sign 10{sup 15} cm{sup -2}, with a fractional abundance of f (CO/H{sub 2}) {approx} 0.3-6 Multiplication-Sign 10{sup -4}. Column densities for HCO{sup +} and H{sub 2}CO were determined to be N{sub tot} {approx} 0.2-5.5 Multiplication-Sign 10{sup 11} cm{sup -2} and 0.2-1.6 Multiplication-Sign 10{sup 12} cm{sup -2}, respectively, with fractional abundances of f (HCO{sup +}/H{sub 2}) {approx} 0.3-7.3 Multiplication-Sign 10{sup -8} and f (H{sub 2}CO/H{sub 2}) {approx} 0.3-2.1 Multiplication-Sign 10{sup -7}-several orders of magnitude higher than predicted by chemical models. Polyatomic molecules in the Helix appear to be well-protected from photodissociation and may actually seed the diffuse interstellar medium.

  16. Strategies GeoCape Intelligent Observation Studies @ GSFC

    Science.gov (United States)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  17. Assessing Spatiotemporal Variability in NO2 and O3 Along the Korean Peninsula Using Remote Sensing and Ground-Based Observations

    Science.gov (United States)

    Li, C. Y. R.; Parker, O.; Tzortziou, M.

    2017-12-01

    Our research sought to use ground-based and satellite products to study the spatiotemporal variability of NO2 and O­3 in urban and coastal South Korea. Our data set was derived from direct-sun irradiance measurements of TCNO2 and TCO3 using Pandora spectrometers located at 8 ground sites and 1 boat-mounted sensor, as well as satellite observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite. Our analysis focuses on the dates of the KORUSA campaign, which took place between May 18, 2016 through June 2, 2016, and provided our off-shore measurements. The Pandora instrument offered us continuous coverage of the local area, providing a detailed understanding of NO2 and O3 temporal variability. Ground stations allowed us to compare small-scale diurnal variability in urban and near-urban environments, while the Pandora mounted on the Onnuri research vessel permitted us to gain valuable insight into off-shore behavior of trace gases. By overlaying and comparing these measurements with TCO3/TCNO2 products from the Aura-OMI sensor, we were able to form a relatively complete picture of trace gas behavior above, and off-shore from, the Korean Peninsula. Our data was then subjected to statistical and GIS (Geographic Information System) analysis, quantifying and mapping (respectively) the spatial and temporal variability of total column amounts of NO2 and O3 along the Korean Peninsula. Results are shown for the eight sites where different Pandora instruments were used. There was a notable difference in TCNO2 variability which correlates with population and land use.

  18. Acoustic emission during the ferroelectric transition Pm3{sup ¯}m to P4mm in BaTiO{sub 3} and the ferroelastic transition R3{sup ¯}m-C2/c in Pb{sub 3}(PO{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Salje, E. K. H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Dul' kin, E.; Roth, M. [Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2015-04-13

    Acoustic emission (AE) spectroscopy without frequency filtering (∼broadband AE) and moderate time integration is shown to be sensitive enough to allow the investigation of subtle nano-structural changes in ferroelectric BaTiO{sub 3} and ferroelastic Pb{sub 3}(PO{sub 4}){sub 2}. AE signals during weak phase transitions are compatible with avalanche statistics as observed previously in large-strain systems. While the data are too sparse to determine avalanche exponents, they are well suited to determine other thermodynamic parameters such as transition temperatures and critical stresses.

  19. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  20. Observation of the magnetization-step in Gd doped antiperovskite compounds Mn{sub 3}Cu{sub 1−x}Gd{sub x}N (0.15≤x≤0.25)

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Quan [Center for Composite Materials and structures, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Xinghong, E-mail: zhangxh@hit.edu.cn [Center for Composite Materials and structures, Harbin Institute of Technology, Harbin 150080 (China); Gao, Tangling [Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040 (China); Zhao, Jinggeng [Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin 150080 (China); Han, Jiecai; Zhou, Shanbao [Center for Composite Materials and structures, Harbin Institute of Technology, Harbin 150080 (China); Hu, Chang; Wang, Xianjie [Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Zhihua [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Song, Bo, E-mail: songbo@hit.edu.cn [Center for Composite Materials and structures, Harbin Institute of Technology, Harbin 150080 (China); Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin 150080 (China)

    2017-04-15

    (Gadolinium) Gd-doped antiperovskite compounds Mn{sub 3}Cu{sub 1−x}Gd{sub x}N were synthesized by the conventional solid-state reaction. With increasing Gd concentration, two magnetic transitions appeared at a high Curie temperature (T{sub C1}) corresponding to paramagnetic (PM)-ferromagnetic (FM) transition and a low temperature (T{sub C2}) ascribed to the FM-antiferromagnetic (AFM) transition. The magnetic relaxation results show the formation of a magnetic metastable state after the FM-AFM transition at low temperature (lower than T{sub C2}), forming a novel magnetic-step feature in the process from AFM to FM under a certain magnetic field. - Highlights: • For the first time, a novel magnetization-step features were revealed in Mn-based antiperovskite compounds. • This study not only benefits us to understand the intrinsic origin of two magnetic transitions after Gd doped, but also paves the way for the design and fabrication of new antiperovskite nitrides with different magnetic state and transition temperature for practical applications. • Two-step magnetic transition were induced by doping Gd element. • The process from AFM to FM in the magnetization-step is irreversible, which is different from that observed in other materials.

  1. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  2. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  3. Comparison between Si/SiO{sub 2} and InP/Al{sub 2}O{sub 3} based MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Tochaei, A., E-mail: amirakbari182@gmail.com; Arabshahi, H.; Benam, M. R. [Payame Noor University, Department of Physics (Iran, Islamic Republic of); Vatan-Khahan, A.; Abedininia, M. [Khayyam University, Department of Physics (Iran, Islamic Republic of)

    2016-11-15

    Electron transport properties of InP-based MOSFET as a new channel material with Al{sub 2}O{sub 3} as a high-k dielectric oxide layer in comparison with Si-based MOSFET are studied by the ensemble Monte Carlo simulation method in which the conduction band valleys in InP are based on three valley models with consideration of quantum effects (effective potential approach). I{sub d}–V{sub d} characteristics for Si-based MOSFET are in good agreement with theoretical and experimental results. Our results show that I{sub d} of InP-based MOSFET is about 2 times that of Si-based MOSFET. We simulated the diagrams of longitudinal and transverse electric fields, conduction band edge, average electron velocity, and average electron energy for Si-based MOSFET and compared the results with those for InP-based MOSFET. Our results, as was expected, show that the transverse electric field, the conduction band edge, the electron velocity, and the electron energy in a channel in the InP-based MOSFET are greater than those for Si-based MOSFET. But the longitudinal electric field behaves differently at different points of the channel.

  4. Electrical behaviors of c-axis textured 0.975Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–0.025BiCoO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feifei [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Yang, Bin, E-mail: binyang@hit.edu.cn [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Shantao, E-mail: stzhang@mail.nju.edu.cn [Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Danqing [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150080 (China); Wu, Fengmin [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Wang, Dali [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150080 (China); Cao, Wenwu [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-10-15

    The thin films of 0.975Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–0.025BiCoO{sub 3} (BNT-BC) have been successfully deposited on (1 1 1) Pt/Ti/SiO{sub 2}/Si (1 0 0) substrates by pulse laser deposition and their ferroelectric, dielectric, local piezoelectric properties and temperature dependent leakage current behaviors have been investigated systematically. X-ray diffraction indicates the films are single phased and c-axis oriented. The thin films exhibit ferroelectric polarization–electric field (P–E) hysteresis loop with a remnant polarization (P{sub r}) of 10.0 μC/cm{sup 2} and an excellent fatigue resistance property up to 5 × 10{sup 9} switching cycles. The dielectric constant and dielectric loss are 500 and 0.22 at 1 kHz, respectively. The tunability of the dielectric constant is about 12% at 20 kV/mm. The piezo-phase response hysteresis loop and piezo-amplitude response butterfly curve are observed by switching spectroscopy mode of piezoelectric force microscope (SS-PFM) and the piezoelectric coefficient d{sub 33} is about 19–63 pm/V, which is comparable to other reports. The dominant leakage current conduction mechanisms are ohmic conduction at low electric field and Schottky emission at high electric field, respectively. Our results may be helpful for further work on BNT-based thin films with improved electric properties.

  5. An UML Statechart Diagram-Based MM-Path Generation Approach for Object-Oriented Integration Testing

    OpenAIRE

    Ruilian Zhao; Ling Lin

    2008-01-01

    MM-Path, an acronym for Method/Message Path, describes the dynamic interactions between methods in object-oriented systems. This paper discusses the classifications of MM-Path, based on the characteristics of object-oriented software. We categorize it according to the generation reasons, the effect scope and the composition of MM-Path. A formalized representation of MM-Path is also proposed, which has considered the influence of state on response method sequences of messages. .Moreover, an au...

  6. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    Science.gov (United States)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  7. Initial results from 50mm short SSC dipoles at Fermilab

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Coulter, K.; Delchamps, S.; Ewald, K.D.; Fulton, H.; Gonczy, I.; Gourlay, S.A.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.B.; Wake, M.; Gordon, M.; Hassan, N.; Sims, R.; Winters, M.

    1991-03-01

    Several short model SSC 50 mm bore dipoles are being built and tested at Fermilab. Mechanical design of these magnets has been determined from experience involved in the construction and testing of 40 mm dipoles. Construction experience includes coil winding, curing and measuring, coil end part design and fabrication, ground insulation, instrumentation, collaring and yoke assembly. Fabrication techniques are explained and construction problems are discussed. Similarities and differences from the 40 mm dipole tooling and management components are outlined. Test results from the first models are presented. 19 refs., 12 figs

  8. Synthesis of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} whiskers and cross-whisker intrinsic Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, T.; Takano, Y.; Arisawa, S.; Ishii, A.; Togano, K. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Fukuyo, A. [Science Univ. of Tokyo (Japan)

    2001-03-01

    A synthesis technique of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single-crystal whiskers was studied. The whiskers were synthesized by heating glassy melt-quenched Bi-Sr-Ca-Cu-O (3:2:2:4 in cationic ratio) plates. The atmospheric condition of the whisker growth, especially oxygen partial pressure and gas flow, was investigated. It was found out that the whisker growth rate shows a maximum at P{sub O2}=2/3 bar. For the crystalline quality of the whiskers, the airtight condition was found to be useful as compared to the conventional oxygen stream condition. The crystalline quality, especially the straightness and morphology of the surface, could be improved by keeping the growing whiskers under the equilibrium P{sub Bi} condition. Over 20-mm-long whisker crystals have been successfully synthesized by choosing optimum oxygen partial pressure around the P{sub O2}=2/3 bar in the airtight condition. The growth condition and mechanism of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} whiskers were investigated by an in-situ high-temperature x-ray diffraction analysis and an in-situ high-temperature microscope observation. It was found that the whiskers grow in a partially melted state at a temperature of 10-40 degrees below the melting point. The result obtained demonstrates that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} whiskers grow at their bottom by the conventional liquid-phase growth mechanism, as was proposed by Matsubara et al. (author)

  9. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  10. Mesoscale structure of a morning sector ionospheric shear flow region determined by conjugate Cluster II and MIRACLE ground-based observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    Full Text Available We analyse a conjunction event of the Cluster II spacecraft with the MIRACLE ground-based instrument net-work in northern Fennoscandia on 6 February 2001, between 23:00 and 00:00 UT. Shortly after the spacecraft were located at perigee, the Cluster II satellites’ magnetic footpoints move northwards over Scandinavia and Svalbard, almost perfectly aligned with the central chain of the IMAGE magnetometer network, and cross a morning sector ionospheric shear zone during this passage. In this study we focus on the mesoscale structure of the ionosphere. Ionospheric conductances, true horizontal currents, and field-aligned currents (FAC are calculated from the ground-based measurements of the IMAGE magnetometers and the STARE coherent scatter radar, using the 1-D method of characteristics. An excellent agreement between these results and the FAC observed by Cluster II is reached after averaging the Cluster measurements to mesoscales, as well as between the location of the convection reversal boundary (CRB, as observed by STARE and by the Cluster II EFW instrument. A sheet of downward FAC is observed in the vicinity of the CRB, which is mainly caused by the positive divergence of the electric field there. This FAC sheet is detached by 0.5°–2° of latitude from a more equatorward downward FAC sheet at the poleward flank of the westward electrojet. This latter FAC sheet, as well as the upward FAC at the equatorward flank of the jet, are mainly caused by meridional gradients in the ionospheric conductances, which reach up to 25 S in the electrojet region, but only ~ 5 S poleward of it, with a minimum at the CRB. Particle measurements show that the major part of the downward FAC is carried by upward flowing electrons, and only a small part by downward flowing ions. The open-closed field line boundary is found to be located 3°–4° poleward of the CRB, implying significant errors if the latter is used as a proxy of the former.

    Key words

  11. Mesoscale structure of a morning sector ionospheric shear flow region determined by conjugate Cluster II and MIRACLE ground-based observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2003-08-01

    Full Text Available We analyse a conjunction event of the Cluster II spacecraft with the MIRACLE ground-based instrument net-work in northern Fennoscandia on 6 February 2001, between 23:00 and 00:00 UT. Shortly after the spacecraft were located at perigee, the Cluster II satellites’ magnetic footpoints move northwards over Scandinavia and Svalbard, almost perfectly aligned with the central chain of the IMAGE magnetometer network, and cross a morning sector ionospheric shear zone during this passage. In this study we focus on the mesoscale structure of the ionosphere. Ionospheric conductances, true horizontal currents, and field-aligned currents (FAC are calculated from the ground-based measurements of the IMAGE magnetometers and the STARE coherent scatter radar, using the 1-D method of characteristics. An excellent agreement between these results and the FAC observed by Cluster II is reached after averaging the Cluster measurements to mesoscales, as well as between the location of the convection reversal boundary (CRB, as observed by STARE and by the Cluster II EFW instrument. A sheet of downward FAC is observed in the vicinity of the CRB, which is mainly caused by the positive divergence of the electric field there. This FAC sheet is detached by 0.5°–2° of latitude from a more equatorward downward FAC sheet at the poleward flank of the westward electrojet. This latter FAC sheet, as well as the upward FAC at the equatorward flank of the jet, are mainly caused by meridional gradients in the ionospheric conductances, which reach up to 25 S in the electrojet region, but only ~ 5 S poleward of it, with a minimum at the CRB. Particle measurements show that the major part of the downward FAC is carried by upward flowing electrons, and only a small part by downward flowing ions. The open-closed field line boundary is found to be located 3°–4° poleward of the CRB, implying significant errors if the latter is used as a proxy of the former.Key words. Ionosphere

  12. LaCu<sub>6-xsub>Agx>: A promising host of an elastic quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Lekh [ORNL; Dela Cruz, Clarina R. [ORNL; Koehler, Michael R. [University of Tennessee, Knoxville (UTK); McGuire, Michael A. [ORNL; Keppens, Veerle [University of Tennessee, Knoxville (UTK); Mandrus, David [ORNL; Christianson, Andrew D. [ORNL

    2018-05-01

    Structural properties of LaCu<sub>6-xsub>Agx> have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu<sub>6-xsub>Agx> decrease with Ag composition until the monoclinic phase is completely suppressed at x<sub>c>=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu<sub>6-xsub>Agx>.

  13. Magnetization measurements of a novel family of heteronuclear Mn{sub 2}Ni{sub 3} SMM clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gieb, Klaus; Kroener, Wolfgang; Mueller, Paul [Department of Physics and Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg (Germany); Das, Animesh; Demeshko, Serhiy; Meyer, Franc [Institut fuer Anorganische Chemie, Georg-August-Universitaet Goettingen (Germany); Krupskaya, Yulia; Klingeler, Ruediger; Kataev, Vladislav; Buechner, Bernd [Leibniz-Institute for Solid State and Materials Research IFW Dresden (Germany)

    2010-07-01

    We report on magnetic measurements of two heterometallic Mn{sup III}{sub 2}Ni{sup II}{sub 3}X{sub 2}L{sub 4}(LH){sub 2}(H2O){sub 2} (X=Cl, Br) complexes. These compounds have a ground state spin of S=7 and show an easy-axis type of anisotropy. DC and AC susceptibility measurements were performed with a commercial SQUID magnetometer. A home-made micro-Hall-probe magnetometer was used to perform the characterization at mK temperatures. We found an uniaxial anisotropy parameter of D{approx_equal}-0.5 K. Magnetic hysteresis and quantum tunneling of magnetization was observed at temperatures below a blocking temperature T{sub B}{approx_equal}1.5 K. The shape of the hysteresis loop is influenced by intermolecular interactions. The signature of these interactions can be modified by the variation of the Mn coordination partner X.

  14. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  15. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  16. Polymorphic phase transition and morphotropic phase boundary in Ba{sub 1-x}Ca{sub x}Ti{sub 1-y}Zr{sub y}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdessalem, M. Ben; Aydi, S.; Aydi, A.; Abdelmoula, N.; Khemakhem, H. [Universite de Sfax, Faculte des Sciences de Sfax (FSS), Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA) LR16ES18, B.P.1171, Sfax (Tunisia); Sassi, Z. [Laboratoire de Genie Electrique et Ferroelectricite (LGEF) de L' INSA de Lyon, Lyon (France)

    2017-09-15

    This paper deals with Ca and Zr co-doped BaTiO{sub 3} (BCTZ{sub (x,} {sub y)}) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT{sub (x=0.1,} {sub 0.2,} {sub y=0.05,} {sub 0.1)} and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT{sub (x=0.13,} {sub y=0.1)}. The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T{sub C}) and increased the orthorhombic-tetragonal (T{sub 1}) and rhombohedral-orthorhombic (T{sub 2}) temperatures transitions. The ferroelectric properties were examined by a P-E hysteresis loop. The two parameters ΔT{sub 1} and ΔT{sub 2} are defined as ΔT{sub 1} = T{sub C} - T{sub 1} and ΔT{sub 2} = T{sub C} - T{sub 2}, they come close to T{sub C} for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d{sub 33} = 288 pC N{sup -1}, the electromechanical coupling factor k{sub p} = 40%, high constant dielectric 9105, coercive field E{sub c} = 0.32 (KV mm{sup -1}) and remanent polarization P{sub r} = 0.1 (μc mm{sup -2}) were obtained for composition x = 0.13, y = 0.1. (orig.)

  17. High dielectric constant observed in (1 − x)Ba(Zr{sub 0.07}Ti{sub 0.93})O{sub 3}–xBa(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} binary solid-solution

    Energy Technology Data Exchange (ETDEWEB)

    Kruea-In, Chatchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Eitssayeam, Sukum; Pengpat, Kamonpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Rujijanagul, Gobwute, E-mail: rujijanagul@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-10-15

    Binary solid-solutions of the (1 − x)Ba(Zr{sub 0.07}Ti{sub 0.93})O{sub 3}–xBa(Fe{sub 0.5}Nb{sub 0.5}O{sub 3}) system, with 0.1 ≤ x ≤ 0.9,were fabricated via a solid-state processing technique. X-ray diffraction analysis revealed that all samples exhibited a single perovskite phase. The BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} also promoted densification and grain growth of the system. Dielectric measurements showed that all samples displayed a relaxor like behavior. The x = 0.1 sample presented a dielectric-frequency and temperature with low loss tangent (<0.07 at 10 kHz). For x > 0.2 samples, the dielectric data showed a broad dielectric constant–temperature curve with a giant dielectric characteristic. In addition, a high dielectric constant > 50,000 (at 10 kHz and temperature > 150 °C) was observed for the x = 0.9 sample.

  18. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scattering albedo in urban Beijing is larger, while observations at the site that is southeast of Beijing suggested that the aerosol there has become more absorbing. The intra-annual aspects were as follow: The largest AOD and high amount of fine mode aerosols are observed in the summer. However, the result of air pollution index (API that mainly affected by the dry density of near-surface aerosol indicated that the air quality has been improving since 2006. Winter and spring were the most polluted seasons considering only the API values. The inconsistency between AOD and API suggested that fine aerosol particles may have a more important role in the deterioration of air quality and that neglecting particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5 in the calculation of API might not be appropriate in air quality evaluation. Through analysis of the aerosol properties in high API days, the results suggested that the fine mode aerosol, especially PM2.5 has become a major contributor to the aerosol pollution in Beijing.

  19. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  20. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J. [3D University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  1. Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires based gas sensor for hydrogen detection

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hong [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China); Xu, Shucong [School of Material Science & Engineering, Shandong University, Jinan 250061 (China); Cao, Xianmin; Liu, Daoxi; Yin, Yaoyu; Hao, Haiyong; Wei, Dezhou [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China); Shen, Yanbai, E-mail: shenyanbai@mail.neu.edu.cn [School of Resources and Civil Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-01

    Highlights: • Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires with excellent crystallinity and high yield were obtained. • The maximal length-to-diameter ratio of Zn{sub 2}SnO{sub 4}-ZnO microwires is approximately 1500. • Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires show outstanding H{sub 2} sensing properties. - Abstract: Ultra-long Zn{sub 2}SnO{sub 4}-ZnO microwires were synthesized by thermal evaporation of the mixture of SnO{sub 2}, ZnO and C powders. Microstructural characterization by means of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy showed that Zn{sub 2}SnO{sub 4}-ZnO microwires with excellent crystallinity were 2.8–3.2 μm in diameter and 4.0–4.2 mm in length. The maximal length-to-diameter ratio of Zn{sub 2}SnO{sub 4}-ZnO microwires is approximately 1500. H{sub 2} sensing properties showed that Zn{sub 2}SnO{sub 4}-ZnO microwires exhibited not only excellent reversibility to H{sub 2}, but also a good linear relationship between the sensor response and H{sub 2} concentration. The response time and recovery time decreased as the operating temperature increased. The highest sensor response of 9.6 to 1000 ppm H{sub 2} was achieved at an operating temperature of 300 °C. The electron depletion theory was used for explaining H{sub 2} sensing mechanism by the chemical adsorption and reaction of H{sub 2} molecules on the surface of Zn{sub 2}SnO{sub 4}-ZnO microwires.

  2. The structure of Na sub 3 H sub 2 As sub 3 O sub 10. Structure d'un triarseniate: Na sub 3 H sub 2 As sub 3 O sub 10

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T. (Tunis Univ. (Tunisia). Dept. de Chimie)

    1990-07-15

    Na{sub 3}H{sub 2}As{sub 3}O{sub 10}, M{sub r}=455.75, monoclinic, C2/c, a=10.860 (3), b=9.323 (3), c=18.270 (5) A, {beta}=103.00 (2)deg, V=1802 (1) A{sup 3}, Z=8, D{sub x}=3.27, D{sub m} (in bromobenzene) = 3.30 Mg m{sup -3}, {lambda}(Mo K anti {alpha})=0.7107 A, {mu}=11.5 mm{sup -1}, F(000)=1712, room temperature, final R=0.035 and wR=0.038 for 578 reflections. This structure contains a triarsenate anion H{sub 2}As{sub 3}O{sub 10}{sup 3-} formed from three AsO{sub 4} tetrahedra pointing in the same direction. They are connected by hydrogen bonds to form layers parallel to held (10anti 1) together by interleaved Na{sup +} cations. Only few triarsenate structures are known. The corresponding phosphate is unknown. An explanation is proposed. (orig.).

  3. Oxygen diffusion in Y sub 1 sub - sub x Pr sub x Ba sub 2 Cu sub 3 O sub 7 sub - subdelta observed by resistivity measurements

    CERN Document Server

    Diosa, J E; Mellander, B E

    1997-01-01

    In situ resistivity measurements have been used to monitor the oxygen uptake and removal for the ceramic system Y sub 1 sub - sub x Pr sub x Ba sub 2 Cu sub 3 O sub 7 sub - subdelta (YPBCO) in the temperature range 300 - 1000 K. The study of the out-diffusion of oxygen was performed by annealing the oxygenated samples in ambient air at constant heating rates. We found that, independently of x, the oxygen concentration O sub 7 sub - subdelta is preserved up to 600 K, and that oxygen diffuses out of the oxides at temperatures higher than 600 K. However, the rate of oxygen removal from PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta (PBCO) is greatly reduced as compared to the rate for pure YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO), and decreases with increasing x in YPBCO. The study of the in-diffusion of oxygen was performed by annealing the deoxygenated samples in ambient air at constant heating rates. We found that, independently of x, the oxygen uptake takes place in the temperature range 550 - 750 K, whe...

  4. Low-field dc magnetization investigations in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystal: observation of a magnetic phase transition at the vortex melting line

    Energy Technology Data Exchange (ETDEWEB)

    Revaz, B. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Triscone, G. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Fabrega, L. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Junod, A. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Muller, J. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee

    1996-03-20

    The mixed-state magnetization M(H parallel c, T) of a Bi-2212 single crystal has been investigated with high resolution using a SQUID magnetometer. In the high-temperature region (50 K < T < T{sub c} = 80.2 K), we found that the slope {partial_derivative}M/{partial_derivative}H vertical stroke {sub T} vs. H shows a positive step at H{sub trans}(T) {approx} H{sub 0} x (1 - T/T{sub c}){sup n} with H{sub 0} = 2340 Oe and n = 1.28. This observation is compatible with a first-order phase transition with a distribution of internal fields, and is attributed to the melting of the 3D vortex lattice. The estimated entropy jump is 1 k{sub B}/vortex/layer CuO. However, when T is lower than 50 K, we observe radical changes in M(H); the 3D melting line divides into a decoupling line at a temperature-independent field and the onset of the irreversibility. (orig.).

  5. Red-blue effect in Cu(In,Ga)Se{sub 2}-based devices revisited

    Energy Technology Data Exchange (ETDEWEB)

    Igalson, M., E-mail: igalson@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Urbaniak, A.; Zabierowski, P.; Maksoud, H. Abdel [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Buffiere, M.; Barreau, N. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3 (France); Spiering, S. [Zentrum fur Sonnenenergie-und Wasserstoff-Forschung (ZSW) Baden-Württemberg, Industriestrasse 6, 70565 Stuttgart (Germany)

    2013-05-01

    The controversial issue of a source for the fill factor losses in Cu(In,Ga)Se{sub 2}-based solar cells observed under red light is discussed. Experimental evidence is presented that removal of the fill factor loss by blue light is accompanied by a decrease in capacitance. Similar kinetics for both effects are observed. This effect is demonstrated not only on CdS-buffered devices but also on Zn(O,S)- and In{sub 2}S{sub 3}-buffered cells. The explanation, supported by simulations, is based on a model of a reduction of the p + layer by holes photogenerated in the buffer. This effect might be differentiated from the effect of a photosensitive secondary barrier in the buffer-window part of the junction by a sign of the capacitance change under blue light. - Highlights: ► High-energy photons improve fill factor in Cu(In,Ga)Se{sub 2}-based solar cells. ► The effect is demonstrated on three types of buffer layers. ► Fill factor improvement under blue light is correlated with a decrease of doping. ► p + layer is the main cause of fill factor deficiency under red light.

  6. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  7. Designing magnetic compensated states in tetragonal Mn{sub 3}Ge-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    You, Yurong; Xu, Guizhou, E-mail: gzxu@njust.edu.cn; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng, E-mail: xufeng@njust.edu.cn

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn{sub 3}Ge-based D0{sub 22}-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at ~x=0.3) in Mn{sub 3-x}Y{sub x}Ge (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications. - Highlights: • Several new fully compensated magnetic states are identified in Mn{sub 3}Ge-based tetragonal alloys. • The magnetic moment changes are asymmetric upon Ni, Pd and Pt substitution. • Discontinuous jumps exist across the compensated points. • The three compensated alloys possess large spin polarizations.

  8. Synthesis, characterization, and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Ovchinnikov, Alexander [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2017-11-17

    Large single crystals of Li{sub 2}(Ca{sub 3}N){sub 2}[Ga{sub 4}] and Li{sub 2}(Sr{sub 3}N){sub 2}[Ga{sub 4}] up to several mm in size were grown from mixtures of the respective elements and binary alkaline-earth metal nitrides in reactive lithium melts employing a modified high-temperature centrifugation-aided filtration (HTCAF) technique. The main structural features of these isotypic phases are stella quadrangula building units [Ga{sub 4}]Li{sub 4/2} and octahedra (Nae{sub 6/2}), which form two independent interpenetrating networks. The phases crystallize in the η-carbide structure and represent diamagnetic small bandgap semiconductors. Real-space chemical bonding analysis indicates predominantly ionic bonding. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Synthesis and mechanical characterization of PZT/Sr based composite ceramics with addition of Si{sub 3}N{sub 4}; Sintese e caracterizacao mecanica de ceramicas compositas a base de PZT/Sr com adicoes de Si{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.A.P.; Santos, R.C.P.; Santos, M.C.C.; Rocha, C.D.G.; Silva, M., E-mail: cida@ipqm.mar.mil.b [Instituto de Pesquisas da Marinha (IPqM), Ilha do Governador, RJ (Brazil). Grupo de Materiais

    2010-07-01

    In the Underwater Acoustics field, piezoelectric ceramics are the most usually employed materials for the conversion of mechanical energy (acoustic signal) into electric energy (electric signal) and vice-versa, in sensors (hydrophones) or hydroacoustic projectors. In the development of new compositions for these applications, piezoelectric performance is generally prioritized, to the expense of its mechanical properties. With this in mind, the object of this work was to study the effects of the addition of Si{sub 3}N{sub 4} in the mechanical properties of PZT-Sr based electronic ceramics. Thus, a novel piezoelectric ceramic with the addition of small percentages in weight (0;0.1;1;3 and 5) of the structural ceramic Si{sub 3}N{sub 4} was successfully processed by the oxide mixing route ; the compounds were sintered in a conventional at 1200 deg C for 2h. The densities of the compounds thus obtained for the different percentages of Si{sub 3}N{sub 4} ranged from 55 to 97% and decreased with the increase of the content of Si{sub 3}N{sub 4}. Presence of equiaxial grains with normal growth was observed in all samples. MEV/EDS analysis of the micro-structures of the compositions detected the presence of a second phase rich in Zr, confirmed by DRX, which is a result of large quantities of volatilized PbO; the sintered pieces had their mechanical properties investigated by ultra-sonic inspection. It was observed that, among the sintered compositions, the PZT-Sr ceramic with 0.1% Si{sub 3}N{sub 4} presented the smallest value for Young's Modulus E and Shear Modulus G, 75 Gpa and 28 Gpa, respectively. The Poisson's Coefficients {nu} tended to decrease with the increase of Si{sub 3}N{sub 4} added to the PZT-Sr ceramic, indicating, thus, that the added compound may be used to adjust the mechanical properties of the material. (author)

  10. Determination of the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for detectors used with an 800 MU/min CyberKnife{sup ®} system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, C., E-mail: cyril.moignier@free.fr; Huet, C. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Service de Dosimétrie Externe, 92260, Fontenay-aux-Roses (France); Makovicka, L. [IRMA/CE UMR 6249 CNRS, Université de Franche-Comté, 25200, Montbéliard (France)

    2014-07-15

    , 60017 and Sun Nuclear EDGE diodes systematically over-responded (about +6% for the 5 mm field), whereas the PTW 31014 Pinpoint chamber systematically under-responded (about −12% for the 5 mm field). OR{sub det} measured with the SFD diode and PTW 60003 diamond detectors were in good agreement with OF{sub MC,w} except for the 5 mm field size (about −7.5% for the diamond and +3% for the SFD). A good agreement with OF{sub MC,w} was obtained with the EBT2 film and micro-LiF dosimeters (deviation less than 1.4% for all fields investigated). k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for several detectors used in this work have been calculated. The impact of atomic composition on the dosimetric response of detectors was found to be insignificant, unlike the mass density and size of the detecting material. Conclusions: The results obtained with the passive dosimeters showed that they can be used for small beam OF measurements without correction factors. The study of detector response showed that OR{sub det} is depending on the mass density, the volume averaging, and the coating effects of the detecting material. Each effect was quantified for the PTW 60016 and 60017 diodes, the micro-LiF, and the PTW 60003 diamond detectors. None of the active detectors used in this work can be recommended as a reference for small field dosimetry, but an improved diode detector with a smaller silicon chip coated with tissue-equivalent material is anticipated (by simulation) to be a reliable small field dosimetric detector in a nonequilibrium field.

  11. Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering

    OpenAIRE

    Dabaghi, Mayssa

    2014-01-01

    A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as ...

  12. The effect of O{sub 2} content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Yong, E-mail: leo.huayong@gmail.com; Barker, Richard; Neville, Anne

    2015-11-30

    Highlights: • Corrosion behaviour was evaluated in water-containing SC-CO{sub 2} with different O{sub 2} levels. • Corrosion was observed when no free water was present. • Localized corrosion was a fundamental consideration in water-containing CO{sub 2} systems. • O{sub 2} content plays a key role in influencing the critical water content. - Abstract: The general and localized corrosion behaviour of X65 carbon steel and 5Cr low alloy steel were evaluated in a water-saturated supercritical CO{sub 2} environment in the presence of varying concentrations of O{sub 2}. Experiments were performed at a temperature of 35 °C and a pressure of 80 bar to simulate the conditions encountered during CO{sub 2} transport and injection. Results indicated that increasing O{sub 2} concentration from 0 to 1000 ppm caused a progressive reduction in the general corrosion rate, but served to increase the extent of localized corrosion observed on both materials. Pitting (or localized attack) rates for X65 ranged between 0.9 and 1.7 mm/year, while for 5Cr rose from 0.3 to 1.4 mm/year as O{sub 2} concentration was increased from 0 to 1000 ppm. General corrosion rates were over an order of magnitude lower than the pitting rates measured. Increasing O{sub 2} content in the presence of X65 and 5Cr suppressed the growth of iron carbonate (FeCO{sub 3}) on the steel surface and resulted in the formation of a corrosion product consisting mainly of iron oxide (Fe{sub 2}O{sub 3}). 5Cr was shown to offer more resistance to pitting corrosion in comparison to X65 steel over the conditions tested. At concentrations of O{sub 2} above 500 ppm 5Cr produced general corrosion rates less than 0.04 mm/year, which were half that recorded for X65. The improved corrosion resistance of 5Cr was believed to be at least partially attributed to the formation of a Cr-rich film on the steel surface which was shown using X-ray photoelectron spectroscopy to contain chromium oxide (Cr{sub 2}O{sub 3}) and chromium

  13. Photonics-assisted wireless link based on mm-wave reconfigurable antennas

    DEFF Research Database (Denmark)

    Feliciano daCosta, Igor; Cerqueira Sodré, Arismar; Rodriguez Páez, Juan Sebastián

    2017-01-01

    The authors report a novel concept for photonics-assisted and broadband optical-wireless indoor networks based on optically-controlled reconfigurable antenna arrays (OCRAAs) and photonic down conversion (PDC) techniques, operating in the 28 and 38 GHz frequency bands. The antenna bandwidth is opt...... for access networks in the mm-wave frequency range....

  14. The fundamental absorption edge in MnIn{sub 2}Se{sub 4} layer semi-magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Torrres, T.E. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza 50009, Zaragoza (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza 50009, Zaragoza, Spain. (Spain); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Jiménez-Sandoval, Sergio J.; Mares-Jacinto, E. [CINVESTAV Querétaro, Libramiento Norponiente N° 2000, Frac. Real de Juriquilla, Querétaro, Qro. 76230 (Mexico)

    2015-11-15

    From the study of the optical absorption coefficient and photoluminescence spectra of the layer semi-magnetic semiconductor MnIn{sub 2}Se{sub 4} the nature of its fundamental absorption edge is established. It is found that the lowest-energy-gap of this compound is allowed-indirect between parabolic bands that vary from about 1.55–1.43 eV in the temperature range from 10 K to room temperature. In addition, two allowed direct band-to-band transitions beginning at 1.72 and 1.85 eV at 295 K, and at 1.82 and 1.96 eV at 10 K which are related to optical absorption processes between the uppermost Γ{sub 4}(z) and the middle Γ{sub 5}(x) valence bands and the conduction band respectively, are observed in the high energy range. It is also found that the crystal field splitting parameter (Δ{sub cf}) of MnIn{sub 2}Se{sub 4} is of about 0.15 eV nearly independent of the temperature. At energies around 2.2 eV a photoluminescence band related to internal transitions between d-excited levels of Mn{sup +2} ion to its {sup 6}A{sub 1} ground state is also observed in spectra.

  15. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    Science.gov (United States)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  16. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  17. InSAR observation of seasonal ground surface deformation in permafrost area near Batagay, Siberia

    Science.gov (United States)

    Yanagiya, K.; Furuya, M.

    2017-12-01

    Thawing of permafrost can lead to ground deformation. Ground deformation has been studied as a serious problem in the Arctic Ocean coastal area such as Russia for a long time, because the deformation causes damage to architectures at these areas. However, there have been no quantitative observation data, and the spatial and temporal distributions have hardly been investigated. On the other hand, by the recently global warming influence, the importance of organic carbon stored in permafrost is pointed out. Although the release of methane gas is confirmed in some thermokarst lakes, it is very difficult to observe the permafrost in a wide area by field study. Instead, it is technically possible to monitor the subsidence and uplift of the ground over the permafrost area, which could potentially make a significant contribution to the monitoring thawing process of permafrost. In this study, we attempted to detect ground deformation signal in permafrost area by remote sensing using interferometric synthetic aperture radar (InSAR). Using the data of two SAR satellites ALOS and ALOS2 launched by JAXA, we observed recent ground deformation from 2007 to 2016. Particularly recent observations of ALOS2 from 2014 to 2016 discovered distant displacements towards the LOS direction in the northeast region from the town of Batagay,Siberia. The diameter of the displacements area covers about 7.7 km. In this study, we considered that this signal is likely to be due to permafrost thawing, we also investigated the seasonal characteristics and looked back ALOS data of this area. In addition, since the high latitude area, observation results include noise due to the ionosphere, so we tried to remove the noise.

  18. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    Science.gov (United States)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  19. Can earthquake source inversion benefit from rotational ground motion observations?

    Science.gov (United States)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  20. A comparative study of charge trapping in HfO{sub 2}/Al{sub 2}O{sub 3} and ZrO{sub 2}/Al{sub 2}O{sub 3} based multilayered metal/high-k/oxide/Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, D., E-mail: d_spassov@abv.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Skeparovski, A. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Paskaleva, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Novkovski, N. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2016-09-01

    The electrical properties of multilayered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2}/SiO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} metal-oxide semiconductor capacitors were investigated in order to evaluate the possibility of their application in charge-trapping non-volatile memory devices. The stacks were deposited by reactive radiofrequency magnetron sputtering on Si substrates with thermal SiO{sub 2} with a thickness ranging from 2 to 5 nm. Both types of stacks show negative initial oxide charge and its density is higher for HfO{sub 2}-based structures. Memory window up to 6V at sweeping voltage range of ± 16V was obtained for HfO{sub 2}-based stacks. The hysteresis in these structures is mainly due to a trapping of electrons injected from the Si substrate. The charge-trapping properties of ZrO{sub 2}-based samples are compromised by the high leakage currents and the dielectric breakdown. The conduction through the capacitors at low applied voltages results from hopping of thermally excited electrons from one isolated state to another. The energy depth of the traps participating in the hopping conduction was determined as ~ 0.7 eV for the HfO{sub 2}-based layers and ~ 0.6 eV for ZrO{sub 2}-based ones, originating from negatively charged oxygen vacancies. At high electric fields, the current voltage characteristics were interpreted in terms of space charge limited currents, Fowler–Nordheim tunneling, Schottky emission, and Poole–Frenkel mechanism. The charge retention characteristics do not depend on the thickness of the tunnel SiO{sub 2}. - Highlights: • Sputtered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2} charge-trapping layers were studied. • HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} stacks show memory window up to 6 V and good retention times. • Negatively charged oxygen vacancies were identified as main defects in the stacks. • Electrical breakdown compromise the charge-trapping properties

  1. High-efficiency Thin-film Fe<sub>2sub>SiS>4sub> and Fe<sub>2sub>GeS>4sub>-based Solar Cells Prepared from Low-Cost Solution Precursors. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Delaware State Univ., Dover, DE (United States); Univ. of Delaware, Newark, DE (United States); Liu, Mimi [Delaware State Univ., Dover, DE (United States); Hwang, Po-yu [Delaware State Univ., Dover, DE (United States); Berg, Dominik [Rowan Univ., Glassboro, NJ (United States); Dobson, Kevin [Univ. of Delaware, Newark, DE (United States). Inst. of Energy Conversion (IEC)

    2017-12-28

    The project aimed to provide solar energy education to students from underrepresented groups and to develop a novel, nano-scale approach, in utilizing Fe<sub>2sub>SiS>4sub> and Fe<sub>2sub>GeS>4sub> materials as precursors to the absorber layer in photovoltaic thin-film devices. The objectives of the project were as follows: 1. Develop and implement one solar-related course at Delaware State University and train two graduate students in solar research. 2. Fabricate and characterize high-efficiency (larger than 7%) Fe<sub>2sub>SiS>4sub> and Fe<sub>2sub>GeS>4sub>-based solar devices. The project has been successful in both the educational components, implementing the solar course at DSU as well as in developing multiple routes to prepare the Fe<sub>2sub>GeS>4sub> with high purity and in large quantities. The project did not meet the efficiency objective, however, a functional solar device was demonstrated.

  2. Study of 5f electron based filled skutterudite compound EuFe{sub 4}Sb{sub 12}, a thermoelectric (TE) material: FP-LAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, A., E-mail: amitshan2009@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Rai, D.P., E-mail: dibyaprakashrai@gmail.com [Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100084 (China); Khenata, R. [Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara (Algeria); Maibam, J. [Department of Physics, Assam University, Silchar 788011 (India); Sandeep, E-mail: sndp.chettri@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India); Thapa, R.K., E-mail: r.k.thapa@gmail.com [Department of Physics, Mizoram University, Aizawl 796004 (India)

    2015-01-15

    Highlights: • The compound EuFe{sub 4}Sb{sub 12} shows a semi-metallic behavior with pseudo gap. • The inherent dense band near E{sub F} facilitate the charge carriers. • The magnetic moment within LSDA and mBJ are underestimated. • The inclusion of onsite Coulomb repulsion (U) in LSDA has improved the result. • The results obtained from LSDA + U are consistent with the experimental data. - Abstract: We have studied the elastic, electronic and magnetic properties along with the thermoelectric properties of an undoped filled skutterudite EuFe{sub 4}Sb{sub 12} using full-potential linearized augmented plane wave (FP-LAPW) method. The LSDA, LSDA + U and a new exchange-correlation functional called modified Becke Johnson (mBJ) potential based on density functional theory (DFT) were used for studying material properties. The Eu-f and Fe-d are strongly correlated elements thus the inclusion of Coulomb repulsion (U) expected to give an exact ground state properties. The exchange-splitting of Eu-4f states were analyzed to explain the ferromagnetic behavior of EuFe{sub 4}Sb{sub 12} (half-metallic behavior). The numerical values of isotropic elastic parameters and related properties are estimated in the framework of the Voigt–Reuss–Hill approximation. The calculation of thermal transport properties at various temperature shows the high value of Seebeck coefficient and figure of merit (ZT) = 0.25 at room temperature in consistent to the experimental results.

  3. First Observation of {tau}{r_arrow}3{pi}{eta}{nu}{sub {tau}} and {tau}{r_arrow} {ital f}{sub 1}{pi}{nu}{sub {tau}} Decays

    Energy Technology Data Exchange (ETDEWEB)

    Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D.; Hans, R.M.; Johnson, E.; Karliner, I.; Marsh, M.A.; Palmer, M.; Selen, M.; Thaler, J.J. [University of Illinois, Champaign-Urbana, Illinois 61801 (United States); Edwards, K.W.; Edwards, K.W. [the Institute of Particle Physics, Montreal, Quebec (Canada); Bellerive, A.; Bellerive, A.; Janicek, R.; Janicek, R.; MacFarlane, D.B.; MacFarlane, D.B.; Patel, P.M.; Patel, P.M. [the Institute of Particle Physics, Montreal, Quebec (Canada); Sadoff, A.J. [Ithaca College, Ithaca, New York 14850 (United States); Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Darling, C.; Davis, R.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, N. [University of Kansas, Lawrence, Kansas 66045 (United States); Anderson, S.; Kubota, Y.; Lee, S.J.; ONeill, J.J.; Patton, S.; Poling, R.; Riehle, T.; Savinov, V.; Smith, A. [University of Minnesota, Minneapolis, Minnesota 55455 (United States); Alam, M.S.; Athar, S.B.; Ling, Z.; Mahmood, A.H.; Severini, H.; Timm, S.; Wappler, F. [State University of New York at Albany, Albany, New York 12222 (United States); Anastassov, A.; Blinov, S.; Duboscq, J.E.; Fujino, D.; Gan, K.K.; Hart, T.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Spencer, M.B.; Sung, M.; Undrus, A.; Wanke, R.; Wolf, A.; Zoeller, M.M. [The Ohio State University, Columbus, Ohio 43210 (United States); Nemati, B.; Richichi, S.J.; Ross, W.R.; Skubic, P. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Bishai, M.; Fast, J.; Gerndt, E.; Hinson, J.W.; Menon, N.; Miller, D.H.; Shibata, E.I.; Shipsey, I.P.; Yurko, M. [Purdue University, West Lafayette, Indiana 47907 (United States); Gibbons, L.; Glenn, S.; Johnson, S.D.; Kwon, Y.; Roberts, S.; Thorndike, E.H. [University of Rochester, Rochester, New York 14627 (United States); Jessop, C.P.; Lingel, K.; Marsiske, H.; Perl, M.L.; Ugolini, D.; Wang, R.; Zhou, X.; and others

    1997-09-01

    We have observed new channels for {tau} decays with an {eta} in the final state. We study 3-prong tau decays, using the {eta}{r_arrow}{gamma}{gamma} and {eta}{r_arrow}3{pi}{sup 0} decay modes and 1-prong decays with two {pi}{sup 0} {close_quote}s using the {eta}{r_arrow}{gamma}{gamma} channel. The measured branching fractions are B({tau}{sup {minus}}{r_arrow}{pi}{sup {minus}} {pi}{sup {minus}}{pi}{sup +}{eta}{nu}{sub {tau}})=(3.4{sup +0.6}{sub {minus}0.5} {plus_minus}0.6){times}10{sup {minus}4} and B({tau}{sup {minus}}{r_arrow}{pi}{sup {minus}} 2{pi}{sup 0}{eta}{nu}{sub {tau}}) =(1.4{plus_minus}0.6{plus_minus}0.3){times}10{sup {minus}4} . We observe clear evidence for f{sub 1}{r_arrow}{eta}{pi}{pi} substructure and measure B({tau}{sup {minus}}{r_arrow}f{sub 1}{pi}{sup {minus}}{nu}{sub {tau}})=(5.8{sup +1.4 }{sub {minus}1.3}{plus_minus}1.8){times}10{sup {minus}4} . We have also searched for {eta}{sup {prime}}(958) production and obtain 90{percent} C.L.upper limits B({tau}{sup {minus}}{r_arrow}{pi}{sup {minus}} {eta}{sup {prime}}{nu}{sub {tau}}){lt} 7.4{times}10{sup {minus}5} and B({tau}{sup {minus}}{r_arrow}{pi}{sup {minus}} {pi}{sup 0}{eta}{sup {prime}}{nu}{sub {tau} }){lt}8.0{times}10{sup {minus}5} . {copyright} {ital 1997} {ital The American Physical Society}

  4. Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet

    Science.gov (United States)

    Temnerud, J.; von Brömssen, C.; Fölster, J.; Buffam, I.; Andersson, J.-O.; Nyberg, L.; Bishop, K.

    2016-01-01

    In spite of the great abundance and ecological importance of headwater streams, managers are usually limited by a lack of information about water chemistry in these headwaters. In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the chemistry of upstream headwaters (size interquartile range (IQR)) of headwater stream TOC for a given catchment, based on a large number of candidate variables including sub-catchment characteristics from GIS, and measured river chemistry at the catchment outlet. The best candidate variables from the PLS models were then used in hierarchical linear mixed models (MM) to model TOC in individual headwater streams. Three predictor variables were consistently selected for the MM calibration sets: (1) proportion of forested wetlands in the sub-catchment (positively correlated with headwater stream TOC), (2) proportion of lake surface cover in the sub-catchment (negatively correlated with headwater stream TOC), and (3) river outlet TOC (positively correlated with headwater stream TOC). Including river outlet TOC improved predictions, with 5-15 % lower prediction errors than when using map information alone. Thus, data on water chemistry measured at river outlets offer information which can complement GIS-based modelling of headwater stream chemistry.

  5. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  6. Communication: Rovibrationally selected absolute total cross sections for the reaction H{sub 2}O{sup +}(X{sup 2}B{sub 1}; v{sub 1}{sup +}v{sub 2}{sup +}v{sub 3}{sup +}= 000; N{sup +}{sub Ka+Kc+)}+ D{sub 2}: Observation of the rotational enhancement effect

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuntao; Xiong Bo; Chang, Yih Chung; Ng, C. Y. [Department of Chemistry, University of California, Davis, California 95616 (United States)

    2012-12-28

    By employing the newly established vacuum ultraviolet laser pulsed field ionization-photoion (PFI-PI) double quadrupole-double octopole ion guide apparatus, we have measured the rovibrationally selected absolute total cross sections of the ion-molecule reaction H{sub 2}O{sup +}(X{sup 2}B{sub 1}; v{sub 1}{sup +}v{sub 2}{sup +}v{sub 3}{sup +}= 000; N{sup +}{sub Ka+Kc+)}+ D{sub 2}{yields} H{sub 2}DO{sup +}+ D in the center-of-mass collision energy (E{sub cm}) range of 0.05-10.00 eV. The pulsing scheme used for the generation of PFI-PIs has made possible the preparation of reactant H{sub 2}O{sup +}(X{sup 2}B{sub 1}; v{sub 1}{sup +}v{sub 2}{sup +}v{sub 3}{sup +}= 000) ions in single N{sup +}{sub Ka+Kc+} rotational levels with high kinetic energy resolutions. The absolute total cross sections observed in different N{sup +}{sub Ka+Kc+} levels with rotational energies in the range of 0-200 cm{sup -1} were found to exhibit a significant rotational enhancement on the reactivity for the titled reaction. In contrast, the measured cross sections reveal a decreasing trend with increasing E{sub cm}, indicating that the rotational enhancement observed is not a total energy effect, but a dynamical effect. Furthermore, the rotational enhancement is found to be more pronounced as E{sub cm} is decreased. This experiment provided evidence that the coupling of the core rotational angular momentum with the orbital angular momentum could play a role in chemical reactivity, particularly at low E{sub cm}.

  7. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Loukitcheva, Maria [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Shimojo, Masumi [Chile Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Solanki, Sami K. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37073 Göttingen (Germany); White, Stephen M., E-mail: k.iwai@isee.nagoya-u.ac.jp [Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM (United States)

    2017-06-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  8. THE BOLOCAM GALACTIC PLANE SURVEY. X. A COMPLETE SPECTROSCOPIC CATALOG OF DENSE MOLECULAR GAS OBSERVED TOWARD 1.1 mm DUST CONTINUUM SOURCES WITH 7.°5 ≤ l ≤ 194°

    International Nuclear Information System (INIS)

    Shirley, Yancy L.; Svoboda, Brian; Ellsworth-Bowers, Timothy P.; Schlingman, Wayne M.; Ginsburg, Adam; Battersby, Cara; Stringfellow, Guy; Glenn, Jason; Bally, John; Rosolowsky, Erik; Gerner, Thomas; Mairs, Steven; Dunham, Miranda K.

    2013-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 deg 2 . We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas tracers, HCO + and N 2 H + 3-2, for all 6194 sources in the BGPS v1.0.1 catalog between 7.°5 ≤ l ≤ 194°. This is the largest targeted spectroscopic survey of dense molecular gas in the Milky Way to date. We find unique velocities for 3126 (50.5%) of the BGPS v1.0.1 sources observed. Strong N 2 H + 3-2 emission (T mb > 0.5 K) without HCO + 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO + is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km s –1 consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH 3 observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rather than by variations in molecular column density or abundance. We identify a subset of 113 sources with stronger N 2 H + than HCO + integrated intensity, but we find no correlations between the N 2 H + /HCO + ratio and 1.1 mm continuum flux density, gas kinetic temperature, or line width. Self-absorbed profiles are rare (1.3%)

  9. Phase diagram and EXAFS study of La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 sub - sub x Ba sub x MnO sub 3 manganites

    CERN Document Server

    Ulyanov, A N; Yang, D S

    2003-01-01

    The phase diagram and local structure of La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 sub - sub x Ba sub x MnO sub 3 (x=0; 0.03; 0.06; ... 0.3) lanthanum manganites were studies. The Curie temperature, T sub c , of the compositions showed a sharp change near the concentrational structural orthorhombic-rhombohedral phase transition. Maximums of dispersion, sigma sub M sub n sub - sub O sup 2 , and asymmetry, sigma M sub n sub - sub O sup 3 , of pair distribution function for the Mn-O bond distances of MnO sub 6 octahedron on x-dependence were observed by extended X-ray absorption fine structure (EXAFS) analysis. The maximum of sigma sub M sub n sub - sub O sup 2 is caused by increase of dynamic rms displacements of Mn-O bond distances near the T sub c. The observed x dependence of sigma sub M sub n sub - sub O sup 3 reflects the reduction of charge carriers mobility at approaching to T sub c. (author)

  10. SU{sub 2} nonstandard bases: the case of mutually unbiased bases

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Albouy; Kibler, Maurice R. [Universite de Lyon, Institut de Physique Nucleaire de Lyon, Universite Lyon, CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex (France)

    2007-02-15

    This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU{sub 2} corresponding to an irreducible representation of SU{sub 2}. The representation theory of SU{sub 2} is reconsidered via the use of two truncated deformed oscillators. This leads to replace the familiar scheme [j{sub 2}, j{sub z}] by a scheme [j{sup 2}, v{sub ra}], where the two-parameter operator v{sub ra} is defined in the universal enveloping algebra of the Lie algebra su{sub 2}. The eigenvectors of the commuting set of operators [j{sup 2}, v{sub ra}] are adapted to a tower of chains SO{sub 3} includes C{sub 2j+1} (2j belongs to N{sup *}), where C{sub 2j+1} is the cyclic group of order 2j + 1. In the case where 2j + 1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices. (authors)

  11. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  12. Observation of an hexatic vortex glass in flux lattices of the high-Tc superconductor Bi sub 2. 1 Sr sub 1. 9 Ca sub 0. 9 Cu sub 2 O sub 8+. delta

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D J; Gammel, P L; Murray, C A [AT and T Bell Labs., Murray Hill, NJ (USA); Mitzi, D B; Kapitulnik, A [Stanford Univ., CA (USA)

    1991-02-01

    We report observation of hexatic order in Abrikosov flus lattices in very clean crystals of the high-Tc superconductor Bi{sub 2.1}Sr{sub 1.9}Ca{sub 0.9}Cu{sub 2}O{sub 8+{delta}} (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent {eta}{sub 6}=0.6{+-}0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low-temperature ordered phase of the flux lines in these systems might be an hexatic glass. (orig.).

  13. Exchange of moisture between atmosphere and ground regarding tritium transfer

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1980-09-01

    Two measuring equipment have been developed in the framework of this study which fulfill important conditions to avoid microclimatic interferences during measurement by using site-specific ground samples and embedding these in the ground surface. The beta-absorption lysimeter allows the detection of a minimum deposit height of 0.001 mm in a 1 mm sample layer. The conductivity moisture probe is to measure the moisture diffusion within the first 80 mm of the upper ground with a vertical spacial resolution of 2 mm. It is possible to measure a minimum water content increase of 0.02 wt% per 2 mm ground layer using this probe. The influences of single microclimatic parameter on condensation and evaporation were investigated and a transport equation was developed. Investigations in the Negev proved the application ability of the measuring equipment. The application of the transport equation showed very good agreement with the measured values. When the ground surface starts to cool in the afternoon, there is a countercurrent moisture transport from the atmosphere and the deeper ground layers which lead to a higher water content in the upper ground layer. At about 50 mm depth there is an overlapping layer of the two moisture flows which remains almost constant over the 24 h cycle. This exchange zone of atmospheric humidity and ground water must be paid great attention with regard to HTO transfer. (orig./HP) [de

  14. Coordinated ground-based, low altitude satellite and Cluster observations on global and local scales during a transient post-noon sector excursion of the magnetospheric cusp

    Directory of Open Access Journals (Sweden)

    H. J. Opgenoorth

    Full Text Available On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR and approached the post-noon dayside magnetopause over Green-land between 13:00 and 14:00 UT. During that interval, a sudden reorganisation of the high-latitude dayside convection pattern occurred after 13:20 UT, most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Söndre Strömfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

    Key words. Magnetospheric cusp, ionosphere, reconnection, convection flow-channel, Cluster, ground-based observations

  15. High-field magnetotransport in microstructures of the frustrated antiferromagnet Yb<sub>2sub>Pt>2sub>Pb

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Moll, P. J. W. [Max Planck Inst. for Chemical Physics, Dresden (Germany); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    Frustrated quantum magnets exhibit a rich variety of non-trivial quantum ground states due to their remnant entropy at zero temperature. Most studied materials are insulators, with magnetic coupling of localized spins mediated by exchange interactions. Yb<sub>2sub>Pt>2sub>Pb (YPP) is a rare example of a metallic frustrated quantum magnet, where Yb3+ J=7/2 moments are arranged in dimers forming a Shastry-Sutherland lattice. In addition, the itinerant charge carriers of the metal provide gapless excitations able to mediate magnetic interactions (RKKY) as well as hybridize with the 4f-states, which has been proposed to lead to a novel charge-orbital separation. YPP orders antiferromagnetically (AFM) below TN = 2.1 K, and strong g-factor anisotropy confines the spins into the ab planes. Accordingly, fields aligned parallel to the planes suppress the AFM order already below 4 T, while fields of up to 65 T along the c direction do not lead to saturation in the magnetization and step-like features even at B ~ 25 T were observed [4]. Here we probe the electronic structure of YPP by quantum oscillation and conductivity measurements in high fields, which tune the energy balance of the 4f states and thus the degree of charge-orbital separation.

  16. Mismatch Between Interseismic Ground Deformation and Paleoseismic/Paleogeodetic Observations, Humboldt Bay, Northern California, Cascadia Subduction Zone

    Science.gov (United States)

    Patton, J. R.; Williams, T. B.; Leroy, T. H.; Anderson, J. K.; Weldon, R. J.; Gilkerson, W.

    2011-12-01

    Observations made by Plafker in Chile (1960) and Alaska (1964) show that vertical deformation during earthquakes is generally opposite in sense of motion compared to interseismic deformation. This elastic rebound theory drives estimates of potential coseismic deformation on the Cascadia subduction zone (CSZ). Similar to other coastal marshes along the CSZ, paleoseismic investigations around Humboldt Bay reveal evidence of coseismic subsidence for the past 4 ka. Tide gage data obtained from NOAA tide gages, as well as 'campaign' style tide gages, are used to infer interseismic ground deformation. Tide gage data from Crescent City and Humboldt Bay are compared to each other and also compared to estimates of eustatic sea-level rise to estimate rates of land-level change. Earthscope and USGS GPS permanent site data are also used to evaluate vertical interseismic deformation in this region. These rates of land-level change are then compared to paleoseismic proxies for vertical land-level change. Cores collected for master's theses research at Humboldt State University were used to compile an earthquake history for the Humboldt Bay region. Some cores in Mad River and Hookton sloughs were used to evaluate magnitudes of coseismic subsidence by comparing diatom and foraminiferid assemblages associated with lithologic contacts (paleogeodesy). Minimum estimates of paleosubsidence for earthquakes range from 0.3 to 2.6 meters. Subtracting eustatic sea-level rise (~2.3 mm/yr, 1977-2010) from Crescent City (CC) and North Spit (NS) relative sea-level rates reveals that CC is uplifting at ~3mm/yr and NS is subsiding at ~2.5 mm/yr. GPS vertical deformation reveals similar rates of ~3 mm/yr of uplift and ~2 mm/yr of subsidence in these two locations. GPS based subsidence rates show a gradient of subsidence between Trinidad (in the north) to Cape Mendocino (in the south). The spatial region of ongoing subsidence reveals the depth of locking of the CSZ fault (differently from previous

  17. Structural evolution of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} using a series of Ba(Ti{sub 1−5x}Nb{sub 4x})O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos Hernández, F.R., E-mail: frbh68@hotmail.com [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Lira Hernández, I.A. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Industrial Engineering Department, Technological Institute of Pachuca, Road México-Pachuca km. 87.5, Pachuca de Soto zip code 42080, Hidalgo (Mexico); Gómez Yáñez, C. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Arenas Flores, A. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Cabrera Sierra, R. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Pérez Labra, M. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico)

    2014-01-15

    Highlights: • The evolution phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} was obtained through the mechanism Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3}. • Addition of niobium can accelerate grain growth of BaTiO{sub 3} ceramics. • Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb{sup 5+} content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} by adding Nb{sub 2}O{sub 5} to perovskite structure of BaTiO{sub 3} was investigated. The compositions Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3} ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO{sub 3}, BaCO{sub 3} and Nb{sub 2}O{sub 5}, were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} which

  18. Preparation, crystallography, magnetic and magnetothermal properties of Ce<sub>5sub>SixGe>4-xsub> alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Rangarajan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    An investigation of the crystal structure and the phase relationships in the Ce<sub>5sub>Si>4-xsub>Gex> system has been carried out. The crystal structures of the single phase intermetallics were characterized using X-ray powder diffraction and subsequent refinement employing the Rietveld analysis technique was performed. The intermetallic system was found to crystallize in three distinct crystal structures. The Ce<sub>5sub>Si>4sub>-based solid solution extends from x = 0 to x = 2.15 and it was found to crystallize in the well-known Zr<sub>5sub>Si>4sub>-type tetragonal structure. The germanium rich alloys, where 3.1 ≤} x ≤ 4, crystallized in the Sm<sub>5sub>Ge>4sub>-type orthorhombic structure. The crystal structure of the intermediate phase, when 2.35 ≤ x ≤ 2.8, was found out to be of the Gd<sub>5sub>Si>2sub>Ge>2sub>-type monoclinic structure. Microhardness tests were conducted on the samples in order to probe the trend in mechanical properties in this alloy system as a function of Ge concentration. The magnetic, thermal and magnetocaloric properties of the Ce<sub>5sub>Si>4-xsub>Gex> alloy system have been investigated for x = 0, 1.0, 1.8, 2.5, 2.8, 3.5, 3.8 and 4.0. The phases with x = 0, 1.0 and 1.8 crystallize in the tetragonal Zr<sub>5sub>Si>4sub> structure and those with x = 2.5, 2.8 form in the Gd<sub>5sub>Si>2sub>Ge>2sub>-type monoclinic structure. The alloys with x = 3.5, 3.8 and 4.0 crystallize in the Sm<sub>5sub>Ge>4sub>-type orthorhombic structure. The Curie temperature of the tetragonal phases increases with increasing Ge content. The ordering temperatures of the monoclinic and orthorhombic phases remain nearly unaffected by the composition, with the Curie temperatures of the latter slightly higher than those of the former. All the alloys display evidence of antiferromagnetic interactions in the ground state. The orthorhombic and the

  19. Quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal

    CERN Document Server

    Sato, M; Morishita, T

    2003-01-01

    The structural characterizations of the quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film grown on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal were investigated in comparison with those of the film grown on (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal. The a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films, expected to be a barrier layer, were prepared using a dc-95 MHz hybrid plasma sputtering on (100) and (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals that are superconducting ground planes. The atomic force microscopy image revealed that the surfaces of 700-nm-thick a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals were smooth with a mean roughness of 2.8 nm. X-ray diffraction scans showed that a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films deposited on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single cry...

  20. Structure re-determination and superconductivity observation of bulk 1T MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuqiang; He, Jianqiao; Bu, Kejun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China); Pan, Jie; Wang, Dong; Che, Xiangli; Zhao, Wei; Lin, Tianquan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Luo, Ruichun; Liu, Pan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Mu, Gang; Zhang, Hui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai (China); Huang, Fuqiang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing (China)

    2018-01-26

    2H MoS{sub 2} has been intensively studied because of its layer-dependent electronic structures and novel physical properties. Though the metastable 1T MoS{sub 2} with a [MoS{sub 6}] octahedron was observed over the microscopic area, the true crystal structure of 1T phase has not been strictly determined. Moreover, the true physical properties have not been demonstrated from experiments owing to the challenge for the preparation of pure 1T MoS{sub 2} crystals. 1T MoS{sub 2} single crystals were successfully synthesized and the crystal structure of 1T MoS{sub 2} re-determined from single-crystal X-ray diffraction. 1T MoS{sub 2} crystallizes in the space group P anti 3m1 with a cell of a=b=3.190(3) Aa and c=5.945(6) Aa. The individual MoS{sub 2} layer consists of MoS{sub 6} octahedra sharing edges with each other. More surprisingly, the bulk 1T MoS{sub 2} crystals undergo a superconducting transition of T{sub c}=4 K, which is the first observation of superconductivity in pure 1T MoS{sub 2} phase. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)