WorldWideScience

Sample records for ground-based simulation studies

  1. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    Science.gov (United States)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  2. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  3. Contrail study with ground-based cameras

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2013-08-01

    Full Text Available Photogrammetric methods and analysis results for contrails observed with wide-angle cameras are described. Four cameras of two different types (view angle −1. With this information, the aircraft causing the contrails are identified by comparison to traffic waypoint data. The observations are compared with synthetic camera pictures of contrails simulated with the contrail prediction model CoCiP, a Lagrangian model using air traffic movement data and numerical weather prediction (NWP data as input. The results provide tests for the NWP and contrail models. The cameras show spreading and thickening contrails suggesting ice-supersaturation in the ambient air. The ice-supersaturated layer is found thicker and more humid in this case than predicted by the NWP model used. The simulated and observed contrail positions agree up to differences caused by uncertain wind data. The contrail widths, which depend on wake vortex spreading, ambient shear and turbulence, were partly wider than simulated.

  4. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  5. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  6. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  7. Study of simulations using ECHAM-HAM and CAM5-MAM3 using ground-based and satellite data for Brazil

    Science.gov (United States)

    Alvim, D. S., Sr.; Nobre, P. N.; Nilo, S.; Correa, S. M.; Pendharkar, J.; Capistrano, V.; Dos Santos, A. F.; Kubota, P. Y.; Silva, J.

    2015-12-01

    Brazil is developing its own atmosphere-ocean-biosphere-cryosphere Global Circulation Model - the Brazilian Earth System Model (BESM). BESM simulations demonstrate potential results on global climate change. Brazilian climate modeling community can significantly contribute to the international efforts on global climate change research. Currently, the Center for Weather Forecasting and Climate Studies of the National Institute for Space Research (CPTEC/INPE), Brazil is implementing and testing the aerosol component in BESM. A priori knowledge of the overall performance of the existing state-of-the-art aerosol models is necessary for the implementation. This work analyzes the performance of the aerosol component, their distribution over Brazil in particular, of two Atmospheric General Circulation Models (AGCM), the European Centre's Model - Hamburg Aerosol Model (ECHAM-HAM) and the Community Atmosphere Model - Modal Aerosol Model (CAM5-MAM3) against the observations. We evaluated the aerosol optical depth (AOD) from both the simulations and Angström exponent from ECHAM-HAM. The results are compared with Aerosol Robotic Network (AERONET) ground station measurements, and satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). This study was done for four cities in Brazil - São Paulo, Cuiabá, Rio Branco, and Alta Floresta during 2001-2006. Both models underestimate AOD for all the four cities. However, CAM5-MAM3 has greater negative bias in the Northern and Northeastern regions of Brazil where biomass burning is more frequent during the dry season. Better performance is seen during January-June and November-December, but not consistent during July to October (i.e., the dry season), when fire occurrences are more frequent. CAM5-MAM3 model has small negative bias for this period. The Angström parameter is reasonably reproduced by ECHAM-HAM, except for Cuiabá, indicating that the particle size distribution is correctly represented in most

  8. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G G; Houser, S; Benson, S; Klein, S A; Min, Q

    2009-11-02

    Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

  9. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground Based Accelerators

    Directory of Open Access Journals (Sweden)

    Myung-Hee Y Kim

    2015-06-01

    Full Text Available For research on the health risks of galactic cosmic rays (GCR ground-based accelerators have been used for radiobiology research with mono-energetic beams of single high charge, Z and energy, E (HZE particles. In this paper we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving understanding of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology

  10. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  11. Precision in ground based solar polarimetry: Simulating the role of adaptive optics

    CERN Document Server

    Nagaraju, K

    2012-01-01

    Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground based observations, polarimetric precision is severely limited by the presence of Earth's atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations which combined with the non-simultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing induced polarization cross-talk. Previous analysis of this effect (Judge et al., 2004) suggests that cross-talk is reduced not only with increase in modulation frequency but also by compensating the seeing induced image aberrations by an Adaptive Optics (AO) system. However, in those studies the effect of higher order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing induced cross-talk in the presence of higher order image aberrations through numerical simulation. In this analysis we find that the amount...

  12. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  13. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  14. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  15. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    Science.gov (United States)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  16. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Science.gov (United States)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  17. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  18. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  19. Simulated forecasts for primordial B -mode searches in ground-based experiments

    Science.gov (United States)

    Alonso, David; Dunkley, Joanna; Thorne, Ben; Næss, Sigurd

    2017-02-01

    Detecting the imprint of inflationary gravitational waves on the B -mode polarization of the cosmic microwave background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of galactic foregrounds and correlated atmospheric noise. We present forecasts for stage-3 (S3) and planned stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground-cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio r caused by an incorrect modeling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on r of the order σ (r )=(0.5 - 1.0 )×10-2 and σ (r )=(0.5 - 1.0 )×10-3 respectively, assuming instrumental systematic effects are under control. We further study deviations from the fiducial foreground model, finding that, while the effects of a second polarized dust component would be minimal on both S3 and S4, a 2% polarized anomalous dust emission component would be clearly detectable by stage-4 experiments.

  20. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-06-01

    In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate.

  1. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  2. 3D visual analysis tool in support of the SANDF's growing ground based air defence simulation capability

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-10-01

    Full Text Available A 3D visual analysis tool has been developed to add value to the SANDF's growing Ground Based Air Defence (GBAD) System of Systems simulation capability. A time based XML interface between the simulation and analysis tool, via a TCP connection or a...

  3. Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230-250 GHz region

    Science.gov (United States)

    Newnham, David A.; Ford, George P.; Moffat-Griffin, Tracy; Pumphrey, Hugh C.

    2016-07-01

    Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric-mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37' S, 26°14' W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25-74 km in winter, and 28-66 km in summer. Height-dependent measurement uncertainties are in the range 3-8 m s-1 and vertical resolution ˜ 8-16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  4. Simulated forecasts for primordial B-mode searches in ground-based experiments

    CERN Document Server

    Alonso, David; Naess, Sigurd; Thorne, Ben

    2016-01-01

    Detecting the imprint of inflationary gravitational waves on the $B$-mode polarization of the Cosmic Microwave Background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of Galactic foregrounds and correlated atmospheric noise. We present forecasts for Stage-3 (S3) and planned Stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially-varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio $r$ caused by an incorrect modelling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on $r$ of the order $\\sigma(r)=(0.5-1.0)\\times10^{-2}$ and $\\sigma(r)=(0.5-1.0)\\times10^{-3}$ respectively, assuming...

  5. Performance study of ground-based infrared Bracewell interferometers - Application to the detection of exozodiacal dust disks with GENIE

    CERN Document Server

    Absil, O; Gondoin, P; Fabry, P; Wilhelm, R; Gitton, P; Puech, F

    2005-01-01

    Nulling interferometry, a powerful technique for high-resolution imaging of the close neighbourhood of bright astrophysical objets, is currently considered for future space missions such as Darwin or the Terrestrial Planet Finder Interferometer (TPF-I), both aiming at Earth-like planet detection and characterization. Ground-based nulling interferometers are being studied for both technology demonstration and scientific preparation of the Darwin/TPF-I missions through a systematic survey of circumstellar dust disks around nearby stars. In this paper, we investigate the influence of atmospheric turbulence on the performance of ground-based nulling instruments, and deduce the major design guidelines for such instruments. End-to-end numerical simulations allow us to estimate the performance of the main subsystems and thereby the actual sensitivity of the nuller to faint exozodiacal disks. Particular attention is also given to the important question of stellar leakage calibration. This study is illustrated in the ...

  6. Municipality Level Simulations of Dengue Fever Incidence in Puerto Rico Using Ground Based and Remotely Sensed Climate Data

    Science.gov (United States)

    Quattrochi, Dale A.; Morin, Cory

    2015-01-01

    Dengue fever (DF) is caused by a virus transmitted between humans and Aedes genus mosquitoes through blood feeding. In recent decades incidence of the disease has drastically increased in the tropical Americas, culminating with the Pan American outbreak in 2010 which resulted in 1.7 million reported cases. In Puerto Rico dengue is endemic, however, there is significant inter-annual, intraannual, and spatial variability in case loads. Variability in climate and the environment, herd immunity and virus genetics, and demographic characteristics may all contribute to differing patterns of transmission both spatially and temporally. Knowledge of climate influences on dengue incidence could facilitate development of early warning systems allowing public health workers to implement appropriate transmission intervention strategies. In this study, we simulate dengue incidence in several municipalities in Puerto Rico using population and meteorological data derived from ground based stations and remote sensing instruments. This data was used to drive a process based model of vector population development and virus transmission. Model parameter values for container composition, vector characteristics, and incubation period were chosen by employing a Monte Carlo approach. Multiple simulations were performed for each municipality and the results were compared with reported dengue cases. The best performing simulations were retained and their parameter values and meteorological input were compared between years and municipalities. Parameter values varied by municipality and year illustrating the complexity and sensitivity of the disease system. Local characteristics including the natural and built environment impact transmission dynamics and produce varying responses to meteorological conditions.

  7. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  8. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  9. Vertical profiling of atmospheric refractivity using GPS STD data from a single ground-based station: Simulations and applications

    Science.gov (United States)

    Zus, F.; Dick, G.; Heise, S.; Wickert, J.; Ramatschi, M.

    2013-12-01

    We developed a ray-tracing operator to compute the signal travel time delay due to the neutral atmosphere, known as Slant Total Delay (STD), between a GPS satellite and a ground-based receiving station. Having developed a rapid and precise forward operator we constructed the tangent-linear (adjoint) operator to estimate refractivity in the vicinity of a single station. The refractivity retrievals potentially complement refractivity retrievals from radio occultation data and can be considered a valuable input for Numerical Weather Prediction. In a first experiment (simulation) we study the feasibility for vertical profiling of refractivity using STDs from a single station. The simulation cycle consists of the computation of STDs given a refractivity profile, the addition of noise to mimic observation errors and the retrieval of a refractivity profile from the artificial STDs by a non-linear least-square analysis. Clearly, besides the noise level, the elevation range plays an important role regarding the quality of the refractivity retrieval; near-horizon STDs corrupted by noise allow a significantly better refractivity retrieval than STDs close to the zenith without any noise. The simulation study suggests that near-horizon STDs provide additional information when compared to Zenith Total Delays (ZTDs). In a second experiment (application) we replace the artificial STDs in the simulation by STDs retrieved from GPS phase-observations. The procedure is repeated station-by-station for 200 stations in Germany. We do not find a significant benefit from STDs over ZTDs in the retrieved refractivity profile since near-horizon STDs are rarely available and representative errors due to asymmetry are non-negligable. We attempt to mitigate the latter problem by the additional estimation of horizontal gradients, and indeed, we find strong evidence that STDs retrieved from GPS phase-observations contain asymmetric information. The former problem still poses a serious limitation

  10. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    Science.gov (United States)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub

  11. Study of two-phase flows in reduced gravity using ground based experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vasavada, S.; Ishii, M. [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States); Sun, X. [Ohio State University, Department of Mechanical Engineering, Columbus, OH (United States); Duval, W. [NASA Glenn Research Center, Fluid Physics and Transport Branch, Cleveland, OH (United States)

    2007-07-15

    Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59 {sup registered} as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions. (orig.)

  12. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500

    National Research Council Canada - National Science Library

    Silvia Turroni; Simone Rampelli; Elena Biagi; Clarissa Consolandi; Marco Severgnini; Clelia Peano; Sara Quercia; Matteo Soverini; Franck G Carbonero; Giovanna Bianconi; Petra Rettberg; Francesco Canganella; Patrizia Brigidi; Marco Candela

    2017-01-01

    .... Results The MARS500 project, the longest ground-based space simulation ever, provided us with a unique opportunity to trace the crew microbiota over 520 days of isolated confinement, such as that...

  13. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  14. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    Science.gov (United States)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  15. Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments

    Science.gov (United States)

    Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R.

    2014-10-01

    The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, along with the reception of direct GNSS signals, offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and reflected signals gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the location of the reflection points on the surface accurately by modeling the trajectories of GNSS electromagnetic waves that are reflected by the surface of the Earth. Only the geometric problem was considered using a specular reflection assumption. The orbit of the GNSS constellation satellites (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver, are used as inputs. Four different simulation modes are proposed, depending on the choice of the Earth surface model (local plane, osculating sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Angular refraction effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor a given study area efficiently. In this study, two test sites were considered: the first one at the top of the 65 m Cordouan lighthouse in the Gironde estuary, France, and the second one on the shore of Lake Geneva (50 m above the reflecting surface), at the border between France and Switzerland. This site is hidden by mountains in the south (orthometric altitude up to 2000 m), and overlooking the lake in the north (orthometric altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The planimetric (arc length) differences (or altimetric difference as WGS84

  16. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  17. Integrated ground-based and remotely sensed data to support global studies of environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S.; Garten, C.T.

    1994-09-15

    Data centers routinely archive and distribute large databases of high quality and with rigorous documentation but, to meet the needs of global studies effectively and efficiently, data centers must go beyond these traditional roles. Global studies of environmental change require integrated databases of multiple data types that are accurately coordinated in terms of spatial, temporal and thematic properties. Such datasets must be designed and developed jointly by scientific researchers, computer specialists, and policy analysts. The presentation focuses on our approach for organizing data from ground-based research programs so that the data can be linked with remotely sensed data and other map data into integrated databases with spatial, temporal, and thematic characteristics relevant to global studies. The development of an integrated database for Net Primary Productivity is described to illustrate the process.

  18. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  19. Instrumentation for Ground-Based Testing in Simulated Space and Planetary Conditions

    Science.gov (United States)

    Kleiman, Jacob; Horodetsky, Sergey; Issoupov, Vitali

    This paper is an overview of instrumentation developed and created by ITL Inc. for simulated testing and performance evaluation of spacecraft materials, structures, mechanisms, assemblies and components in different space and planetary environments. The LEO Space Environment Simulator allows simulation of the synergistic effect of ultra-high vacuum conditions, 5 eV neutral atomic oxygen beams, Vacuum-Ultraviolet (VUV) and Near-Ultraviolet (NUV) radiation, and temperature conditions. The simulated space environmental conditions can be controlled in-situ using a quadruple mass-spectrometer, Time-of-Flight technique, as well as Quartz Crystal Microbalance sensors. The new NUV System is capable of delivering an NUV power intensity of up to 10 Equivalent Suns. The design of the system uses horizontal orientation of the 5 kW Mercury lamp, focusing of NUV radiation is achieved due to a parabolic reflector. To address the Lunar/Martian surface environments, the Planetary Environmental Simulator/Test Facility has been developed and built to allow for physical evaluation of the effects of the Lunar/Martian dust environments in conjunction with other factors (ultra-high vacuum or planetary atmospheric conditions, VUV/NUV radiation, thermal cycling, and darkness). The ASTM E 595/ASTM E 1559 Outgassing Test Facility provides the means for the outgassing test of materials with the objective to select materials with low outgassing properties for spacecraft use and allows to determine the following outgassing parameters: Total Mass Loss, Collected Volatile Condensable Materials, and Water Vapor Regained.

  20. A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results

    Science.gov (United States)

    Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.

    1981-01-01

    A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.

  1. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2015-06-01

    Full Text Available The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change ΔV‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser ΔV‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  2. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    Science.gov (United States)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  3. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  4. Ground Based Simulation Evaluation of the Effects of Time Delays and Motion on Rotorcraft Handling Qualities

    Science.gov (United States)

    1992-01-01

    Simulation Facility B. MATH MODEL The mathematical model for the rotorcraft was a generic, uncoupled stability-derivative model that has been used for...5 1 2 3 4 5 1 2 3 4 5 Affiftu VCR Alti~de VCR Afttiue VCR a) Ho~w b) Vedical TAns/alon#)Pkue 5 5 5 12 "-i " -2 _ 3 3 3 3LC- L7 3______ i -1 1 1 eI 1...13-1 - 13-62. A-2. McRuer, D. T., and E. S. Krendel, Mathematical Models of Human Pilot Behavior. AGARD AG-188, Jan. 1974. A-3. Peters, Richard A

  5. Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009

    Science.gov (United States)

    Lin, Chi-Yen; Liu, Jann-Yenq; Lin, Chien-Hung; Sun, Yang-Yi; Araujo-Pradere, Eduardo A.; Kakinami, Yoshihiro

    2012-06-01

    The longest total solar eclipse in the 21st century occurred in Southeast Asia on 22 July 2009 from 00:55 to 04:15 UT, and was accompanied by a moderate magnetic storm starting at 03:00 UT with a D st reduction of -78 nT at 07:00 UT. In this study, we use the ionospheric reference model IRI, the data assimilation model MAGIC, and ground-based GPS receivers to simulate and examine the ionospheric solar eclipse and geomagnetic storm signatures in Taiwan and Japan. Cross-comparisons between the two model results and observations show that IRI fails to simulate the two signatures while MAGIC partially reproduces the storm features. It is essential to include ground-based GPS measurements to improve the IRI performance.

  6. Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes

    Directory of Open Access Journals (Sweden)

    N. F. Sidiropoulos

    2011-07-01

    Full Text Available We examined (peak-to-background flux ratio p/b > 20 energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km. Our statistical analysis of measurements during two 6-month periods suggests that: (a the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008, (c VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.

  7. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    Science.gov (United States)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  8. Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-09-01

    Full Text Available A little more than four years after its launch, the first magnetospheric, multi-satellite mission Cluster has already tremendously contributed to our understanding about the coupled solar wind - magnetosphere - ionosphere system. This is mostly due to its ability, for the first time, to provide instantaneous spatial views of structures in the system, to separate temporal and spatial variations, and to derive velocities and directions of moving structures. Ground-based data have an important complementary impact on Cluster-related research, as they provide a larger-scale context to put the spacecraft data in, allow to virtually enlarge the spacecrafts' field of view, and make it possible to study in detail the coupling between the magnetosphere and the ionosphere in a spatially extended domain. With this paper we present an interim review of cooperative research done with Cluster and ground-based instruments, including the support of other space-based data. We first give a short overview of the instrumentation used, and present some specific data analysis and modeling techniques that have been devised for the combined analysis of Cluster and ground-based data. Then we review highlighted results of the research using Cluster and ground-based data, ordered into dayside and nightside processes. Such highlights include, for example, the identification of the spatio-temporal signatures of the different modes of reconnection on the dayside, and the detailed analysis of the electrodynamic magnetosphere-ionosphere coupling of bursty bulk flows in the tail plasma sheet on the nightside. The aim of this paper is to provide a "sourcebook" for the Cluster and ground-based community that summarises the work that has been done in this field of research, and to identify open questions and possible directions for future studies.

    Keywords. Ionosphere (Auroral ionosphere – Magnetospheric physics (Magnetosphere-ionosphere interactions; General or

  9. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    Science.gov (United States)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  10. A study of remotely sensed aerosol properties from ground-based sun and sky scanning radiometers

    Science.gov (United States)

    Giles, David M.

    . The sensitivity of absorption properties is evaluated and quantified with respect to aerosol retrieval uncertainty. Using clustering analysis, aerosol absorption and size relationships provide a simple method to classify aerosol mixing states and origins and potentially improve aerosol retrievals from ground-based and satellite-based instrumentation.

  11. Advancing Translational Space Research Through Biospecimen Sharing: Amplifying the Impact of Ground-Based Studies

    Science.gov (United States)

    Ronca, A.; Lewis, L.; Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Fuller, C. A.

    2017-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hind limb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth. In this presentation, we will report on biospecimens currently being acquired from HHC Award Head-Down Tilt as a Model for Intracranial and Intraocular Pressures, and Retinal Changes during Spaceflight, and their availability. The BSP add-on to the project described herein has already yielded for HHC-funded investigators more than 4,700 additional tissues that would otherwise have been discarded as waste, with additional tissues available for analysis. Young (3-mo old) male and female rats and Older (9-mo old) male rats are being exposed to HLU for either 7, 14, 28, or 90 days. Additional groups are exposed to 90 days of unloading followed by either 7, 14, 28 days or 90 days of recovery (normal loading). Comparisons are made with non-suspended controls. Unused tissues are: Skin, Lungs, Thymus, Adrenals, Kidneys, Spleen, Hindlimb Muscles (Soleus, Extensor Digitorum Longus, Tibialis Anterior, Plantaris Gastrocnemius), Fat Pads, Reproductive Organs, and Intestines. Tissues are harvested, weighed, preserved then archived (with metadata) using a

  12. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    Science.gov (United States)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were

  13. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

    Science.gov (United States)

    Franco, B.; Hendrick, F.; Van Roozendael, M.; Müller, J.-F.; Stavrakou, T.; Marais, E. A.; Bovy, B.; Bader, W.; Fayt, C.; Hermans, C.; Lejeune, B.; Pinardi, G.; Servais, C.; Mahieu, E.

    2015-04-01

    As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR) solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010-December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.). Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs), GEOS-Chem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6-8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation.

  14. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

    Directory of Open Access Journals (Sweden)

    B. Franco

    2015-04-01

    Full Text Available As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs, formaldehyde (HCHO plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.. Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs, GEOS-Chem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation.

  15. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    Science.gov (United States)

    Chakravarty, Subhas

    sferics at least in some seasons providing a noise free environment for observing rare and new phenomena requiring better SNR to detect such changes, The VLF signals from the active seismic zones or other electro-geological sources would require high sensitivities of the system and suitable network of transmitting and receiv-ing stations designed for targeted data and applications. Some new results over Indian and other regions show evidences of earthquake related seismo-geological VLF emissions with the potential of being used as a prognostic tool, change in ozone and ion production in the night time middle atmosphere due to transit of stellar x-ray/γ ray sources. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 N will be mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of atomic oxygen O (3 P) and ionisation in the mesosphere due to solar/stellar UV/X/γrays. Use of future VLF techniques in terms of improving ground based observations, critical analysis of available satellite data in the context and real time moni-toring/modelling of earth's geosphere and space weather conditions will be considered for a possible programme of a developing country.

  16. Assessing the British Isles CH4 flux using aircraft and ground-based sampling: a case study on 12 May 2015

    Science.gov (United States)

    Pitt, Joseph

    2017-04-01

    Aircraft and ground-based sampling of atmospheric greenhouse gas composition over the British Isles was conducted between 2014 and 2016 as part of the Greenhouse gAs UK and Global Emissions (GAUGE) project. We report a case study focussing on two research aircraft flights conducted on 12 May 2015 to sample inflow and outflow across the British Isles. We have employed the NAME Lagrangian dispersion model to simulate CH4 mole fraction enhancements corresponding to aircraft and ground-based sample times and locations, using CH4 surface fluxes derived from a composite flux inventory, which included both anthropogenic and natural sources. For each sampling location, variations in the baseline CH4 mole fraction were derived using the MOZART global chemical transport model, and added to the NAME enhancements to produce a dataset of modelled CH4 mole fractions which can be compared to the measurements. Using a multiple variable regression technique, we derive CH4 fluxes for the British Isles region from both aircraft and ground-based datasets. We discuss the applicability of our approach for both datasets, and conclude that in this case the assumptions inherent in our method are much better satisfied for the aircraft data than for the ground-based data. Using the aircraft data we derive a possible range of scale factors for the prior inventory flux of 0.53 - 0.97, with a central estimate of 0.82 based on our assessment of the most likely apportionment of model uncertainty. This leads to a posterior estimate of the British Isles CH4 flux of 67 kg s-1 - 121 kg s-1, with a central value of 103 kg s-1.

  17. Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation

    Science.gov (United States)

    Virolainen, Ya. A.; Timofeyev, Yu. M.; Polyakov, A. V.; Ionov, D. V.; Kirner, O.; Poberovskii, A. V.; Imhasin, H. Kh.

    2016-01-01

    Chemistry climate models of the gas composition of the atmosphere make it possible to simulate both space and time variations in atmospheric trace-gas components (TGCs) and predict their changes. Both verification and improvement of such models on the basis of a comparison with experimental data are of great importance. Data obtained from the 2009-2012 ground-based spectrometric measurements of the total contents (TCs) of a number of TGCs (ozone, HNO3, HCl, and NO2) in the atmosphere over the St. Petersburg region (Petergof station, St. Petersburg State University) have been compared to analogous EMAC model data. Both daily and monthly means of their TCs for this period have been analyzed in detail. The seasonal dependences of the TCs of the gases under study are shown to be adequately reproduced by the EMAC model. At the same time, a number of disagreements (including systematic ones) have been revealed between model and measurement data. Thus, for example, the EMAC model underestimates the TCs of NO2, HCl, and HNO3, when compared to measurement data, on average, by 14, 22, and 35%, respectively. However, the TC of ozone is overestimated by the EMAC model (on average, by 12%) when compared to measurement data. In order to reveal the reasons for such disagreements between simulated and measured data on the TCs of TGCs, it is necessary to continue studies on comparisons of the contents of TGCs in different atmospheric layers.

  18. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  19. The advances in airglow study and observation by the ground-based airglow observation network over China

    Science.gov (United States)

    Xu, Jiyao; Li, Qinzeng; Yuan, Wei; Liu, Xiao; Liu, Weijun; Sun, Longchang

    2017-04-01

    Ground-based airglow observation networks over China used to study airglow have been established, which contains 15 stations. Some new results were obtained using the networks. For OH airglow observations, firstly, an unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the first no-gap network nearly every night during the first half of August 2013. Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the troposphere to the mesopause region. Secondly, three-year OH airglow images (2012-2014) from Qujing (25.6°N, 103.7°E) were used to study how orographic features of the Tibetan Plateau (TP) affect the geographical distributions of gravity wave (GW) sources. We find the orographic forcings have a significant impact on the gravity wave propagation features. Thirdly, ground-based observations of the OH (9-4, 8-3, 6-2, 5-1, 3-0) band airglow over Xinglong (40°2N, 117°4E) in northern China from 2012 to 2014 are used to calculate rotational temperatures. By comparing the ground-based OH rotational temperature with SABER's observations, five Einstein coefficient datasets are evaluated. We find rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. We have obtained a set of optimal Einstein coefficients ratios for rotational temperature derivation using three years data from ground-based OH spectra and SABER temperatures. For the OI 630.0 nm airglow observations, we used three-year (2011-2013) observations of thermospheric winds (at 250 km) by Fabry-Perot interferometers at Xinglong to study the climatology of atmospheric planetary wave-type oscillations (PWTOs) with periods of 4-19 days. We found these PWTOs occur more frequently in the months from May to October. They are consistent with the summertime preference of middle-latitude ionospheric electron density oscillations noted in other studies. By using an all-sky airglow imager

  20. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500.

    Science.gov (United States)

    Turroni, Silvia; Rampelli, Simone; Biagi, Elena; Consolandi, Clarissa; Severgnini, Marco; Peano, Clelia; Quercia, Sara; Soverini, Matteo; Carbonero, Franck G; Bianconi, Giovanna; Rettberg, Petra; Canganella, Francesco; Brigidi, Patrizia; Candela, Marco

    2017-03-24

    The intestinal microbial communities and their temporal dynamics are gaining increasing interest due to the significant implications for human health. Recent studies have shown the dynamic behavior of the gut microbiota in free-living, healthy persons. To date, it is not known whether these dynamics are applicable during prolonged life sharing in a confined and controlled environment. The MARS500 project, the longest ground-based space simulation ever, provided us with a unique opportunity to trace the crew microbiota over 520 days of isolated confinement, such as that faced by astronauts in real long-term interplanetary space flights, and after returning to regular life, for a total of 2 years. According to our data, even under the strictly controlled conditions of an enclosed environment, the human gut microbiota is inherently dynamic, capable of shifting between different steady states, typically with rearrangements of autochthonous members. Notwithstanding a strong individuality in the overall gut microbiota trajectory, some key microbial components showed conserved temporal dynamics, with potential implications for the maintenance of a health-promoting, mutualistic microbiota configuration. Sharing life in a confined habitat does not affect the resilience of the individual gut microbial ecosystem, even in the long term. However, the temporal dynamics of certain microbiota components should be monitored when programming future mission simulations and real space flights, to prevent breakdowns in the metabolic and immunological homeostasis of the crewmembers.

  1. Study of Upper Albian rudist buildups in the Edwards Formation using ground-based hyperspectral imaging and terrestrial laser scanning

    Science.gov (United States)

    Krupnik, Diana; Khan, Shuhab; Okyay, Unal; Hartzell, Preston; Zhou, Hua-Wei

    2016-11-01

    Ground-based hyperspectral imaging is used for development of digital outcrop models which can facilitate detailed qualitative and quantitative sedimentological analysis and augment the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization in areas which are physically inaccessible. For this investigation, ground-based hyperspectral imaging is combined with terrestrial laser scanning to produce mineralogical maps of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards Formation consists of shallow water deposits of reef and associated interreef facies. It is an aquifer in western Texas and was investigated as a hydrocarbon play in south Texas. Hyperspectral data were registered to a geometrically accurate laser point cloud-generated mesh with sub-pixel accuracy and were used to map compositional variation by distinguishing spectral properties unique to each material. More calcitic flat-topped toucasid-rich bioherm facies were distinguished from overlying porous sucrosic dolostones, and peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area. This research integrates high-resolution datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and to model the geometry and composition of rudist buildups.

  2. Simulated Transmission of the Dengue Virus Across the US-Mexico Border Using Remotely Sensed and Ground Based Weather Data

    Science.gov (United States)

    Morin, Cory; Quattrochi, Dale A.

    2015-01-01

    Incidence of dengue fever, caused by a mosquito transmitted virus, have increased in the Americas during recent decades. In the US, local transmission has been reported in southern Texas and Florida. However, despite its close proximity to dengue endemic areas in Mexico and the presence of a primary mosquito vector, there are no reports of local transmission in Arizona. Many studies have demonstrated that weather influences dengue virus transmission by regulating vector development rates, vector habitat availability, and the duration of the virus extrinsic incubation period (EIP). The EIP, the period between mosquito infection and the ability for it to retransmit the virus, is especially important given its high sensitivity to temperature and the short lifespan of mosquitoes. Other studies, however, have suggested that human related factors such as socioeconomic status and herd immunity may explain much of the disparity in dengue incidence in the US-Mexico border region. Using a meteorologically driven model of vector population dynamics and virus transmission we compare simulations of dengue fever cases in southern Arizona and northern Mexico. A Monte Carlo approach is employed to select parameter values by evaluating simulations in Hermosillo Mexico with reported dengue fever case data. Simulations that replicate the case data best are retained and rerun using remotely sensed climate data from other Arizona and Mexico locations to determine the relative influence of weather on virus transmission. Although human and environmental factors undoubtedly influence dengue transmission in the US-Mexico border regions, weather is a major facilitator of the transmission process.

  3. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

    Science.gov (United States)

    Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong

    2009-01-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  4. A Ground-Based Study on Extruder Standoff Distance for the 3D Printing in Zero Gravity Technology Demonstration Mission

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Beshears, R. D.; Rolin, T. D.; Rabenberg, E. M.; Soohoo, H. A.; Ledbetter, F. E., III; Bell, S. C.

    2017-01-01

    Analysis of phase I specimens produced as part of the 3D printing in zero G technology demonstration mission exhibited some differences in structure and performance for specimens printed onboard the International Space Station (ISS) and specimens produced on the ground with the same printer prior to its launch. This study uses the engineering test unit for the printer, identical to the unit on ISS, to conduct a ground-based investigation of the impact of the distance between the extruder tip and the build tray on material outcomes. This standoff distance was not held constant for the phase I flight prints and is hypothesized to be a major source of the material variability observed in the phase I data set.

  5. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  6. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    Science.gov (United States)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  7. Contemporary ground-based and satellite precipitating system characterization for desertification studies in Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Casazza

    2008-07-01

    Full Text Available During the research project RIADE (Ricerca Integrata per l'Applicazione di tecnologie e processi innovativi per la lotta alla DEsertificazione, devoted to the study on the potential risk of desertification in Southern Italy, a particular attention has been paid also to the analysis of precipitations from three surface stations (Licata, Sicily; Rotondella, Basilicata; Surigheddu, Sardinia in order to improve the knowledge derived from the most modern climatological studies related to this subject. The point of view adopted is to better define the precipitation microphysical properties (in particular, the Drop Size Distribution, DSD, and its moments, which are deeply related to the cloud system that generates the precipitation events. In particular we have used a newly introduced Convective Stratiform discrimination technique, that allowed us to observe a prevalence of events, concentrated along Winter (Wi season, of different microphysical nature. In fact the prevailing Stratiform nature is related to Licata station, while for Surigheddu and for Rotondella the nature is mainly Convective. This distinction is related to the presence of drops of bigger dimensions and more intense precipitations in the latter case, while, in the former case, a prevalence of smaller drops and a less intense precipitation is recorded. This confirms the distinctive belonging to three different climatic regions, as indicated in the study by Brunetti et al. (2006. Our findings are important in the framework of desertification studies, because the cause of desertification can be related either to fertile soils removal (in the case of Convective events or to lack of precipitated water (in the case of Stratiform events. We have also analysed a sub-set of ten events, with contemporary presence of data from VIS/IR channels of METEOSAT-7, SSM/I data from F13 and MODIS data from Terra platform. This has been done both to confirm the findings of PLUDIX data analysis (which

  8. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Energy (Badger et al. 2016) using GFS winds as input. Wind direction can be checked from the various other observations. Sensitivity to possible deviations in wind directions in the near-shore area will be investigated. Furthermore, oceanic features not related to winds but to e.g. surface current......, breaking waves, etc. will be investigated. The plan is to establish high-quality coastal wind speed cases based on Sentinel-1 for quantification of the coastal winds, for verification of wind resource modelling best practices in the coastal zone. The study is supported by RUNE and New European Wind Atlas...

  9. Study of Gravitational Lens Chromaticity from Ground-based Narrow Band Photometry

    CERN Document Server

    Mosquera, Ana M; Mediavilla, Evencio; Kochanek, Christopher S

    2010-01-01

    We present observations of wavelength-dependent flux ratios for 4 gravitational lens systems (SDSS~J1650+4251, HE~0435$-$1223, FBQ 0951+2635, and Q~0142$-$100) obtained with the Nordic Optical telescope (NOT). The use of narrow band photometry, as well as the excellent seeing conditions during the observations, allow us to set good baselines to study their chromatic behavior. For SDSS~J1650+4251 we determine the extinction curve of the dust in the $z_L=0.58$ lens galaxy, and find that the 2175 \\AA \\ feature is absent. In the case of HE~0435$-$1223 we clearly detect chromatic microlensing. This allows us to estimate the wavelength dependent size of the accretion disk. We found an R-band disk size of $r^{R}_s=13\\pm5$ light days for a linear prior on $r^{R}_s$ and of $r^{R}_s=7\\pm6$ light days for a logarithmic prior. For a power law size-wavelength scaling of $r_s\\propto\\lambda^{p}$, we were able to constrain the value of the exponent to $p=1.3\\pm0.3$ for both $r^{R}_s$ priors, which is in agreement with the te...

  10. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    Science.gov (United States)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  11. A Study of the Elements Copper through Uranium in Sirius A: Contributions from STIS and Ground-Based Spectra

    Science.gov (United States)

    Cowley, C. R.; Ayres, T. R.; Castelli, F.; Gulliver, A. F.; Monier, R.; Wahlgren, G. M.

    2016-08-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope (HST) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  12. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  13. A study of the elements copper through uranium in Sirius A: Contributions from STIS and ground-based spectra

    CERN Document Server

    Cowley, Charles R; Castelli, Fiorella; Gulliver, Austin F; Monier, Richard; Wahlgren, Glenn

    2016-01-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic mercury-manganese (HgMn) stars. Our primary observational material consists of {\\em Hubble Space Telescope} ($HST$) spectra taken with the Space Telescope Imaging Spectrograph (STIS) in the ASTRAL project. We have also used archival material from the %\\citep/{ayr10}. $COPERNICUS$ satellite, and from the $HST$ Goddard High-Resolution Spectrograph (GHRS), as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by...

  14. Investigating the 90-day oscillations using ground-based, satellite and TIME-GCM model simulation data

    Science.gov (United States)

    Zhao, Y.; Taylor, M.; Hagan, M. E.; Pautet, P. D.; Pugmire, J. R.; Pendleton, W. R., Jr.; Russell, J. M., III

    2016-12-01

    The Andes Lidar Observatory (ALO) is an upper atmospheric observatory located high in the Andes mountain range at Cerro Pachón, Chile (30.3°S, 70.7°W, 2530 m). The Utah State University (USU) Mesospheric Temperature Mapper (MTM) was deployed in August, 2009 collocated with a Na wind/temperature lidar and a meteor wind radar from University of Illinois at Urbana-Champaign (UIUC) as well as other optical instrumentation. In this presentation, we focus on the characteristics of a unique 90-day oscillation identified in the first 18 months in both the mesospheric wind and temperature data from ALO. This event appeared to be long-lived but transient, with similar amplitude to the AO and SAO at this location. Additional mesospheric temperature data from nearby El Leoncito Observatory (31.8°S, 69.3°W), Argentina also showed the same oscillation. The existence and extent of this oscillation are being further examined using SABER/TIMED temperature. The National Center for Atmosphere Research (NCAR) Thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation of 2009/10 results are utilized to investigate the possible source of this event and the spatial structures are compared with the results from the SABER temperature data.

  15. Self-Pressurization and Spray Cooling Simulations of the Multipurpose Hydrogen Test Bed (MHTB) Ground-Based Experiment

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.

    2014-01-01

    This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.

  16. Ground-Based Near-Earth Object Studies in the post-Russian (Chelyabinsk) Meteor Airburst World

    Science.gov (United States)

    Ryan, E.; Ryan, W. H.

    2013-09-01

    Public awareness of the danger of potentially hazardous asteroids has been heightened by the airburst of a meteor over Chelyabinsk, Russia, on February 15, 2013, which caused millions of dollars in damage from a shock wave that impacted structures and injured ~1500 people. Later that same day, a larger asteroid, 2012 DA14, made a close approach to the Earth, but harmlessly skimmed past. Further, other very close-approaching Near-Earth objects (NEOs) have recently posed threats to man-made space assets by passing through or very near the geosynchronous satellite zone. These events have lead to increased awareness and concern, and have subsequently served as a catalyst for deeper exploration of what is being done to mitigate such hazards, and whether more effort needs to be placed in this area of study. An NEO is designated as "potentially hazardous" when its orbit comes to within 0.05 AU of the Earth's orbit. Ground-based physical characterization studies of Near-Earth Objects (NEOs) that are cataloged as potentially hazardous objects (PHOs) are very beneficial to any mitigation plan that might be devised if the risk of impact is high. After a well-defined orbit has been determined for a PHO, other physical parameters such as size, rotation rate, and composition are important. For the smallest PHOs being discovered, observational efforts must commence at or near the time of discovery to ensure favorable parameters for data collection. Otherwise, subsequent optimal apparitions for observing an asteroid or comet may be decades away. Researchers at the Magdalena Ridge Observatory (MRO) 2.4-meter telescope facility are well positioned to acquire real-time physical information on PHOs since their ongoing NEO follow-up and characterization program collects data monthly throughout the year on the smallest, close-approaching NEOs being discovered. Over the past 5 years that this program has been in operation, spin rates for over 50 Near-Earth asteroids have been obtained

  17. A joint Cluster and ground-based instruments study of two magnetospheric substorm events on 1 September 2002

    Directory of Open Access Journals (Sweden)

    N. C. Draper

    2004-12-01

    Full Text Available We present a coordinated ground- and space-based multi-instrument study of two magnetospheric substorm events that occurred on 1 September 2002, during the interval from 18:00 UT to 24:00 UT. Data from the Cluster and Polar spacecraft are considered in combination with ground-based magnetometer and HF radar data. During the first substorm event the Cluster spacecraft, which were in the Northern Hemisphere lobe, are to the west of the main region affected by the expansion phase. Nevertheless, substorm signatures are seen by Cluster at 18:25 UT (just after the expansion phase onset as seen on the ground at 18:23 UT, despite the ~5 RE} distance of the spacecraft from the plasma sheet. The Cluster spacecraft then encounter an earthward-moving diamagnetic cavity at 19:10 UT, having just entered the plasma sheet boundary layer. The second substorm expansion phase is preceded by pseudobreakups at 22:40 and 22:56 UT, at which time thinning of the near-Earth, L=6.6, plasma sheet occurs. The expansion phase onset at 23:05 UT is seen simultaneously in the ground magnetic field, in the magnetotail and at Polar's near-Earth position. The response in the ionospheric flows occurs one minute later. The second substorm better fits the near-Earth neutral line model for substorm onset than the cross-field current instability model.

    Key words. Magnetospheric physics (Magnetosphereionosphere interactions; Magnetic reconnection; Auroral phenomenon

  18. Combining dual-polarization radar and ground-based observations to study the effect of riming on ice particles

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Recently a new microphysical scheme based on a single ice-phase category was proposed for the use in numerical weather prediction models. In the proposed scheme, ice particle properties are predicted and vary in time and space. One of the attributes of the proposed scheme is that the prefactor of a power-law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent is kept constant. According to this the maximum dimensions of ice particles do not change during riming until graupel growth phase is reached. The dual-polarization radar observations given an additional insight on what are the physical properties of ice particles. Often, it is assumed that differential reflectivity should decrease because of riming. The motivation for this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have an almost spherical shape and therefore the differential reflectivity will become smaller. On the other hand, at the earlier stages ice particle shape may not change much, while its mass and therefore the density increases. This would lead to the increase of the differential reflectivity, for example. By combining ground-based observations, which allow to quantify the effect of riming on snowfall, and dual-polarization radar observations we investigate the impact of riming on ice particle properties, i.e. mass, density and shape. Furthermore, a connection between, bulk properties of ice particles, liquid water path, radar equivalent reflectivity factor and precipitation rate observations is established. The study is based on data collected during US DOE Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign that took place in Hyytiala, Finland. A detailed analysis of two events is presented to illustrate the method.

  19. Comparison of radiometric scaling laws and detailed wave-optics simulations for designing ground-based laser satellite-illumination and receiver systems

    Science.gov (United States)

    Bush, Keith A.

    2002-12-01

    Ground-based optical transmitter and receiver systems designed for active imaging, active tracking and laser ranging of satellites in Earth orbit are very sensitive to physical conditions limiting the radiometric returns for achieving these measurements. The initial design of these systems is often based on simple radiometric scaling laws that provide estimates of average radiometric returns and are derived from experimental data or from more complex theoretical calculations. While these laws are quite useful, it is often easy to lose sight of the initial assumptions made in their formulation, and hence, the limits of their accuracy for designing certain systems. The objective of this paper is to review some of the commonly used radiometric scaling laws for active systems and to establish guidelines for their use based on comparisons of their predictions with results from detailed wave-optics simulations for different system design requirements and physical conditions. The combined effects of laser and transmitter beam parameters, wave-front aberrations, atmospheric turbulence, and satellite optical cross-section are considered.

  20. A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description

    Science.gov (United States)

    Pokharel, Binod; Geerts, Bart

    2016-12-01

    The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).

  1. A case study of pollutants transported from HPCL (vishakhapatnam) accidental fire through synergy of flexpart model and ground-based instruments

    Science.gov (United States)

    Wankhede, Tushar

    Tushar Wankhede*, Harish Gadhavi, Amit K. Pandit National Atmospheric Research Laboratory (NARL), Gadanki-517112, Chittoor, A.P. *tushar1771@gmail.com, Mobile: +91-8297152481 A fire at Hindustan Petroleum Corporation Limited (HPCL) in Vishakhapatnam (17.70 ˚N, 83.24˚E) resulted from a gas leak in the salt water cooling tower system. This led to the release of various pollutants like hydrocarbons, black carbon, carbon mono-oxide and carbon dioxide etc(other gases) in just 44 min of fire in system a very huge amount of particles were emitted. The transport of these pollutants has been studied through FLEXPART which is a Lagrangian particle dispersion model having wide range of applications in atmospheric transport modeling. FLEXPART simulation of this accidental fire shows the direction and sensitivity of dispersed pollutants from its source. It was observed that the pollutants reached Gadanki, a rural site located at 13.45 ˚N, 79.18 ˚E in Southern-India. The concentration of pollutant obtained from FLEXPART output we are comparing with ground based instruments data collected at the observation site (Indian Climate Observatory Network-ICON, NARL Gadanki). This case-study provides significant information about the life-time of dispersed pollutants and their long-range transport pattern under the influence of small weather variability en-route from source to receptor. The detailed work of FLEXPART for the Long range transport of the particles will be presented later on in conference.

  2. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

    Directory of Open Access Journals (Sweden)

    P. Martinet

    2017-09-01

    Full Text Available A RPG-HATPRO ground-based microwave radiometer (MWR was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs. An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51–52 GHz affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54–58 GHz. Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5° in the MWR scanning and the bias correction were found to improve the

  3. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

    Science.gov (United States)

    Martinet, Pauline; Cimini, Domenico; De Angelis, Francesco; Canut, Guylaine; Unger, Vinciane; Guillot, Remi; Tzanos, Diane; Paci, Alexandre

    2017-09-01

    A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51-52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54-58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR

  4. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  5. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  6. Correcting for systematic effects in ground-based photographic proper motions: The Southern Proper Motion Program as a case study

    Science.gov (United States)

    van Altena, William F.; Girard, T. M.; Platais, I.; Kozhurina-Platais, V.; López, C. E.

    The derivation of accurate positions and proper motions from ground-based photographic materials requires the minimization of systematic errors due to inaccurate modeling of the telescopes' field-of-view and the magnitude equation. We describe the procedures that have been developed for the Southern Proper Motions Program (SPM) to deal with these important problems. The SPM is based on photographic plates taken at our Carlos Cesco Observatory at El Leoncito, Argentina and will yield absolute proper motions and positions to magnitude B approximately 19 for approximately 1 million stars south of declination -20 degrees. The SPM is a joint program between the Yale Southern Observatory and the Universidad Nacional de San Juan, Argentina. The SPM Catalog 2.0, which is the current version covering the -25 to -40 degree declination zones, provides positions, absolute proper motions, and photographic BV photometry for over 320,000 stars and galaxies. Stars cover the magnitude range 5 astrom/. Our web-side contains several useful plots showing the sky coverage, error distribution, a quick comparison with the Hipparcos proper motions, etc. We would appreciate your comments on the SPM 2.0 and our Web page.

  7. Ground-based Hyperspectral Remote Sensing for Mapping Rock Alterations and Lithologies: Case Studies from Semail Ophiolite, Oman and Rush Springs Sandstone, Oklahoma

    Science.gov (United States)

    Sun, L.; Khan, S.; Hauser, D. L.; Glennie, C. L.; Snyder, C.; Okyay, U.

    2014-12-01

    This study used ground-based hyperspectral remote sensing data to map rock alterations and lithologies at Semail Ophiolite, Oman, as well as hydrocarbon-induced rock alterations at Cement, Oklahoma. The Samail Ophiolite exposed the largest, least-deformed, and the most-studied ophiolite in the world. Hydrocarbon seepages at Cement, Oklahoma brought hydrocarbons to the Rush Springs sandstones at surface, and generated rock alterations including bleaching of red beds, and carbonate cementation. Surficial expressions of rock alterations and different lithofacies are distinct from adjacent rocks, and can be detected by remote sensing techniques. Hyperspectral remote sensing acquires light intensity for hundreds of bands in a continuous electromagnetic spectrum from visible light to short-wave infrared radiation, and holds potential to characterize rocks with great precision. Ground-based hyperspectral study could scan the objects at close ranges thus provide very fine spatial resolutions (millimeters to centimeters). This study mapped all the major iconic outcrops of Semail ophiolite including pillow lava, sheeted dykes, layered gabbros, and peridotites. This study also identified surficial rock alterations induced by hydrocarbons at Cement, Oklahoma. Reddish-brown Rush Spring sandstones are bleached to pink, yellow, and gray colors; pore spaces in the sandstones have been filled with carbonate cementation. Laboratory spectroscopy was used to assist with mineral identification and classification in hyperspectral data. Terrestrial laser scanning (TLS) was used to provide high-accuracy spatial references. Principal component analysis, minimum noise fraction, spectral angle mapper, and band ratios are used in image processing. Combining lithological, remote sensing and geochemical data, this study built a model for petroleum seepage and related rock alterations, and provided a workflow for employing ground-based hyperspectral remote sensing techniques in petrological

  8. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    Science.gov (United States)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  9. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: A case study of Irish Sea beaches

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, A.J., E-mail: Alan.Cresswell@glasgow.ac.uk; Sanderson, D.C.W.

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16 l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq {sup 137}Cs within large areas (10-20 km{sup 2} h{sup -1}), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15 m whilst maintaining speeds covering 1-2 km{sup 2} h{sup -1} can detect buried {sup 137}Cs sources of 0.5 MBq or greater activity. A survey design to detect 100 kBq {sup 137}Cs sources at 10 cm depth has also been defined, requiring surveys at < 15 m ground clearance and < 2 m s{sup -1} ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. -- Highlights: Black-Right-Pointing-Pointer Validated Monte Carlo simulations used to model mobile gamma spectrometry

  10. A study of the long-term properties of Jovian hot spots from HST and ground-based observations between 1994 and 1998

    Science.gov (United States)

    Arregui, E.; Rojas, J. F.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.; Parker, D.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 together with a large set of CCD ground based images, to study the zonal distribution, long-term motions, lifetimes, interactions and other properties of the hot spot - plume regions at 7 degrees North. Red and near infrared filters covering the wavelength range 650 - 953 nm have been used since they show the hot spots with a high contrast. We have found that the hot spots have velocities ranging from 95 to 112 m/s and are grouped typically in families of three to six members. We do not found any correlation between their velocity and wavenumber. The long-term survey allowed us to identify mergers and splitting of the hot spots areas. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie."

  11. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  12. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  13. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  14. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  15. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  16. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  17. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  18. Preliminary results of simulation of hypo magnetic conditions and variations in energetic range of cosmic rays in ground-based experiments on plant objects

    Science.gov (United States)

    Belisheva, Natalia; Petrashova, Dina; Shchegolev, Boris

    models allow study the possible physiological modifications of experimental samples by using shielding by simulating the certain environment on the board of spacecrafts.

  19. Do the design concepts used for the space flight hardware directly affect cell structure and/or cell function ground based simulations

    Science.gov (United States)

    Chapman, David K.

    1989-01-01

    The use of clinostats and centrifuges to explore the hypogravity range between zero and 1 g is described. Different types of clinostat configurations and clinostat-centrifuge combinations are compared. Some examples selected from the literature and current research in gravitational physiology are presented to show plant responses in the simulated hypogravity region of the g-parameter (0 is greater than g is greater than 1). The validation of clinostat simulation is discussed. Examples in which flight data can be compared to clinostat data are presented. The data from 3 different laboratories using 3 different plant species indicate that clinostat simulation in some cases were qualitatively similar to flight data, but that in all cases were quantitatively different. The need to conduct additional tests in weightlessness is emphasized.

  20. A long-term study of aerosol-cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Science.gov (United States)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-01

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol-cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).

  1. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  2. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    Science.gov (United States)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  3. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  4. Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: comparison with colocated long term ground based observations near Paris

    Science.gov (United States)

    Bastin, S.; Chiriaco, M.; Drobinski, P.

    2016-03-01

    The objective of this paper is to understand how large-scale processes, cloud cover and surface fluxes affect the temperature variability over the SIRTA site, near Paris, and in a regional climate simulation performed in the frame of HyMeX/Med-CORDEX programs. This site is located in a climatic transitional area where models usually show strong dispersions despite the significant influence of large scale on interannual variability due to its western location. At seasonal time scale, the temperature is mainly controlled by surface fluxes. In the model, the transition from radiation to soil moisture limited regime occurs earlier than in observations leading to an overestimate of summertime temperature. An overestimate of shortwave radiation (SW), consistent with a lack of low clouds, enhances the soil dryness. A simulation with a wet soil is used to better analyse the relationship between dry soil and clouds but while the wetter soil leads to colder temperature, the cloud cover during daytime is not increased due to the atmospheric stability. At shorter time scales, the control of surface radiation becomes higher. In the simulation, higher temperatures are associated with higher SW. A wet soil mitigates the effect of radiation due to modulation by evaporation. In observations, the variability of clouds and their effect on SW is stronger leading to a nearly constant mean SW when sorted by temperature quantile but a stronger impact of cloud cover on day-to-day temperature variability. Impact of cloud albedo effect on precipitation is also compared.

  5. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System.

    Science.gov (United States)

    Wulfmeyer, V; Walther, C

    2001-10-20

    Taking into account Poisson, background, amplifier, and speckle noise, we can simulate the precision of water-vapor measurements by using a 10-W average-power differential absorption lidar (DIAL) system. This system is currently under development at Hohenheim University, Germany, and at the American National Center for Atmospheric Research. For operation in the 940-nm region, a large set of measurement situations is described, including configurations that are considered for the first time to the authors' knowledge. They include ultrahigh-resolution measurements in the surface layer (resolutions, 1.5 m and 0.1 s) and vertically pointing measurements (resolutions, 30 m and 1 s) from the ground to 2 km in the atmospheric boundary layer. Even during daytime, the DIAL system will have a measurement range from the ground to the upper troposphere (300 m, 10 min) that can be extended from a mountain site to the lower stratosphere. From the ground, for the first time of which the authors are aware, three-dimensional fields of water vapor in the boundary layer can be investigated within a range of the order of 15 km and with an averaging time of 10 min. From an aircraft, measurements of the atmospheric boundary layer (60 m, 1 s) can be performed from a height of 4 km to the ground. At higher altitudes, up to 18 km, water-vapor profiles can still be obtained from aircraft height level to the ground. When it is being flown either in the free troposphere or in the stratosphere, the system will measure horizontal water-vapor profiles up to 12 km. We are not aware of another remote-sensing technique that provides, simultaneously, such high resolution and accuracy.

  6. Atmospheric aerosol characteristics retrieved using ground based solar extinction studies at Mohal in the Kullu valley of northwestern Himalayan region, India

    Indian Academy of Sciences (India)

    Nand L Sharma; Jagdish C Kuniyal; Mahavir Singh; Pitamber P Dhyani; Raj P Guleria; Harinder K Thakur; Pan S Rawat

    2012-02-01

    Aerosol parameters are measured using a ground-based Multi-wavelength Radiometer (MWR) at Mohal (31.90°N, 77.11°E, 1154 m amsl) in the Kullu valley during clear sky days of a seasonal year. The study shows that the values of spectral aerosol optical depths (AODs) at 500 nm and the Ångstrom turbidity coefficient ‘’ (a measure of columnar loading in atmosphere) are high (0.41 ± 0.03, 0.27 ± 0.01) in summer, moderate (0.30 ± 0.03, 0.15 ± 0.03) in monsoon, low (0.19 ± 0.02, 0.08 ± 0.01) in winter and lowest (0.18 ± 0.01, 0.07 ± 0.01) in autumn, respectively. The Ångstrom wavelength exponent ‘’ (indicator of the fraction of accumulation-mode particles to coarse-mode particles) has an opposite trend having lowest value (0.64 ± 0.06) in summer, low (0.99 ± 0.10) in monsoon, moderate (1.20 ± 0.15) in winter and highest value (1.52 ± 0.03) in autumn. The annual mean value of AOD at 500 nm, ‘’ and ‘’ are 0.24 ± 0.01, 1.06 ± 0.09 and 0.14 ± 0.01, respectively. The fractional asymmetry factor is more negative in summer due to enhanced tourists’ arrival and also in autumn months due to the monthlong International Kullu Dussehra fair. The AOD values given by MWR and satellite-based moderate resolution imaging spectro-radiometer have good correlation of 0.76, 0.92 and 0.97 on diurnal, monthly and seasonal basis, respectively. The AODs at 500 nm as well as ‘’ are found to be highly correlated, while ‘’ is found to be strongly anti-correlated with temperature and wind speed suggesting high AODs and turbidity but low concentration of fine particles during hot and windy days. With wind direction, the AOD and ‘’ are found to be strongly anti-correlated, while ‘’ is strongly correlated.

  7. ECHAM5-wiso water vapour isotopologues simulation and its comparison with WS-CRDS measurements and retrievals from GOSAT and ground-based FTIR spectra in the atmosphere of Western Siberia

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2013-01-01

    Full Text Available Water stable isotopes provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparison of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high resolution isotopically enabled GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with three types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, Western Siberia: daily mean GOSAT δDv soundings, hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR and GOSAT estimates.

    This research was supported by the grant of Russian government under the contract 11.G34.31.0064.

  8. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  9. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  10. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  11. X-ray and Optical Correlation of Type I Seyfert NGC 3516 Studied with Suzaku and Japanese Ground-Based Telescopes

    CERN Document Server

    Noda, Hirofumi; Watanabe, Makoto; Kokubo, Mitsuru; Kawaguchi, Kenji; Itoh, Ryosuke; Morihana, Kumiko; Saito, Yoshihiko; Nakao, Hikaru; Imai, Masataka; Moritani, Yuki; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Uemura, Makoto; Kawabata, Koji; Yoshida, Michitoshi; Arai, Akira; Takagi, Yuhei; Morokuma, Tomoki; Doi, Mamoru; Itoh, Yoichi; Yamada, Shin'ya; Nakazawa, Kazuhiro; Fukazawa, Yasushi; Makishima, Kazuo

    2016-01-01

    From 2013 April to 2014 April, we performed an X-ray and optical simultaneous monitoring of the type 1.5 Seyfert galaxy NGC 3516. It employed Suzaku, and 5 Japanese ground-based telescopes, the Pirka, Kiso Schmidt, Nayuta, MITSuME, and the Kanata telescopes. The Suzaku observations were conducted seven times with various intervals ranging from days, weeks, to months, with an exposure of $\\sim50$ ksec each. The optical $B$-band observations not only covered those of Suzaku almost simultaneously, but also followed the source as frequently as possible. As a result, NGC 3516 was found in its faint phase with the 2-10 keV flux of $0.21-2.70 \\times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$. The 2-45 keV X-ray spectra were composed of a dominant variable hard power-law continuum with a photon index of $\\sim1.7$, and a non-relativistic reflection component with a prominent Fe-K$\\alpha$ emission line. Producing the $B$-band light curve by differential image photometry, we found that the $B$-band flux changed by $\\sim2.7 \\times...

  12. Study on the Application Technology of Ground-based InSAR%地基雷达干涉技术应用研究进展

    Institute of Scientific and Technical Information of China (English)

    邱志伟; 汪学琴; 岳顺; 郭献涛; 桑杰

    2015-01-01

    近年来,地基合成孔径雷达干涉技术的应用领域不断地扩展.本文详细地介绍了变形监测系统IBIS,并对其监测原理进行了简单概括.不仅对地基InSAR技术近期的应用及发展进行归纳总结,而且对该技术存在的问题从大气改正、断点校正及数据融合等方面进行深入的分析和讨论.通过对地基雷达干涉技术的应用研究分析,说明其在变形监测中将具有更为广泛的应用前景.%In recent years, the application field of ground-based synthetic aperture radar interferometry technique has been expanded. This paper introduces the deformation monitoring system IBIS and summarized the principle of monitoring briefly. Not only the application and development of InSAR technology are summarized in this paper, and the existing problems such as the atmospheric correction, breakpoint adjustment and the data fusion are analyzed and discussed in depth. Through the application research of ground radar interferometry analysis, this technology has broad application prospects in deformation monitoring.

  13. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  14. X-Ray and Optical Correlation of Type I Seyfert NGC 3516 Studied with Suzaku and Japanese Ground-based Telescopes

    Science.gov (United States)

    Noda, Hirofumi; Minezaki, Takeo; Watanabe, Makoto; Kokubo, Mitsuru; Kawaguchi, Kenji; Itoh, Ryosuke; Morihana, Kumiko; Saito, Yoshihiko; Nakao, Hikaru; Imai, Masataka; Moritani, Yuki; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Uemura, Makoto; Kawabata, Koji; Yoshida, Michitoshi; Arai, Akira; Takagi, Yuhei; Morokuma, Tomoki; Doi, Mamoru; Itoh, Yoichi; Yamada, Shin'ya; Nakazawa, Kazuhiro; Fukazawa, Yasushi; Makishima, Kazuo

    2016-09-01

    From 2013 April to 2014 April, we performed X-ray and optical simultaneous monitoring of the type 1.5 Seyfert galaxy NGC 3516. We employed Suzaku and five Japanese ground-based telescopes—the Pirka, Kiso Schmidt, Nayuta, MITSuME, and the Kanata telescopes. The Suzaku observations were conducted seven times with various intervals ranging from days or weeks to months, with an exposure of ˜50 ks each. The optical B-band observations not only covered those of Suzaku almost simultaneously, but also followed the source as frequently as possible. As a result, NGC 3516 was found in its faint phase with a 2-10 keV flux of 0.21-2.70 × 10-11 erg s-1 cm-2. The 2-45 keV X-ray spectra were composed of a dominant variable hard power-law (PL) continuum with a photon index of ˜1.7 and a non-relativistic reflection component with a prominent Fe-Kα emission line. Producing the B-band light curve by differential image photometry, we found that the B-band flux changed by ˜2.7 × 10-11 erg s-1 cm-2, which is comparable to the X-ray variation, and we detected a significant flux correlation between the hard PL component in X-rays and the B-band radiation, for the first time in NGC 3516. By examining their correlation, we found that the X-ray flux preceded that in the B band by {2.0}-0.6+0.7 days (1σ error). Although this result supports the X-ray reprocessing model, the derived lag is too large to be explained by the standard view, which assumes a “lamppost”-type X-ray illuminator located near a standard accretion disk. Our results are better explained by assuming a hot accretion flow and a truncated disk.

  15. Using ground-based solar and lunar infrared spectroscopy to study the diurnal trend of carbon monoxide in the Mexico City boundary layer

    Directory of Open Access Journals (Sweden)

    W. Stremme

    2009-05-01

    Full Text Available Carbon monoxide (CO is a main pollutant in urban agglomerations. Quantifying the total burden of this pollutant in a megacity is challaging because not only its surface concentration but also its vertical dispersion present different behaviours and high variability. The diurnal trend of columnar CO in the boundary layer of Mexico City has been measured during various days with ground-based infrared absorption spectroscopy. Daytime CO total columns are retrieved from solar spectra and for the first time, nocturnal CO total columns using moonlight have been retrieved within a megacity. The measurements were taken at the Universidad Nacional Autónoma de México (UNAM campus located in Mexico City (19.33° N, 99.18° W, 2260 m a.s.l. from October 2007 until February 2008 with a Fourier-transform infrared spectrometer at 0.5 cm−1 resolution. The atmospheric CO background column was measured from the high altitude site Altzomoni (19.12° N, 98.65° W, 4010 m a.s.l. located 60 km southeast of Mexico City. The total CO column within the city presents large variations that are caused mainly by fresh CO emissions at the surface, but also the transport of cleaner or more polluted air masses within the field-of-view of the instrument and other processes contribute to its variability. The mean background value above the boundary mixing layer was found to be around (1.2±0.2×1018 molecules/cm2, while inside the city, the late morning mean on weekdays and Sundays was found to be (3.2±0.3×1018 molecules/cm2 and (2.1±0.4×1018 molecules/cm2, respectively. Continuous CO column retrieval during the day and night (when available, in conjunction with surface CO measurements, allow for a reconstruction of the effective mixing layer height. The limitations from this simplified approach, as well as the potential of using continuous column measurements in order to derive top-down CO

  16. Using ground-based solar and lunar infrared spectroscopy to study the diurnal trend of carbon monoxide in the Mexico City boundary layer

    Directory of Open Access Journals (Sweden)

    W. Stremme

    2009-10-01

    Full Text Available Carbon monoxide (CO is an important pollutant in urban agglomerations. Quantifying the total burden of this pollutant in a megacity is challenging because not only its surface concentration but also its vertical dispersion present different behaviours and high variability. The diurnal trend of columnar CO in the boundary layer of Mexico City has been measured during various days with ground-based infrared absorption spectroscopy. Daytime CO total columns are retrieved from solar spectra and for the first time, nocturnal CO total columns using moonlight have been retrieved within a megacity. The measurements were taken at the Universidad Nacional Autónoma de México (UNAM campus located in Mexico City (19.33° N, 99.18° W, 2260 m a.s.l. from October 2007 until February 2008 with a Fourier-transform infrared spectrometer at 0.5 cm−1 resolution. The atmospheric CO background column was measured from the high altitude site Altzomoni (19.12° N, 98.65° W, 4010 m a.s.l. located 60 km southeast of Mexico City. The total CO column within the city presents large variations. Fresh CO emissions at the surface, the transport of cleaner or more polluted air masses within the field-of-view of the instrument and other processes contribute to this variability. The mean background value above the boundary mixing layer was found to be (8.4±0.5×1017 molecules/cm2, while inside the city, the late morning mean on weekdays and Sundays was found to be (2.73±0.41×1018 molecules/cm2 and (2.04±0.57×1018 molecules/cm2, respectively. Continuous CO column retrieval during the day and night (when available, in conjunction with surface CO measurements, allow for a reconstruction of the effective mixing layer height. The limitations from this simplified approach, as well as the potential of using continuous column measurements in order to derive top-down CO emissions from a large urban area

  17. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  18. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  19. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  20. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  1. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  2. Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: the case of the Leaning Tower in Pisa

    Science.gov (United States)

    Marchisio, Mario; Piroddi, Luca; Ranieri, Gaetano; Calcina, Sergio V.; Farina, Paolo

    2014-10-01

    The study of Cultural Heritage assets needs the application of non-destructive and non-invasive monitoring techniques. In particular, monuments and historical buildings which are open to the visitors and/or subject to important stress must be studied for their dynamic response. In the last 10 years the new ground-based radar interferometry technology has been developed allowing to monitor displacements from a point of sight far from the studied targets. It virtually provides a continuous mapping of displacements of the observed structures up to 10 µm with a range resolution of 0.75 m. In this paper, the application of ground-based interferometry on one very important historical building, the Leaning Tower of Pisa in Italy, is reported. The analysis of these kind of structures is important to catch their dynamic response to natural actions in general, and also to assess the effects due to pedestrian and users, and consequently to define functional capabilities and levels of acceptable dynamic stress. The studied structure was subject to artificial loading by synchronous movement of about 20 people. Artificial forcing led the structure to a resonance condition with the same frequency of the one due to the natural noise excitation, which was separately measured, and with an oscillation amplitude more than thirty times greater than the natural one (in conditions of weak wind). During the passive stages of the survey the recorded structural vibrations were very closed to the instrumental sensitivity, making difficult to distinguish vibration amplitudes amplifications of various segments at various heights. Through the spectral analysis of the acquired data it was possible to estimate the vibration frequencies of the first modal shapes of the structure along two orthogonal directions. The power spectra of the passive survey data have the same maximum frequency of the active but contain more noise at low frequency.

  3. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  4. 微重力下对流换热的地面缩比-减压模拟技术%Ground-based scale and pressure reduction technology for simulation of convection in micro-gravity

    Institute of Scientific and Technical Information of China (English)

    姬朝玥; 任建勋; 梁新刚; 陈泽敬; 过增元

    2001-01-01

    A technique was developed and verified numerically to simulatemicro-gravity convection in spacecraft in normal gravity ground-based experiments.The technique suppresses the natural convection and eliminates or lessenes the influence of gravity by reducing the scale and pressure of the ground-based. The results show that the disadvantages of reducing the scale or reducing the pressure can be overcome by combining the two methods. Natural convection can be suppressed to the same extent by reducing the scale and pressure by the same ratio, regardless of the size of the reduction. For a prototype, the scale and pressure reduction ratio is more easily attained maintaining than Gr/Re2 in engineering applications. The model scale and working pressure in the ground-based experiment can be predicted from the scale and pressure reduction ratio.%为了地面模拟空间飞行器在微重力条件下的对流换热,抑制自然对流,消除或减小重力的影响,研究了将缩小尺寸和减小压力相结合的缩比-减压模拟技术,并通过数值计算对这一技术进行了验证。研究表明,缩比-减压法可以克服缩比法和减压法在应用时的不足。不论缩小尺寸和减小压力的程度如何,只要缩减比相等,自然对流的抑制效果就相同。在工程应用中,对一定的原型工况,采用缩减比参数比采用Gr/Re2参数更直观,可以指导对地面模拟实验中合适的模型尺寸和工作压力的确定。

  5. Decadal changes in aerosol optical thickness and single scattering albedo estimated from ground-based broadband radiometers: A case study in Japan

    Science.gov (United States)

    Kudo, Rei; Uchiyama, Akihiro; Yamazaki, Akihiro; Sakami, Tomonori; Ijima, Osamu

    2011-02-01

    A method to estimate aerosol optical thickness and single scattering albedo from broadband direct and diffuse irradiances was developed. Using irradiances simulated with and without errors, the accuracies of estimated optical thickness from 0.7 to 0.8 μm and single scattering albedo in the visible wavelength region were determined to be about 0.02 and 0.05, respectively. Resulting time variations in optical thickness and single scattering albedo by broadband radiometers agreed well with sky radiometer retrievals. Long-term variations in optical thickness and single scattering albedo from 1975 to 2008 at Tsukuba, Japan, were estimated by the method described. Optical thickness increased until the mid-1980s, then decreased until the late 1990s, and was almost constant in the 2000s. The single scattering albedo was about 0.8 until the late 1980s, gradually increased, and has remained at approximately 0.9 since the mid-1990s. The surface global irradiance under clear sky conditions calculated from estimated aerosol optical properties showed an apparent transition from dimming to brightening around the mid-1980s. The magnitude of the brightening was about 12.7 W m-2; of this, 8.3 W m-2 was due to a decrease in optical thickness, and the remaining 4.4 W m-2 was due to an increase of single scattering albedo. On the other hand, the surface global irradiance measured under cloudy conditions increased by 2.6 W m-2. The dimming and brightening by aerosols were weakened by the changes in clouds. The method described could be useful in evaluating aerosol influences on long-term changes in the surface solar radiation at many sites around the world.

  6. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  7. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  8. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    Science.gov (United States)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (Pinus densiflora) agreed well with -0.2% of bias (1.6 gCm-2yr-1). The fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  9. Influence of synoptic meteorological conditions on urban air quality -A study over Hyderabad, India using satellite data and ground based measurements

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath

    Urban areas were considered to be a major source of atmospheric pollution due to popula-tion growth, migration, increasing industrialization and energy use particularly in developing countries. The air quality in urban areas is governed by temporal distribution of emissions from various activities in the city, the topography, and the weather, including atmospheric circulation patterns in the region. The extensive coastal belt of India is very vulnerable to low pressure systems in the Bay of Bengal (BoB) or the Arabian Sea. Most importantly, the formation of a low pressure system in the ocean is one of the most prominent weather systems characterized by high atmospheric pressure gradients and wind. In the present study, variation in aerosol properties and ground reaching solar irradiance were analyzed over a tropical urban environment of Hyderabad associated with a low pressure system during December, 3-10, 2008 over Bay of Bengal (BoB). The low pressure system formed over southeast BoB on Decem-ber 4, 2008, moved westwards and lay centered at 23:30 Indian Standard Time. The study area of Hyderabad is located between 17° 10' and 17° 50' N latitude and 78° 10' and 78° 50' E longitude, in the southeastern part of the Indian region, 300 km from the BoB. Synchronous measurements of aerosol optical depth were carried out using handheld MICROTOPS -II in the premises of the National Remote Sensing Centre (NRSC) campus located at Balanagar, Hyderabad. Along with the daytime measurements of AOD500, continuous measurements of the vertical profile of aerosols and planetary boundary layer were carried out using a portable micropulse lidar (MPL) system at 532 nm. An ultraviolet (UV)-B radiometer from Solar Light Company was used to measure UVery in the range 280-320 nm. Continuous measurements of the Particulate-matter (PM) size distributions were performed with GRIMM aerosol spectrom-eter model 1-108. Ground-reaching solar radiation in 310 to 2800 nm broadband was carried

  10. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  11. Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project

    Science.gov (United States)

    Lizarraga, Ion; Giraudet, Cédric; Croccolo, Fabrizio; Bou-Ali, M. Mounir; Bataller, Henri

    2016-10-01

    Thermodiffusion experiments on isomassic binary mixture of decane and pentane in the liquid phase have been performed between 25 ∘C and 50 ∘C and for pressures from 1MPa until 20MPa. By dynamic analysis of the light scattered by concentration non-equilibrium fluctuations in the binary mixture we obtained the mass diffusion coefficients of the mixture at each temperature and pressure. For the first time we were able to apply similar analysis to thermal fluctuations thus getting a simultaneous measurement of the thermal diffusivity coefficient. While mass diffusion coefficients decrease linearly with the pressure, thermal diffusivity coefficients increase linearly. In principle the proposed method can be used also for measuring the Soret coefficients at the same time. However, for the present mixture the intensity of the optical signal is limited by the optical contrast factor. This affects our capability of providing a reliable estimate of the Soret coefficient by means of dynamic Shadowgraph. Therefore the mass diffusion coefficients measurements would need to be combined with independent measurements of the thermodiffusion coefficients, e.g. thermogravitational column, to provide Soret coefficients. The obtained values constitute the on-ground reference measurements for one of the mixture studied in the frame of the project SCCO-SJ10, which aims to measure the Soret coefficients of multicomponents mixtures under reservoir conditions. Microgravity experiments will be performed on the Chinese satellite SJ10 launched in April 2016.

  12. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  13. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    Science.gov (United States)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  14. Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations

    Science.gov (United States)

    Rieder, Harald E.; Jancso, Leonhardt M.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    In this study we analyze the frequency distribution of extreme events in low and high total ozone (termed ELOs and EHOs) for 5 long-term stations in the northern mid-latitudes in Europe (Belsk, Poland; Hradec Kralove, Czech Republic; Hohenpeissenberg and Potsdam, Germany; and Uccle, Belgium). Further, the influence of these extreme events on annual and seasonal mean values and trends is analysed. The applied method follows the new "ozone extreme concept", which is based on tools from extreme value theory [Coles, 2001; Ribatet, 2007], recently developed by Rieder et al. [2010a, b]. Mathematically seen the decisive feature within the extreme concept is the Generalized Pareto Distribution (GPD). In this analysis, the long-term trends needed to be removed first, differently to the treatment of Rieder et al. [2010a, b], in which the time series of Arosa was analysed, covering many decades of measurements in the anthropogenically undisturbed stratosphere. In contrast to previous studies only focusing on so called ozone mini-holes and mini-highs the "ozone extreme concept" provides a statistical description of the tails in total ozone distributions (i.e. extreme low and high values). It is shown that this concept is not only an appropriate method to describe the frequency and distribution of extreme events, it also provides new information on time series properties and internal variability. Furthermore it allows detection of fingerprints of physical (e.g. El Niño, NAO) and chemical (e.g. polar vortex ozone loss) features in the Earth's atmosphere as well as major volcanic eruptions (e.g. El Chichón, Mt. Pinatubo). It is shown that mean values and trends in total ozone are strongly influenced by extreme events. Trend calculations (for the period 1970-1990) are performed for the entire as well as the extremes-removed time series. The results after excluding extremes show that annual trends are most reduced at Hradec Kralove (about a factor of 3), followed by Potsdam

  15. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001─2004

    Directory of Open Access Journals (Sweden)

    J.-M. Cousin

    2007-08-01

    Full Text Available The PAES (French acronym for synoptic scale atmospheric pollution network focuses on the chemical composition (ozone, CO, NOx/y and aerosols of the lower troposphere (0–3000 m. Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program. They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios to those of the last decade at Pic du Midi (2877 m, as well as trends calculated over 14-year data series at three high-altitude sites in the Alps (Jungfraujoch, Sonnblick and Zugspitze reveal that ozone is still increasing but at a slower rate than in the 1980s and 1990s. The 2001–2004 mean levels of ozone from surface stations capture the ozone stratification revealed by climatological profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft and from ozone soundings above Payerne (Switzerland. In particular all data evidence a clear transition at about 1000–1200 m a.s.l. between a sharp gradient below (of the order of +30 ppb/km and a gentler gradient (+3 ppb/km above. The same altitude (1200 m is also found to be a threshold regarding how well the ozone levels at the surface stations agree with the free-tropospheric reference (MOZAIC or soundings. Below the departure can be as large as 40%, but suddenly drops within 15% above. For stations above 2000 m, the departure is even less than 8%. Ozone variability also

  16. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Science.gov (United States)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  17. Ground-based Mid-infrared Study of the Compton-thick AGN in M51 at 10–100 pc Scale

    Science.gov (United States)

    Ohyama, Youichi; Matsushita, Satoki; Oi, Nagisa; Sun, Ai-Lei

    2017-02-01

    We performed near-diffraction-limited (≃ 0\\buildrel{\\prime\\prime}\\over{.} 4 FWHM) N-band imaging of one of the nearest active galactic nuclei (AGNs) in M51 with the 8.2 m Subaru Telescope to study the nuclear structure and spectral energy distribution (SED) at 8–13 μm. We found that the nucleus is composed of an unresolved core (at ≃ 13 pc resolution, orintrinsic size corrected for the instrumental effect of halo (at a few tens of parsec scale), and each of their SEDs is almost flat. We examined the SED by comparing with the archival Spitzer IRS spectrum processed to mimic our chopping observation of the nucleus and the published radiative transfer model SEDs of the AGN clumpy dusty torus. The halo SED is likely due to circumnuclear star formation showing deficient polycyclic aromatic hydrocarbon emission due to the AGN. The core SED is likely dominated by the AGN because of the following two reasons. First, the clumpy torus model SEDs can reproduce the red mid-infrared continuum with apparently moderate silicate 9.7 μm absorption. Second, the core 12 μm luminosity and the absorption-corrected X-ray luminosity at 2–10 keV in the literature follow the mid-infrared–X-ray luminosity correlation known for the nearby AGNs, including the Compton-thick ones. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    Science.gov (United States)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  19. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2015-09-01

    Full Text Available In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l. on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network, by using both LIRIC (Lidar Radiometer Inversion Code algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm−3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement

  20. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004

    Directory of Open Access Journals (Sweden)

    J.-M. Cousin

    2007-01-01

    Full Text Available The PAES (French acronym for synoptic scale atmospheric pollution network focuses on the chemical composition (ozone, CO, NOx/y and aerosols of the lower troposphere (0–3000 m. Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program. They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios with those of the last decade found in the literature for two high-elevation sites (Pic du Midi, 2877 m and Jungfraujoch, 3580 m leads to a trend that has slowed down compared to old trends but remains positive. This could be attribuable to the reduction of ozone precursors at European scale, that however do not compensate an ozone increase at the global scale. Averaged levels of ozone increase with elevation in good agreement with data provided by the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft, showing a highly stratified ozone field in the lower troposphere, with a transition at about 1000 m asl between a sharp gradient (30 ppb/km below but a gentler gradient (3 ppb/km above. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes at the same altitude. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above – and at all levels in winter – where ozone variability is mostly due to day-to-day changes (linked to weather

  1. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  2. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  4. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  6. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  7. Optical turbulence forecast: toward a new era of ground-based astronomy

    CERN Document Server

    Masciadri, E

    2009-01-01

    The simulation of the optical turbulence (OT) for astronomical applications obtained with non-hydrostatic atmospherical models at meso-scale presents, with respect to measurements, some advantages. The future of the ground-based astronomy relies upon the potentialities and feasibility of the ELTs. Our ability in knowing, controlling and 'managing' the effects of the turbulence on such a new generation telescopes and facilities are determinant to assure their competitiveness with respect to the space astronomy. In the past several studies have been carried out proving the feasibility of the simulation of realistic Cn2 profiles above astronomical sites. The European Community (FP6 Program) decided recently to fund a Project aiming, from one side, to prove the feasibility of the OT forecasts and the ability of meso-scale models in discriminating astronomical sites from optical turbulence point of view and, from the other side, to boost the development of this discipline at the borderline between the astrophysics...

  8. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  9. Solution uniquity of an inverse VLF problem: A case-study of the polar, ground-based, VLF radio signal disturbances caused by the ultra-energetic relativistic electron precipitations and of their southern boundaries

    Science.gov (United States)

    Remenets, G. F.; Astafiev, A. M.

    2016-09-01

    Here we present the results of a case study of the rare, abnormal, qualitatively specific behavior of Aldra (northern Norway) and GBR (UK) VLF transmitter signals (10-16 kHz) received at Kola Peninsula. The abnormal amplitude and the phase disturbances of signals were used as a proxy for ultra-energetic relativistic (solar?) electron precipitation (URE, ∼100 MeV) into the middle polar atmosphere. The disturbances have been observed under quiet or moderately disturbed geomagnetic activity. Based on bearing results, it was established that the abnormal variations of the electric conductivity of ionized middle atmosphere (of a sporadic Ds layer under the regular ionosphere D layer) were characterized by the following: (i) the time function of height h(t) of an effective spherical waveguide between the Earth surface and the sporadic Ds layer shows a minimum value equal to ∼30 km and (ii) the reflection coefficient R(t) of radio wave with a grazing angle of incidence from a virtual boundary with height h(t) has a minimum value equal to ∼0.4. The southern boundaries of the ultra-energetic relativistic electron precipitations have been found as well. They turned out to be not southerly than 61 degree of magnetic latitude and similar to the ones obtained in our previous study of the events for other dates under the similar geophysical conditions although we do not know anything definite about the rigidity and density of the electron fluxes. A used calculation method of analysis is based on a necessary condition that a number n of input data should be greater than a number m of output parameter-functions. We have stated by numerical testing that a decrease of n from 6 to 4 generates a lack of uniqueness of an inverse VLF problem solution for m = 2. It is important for future VLF ground-based monitoring of the URE precipitation events.

  10. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  11. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  12. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    Science.gov (United States)

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  13. Steps toward determination of the size and structure of the broad-line region in active galatic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    Science.gov (United States)

    Korista, K. T.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1995-01-01

    We present the data and initial results from a combined Hubble Space Telescope (HST)/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-1989. IUE spectra were obtained once every 2 days for a period of 74 days beginning on 1993 March 14. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October-1993 September, although many of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies.

  14. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  15. 微重力下固体材料燃烧特性的地面实验模拟方法研究%A Ground-based Experimental Method for Solid Material Flammability Simulation in Microgravity Environment

    Institute of Scientific and Technical Information of China (English)

    王双峰; 肖原

    2012-01-01

    The flame spread characteristics over thermally thin solid materials and the flammability limits of such materials have been investigated in horizontal narrow channels by experimental measurements and numerical simulations. The mechanism of narrow channel device to produce a microgravity environment is discussed. For the low forced flow velocities typically expected in space facilities, flame spread characteristics in microgravity can be effectively reproduced in narrow channels with height of 10~14 mm. Moreover, the measured flammability data in the narrow channels are close to those obtained in microgravity environment. The maximum buoyant velocity is estimated to be about 5 cm/s in the narrow channels. Compared with typical normal gravity test channel with relatively large height, buoyant effect is essentially suppressed. Consequently, a simulated microgravity environment can be produced with the horizontal narrow channels.%在对水平窄通道内典型热薄固体材料的燃烧特性进行实验和数值模拟的基础上,分析了材料表面火焰传播、材料可燃极限与微重力实验结果的相似性,以及窄通道实验模拟微重力材料燃烧特性的机理。研究表明,在航天器舱内常见的低速气流条件下,高度为10mm~14mm的窄通道能较好地模拟微重力环境中材料表面火焰传播的特征,并复现材料的可燃极限曲线;窄通道内火焰诱导的浮力流动速度的最大值约为5cm/s,与常规实验通道(高度较大)相比,窄通道能够有效地限制自然对流,进而提供模拟微重力条件下材料燃烧特性的实验环境。

  16. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    CERN Document Server

    Sharma, Mradul; Koul, M K; Bose, S; Mitra, Abhas

    2014-01-01

    A detailed case study of $\\gamma$-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers,Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for $\\gamma$-hadron segregation.

  17. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  18. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  19. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  20. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  1. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  2. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  3. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  4. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  5. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  6. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  7. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  8. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  9. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    Science.gov (United States)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous

  10. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  11. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  12. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  13. Ground-Based Aerosol Measurements | Science Inventory ...

    Science.gov (United States)

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  14. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  15. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  16. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  17. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  18. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    Science.gov (United States)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  19. Evaluation of the representativeness of ground-based visibility for analysing the spatial and temporal variability of aerosol optical thickness in China

    Science.gov (United States)

    Zhang, Zhao Yang; Wong, Man Sing; Lee, Kwon Ho

    2016-12-01

    Although visibility is a widely-used indicator to quantify the aerosol loadings, only a few studies have been analyzed the representativeness of visibility in deriving Aerosol Optical Thickness (AOT). In this paper, ground-based visibility, MODerate-resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) monthly AOT products between July 2002 and December 2014 were analyzed in order to extract the dominant modes of variability using the Singular Value Decomposition (SVD) method. The method has significant merit to reduce data dimension and examine both spatial and temporal variability simultaneously. Results indicated that the satellite retrieved AOTs agreed well with ground-based visibility in terms of inter-annual variability. The correlation coefficients in the first deseasonalized mode are greater than 0.65 between visibility and satellite AOT products. However, large differences were observed in the seasonal variability between ground-based visibility and AOT. In addition, Aerosol vertical distribution from LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) and cloud data from ground-based meteorological station were used to investigate the seasonal variability disagreement. The AOT values derived from LIVAS extinction coefficients between 0 and 500 m above surface have a stronger relationship with visibility, than total column AOT with visibility. It also indicates that seasonal variation of aerosol vertical distribution is the main cause of the disagreement between two parameters, and the uncertainties of satellite products also contribute to the disagreement. Results in this study highlighted that the visibility observation could only be used to depict the inter-annual AOT and more ancillary information could be used for studying seasonal AOT variation.

  20. Simulation in International Studies

    Science.gov (United States)

    Boyer, Mark A.

    2011-01-01

    Social scientists have long worked to replicate real-world phenomena in their research and teaching environments. Unlike our biophysical science colleagues, we are faced with an area of study that is not governed by the laws of physics and other more predictable relationships. As a result, social scientists, and international studies scholars more…

  1. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  2. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  3. Ground-based near-infrared observations of water vapour in the Venus troposphere

    CERN Document Server

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  4. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  5. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-12-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith–sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only

  6. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Science.gov (United States)

    Verhoelst, T.; Granville, J.; Hendrick, F.; Köhler, U.; Lerot, C.; Pommereau, J.-P.; Redondas, A.; Van Roozendael, M.; Lambert, J.-C.

    2015-12-01

    Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith-sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-)DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the

  7. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  8. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  9. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  10. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  11. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  12. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  13. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  14. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  15. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  16. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  17. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  18. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  19. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  20. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  1. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  2. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  3. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  4. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  5. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valverde, M. A. [Instituto de Astrofisica de Andalucia, IAA/CSIC, Granada (Spain); Montabone, L. [Space Science Institute, Boulder, CO (United States); Sornig, M.; Sonnabend, G., E-mail: valverde@iaa.es [University of Cologne, KOSMA, Köln (Germany)

    2016-01-10

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.

  6. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2017-01-01

    A 1-year data set of ground-based GPS signal observations aiming at geometric elevation angles below +2° is analysed. Within the "GLESER" measurement campaign about 2600 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808° N, 13.0642° E between January and December 2014. The measurements confirm the feasibility of open-loop signal tracking down to geometric elevation angles of -1 to -1.5° extending the corresponding closed-loop tracking range by up to 1°. The study is based on the premise that observations of low-elevation events by a ground-based receiver may serve as test cases for space-based radio occultation measurements, even if the latter proceed at a significantly faster temporal scale. The results support the conclusion that the open-loop Doppler model has negligible influence on the derived carrier frequency profile for strong signal-to-noise density ratios above about 30 dB Hz. At lower signal levels, however, the OpenGPS receiver's dual-channel design, which tracks the same signal using two Doppler models differing by 10 Hz, uncovers a notable bias. The repeat patterns of the GPS orbit traces in terms of azimuth angle reveal characteristic signatures in both signal amplitude and Doppler frequency with respect to the topography close to the observation site. Mean vertical refractivity gradients, extracted from ECMWF meteorological fields, correlate weakly to moderately with observed signal amplitude fluctuations at geometric elevation angles between +1 and +2°. Results from multiple phase screen simulations support the interpretation that these fluctuations are at least partly produced by atmospheric multipath; at negative elevation angles diffraction at the ground surface seems to contribute.

  7. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  8. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  9. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  10. An Airborne and Ground-based Study of a Long-lived and Intense Atmospheric River Impacting California during the CalWater-2014 Early-Start Field Campaign

    Science.gov (United States)

    Neiman, P. J.; Benjamin, M.; White, A. B.; Wick, G. A.; Aikins, J.; Jackson, D. L.; Spackman, J. R.; Ralph, F. M.

    2015-12-01

    During the CalWater-2014 Early Start winter field campaign, the wettest period occurred with a long-lived, intense atmospheric river (AR) impacting California on 7-10 February. SSMIS satellite imagery of integrated water vapor (see figure) provides a large-scale overview of the event. Based on Lagrangian trajectories, the AR tapped into the tropical water-vapor reservoir, and the water vapor subsequently advected to California. Widespread heavy precipitation (200-400 mm) fell across the coastal mountain ranges northwest of San Francisco and across the northern Sierra Nevada, although only modest flooding ensued due to anomalously dry antecedent conditions. The NOAA G-IV aircraft - which represents the cornerstone observing platform for this study - flew through two mesoscale frontal waves in the AR environment offshore in a ~24-h period. Parallel dropsonde curtains documented key three-dimensional thermodynamic and kinematic characteristics across the AR and frontal waves prior to landfall. Different AR characteristics were evident, depending on the location of the cross section through the frontal waves. A newly-implemented tail-mounted Doppler radar on the G-IV simultaneously captured coherent precipitation features. Along the coast, a 449-MHz wind profiler and collocated global positioning system (GPS) receiver monitored tropospheric winds and water vapor during the AR landfall. These instruments also observed the transient frontal waves - which prolonged AR conditions and heavy precipitation - and highlighted the orographic character of the rainfall in the coastal mountains. A vertically pointing S-PROF radar in the coastal mountains provided detailed information on the bulk microphysical characteristics of the rainfall. Farther inland, a pair of 915-MHz wind profilers and GPS receivers quantified the orographic precipitation forcing as the AR ascended the Sierra Nevada, and as the terrain-induced Sierra barrier jet ascended the northern terminus of California

  11. Detection of the Zeeman effect in atmospheric O2 using a ground-based microwave radiometer

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Murk, Axel; Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick

    2015-04-01

    In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The Zeeman effect is a phenomenon which occurs when an external magnetic field interacts with a molecule or an atom of total electron spin different from zero. Such an interaction will split an original energy level into several sub-levels [1]. In the atmosphere, oxygen is an abundant molecule which in its ground electronic state has a permanent magnetic dipole moment coming from two parallel electron spins. The interaction of the magnetic dipole moment with the Earth magnetic field leads to a Zeeman splitting of the O2 rotational transitions which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz in Bern (Switzerland). The measurements were possible using a Fast Fourier Transform (FFT) spectrometer with 1 GHz of band width to measure the whole oxygen emission line centered at 53.07 GHz and a narrow spectrometer (4 MHz) to measure the center of the line with a very high resolution (1 kHz). Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) [2] allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The incorporation of this effect to the forward model will allow to extend the temperature retrievals beyond 50 km. This improvement in the forward model will be very useful for the assimilation of brightness temperatures in

  12. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    Science.gov (United States)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  13. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  14. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  15. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  16. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  17. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  18. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  19. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  20. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  1. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  2. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  3. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  4. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  5. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-08-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement uncertainties but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between on the one hand GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and on the other hand direct-sun and zenith-sky reference measurements such as from Dobsons, Brewers, and zenith scattered light (ZSL-DOAS instruments respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing

  6. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based

  7. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  8. Asteroseismology of Solar-type stars with Kepler III. Ground-based Data

    CERN Document Server

    Molenda-Zakowicz, Joanna; Sousa, Sergio; Frasca, Antonio; Biazzo, Katia; Huber, Daniel; Ireland, Mike; Bedding, Tim; Stello, Dennis; Uytterhoeven, Katrien; Dreizler, Stefan; De Cat, Peter; Briquet, Maryline; Catanzaro, Giovanni; Karoff, Chistoffer; Frandsen, Soeren; Spezzi, Loredana; Catala, Claude

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject of an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).

  9. Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations

    CERN Document Server

    Archer, Martin; Eastwood, Jonathan; Schwartz, Steven; Horbury, Timothy

    2014-01-01

    Using multipoint observations we show, for the first time, that Foreshock Bubbles (FBs) have a global impact on Earth's magnetosphere. We show that an FB, a transient kinetic phenomenon due to the interaction of backstreaming suprathermal ions with a discontinuity, modifies the total pressure upstream of the bow shock showing a decrease within the FB's core and sheath regions. Magnetosheath plasma is accelerated towards the the intersection of the FB's current sheet with the bow shock resulting in fast, sunward, flows as well as outward motion of the magnetopause. Ground-based magnetometers also show signatures of this magnetopause motion simultaneously across at least 7 hours of magnetic local time, corresponding to a distance of 21.5 RE transverse to the Sun-Earth line along the magnetopause. These observed global impacts of the FB are in agreement with previous simulations and in stark contrast to the known localised, smaller scale effects of Hot Flow Anomalies (HFAs).

  10. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  11. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  12. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  13. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  14. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  15. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  16. Satellite link augmentation of ground based packet switched data networks

    Science.gov (United States)

    Farrell, J. B.; McLane, P. J.; Campbell, L. L.

    Use of satellite link augmentation to improve the performance of a packet switched data network is considered. Particular attention is paid to the analysis of two queues in series from the standpoint of time delay. A finite state machine model is used to aid the analysis. The results from the analysis are then used in a flow deviation routing algorithm. This algorithm is applied to study the performance improvement when satellite links are used to augment the Canadian DATAPAC network. The results are backed up by extensive simulations on a digital computer.

  17. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  18. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  19. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  20. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  1. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  2. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  3. RTTOV-gb - adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-08-01

    Ground-based microwave radiometers (MWRs) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations, a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward-looking microwave sensors. In addition, the tangent linear, adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e., the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (˜ 0.5 K) at all channels used in this analysis. Brightness temperatures (TBs) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and co-located ground-based MWR observations. Differences between simulated and measured TBs are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV

  4. Application of Bayesian Neural Networks to Energy Reconstruction in EAS Experiments for ground-based TeV Astrophysics

    CERN Document Server

    Bai, Ying; Lan, JieQin; Gao, WeiWei

    2016-01-01

    A toy detector array has been designed to simulate the detection of cosmic rays in Extended Air Shower(EAS) Experiments for ground-based TeV Astrophysics. The primary energies of protons from the Monte-Carlo simulation have been reconstructed by the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment\\cite{lhaaso-ma}, respectively. The result of the energy reconstruction using BNNs has been compared with the one using the standard method. Compared to the standard method, the energy resolutions are significantly improved using BNNs. And the improvement is more obvious for the high energy protons than the low energy ones.

  5. Analysis of ionospheric electrodynamic parameters on mesoscales – a review of selected techniques using data from ground-based observation networks and satellites

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-03-01

    Full Text Available We present a review of selected data-analysis methods that are frequently applied in studies of ionospheric electrodynamics and magnetosphere-ionosphere coupling using ground-based and space-based data sets. Our focus is on methods that are data driven (not simulations or statistical models and can be used in mesoscale studies, where the analysis area is typically some hundreds or thousands of km across. The selection of reviewed methods is such that most combinations of measured input data (electric field, conductances, magnetic field and currents that occur in practical applications are covered. The techniques are used to solve the unmeasured parameters from Ohm's law and Maxwell's equations, possibly with help of some simplifying assumptions. In addition to reviewing existing data-analysis methods, we also briefly discuss possible extensions that may be used for upcoming data sets.

  6. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  7. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  8. Development of binary image masks for TPF-C and ground-based AO coronagraphs

    Science.gov (United States)

    Ge, Jian; Crepp, Justin; Vanden Heuvel, Andrew; Miller, Shane; McDavitt, Dan; Kravchenko, Ivan; Kuchner, Marc

    2006-06-01

    We report progress on the development of precision binary notch-filter focal plane coronagraphic masks for directly imaging Earth-like planets at visible wavelengths with the Terrestrial Planet Finder Coronagraph (TPF-C), and substellar companions at near infrared wavelengths from the ground with coronagraphs coupled to high-order adaptive optics (AO) systems. Our recent theoretical studies show that 8th-order image masks (Kuchner, Crepp & Ge 2005, KCG05) are capable of achieving unlimited dynamic range in an ideal optical system, while simultaneously remaining relatively insensitive to low-spatial-frequency optical aberrations, such as tip/tilt errors, defocus, coma, astigmatism, etc. These features offer a suite of advantages for the TPF-C by relaxing many control and stability requirements, and can also provide resistance to common practical problems associated with ground-based observations; for example, telescope flexure and low-order errors left uncorrected by the AO system due to wavefront sensor-deformable mirror lag time can leak light at significant levels. Our recent lab experiments show that prototype image masks can generate contrast levels on the order of 2x10 -6 at 3 λ/D and 6x10 -7 at 10 λ/D without deformable mirror correction using monochromatic light (Crepp et al. 2006), and that this contrast is limited primarily by light scattered by imperfections in the optics and extra diffraction created by mask construction errors. These experiments also indicate that the tilt and defocus sensitivities of high-order masks follow the theoretical predictions of Shaklan and Green 2005. In this paper, we discuss these topics as well as review our progress on developing techniques for fabricating a new series of image masks that are "free-standing", as such construction designs may alleviate some of the (mostly chromatic) problems associated with masks that rely on glass substrates for mechanical support. Finally, results obtained from our AO coronagraph

  9. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  10. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  11. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  12. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  13. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  14. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  15. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  16. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    Science.gov (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  17. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  18. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  19. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  20. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  1. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    Science.gov (United States)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target

  2. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  3. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  4. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    Science.gov (United States)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  5. Trends in gravity changes from 2009 to 2013 derived from ground-based gravimetry and GRACE data in North China

    Directory of Open Access Journals (Sweden)

    Chongyang Shen

    2015-11-01

    Full Text Available North China is a key region for studying geophysical progress. In this study, ground-based and Gravity Recovery and Climate Experiment (GRACE gravity data from 2009 to 2013 are used to calculate the gravity change rate (GCR using the polynomial fitting method. In general, the study area was divided into the Shanxi rift, Jing-Jin-Ji (Beijing-Tianjin-Hebei Province, and Bohai Bay Basin (BBB regions. Results of the distribution of the GCR determined from ground-based gravimetry show that the GCR appears to be “negative-positive-negative” from west to east, which indicates that different geophysical mechanisms are involved in the tectonic activities of these regions. However, GRACE solutions are conducted over a larger spatial scale and are able to show a difference between southern and northern areas and a mass redistribution of land water storage.

  6. First ground-based column measurements of CO{sub 2} in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, T.; Petersen, K.; Macatangay, R.; Notholt, J. [Institute of Environmental Physics, University of Bremen, Bremen (Germany); Koerner, S.; Jordan, A.; Gerbig, C.; Rothe, M. [Max-Planck-Institute for Biogeochemistry (MPI-BGC), Jena (Germany); Schrems, O. [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2009-07-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO{sub 2} (X{sub CO{sub 2}}) for the inner tropics have been obtained at Paramaribo, Suriname (5.8 N, 55.2 W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The X{sub CO{sub 2}} shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d{sup {sub 13C}} from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface agree with model simulations for the measurement campaigns in the LDS (Southern Hemisphere), but not for the SDS (Northern Hemisphere).

  7. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  8. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

    Science.gov (United States)

    Ahn, M.-H.; Won, H. Y.; Han, D.; Kim, Y.-H.; Ha, J.-C.

    2016-01-01

    The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of -2.6 and 1.8 K, respectively.

  9. Ground-based Observations of the Solar Sources of Space Weather

    Science.gov (United States)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground-based

  10. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  11. Ground-based RGB imaging to determine the leaf water potential of potato plants

    Science.gov (United States)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  12. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  13. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  14. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  15. Ground-based follow-up in relation to Kepler asteroseismic investigation

    Science.gov (United States)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also

  16. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  17. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    OpenAIRE

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-01-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol...

  18. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  19. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  20. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    CERN Document Server

    Catalano, A; Atik, Y; Benoit, A; Bréele, E; Bock, J J; Camus, P; Chabot, M; Charra, M; Crill, B P; Coron, N; Coulais, A; Désert, F -X; Fauvet, L; Giraud-Héraud, Y; Guillaudin, O; Holmes, W; Jones, W C; Lamarre, J -M; Macías-Pérez, J; Martinez, M; Miniussi, A; Monfardini, A; Pajot, F; Patanchon, G; Pelissier, A; Piat, M; Puget, J -L; Renault, C; Rosset, C; Santos, D; Sauvé, A; Spencer, L D; Sudiwala, R

    2014-01-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent, but the rate of cosmic ray impacts on the HFI detectors was unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics. A study of cosmic ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper presents an evaluation of the physical origins of glitches observed by the HFI detectors. In order to better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact ener...

  1. Ground-based activities in preparation of SELENE ISS experiment on self-rewetting fluids

    Science.gov (United States)

    Savino, R.; Abe, Y.; Castagnolo, D.; Celata, G. P.; Kabov, O.; Kawaji, M.; Sato, M.; Tanaka, K.; Thome, J. R.; Van Vaerenbergh, S.

    2011-12-01

    SELENE (SELf rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard ISS include the quantitative investigation of heat transfer performances of "self-rewetting fluids" and "nano self-rewetting fluids" in model heat pipes and validation of adequate theoretical and numerical modelling able to predict their behaviour in microgravity conditions. This article summarizes the results of ground-based research activities in preparation of the microgravity experiments. They include: 1) thermophysical properties measurements; 2) study of thermo-soluto-capillary effects in micro-channels; 3) numerical modelling; 4) thermal and concentration distribution measurements with optical (e.g. interferometric) and intrusive techniques; 5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; 6) breadboards development and support to definition of scientific requirements.

  2. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  3. Improved ground-based remote-sensing systems help monitor plant response to climate and other changes

    Science.gov (United States)

    Dye, Dennis G.; Bogle, Rian C.

    2016-05-26

    Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.

  4. Designing of a risk assessment architecture to analyze potential risks from space weather to space and ground based assets

    Science.gov (United States)

    Sattar, Erum

    2016-07-01

    Today's world is more vulnerable to space weather due to ever increased advance and costly space technology deployed in space and on ground. The space weather has a natural potential of posing harmful effects on space and ground based assets and on astronaut's life. This global challenge of space weather essentially demands global and regional preparedness to develop its situational awareness, analyzing risks and devise possible mitigation procedures. Considering risk mitigation architecture as inevitable for all scientific missions, this paper focuses to develop a risk assessment architecture for the space environment and to map its utility in identifying and analyzing potential risks to space and ground based assets from space weather in the South Asia region. Different risk assessment tools will be studied and would conclude in the most effective tool or strategy that may help to develop our capability in identifying, protecting and mitigating from the devastating effects of the space weather.

  5. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  6. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  7. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    Science.gov (United States)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  8. Tissue Engineering of Cartilage on Ground-Based Facilities

    DEFF Research Database (Denmark)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth

    2016-01-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free threedimensional (3D) tissue formation. To investigate the shortterm influence, human chondrocytes were cultivated for 2h, 4 h, 16 h...

  9. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    Science.gov (United States)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  10. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  11. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    Directory of Open Access Journals (Sweden)

    C. Pettersen

    2015-12-01

    Full Text Available Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.

  12. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  13. Simulation Studies in Data Replication Strategies

    Institute of Scientific and Technical Information of China (English)

    HarveyB.Newman; IosifC.Legrand

    2001-01-01

    The aim of this work is to present the simulation studies in evaluating different data replication strategies between Regional Centers.The simulation Framework developed within the "Models of Networked Analysis at Rgional Centers”(MONARC) project,as a design and optimization tool for large scale distributed systems,has been used for these modeling studies.Remote client-serer access to database servers as well as ftp-like data transfers have been ralistically simulated and the performance and limitations are presented as a function of the characteristics of the protocol used and the network parameters.

  14. Crop micrometeorology : a simulation study

    NARCIS (Netherlands)

    Goudriaan, J.

    1977-01-01

    This monograph presents the results of a detailed study in micrometeorology; one of the sciences that play an important role in production ecology. The purpose is to explain the microweather as a function of the properties of plant and soil, and of the weather conditions prevalent at some

  15. Crop micrometeorology: a simulation study

    NARCIS (Netherlands)

    Goudriaan, J.

    1977-01-01

    This monograph presents the results of a detailed study in micrometeorology; one of the sciences that play an important role in production ecology. The purpose is to explain the microweather as a function of the properties of plant and soil, and of the weather conditions prevalent at some height abo

  16. A simulation study of some observable parameters of Cherenkov photons in EASs of different primaries incident at various angles

    CERN Document Server

    Das, G S; Goswami, U D

    2016-01-01

    We have studied the lateral density, arrival time and angular distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $\\gamma$-ray, proton and iron primaries incident with different energies and at different zenith angles. This study is the extension of our earlier work \\cite{Hazarika} to cover almost the whole energy range of ground based $\\gamma$-ray astronomy and to cover a wide range of zenith angles ($\\le 40^\\circ$), as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the $\\gamma$-ray initiated showers from the hadronic showers in the ground based $\\gamma$-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is used. Importantly, such study gives an insight on the nature of $\\gamma$-ray and hadronic showers in general. In this work, we used the CORSIKA 6.990 simulation package for the generation of EASs. Similar to the case of Ref.\\cite{Hazarika}, this study also revealed that, t...

  17. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.

    Science.gov (United States)

    Papadopoulos, Antonis; Kalivas, Dionissios; Theocharopoulos, Sid

    2017-07-01

    Multispectral sensor capability of capturing reflectance data at several spectral channels, together with the inherent reflectance responses of various soils and especially plant surfaces, has gained major interest in crop production. In present study, two multispectral sensing systems, a ground-based and an aerial-based, were applied for the multispatial and temporal monitoring of two cotton fields in central Greece. The ground-based system was Crop Circle ACS-430, while the aerial consisted of a consumer-level quadcopter (Phantom 2) and a modified Hero3+ Black digital camera. The purpose of the research was to monitor crop growth with the two systems and investigate possible interrelations between the derived well-known normalized difference vegetation index (NDVI). Five data collection campaigns were conducted during the cultivation period and concerned scanning soil and plants with the ground-based sensor and taking aerial photographs of the fields with the unmanned aerial system. According to the results, both systems successfully monitored cotton growth stages in terms of space and time. The mean values of NDVI changes through time as retrieved by the ground-based system were satisfactorily modelled by a second-order polynomial equation (R (2) 0.96 in Field 1 and 0.99 in Field 2). Further, they were highly correlated (r 0.90 in Field 1 and 0.74 in Field 2) with the according values calculated via the aerial-based system. The unmanned aerial system (UAS) can potentially substitute crop scouting as it concerns a time-effective, non-destructive and reliable way of soil and plant monitoring.

  18. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  19. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  20. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  1. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements

    Directory of Open Access Journals (Sweden)

    Mitsunori Ishihara

    2015-10-01

    Full Text Available A ground-based network of spectral observations is useful for ecosystem monitoring and validation of satellite data. However, these observations contain inherent uncertainties due to the change of sunlight conditions. This study investigated the impact of changing solar zenith angles and diffuse/direct light conditions on the consistency of vegetation indices (normalized difference vegetation index (NDVI and green-red vegetation index (GRVI derived from ground-based spectral measurements in three different types of cropland (paddy field, upland field, cultivated grassland in Japan. In general, the vegetation indices decreased with decreasing solar zenith angle. This response was affected significantly by the growth stage and diffuse/direct light conditions. The decreasing response of the NDVI to the decreasing solar zenith angle was high during the middle growth stage (0.4 < NDVI < 0.8. On the other hand, a similar response of the GRVI was evident except in the early growth stage (GRVI < 0. The response of vegetation indices to the solar zenith angle was evident under clear sky conditions but almost negligible under cloudy sky conditions. At large solar zenith angles, neither the NDVI nor the GRVI were affected by diffuse/direct light conditions in any growth stage. These experimental results were supported well by the results of simulations based on a physically-based canopy reflectance model (PROSAIL. Systematic selection of the data from continuous diurnal spectral measurements in consideration of the solar light conditions would be effective for accurate and consistent assessment of the canopy structure and functioning.

  2. Estimates of the Planet Yield from Ground-Based High-Contrast Imaging Observations as a Function of Stellar Mass

    CERN Document Server

    Crepp, Justin R

    2011-01-01

    We use Monte Carlo simulations to estimate the number of extrasolar planets that are directly detectable in the solar-neighborhood using current and forthcoming high-contrast imaging instruments. Our calculations take into account the important factors that govern the likelihood for imaging a planet, including the statistical properties of nearby stars, correlations between star and planet properties, observational effects, and selection criteria. We consider several different ground-based surveys and express the resulting yields as a function of stellar mass. Selecting targets based on their youth and visual brightness, we find that strong correlations between star mass and planet properties are required to reproduce high-contrast imaging results to date. Using the most recent empirical findings for the occurrence rate of planets from RV surveys, our simulations indicate that extrapolation of the Doppler planet population to separations accessible to high-contrast instruments provides excellent agreement bet...

  3. Ground-based NIR emission spectroscopy of HD189733b

    CERN Document Server

    Waldmann, I P; Tinetti, G; Griffith, C A; Swain, M R; Deroo, P

    2011-01-01

    Spectroscopic observations of transiting exoplanets are providing an unprecedented view of the atmospheres of planets around nearby stars. As we learn more about the atmospheres of these remote bodies, we begin to build up a clearer picture of their composition and thermal structure. Here we investigate the case of K and L band emissions of the hot-Jupiter HD 189733b. Using the SpeX instrument on the NASA IRTF, we obtained three nights of secondary eclipse data using equivalent settings for all nights. Our sample includes one night previously presented by Swain et al. (2010) which allows for comparability of results. In this publication we present and discuss in detail a greatly improved data-reduction and analysis routine. This, in conjunction with more data, allows us to increase the spectral resolution of our planetary spectrum (R ~ 170-180), leading to a better identifiability of the features present. We confirm the existence of a strong emission at ~3.3 microns which is inconsistent with LTE simulations ...

  4. Computer Simulation Study of Bipolaron Formation

    NARCIS (Netherlands)

    Raedt, H. De; Lagendijk, A.

    1986-01-01

    Monte Carlo computer simulation techniques are used to study the formation of bipolarons on a lattice. The transition between the three possible states, extended, two-polaron, and bipolaron is studied. The phase diagram as a function of the strengths of the electron-phonon coupling and repulsive int

  5. Digital Simulation Games for Social Studies Classrooms

    Science.gov (United States)

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  6. Space-borne detection of volcanic carbon dioxide anomalies: The importance of ground-based validation networks

    Science.gov (United States)

    Schwandner, F. M.; Carn, S. A.; Corradini, S.; Merucci, L.; Salerno, G.; La Spina, A.

    2012-04-01

    We have investigated the feasibility of space-borne detection of volcanic carbon dioxide (CO2) anomalies, and their integration with ground-based observations. Three goals provide motivation to their integration: (a) development of new volcano monitoring techniques, with better spatial and temporal coverage, because pre-eruptive volcanic CO2 emissions are potentially the earliest available indicators of volcanic unrest; (b) improvement the currently very poor global CO2 source strength inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude strong point source emission and dispersion studies. (1) Feasibility of space-borne detection of volcanic CO2 anomalies. Volcanoes are highly variable but continuous CO2 emitters, distributed globally, and emissions often occur at high altitudes. To detect strong point sources of CO2 from space, several hurdles have to be overcome: orographic clouds, unknown dispersion behavior, a high CO2 background in the troposphere, and sparse data coverage from existing satellite sensors. These obstacles can be overcome by a small field of view, enhanced spectral resolving power, and by employing repeat target mode observation strategies. The Japanese GOSAT instrument has been operational since January 2009, producing CO2 total column measurements with a repeat cycle of 3 days and a field of view of 10km. GOSAT thus has the potential to provide spatially integrated data for entire volcanic edifices, especially in target mode. Since summer 2010 we have conducted repeated target mode observations of over 20 persistently active global volcanoes including Etna (Italy), Erta Ale (Ethiopia), and Ambrym (Vanuatu), using L2 GOSAT FTS SWIR data. One of our best-studied test cases is Mt. Etna on Sicily (Italy), which reawakened in 2011 after a period of quiescence and produced a sequence of eruptive activities including lava fountaining events, coinciding with target-mode GOSAT observations conducted there since 2010. For the

  7. A Case Study of a Double-Moment Cloud Microphysics Parameterization in Cloud Resolving Model Simulations

    Science.gov (United States)

    Liu, Z.; Ackerman, T. P.; Morrison, H.

    2010-12-01

    The double-moment microphysics parameterization used in this study predicts both the number concentration and the mixing ratio for five hydrometeor species: cloud water, cloud ice, rain, snow and graupel along with the mass mixing ratio of water vapor. With the explicitly predicted hydrometeor number concentration, we expect the double-moment microphysics scheme to improve the simulation of microphysical processes and the cloud properties. In this study, the double-moment microphysics scheme is utilized in a cloud resolving model (CRM), called the System for Atmospheric Modeling (SAM), to simulate the cloud evolution during the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) 1997 summer Intensive Observations Period. In particular, we performed sensitivity studies of parameters such as the terminal fall velocity of the three ice species and ice-to-snow “autoconversion” threshold. For example, increasing the fall speed of pristine ice particles reduces the cloud amount at higher altitude and agrees better with the ARM ground-based cloud radar observations although the model still overestimates the high cloud amount. Increasing the fall velocity of snow and graupel can decrease the high cloud amount but is less effective. We also considered the impact of the model inherent uncertainty on the interpretation of microphysics sensitivity studies by performing ensemble runs with the same model configuration and large scale forcing but only varying initial soundings.

  8. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  9. RTTOV-gb - Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-04-01

    The Planetary Boundary Layer (PBL) is the single most important under-sampled part of the atmosphere. According to the WMO Statement Of Guidance For Global Numerical Weather Prediction (NWP), temperature and humidity profiles (in cloudy areas) are among the four critical atmospheric variables not adequately measured in the PBL. Ground-based microwave radiometers (MWR) provide temperature and humidity profiles in both clear- and cloudy-sky conditions with high temporal resolution and low-to-moderate vertical resolution, with information mostly residing in the PBL. Ground-based MWR offer to bridge this observational gap by providing continuous temperature and humidity information in the PBL. The MWR data assimilation into NWP models may be particularly important in nowcasting and severe weather initiation. The assimilation of thermodynamic profiles retrieved from MWR data has been recently experimented, but a way to possibly increase the impact is to directly assimilate measured radiances instead of retrieved profiles. The assimilation of observed radiances in a variational scheme requires the following tools: (i) a fast radiative transfer (RT) model to compute the simulated radiances at MWR channels from the NWP model fields (ii) the partial derivatives (Jacobians) of the fast radiative transfer model with respect to control variables to optimize the distances of the atmospheric state from both the first guess and the observations. Such a RT model is available from the EUMETSAT NWPSAF (Numerical Weather Prediction Satellite Application Facility) and well accepted in the NWP community: RTTOV. This model was developed for nadir-viewing passive visible, infrared, and microwave satellite radiometers, spectrometers and interferometers. It has been modified to handle ground-based microwave radiometer observations. This version of RTTOV, called RTTOV-gb, provides the tools needed to exploit ground-based upward looking MWR brightness temperatures into NWP variational data

  10. Analysis and Compact Modeling of a Vertical Grounded-Base NPN Bipolar Transistor used as ESD Protection in a Smart Power Technology

    OpenAIRE

    Bertrand, Géraldine; Delage, Christelle; Bafleur, Marise; Nolhier, Nicolas; Dorkel, Jean-Marie; Nguyen, Quang; Mauran, Nicolas; Trémouilles, David; Perdu, Philippe

    2001-01-01

    9 pages; International audience; A thorough analysis of the physical mechanisms involved in a Vertical Grounded-Base NPN bipolar transistor (VGBNPN) under ElectroStatic Discharge (ESD) stress is first carried out by using 2D-device simulation, Transmission Line Pulse measurement (TLP) and photoemission experiments. This analysis is used to account for the unexpected low value of the VGBNPN snapback holding voltage under TLP stress. A compact model based on a new avalanche formulation resultin...

  11. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  12. Exoplanet Atmospheres and Giant Ground-Based Telescopes

    CERN Document Server

    Crossfield, I J M

    2016-01-01

    The study of extrasolar planets has rapidly expanded to encompass the search for new planets, measurements of sizes and masses, models of planetary interiors, planetary demographics and occurrence frequencies, the characterization of planetary orbits and dynamics, and studies of these worlds' complex atmospheres. Our insights into exoplanets dramatically advance whenever improved tools and techniques become available, and surely the largest tools now being planned are the optical/infrared Extremely Large Telescopes (ELTs). Two themes summarize the advantages of atmospheric studies with the ELTs: high angular resolution when operating at the diffraction limit and high spectral resolution enabled by the unprecedented collecting area of these large telescopes. This brief review describes new opportunities afforded by the ELTs to study the composition, structure, dynamics, and evolution of these planets' atmospheres, while specifically focusing on some of the most compelling atmospheric science cases for four qua...

  13. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  14. Soil moisture retrieval using ground based bistatic scatterometer data at X-band

    Science.gov (United States)

    Gupta, Dileep Kumar; Prasad, Rajendra; Kumar, Pradeep; Vishwakarma, Ajeet Kumar

    2017-02-01

    Several hydrological phenomenon and applications need high quality soil moisture information of the top Earth surface. The advent of technologies like bistatic scatterometer can retrieve soil moisture information with high accuracy and hence used in present study. The radar data is acquired by specially designed ground based bistatic scatterometer system in the specular direction of 20-70° incidence angles at steps of 5° for HH and VV polarizations. This study provides first time comprehensive evaluation of different machine learning algorithms for the retrieval of soil moisture using the X-band bistatic scatterometer measurements. The comparison of different artificial neural network (ANN) models such as back propagation artificial neural network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network (GRANN) along with linear regression model (LRM) are used to estimate the soil moisture. The performance indices such as %Bias, Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) are used to evaluate the performances of the machine learning techniques. Among different models employed in this study, the BPANN is found to have marginally higher performance in case of HH polarization while RBFANN is found suitable with VV polarization followed by GRANN and LRM. The results obtained are of considerable scientific and practical value to the wider scientific community for the number of practical applications and research studies in which radar datasets are used.

  15. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  16. The use of products from ground-based GNSS observations in meteorological nowcasting

    Science.gov (United States)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  17. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  18. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  19. Study of Cardiac Defibrillation Through Numerical Simulations

    Science.gov (United States)

    Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.

    Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.

  20. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  1. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  2. A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael

    1998-01-01

    Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.

  3. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-06-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed near the surface (2–3 m and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  4. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  5. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  6. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-08-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency.

    In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  7. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-01-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed at the 3 and 200 m height levels of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  8. Eight-component retrievals from ground-based MAX-DOAS observations

    Science.gov (United States)

    Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K. F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; van Roozendael, M.

    2011-06-01

    We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1), is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E), in June-July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI). Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0-1 km), where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE) and in situ observations performed near the surface (2-3 m) and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3-15 km (depending mainly on aerosol extinction), comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  9. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  10. Operational optical turbulence forecast for the Service Mode of top-class ground based telescopes

    CERN Document Server

    Masciadri, E; Turchi, A; Fini, L

    2016-01-01

    In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of a mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT a...

  11. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    Science.gov (United States)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  12. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  13. Empathy Development Through Case Study and Simulation.

    Science.gov (United States)

    Mennenga, Heidi A; Bassett, Susan; Pasquariello, Libby

    2016-01-01

    Because empathy is integral to the nurse-patient relationship, nurse educators are challenged to explore teaching strategies that may aid in the development of empathy among students. The purpose of this study was to determine whether consistent exposure to a single patient through case study and simulation had an impact on empathy levels in senior-level baccalaureate nursing students. Results provide interesting conclusions for faculty members and offer a basis for ongoing discussion.

  14. Study of Nanowires Using Molecular Dynamics Simulations

    OpenAIRE

    Monk, Joshua D

    2007-01-01

    In this dissertation I present computational studies that focus on the unique characteristics of metallic nanowires. We generated virtual nanowires of nanocrystalline nickel (nc-Ni) and single crystalline silver (Ag) in order to investigate particular nanoscale effects. Three-dimensional atomistic molecular dynamics studies were performed for each sample using the super computer System X located at Virginia Tech. Thermal grain growth simulations were performed on 4 nm grain size nc-Ni by o...

  15. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  16. A Guide to Designing Future Ground-based CMB Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. L.K. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Errard, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Dvorkin, C. [Inst. for Advanced Study, Princeton, NJ (United States); Kuo, C. L. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Lee, A. T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahn, O. [Univ. of California, Berkeley and Lawrence Berkeley National Lab. (LBNL), CA (United States)

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  17. Space- and ground-based particle physics meet at CERN

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  18. Enhanced ground-based vibration testing for aerodynamic environments

    Science.gov (United States)

    Daborn, P. M.; Ind, P. R.; Ewins, D. J.

    2014-12-01

    Typical methods of replicating aerodynamic environments in the laboratory are generally poor. A structure which flies "freely" in its normal operating environment, excited over its entire external surface by aerodynamic forces and in all directions simultaneously, is then subjected to a vibration test in the laboratory whilst rigidly attached to a high impedance shaker and excited by forces applied through a few attachment points and in one direction only. The two environments could hardly be more different. The majority of vibration testing is carried out at commercial establishments and it is understandable that little has been published which demonstrates the limitations with the status quo. The primary objective of this research is to do just that with a view to identifying significant improvements in vibration testing in light of modern technology. In this paper, case studies are presented which highlight some of the limitations with typical vibration tests showing that they can lead to significant overtests, sometimes by many orders of magnitude, with the level of overtest varying considerably across a wide range of frequencies. This research shows that substantial benefits can be gained by "freely" suspending the structure in the laboratory and exciting it with a relatively small number of electrodynamic shakers using Multi-Input-Multi-Output (MIMO) control technology. The shaker configuration can be designed to excite the modes within the bandwidth utilising the inherent amplification of the resonances to achieve the desired response levels. This free-free MIMO vibration test approach is shown to result in substantial benefits that include extremely good replication of the aerodynamic environment and significant savings in time as all axes are excited simultaneously instead of the sequential X, Y and Z testing required with traditional vibration tests. In addition, substantial cost savings can be achieved by replacing some expensive large shaker systems

  19. "Sniffing" Jupiter's moon Europa through ground-based IR observations

    Science.gov (United States)

    Paganini, Lucas; Mumma, Michael J.; Hurford, Terry; Roth, Lorenz; Villanueva, Geronimo Luis

    2016-10-01

    The ability to sample possible plumes from the subsurface ocean in Europa represents a major step in our search for extraterrestrial life. If plumes exist, sampling the effluent material would provide insights into their chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. Most of the difficulties in detecting plumes come from the less frequent observational coverage of Europa, which contrasts strongly with the frequent Cassini flybys of Enceladus (Spencer & Nimmo 2013). Recent observations have been taken with HST/STIS in 2014/2015, but results have shown no evident confirmation of the 2012 plume detection (Roth et al. 2014, 2015). Future in situ observations (Europa Mission) will provide definitive insights, but not before the spacecraft's arrival in ~2025, thus an interim approach is needed to inform such space mission planning and to complement existing observations at other wavelengths.In 2015, we initiated a strong campaign to build a comprehensive survey of possible plumes on Europa through high-resolution IR spectroscopy with Keck/NIRSPEC. We were awarded 10 nights out of 15 total nights available for Key Strategic Mission Support projects for the 2016A, 2016B, 2017A, and 2017B semesters under NASA time with the Keck Observatory. In 2016A, we observed Europa during 10 half-nights and will continue to do so for another 10 half-nights in 2017A. We target a serendipitous search of gaseous activity from Europa to confirm and constrain the chemical composition of possible Europan plumes that can aid the investigation of physical processes underlying (or on) its surface. Ultimately, we seek to: (1) provide information that can inform planning for NASA's Europa mission, (2) further our current understanding of Europa's gas environment, and (3) complement studies that are currently underway with other facilities (like the Hubble Space Telescope). In this presentation, we will discuss preliminary results

  20. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  1. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry [Discussion paper

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    We investigate the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from different ground-based FTIR (Fourier Transform InfraRed) retrieval setups. We examine the influence of an additional temperature retrieval and different constraints. The study is performed at the Izaña Observatory ozone super-site (Tenerife Island, Spain). The FTIR system is able to resolve four independent ozone layers with a theoretical precision of better than 7.5% in the troposphere, ...

  2. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  3. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    Science.gov (United States)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  4. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  5. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    Science.gov (United States)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  6. Ozone vertical distribution retrieval from ground-based high resolution infrared solar spectra

    Science.gov (United States)

    Pougatchev, N. S.; Connor, B. J.; Rinsland, C. P.

    1995-01-01

    A practical procedure for the retrieval of ozone vertical profiles from ground-based high resolution Fourier transform infrared solar spectra has been developed. The analysis is based on a multilayer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method of Rodgers. The 1002.6-1003.2 cm(exp -1) spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. This interval contains numerous ozone lines covering a range of intensities and providing retrieval sensitivity from ground level to about 35 km. Characterization of the method and an error analysis have been performed. For a spectral resolution of 0.05-0.01 cm(exp -1) and a signal-to-noise ratio greater than or equal to 100 the retrieval is stable with a vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Synthetic spectra studies show that the a priori profile and weak constraints selected for the retrievals introduce no significant biases for a wide range of ozone profiles.

  7. Solar tower atmospheric Cherenkov effect experiment (STACEE) for ground based gamma ray astronomy

    Science.gov (United States)

    Bhattacharya, D.; Chantell, M. C.; Coppi, P.; Covault, C. E.; Dragovan, M.; Gregorich, D. T.; Hanna, D. S.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Tümer, O. T.; Williams, D. A.

    1997-05-01

    The STACEE experiment is being developed to study very high energy astrophysical gamma rays between 50 and 500 GeV. During the last few years this previously unexplored region has received much attention due to the detection of sources up to about 10 GeV by the EGRET instrument on board the CGRO. However, the paucity of detected sources at ~1 TeV indicates that fundamental processes working within these sources and/or in the intergalactic space are responsible for the cutoff in the photon spectra of the EGRET sources. The cutoff or the spectral change of these sources can be observed with ground-based Cherenkov detectors with a very low threshold. The use of large arrays of mirrors at solar power facilities is a promising way of lowering the threshold. Using this concept a series of tests were conducted at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (Albuquerque, NM) with a full size prototype of the STACEE telescope system. The tests show that STACEE will be capable of meaningful exploration of the gamma-ray sky between 50 and 500 GeV with good sensitivity.

  8. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  9. Long-term ionospheric anomaly monitoring for ground based augmentation systems

    Science.gov (United States)

    Jung, Sungwook; Lee, Jiyun

    2012-08-01

    Extreme ionospheric anomalies can pose a potential integrity threat to ground-based augmentation of the Global Positioning System (GPS), and thus the development of ionospheric anomaly threat models for each region of operation is essential for system design and operation. This paper presents a methodology for automated long-term ionospheric anomaly monitoring, which will be used to build an ionospheric anomaly threat model, evaluate its validity over the life cycle of the system, continuously monitor ionospheric anomalies, and update the threat model if necessary. This procedure automatically processes GPS data collected from external networks and estimates ionospheric gradients at regular intervals. If ionospheric gradients large enough to be potentially hazardous to users are identified, manual data examination is triggered. This paper also develops a simplified truth processing method to create precise ionospheric delay estimates in near real-time, which is the key to automating the ionospheric monitoring procedure. The performance of the method is examined using data from the 20 November 2003 and 9 November 2004 ionospheric storms. These results demonstrate the effectiveness of simplified truth processing within long-term ionosphere monitoring. From the case studies, the automated procedure successfully identified extreme ionospheric anomalies, including the two worst ionospheric gradients observed and validated previously based on manual analysis. The automation of data processing enables us to analyze ionospheric data continuously going forward and to more accurately categorize ionospheric behavior under both nominal and anomalous conditions.

  10. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J. [Leiden Observatory, Leiden University, Postbus 9513, 2300-RA Leiden (Netherlands); De Kok, R. J. [SRON, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-02-20

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  11. Haze event monitoring and investigation in Penang Island, Malaysia using a ground-based backscatter Lidar

    Science.gov (United States)

    Hee, W. S.; Tan, F.; Lim, H. S.; Matjafri, M. Z.

    2014-06-01

    During 24th July 2013 to 1st August 2013, a haze event struck Penang Island, causing the visibility to decrease and increase in Air Pollution Index (API). A ground-based backscatter Lidar, operate at 355 nm which was setup at the roof top of the School of Physics, Universiti Sains Malaysia. It was used to monitor and investigate the haze event. For this work, we studied the daytime variation of the aerosol intensity, distribution, planetary boundary layer (PBL) height and the aerosol optical depth (AOD) values during these days. We found that the aerosol are very intense during the first two days of the haze event and slowly decline as time passed. Finally the haze event died off on 1st August 2013. As for daily aerosol distribution, aerosols are generally more intense during the afternoon. Its intensity is slightly lower in the morning and evening. Similar trends were observed for AOD values as they increase from morning to afternoon and slowly decrease in the evening. Most aerosols are found contained below the PBL which generally found at around 1000 - 2000 m in height.

  12. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  13. Seven years of middle-atmospheric CO in the Arctic by ground based radiometry

    Science.gov (United States)

    Ryan, Niall; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Notholt, Justus

    2016-04-01

    During polar winter, carbon monoxide (CO) is a well-suited tracer for middle atmospheric dynamics and for studying the polar vortex boundary: In polar night the chemical reactions involving atmospheric carbon monoxide are negligible due to the lack of sunlight and, as a result, the gas exhibits strong vertical and horizontal gradients in the stratosphere and mesosphere. Due to the upcoming likely gap in satellite profiling instruments, and in order to maintain a long-term global record of atmospheric trace gas concentrations, current and future satellite missions must be inter-calibrated using measurements from ground-based instruments around the globe. The Kiruna Microwave Radiometer (KIMRA), installed at the Swedish Institute of Space Physics, Kiruna, Sweden (67.8 N, 20.4 E), has been measuring microwave spectra of emissions from atmospheric CO since 2007. This contribution presents the CO concentration record which has been retrieved from KIMRA measurements using different temperature datasets: measurements from the Defense Meteorological Satellite Program - F18 and model output from the European Centre for Medium-Range Weather Forecasts. The concentration profiles, retrieved between 40 and 80 km altitude, are compared to data from the Microwave Limb Sounder on the Aura satellite and are used to examine the concentration gradient across the polar vortex edge.

  14. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  15. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  16. OPUS BBM: Its performance and early results of ground-based measurements

    Science.gov (United States)

    Kuze, A.; Shibasaki, K.; Sano, T.; Kawashima, T.; Miyamura, N.; Tange, Y.; Yui, Y.; Suzuki, M.; Ogawa, T.

    2003-04-01

    OPUS(Ozone and Pollution measuring Ultraviolet Spectrometer) is the satellite-borne instrument for future Japanese mission. Its scientific goal is to monitor the tropospheric urban and severely polluted chemical species such as SO2 and NO2 as well as total and tropospheric ozone. Now its BBM has been constructed and under performance check. Several checks are now being made on performances under thermal and vacum environments suffered in orbit. The OPUS BBM showed very stable perfomance as expected. The CMOS type array detector reveals very low noise and high quantum efficiency suitable for space use. In this paper we show the results of performance check of OPUS BBM. We also carried out the ground-based, zenith sky (scatter light) measurement for checking the S/N ratio of OPUS BBM as well as for demonstrating its ability to derive NO2 in the atmosphere. A preliminary analysis result is shown, and also shown is the result of algorithm study for space mission.

  17. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  18. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    K. Sarna

    2015-11-01

    Full Text Available A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product–Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m−2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα is not the best way of quantifying aerosol–cloud interactions.

  19. Spent coffee grounds-based activated carbon preparation for sequestering of malachite green

    Science.gov (United States)

    Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia

    2016-11-01

    The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.

  20. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  1. Multi-component vertical profile retrievals for ground-based MAX-DOAS

    Science.gov (United States)

    Irie, Hitoshi; Kanaya, Yugo; Takashima, Hisahiro; van Roozendael, Michel; Wittrock, Folkard; Piters, Ankie

    2010-05-01

    We attempt to retrieve lower-tropospheric vertical profile information for 8 components from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements. The components retrieved include aerosol extinction coefficients (AEC) at two wavelengths 357 and 476 nm, NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios (VMRs). This method was applied to MAX-DOAS observations performed at Cabauw, the Netherlands (52.0°N, 4.9°E) in June-July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) campaign. For the lowest layer of retrieved profiles at 0-1 km, two channels of AEC values reveal consistent variations. NO2 showed typical diurnal variations with maximum in early morning and minimum in the afternoon. Positive correlations between HCHO and CHOCHO were often seen. H2O VMR agreed well with that derived from NCEP surface data, and was used to judge cloudy cases after conversion to relative humidity. All these results support the capability of MAX-DOAS observations applicable to various air quality studies. Similar multi-component retrievals applied to observations in Japan are also presented in this talk.

  2. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts

    Science.gov (United States)

    Lane, H. W.; Gretebeck, R. J.; Schoeller, D. A.; Davis-Street, J.; Socki, R. A.; Gibson, E. K.

    1997-01-01

    Energy requirements during space flight are poorly defined because they depend on metabolic-balance studies, food disappearance, and dietary records. Water turnover has been estimated by balance methods only. The purpose of this study was to determine energy requirements and water turnover for short-term space flights (8-14 d). Subjects were 13 male astronauts aged 36-51 y with normal body mass indexes (BMIs). Total energy expenditure (TEE) was determined during both a ground-based period and space flight and compared with the World Health Organization (WHO) calculations of energy requirements and dietary intake. TEE was not different for the ground-based and the space-flight periods (12.40 +/- 2.83 and 11.70 +/- 1.89 MJ/d, respectively), and the WHO calculation using the moderate activity correction was a good predictor of TEE during space flight. During the ground-based period, energy intake and TEE did not differ, but during space flight energy intake was significantly lower than TEE; body weight was also less at landing than before flight. Water turnover was lower during space flight than during the ground-based period (2.7 +/- 0.6 compared with 3.8 +/- 0.5 L/d), probably because of lower fluid intakes and perspiration loss during flight. This study confirmed that the WHO calculation can be used for male crew members' energy requirements during short space flights.

  3. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  4. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  5. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  6. Sensitivity Comparison of Searches for Binary Black Hole Coalescences with Ground-based Gravitational-Wave Detectors

    CERN Document Server

    Mohapatra, Satya; Caudill, Sarah; Clark, James; Hanna, Chad; Klimenko, Sergey; Pankow, Chris; Vaulin, Ruslan; Vedovato, Gabriele; Vitale, Salvatore

    2014-01-01

    Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mas...

  7. AIRCRAFT MOTION PARAMETER ESTIMATION VIA MULTIPATH TIME-DELAY USING A SINGLE GROUND-BASED PASSIVE ACOUSTIC SENSOR

    Institute of Scientific and Technical Information of China (English)

    Dai Hongyan; Zou Hongxing

    2007-01-01

    The time-frequency analysis of the signal acquired by a single ground-based microphone shows a two-dimensional interference pattern in the time-frequency plane,which is caused by the time delay of the received signal emitted from a low flying aircraft via the direct path and the ground-reflected path.A model is developed for estimating the motion parameters of an aircraft flying along a straight line at a constant height and with a constant speed.Monte Carlo simulation results and experimental results are presented to validate the model,and an error analysis of the model is presented to verify the effectiveness of the estimation scheme advocated.

  8. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  9. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  10. Interannaul variations of the vertical and their possible influence on the star catalogs derived from ground-based astrometric observations

    Science.gov (United States)

    Li, Z. X.

    The efforts at Shanghai Observatory since 1991, in response to the Resolution of IAU Comm.19: "Applications of optical astrometry time and latitude programs", is described in the paper, especially the studies concerned with the interannual variations of the vertical and their influence on the astronomical studies. It is clear now that there is a component of the order 0.01 - 0.02" on an interannual time scale in latitude residuals which is correlated with geophysical phenomena on the Earth. A recent study has confirmed that the component discovered is actually the variation of the vertical, related to ground-based observation in astronomy. So, it should be emphasized now that the variation of the vertical is significant enough to be considered in astronomy from now on. Its influence on the past studies, including the star catalogs already published and the ERP before 1980 when optical astrometry observations were still used, should be studied in the future. In comparing the HIPPARCOS catalog with those derived by the past observations, we should keep in mind the existence of this error in an astrometric observation and its influence on the star catalogs and other results derived from ground-based astrometric observations.

  11. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  12. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-03-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  13. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    Full Text Available The Optical Spectrograph and Infra-Red Imager System (OSIRIS and the Atmospheric Chemistry Experiment (ACE have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL, which is located at Eureka, Canada (80° N, 86° W and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC. The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS instruments, one Bruker Fourier transform infrared spectrometer (FTIR and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14–52 km ozone and 17–40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2 plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% and −0.2 ± 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52 km satellite and 0–14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree

  14. Ground-based measurements of tropospheric and stratospheric bromine monoxide above Nairobi (1° S, 36° E

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2007-05-01

    Full Text Available Ground based observations of stratospheric and tropospheric bromine monoxide, BrO, from a multi axial differential optical absorption spectrometer, MAXDOAS, located at the UNEP/UNON site in Nairobi (1° S, 36° E are presented for the year 2003. Differences in BrO slant column densities at 90° and 80° solar zenith angle retrieved from the zenith-sky measurements are used to study stratospheric BrO. They show only small variations with season, as expected for the small seasonality in stratospheric Bry and NO2 in this region. A pronounced diurnal variation can be observed, the average value for the morning being 1.3×1014 molecules/cm2 and for the evening 1.5×1014 molecules/cm2. The measurements are compared with simulations from a one-dimensional photochemical stacked box model which is coupled with a radiative transfer model to allow direct comparisons between the observations and the model calculations. In general the model reproduces the measurements very well. The differences in the absolute values are 15% for the evening and 20% for the morning which is within the limits of the combined uncertainties. Both seasonality and diurnal variation are well reproduced by the model. A sensitivity study shows that inclusion of the reaction BrONO2 + O(3P significantly improves the agreement between model calculations and measurements, indicating an important role of this reaction in the stratosphere near to the equator. Tropospheric BrO columns and profile information is derived from the combined results obtained in the different viewing directions for the average over several clear days. The resulting tropospheric BrO columns are in the range of 4–7.5×1012 molecules/cm2 which is significant but lower than in previous studies at mid and high latitudes. The vertical distribution of the tropospheric BrO peaks at about 3 km indicating the absence of local sources at this high altitude site.

  15. Ground-based Simulation of Upset Recovery in DESDEMONA: Aspects of Motion Cueing and Motion Perception

    NARCIS (Netherlands)

    Groen, E.L.; Wentink, M.; Trujillo, M.; Huhne, R.

    2008-01-01

    Unsuccessful recovery from unusual flight attitudes, or “airplane upset”, is considered an important factor in civil aviation accidents. It is generally recognized that there is a clear need for enhanced training of recovery procedures from unusual flight attitudes, i.e. situations where an aircraft

  16. Validation of middle atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C

    Directory of Open Access Journals (Sweden)

    B. Tschanz

    2013-02-01

    Full Text Available Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1 is set up in a way to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km to 0.017 hPa (75 km. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels and can therefore provide two independent measurements of the same air mass. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random error of v1.1. In this paper, the quality of v1.1 data is assessed during two measurement campaigns: (1 five months of measurements in the Arctic (Sodankylä, 67.37° N/26.63° E and (2 nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N/7.46° E. For both campaigns MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitudinal campaign. In general all intercomparisons show high correlation coefficients, above 0.5 at altitudes above 45 km, confirming the ability of MIAWARA-C to monitor temporal variations on the order of days. The biases are generally below 10% and within the estimated systematic uncertainty of MIAWARA-C. No

  17. Simulation study of disruption characteristics in KSTAR

    Science.gov (United States)

    Lee, Jongkyu; Kim, J. Y.; Kessel, C. E.; Poli, F.

    2012-10-01

    A detailed simulation study of disruption in KSTAR had been performed using the Tokamak Simulation Code(TSC) [1] during the initial design phase of KSTAR [2]. Recently, however, a partial modification in the structure of passive plate was made in relation to reduce eddy current and increase the efficiency of control of vertical position. A substantial change can then occur in disruption characteristics and plasma behavior during disruption due to changes in passive plate structure. Because of this, growth rate of vertical instability is expected to be increased and eddy current and its associated electomagnetic force are expected to be reduced. To check this in more detail, a new simulation study is here given with modified passive plate structure of KSTAR. In particular, modeling of vertical disruption that is vertical displacement event (VDE) was carried out. We calculated vertical growth rate for a drift phase of plasma and electromagnetic force acting on PFC structures and compared the results between in a new model and an old model. [4pt] [1] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).[0pt] [2] J.Y. Kim, S.Y. Cho and KSTAR Team, Disruption load analysis on KSTAR PFC structures, J. Accel. Plasma Res. 5, 149 (2000).

  18. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  19. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  20. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  1. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  2. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  3. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  4. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  5. Regaining the FORS: making optical ground-based transmission spectroscopy of exoplanets with VLT+FORS2 possible again

    CERN Document Server

    Boffin, Henri M J; Blanchard, Guillaume; Gonzalez, Oscar; Moehler, Sabine; Gibson, Neale; Ancker, Mario van den; Smoker, Jonathan; Anderson, Joseph; Hummel, Christian; Dobrzycka, Danuta; Smette, Alain; Rupprecht, Gero

    2016-01-01

    Transmission spectroscopy facilitates the detection of molecules and/or clouds in the atmospheres of exoplanets. Such studies rely heavily on space-based or large ground-based observatories, as one needs to perform time- resolved, high signal-to-noise spectroscopy. The FORS2 instrument at ESO's Very Large Telescope is the obvious choice for performing such studies, and was indeed pioneering the field in 2010. After that, however, it was shown to suffer from systematic errors caused by the Longitudinal Atmospheric Dispersion Corrector (LADC). This was successfully addressed, leading to a renewed interest for this instrument as shown by the number of proposals submitted to perform transmission spectroscopy of exoplanets. We present here the context, the problem and how we solved it, as well as the recent results obtained. We finish by providing tips for an optimum strategy to do transmission spectroscopy with FORS2, in the hope that FORS2 may become the instrument of choice for ground-based transmission spectro...

  6. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  7. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  8. Cloud parameters using Ground Based Remote Sensing Systems and Satellites over urban coastal area

    Science.gov (United States)

    Han, Z. T.; Gross, B.; Moshary, F.; Wu, Y.; Ahmed, S. A.

    2013-12-01

    Determining cloud radiative and microphysical properties are very important as a means to assess their effect on earths energy balance. While MODIS and GOES have been used for estimating cloud properties, assessing cloud properties directly has been difficult due the lack of consistent ground based sensor measurements except in such established places such as the ARM site in Oklahoma. However, it is known that significant aerosol seeding from urban and/or maritime sources can modify cloud properties such as effective radius and cloud optical depth and therefore evaluation of satellite retrievals in such a unique area offers novel opportunities to assess the potential of satellite retrievals to distinguish these mechanisms In our study, we used a multi-filter rotating shadow band radiometer (MFRSR) and micro wave radiometer (MWR) to retrieve the cloud optical depth and cloud droplets effective radius . In particular, we make a statistical study during summer 2013 where water phase clouds dominate and assess the accuracy of both MODIS and GOES satellite cloud products including LWP, COD and Reff. Most importantly, we assess performance against satellite observing geometries. Much like previous studies at the ARM site, we observe significant biases in the effective radius when the solar zenith angle is too large. In addition, we show that biases are also sensitive to the LWP limiting such measurement s in assessing potential aerosol-cloud signatures Finally, we discuss preliminary aerosol-cloud interactions from our ground system where local lidar is used to assess aerosols below clouds and explore the Aerosol Cloud Index.

  9. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  10. Simulation study supporting wastewater treatment plant upgrading.

    Science.gov (United States)

    Hvala, N; Vrecko, D; Burica, O; Strazar, M; Levstek, M

    2002-01-01

    The paper presents a study where upgrading of an existing wastewater treatment plant was supported by simulation. The aim of the work was to decide between two technologies to improve nitrogen removal: a conventional activated sludge process (ASP) and a moving bed biofilm reactor (MBBR). To perform simulations, the mathematical models of both processes were designed. The models were calibrated based on data from ASP and MBBR pilot plants operating in parallel on the existing plant. Only two kinetic parameters needed to be adjusted to represent the real plant behaviour. Steady-state analyses have shown a similar efficiency of both processes in relation to carbon removal, but improved performance of MBBR in relation to nitrogen removal. Better performance of MBBR can be expected especially at low temperatures. Simulations have not confirmed the expected less volume required for the MBBR process. Finally, the MBBR was chosen for plant upgrading. The developed process model will be further used to evaluate the final plant configuration and to optimise the plant operating parameters.

  11. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  12. Simulation study of China's net primary production

    Institute of Scientific and Technical Information of China (English)

    GAO ZhiQiang; LIU JiYuan

    2008-01-01

    Spatial and temporal distribution of vegetation net primary production (NPP) in China was studied us-ing three light-use efficiency models (CASA, GLOPEM and GEOLUE) and two mechanistic ecological process models (CEVSA, GEOPRO). Based on spatial and temporal analysis (e.g. monthly, seasonally and annually) of simulated results from ecological process mechanism models of CASA, GLOPEM and CEVSA, the following conclusions could be made: (1) during the last 20 years, NPP change in China followed closely the seasonal change of climate affected by monsoon with an overall trend of increas-ing; (2) simulated average seasonal NPP was: 0.571±0.2 GtC in spring, 1.573±0.4 GtC in summer, 0.6±0.2 GtC in autumn, and 0.12±0.1 GtC in winter. Average annual NPP in China was 2.864±1 GtC. All the five models were able to simulate seasonal and spatial features of biomass for different ecological types in China. This paper provides a baseline for China's total biomass production. It also offers a means of estimating the NPP change due to afforestation, reforestation, conservation and other human activities and could aid people in using for-mentioned carbon sinks to fulfill China's commitment of reducing greenhouse gases.

  13. OpenSimulator Interoperability with DRDC Simulation Tools: Compatibility Study

    Science.gov (United States)

    2014-09-01

    conversion. iv These tools include Blender, AutoCAD , 3DS Max and SketchUp. Thus, DRDC use case (1) was demonstrated as feasible. However...supplementary support for the creation of content and resources compatible with OpenSimulator. These include programs such as Blender, GIMP, AutoCAD , 3DS MAX...support the PDS, PDMS, ACIS (.sat), MicroStation (.dgn), and AutoCAD (.dwg) formats, but not COLLADA directly [14]. An important limitation of

  14. Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2014-02-01

    Full Text Available Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz ground-based uncooled thermal imager (Cyclops, operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7–14 μm, has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4–0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

  15. Operational impacts to residual stands following ground-based skidding in Hyrcanian Forest, northern Iran

    Institute of Scientific and Technical Information of China (English)

    Meghdad Jourgholami

    2012-01-01

    Hyrcanian (Caspian) Forest in northern Iran has a richness of biological diversity,with endemic and endangered species.The usage of ground-based skidding is well accepted practice for the extraction of timber from the forest,but this operation has tended to cause the greatest environmental problems.The aims of the study were to evaluate and comparison of operational impacts,residual stand damage,regeneration,and to quantify these effects such as:the extent of the damage,wounding patterns,size and distribution after logging operations that utilized two different methods:short-log and long-log.A Timberjack cable skidder was used and the study location was in the Kheyrud Forest.Post harvesting assessment of damage to the residual stand was compared along skid trail by 100% inventory method and also for the assessment of regeneration damage along winching strips.The results show that along winching strips the percentage of damage to the regeneration was 44% and 36%,while the tree damages along skid trails reached 2.3% and 4.1% in the short-log and long-log methods,respectively.The greatest average amount of damage to a bole occurred along the first 1 m up from the ground (97%) and also within 4 m of the skidder centerline (80%).These results show that the short-log method causes less damage to the residual stand than the long-log method.Tree location to skidder trail appears to have a significant effect on the number and height of scars on a tree.Well designed and constructed trails should he wide enough to allow wood extraction from the forest.Damage to the residual stand might be reduced by proper planning and training of logging crews.

  16. Analysis of ground-based 222Rn measurements over Spain: Filling the gap in southwestern Europe

    Science.gov (United States)

    Grossi, C.; Àgueda, A.; Vogel, F. R.; Vargas, A.; Zimnoch, M.; Wach, P.; Martín, J. E.; López-Coto, I.; Bolívar, J. P.; Morguí, J. A.; Rodó, X.

    2016-09-01

    Harmonized atmospheric 222Rn observations are required by the scientific community: these data have been lacking in southern Europe. We report on three recently established ground-based atmospheric 222Rn monitoring stations in Spain. We characterize the variability of atmospheric 222Rn concentrations at each of these stations in relation to source strengths, local, and regional atmospheric processes. For the study, measured atmospheric 222Rn concentrations, estimated 222Rn fluxes, and regional footprint analysis have been used. In addition, the atmospheric radon monitor operating at each station has been compared to a 222Rn progeny monitor. Annual means of 222Rn concentrations at Gredos (GIC3), Delta de l'Ebre (DEC3), and Huelva (UHU) stations were 17.3 ± 2.0 Bq m-3, 5.8 ± 0.8 Bq m-3, and 5.1 ± 0.7 Bq m-3, respectively. The GIC3 station showed high 222Rn concentration differences during the day and by seasons. The coastal station DEC3 presented background concentrations typical of the region, except when inland 222Rn-rich air masses are transported into the deltaic area. The highest 222Rn concentrations at UHU station were observed when local recirculation facilitates accumulation of 222Rn from nearby source represented by phosphogypsum piles. Results of the comparison performed between monitors revealed that the performance of the direct radon monitor is not affected by meteorological conditions, whereas the 222Rn progeny monitor seems to underestimate 222Rn concentrations under saturated atmospheric conditions. Initial findings indicate that the monitor responses seem to be in agreement for unsaturated atmospheric conditions but a further long-term comparison study will be needed to confirm this result.

  17. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  18. Atmospheric Water Monitoring by Using Ground-Based GPS during Heavy Rains Produced by TPV and SWV

    Directory of Open Access Journals (Sweden)

    Guoping Li

    2013-01-01

    Full Text Available The time series of precipitable water (PW in 30 min intervals has been determined through experimentation and operational application of a ground-based global positioning system (GPS network in Chengdu Plain, which is used for precise and reliable meteorological research. This study is the first to apply PW to the southwest vortex (SWV and heavy rain events by using the data from an intensive SWV experiment conducted in summer 2010. The PW derived from the local ground-based GPS network was used in the monitoring and analysis of heavy rain caused by the SWV and the Tibetan Plateau vortex (TPV. Results indicate that an increase in GPS precipitable water (GPS-PW occurs prior to the development of the TPV and SWV; rainfall occurs mainly during high levels of GPS-PW. The evolution features of GPS-PW in rainfall process caused by different weather systems over the Tibetan Plateau (TP also differ. These results indicate the reference values for operational applications of GPS-PW data in short-term forecasting and nowcasting of high-impact weather in addition to further investigation of heavy rain caused by the TPV, SWV, and other severe weather systems over the TP.

  19. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  20. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    CERN Document Server

    Dmitriev, A V; 10.1029/2011JA016861

    2013-01-01

    Here, we present a case study of THEMIS and ground-based observations on the dayside magnetopause, and geomagnetic field perturbations related to the interaction of an interplanetary directional discontinuity (DD), as observed by ACE, within the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an 'expansion-compression-expansion' (ECE) sequence that lasted for 15 min. The compression was caused by a very dense, cold, and fast high-beta magnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of the magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse 'decrease-peak-decrease' (DPD) that was observed at low and middle latitudes by the INTERMAGNET network of ground-based magnetometers. The characteristics of th...

  1. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  2. Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta

    Institute of Scientific and Technical Information of China (English)

    DING Jincai; YANG Yinming; YE Qixin; HUANG Yan; MA Xiaoxing; MA Leiming; Y.R.GUO

    2007-01-01

    A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this paper, the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The "+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later.

  3. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  4. Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments.

    Science.gov (United States)

    Choi, Sungshin; Ray, Hami E; Lai, San-Huei; Alwood, Joshua S; Globus, Ruth K

    2016-01-01

    Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7

  5. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  6. Dust forecast over North Africa: verification with satellite and ground based observations

    Science.gov (United States)

    Singh, Aditi; Kumar, Sumit; George, John P.

    2016-05-01

    Arid regions of North Africa are considered as one of the major dust source. Present study focuses on the forecast of aerosol optical depth (AOD) of dust over different regions of North Africa. NCMRWF Unified Model (NCUM) produces dust AOD forecasts at different wavelengths with lead time upto 240 hr, based on 00UTC initial conditions. Model forecast of dust AOD at 550 nm up to 72 hr forecast, based on different initial conditions are verified against satellite and ground based observations of total AOD during May-June 2014 with the assumption that except dust, presence of all other aerosols type are negligible. Location specific and geographical distribution of dust AOD forecast is verified against Aerosol Robotic Network (AERONET) station observations of total and coarse mode AOD. Moderate Resolution Imaging Spectroradiometer (MODIS) dark target and deep blue merged level 3 total aerosol optical depth (AOD) at 550 nm and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrieved dust AOD at 532 nm are also used for verification. CALIOP dust AOD was obtained by vertical integration of aerosol extinction coefficient at 532 nm from the aerosol profile level 2 products. It is found that at all the selected AERONET stations, the trend in dust AODs is well predicted by NCUM up to three days advance. Good correlation, with consistently low bias (~ +/-0.06) and RMSE (~ 0.2) values, is found between model forecasts and point measurements of AERONET, except over one location Cinzana (Mali). Model forecast consistently overestimated the dust AOD compared to CALIOP dust AOD, with a bias of 0.25 and RMSE of 0.40.

  7. Observation of TGFs onboard "Vernov" satellite and TGEs in ground-based experiments

    Science.gov (United States)

    Bogomolov, Vitaly; Panasyuk, Mikhail; Svertilov, Sergey; Garipov, Gali; Iyudin, Anatoly; Klimov, Pavel; Morozenko, Violetta; Maximov, Ivan; Mishieva, Tatiana; Klimov, Stanislav; Pozanenko, Alexey; Rothkaehl, Hanna

    2016-04-01

    "Vernov" satellite with RELEC experiment on-board was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors directed to atmosphere. Total area of DRGE detectors is ~500 cm2. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ~15 us. Several TGF candidates with 10-40 gammas in a burst with duration instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with WWLLN lightning network data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of these flashes with electron precipitations is discussed. Ground-based experiments, with similar gamma-spectrometers were conducted, to study the spectral, temporal and spatial characteristics of TGEs in 20-3000 keV energy range, as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with an ~15 us s accuracy together with detailed spectral data. Measurements were done on the ground at Moscow region, and at mountain altitude in Armenia at Aragatz station. During the time interval covering spring, summer and autumn of 2015 a number of TGEs were detected. Measured low-energy gamma-ray spectra usually contain a set of lines that can be interpreted as radiation of Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm, as well, as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate at low energies (measure low energy gamma-radiation from the electrons accelerated in thunderclouds. There were no significant flashes with duration of ~1ms detected in coincidence with a nearby lightnings.

  8. Towards retrieving critical relative humidity from ground-based remote sensing observations

    Energy Technology Data Exchange (ETDEWEB)

    Van Weverberg, Kwinten; Boutle, Ian; Morcrette, Cyril J.; Newsom, Rob K.

    2016-08-22

    Nearly all parameterisations of large-scale cloud require the specification of the critical relative humidity (RHcrit). This is the gridbox-mean relative humidity at which the subgrid fluctuations in temperature and water vapour become so large that part of a subsaturated gridbox becomes saturated and cloud starts to form. Until recently, the lack of high-resolution observations of temperature and moisture variability has hindered a reasonable estimate of the RHcrit from observations. However, with the advent of ground-based measurements from Raman lidar, it becomes possible to obtain long records of temperature and moisture (co-)variances with sub-minute sample rates. Lidar observations are inherently noisy and any analysis of higher-order moments will be very dependent on the ability to quantify and remove this noise. We present an exporatory study aimed at understanding whether current noise levels of lidar-retrieved temperature and water vapour are sufficient to obtain a reasonable estimate of the RHcrit. We show that vertical profiles of RHcrit can be derived for a gridbox length of up to about 30 km (120) with an uncertainty of about 4 % (2 %). RHcrit tends to be smallest near the scale height and seems to be fairly insensitive to the horizontal grid spacing at the scales investigated here (30 - 120 km). However, larger sensitivity was found to the vertical grid spacing. As the grid spacing decreases from 400 to 100 m, RHcrit is observed to increase by about 6 %, which is more than the uncertainty in the RHcrit retrievals.

  9. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  10. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  11. Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

    Science.gov (United States)

    Mengist, Chalachew Kindie; Kim, Yong Ha; Yeshita, Baylie Damtie; Workayehu, Abyiot Bires

    2016-03-01

    The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

  12. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  13. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  14. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    Science.gov (United States)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  15. Confronting remote sensing product with ground base measurements across time and scale

    Science.gov (United States)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  16. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2009-07-01

    Full Text Available Formaldehyde (HCHO columns have been retrieved from ground-based Fourier transform infrared (FTIR campaign measurements in 2004 and 2007 and from UV-Visible MAX-DOAS measurements in 2004–2005 at the NDACC site of Réunion Island (21° S, 55° E. The FTIR and MAX-DOAS daily mean formaldehyde total columns are intercompared in their common measurement period, from August to October 2004. The ground-based data are also compared to correlative SCIAMACHY data. The comparisons account for the vertical sensitivity differences of the data sets, by including their respective averaging kernels. Complete error budgets are also presented.

    The FTIR and MAX-DOAS daily mean total columns agree very well: no significant bias is observed and the standard deviation of the comparisons is only 8%. Both FTIR and MAX-DOAS HCHO total columns are in good agreement with SCIAMACHY values in the 2004–2005 period, with standard deviations of 21% and 31%, respectively. The same seasonal cycle is observed by the different instruments, with a minimum in austral winter and a maximum in February–March.

    The FTIR and MAX-DOAS data are confronted with HCHO columns calculated by a global CTM, the IMAGES model. The model underestimates the HCHO columns by 23–29% in comparison with FTIR, and by 15% in comparison with DOAS. This bias might have multiple causes, including an underestimation of OH concentrations in the model (as indicated by a sensitivity study using prescribed OH fields and/or an underestimated contribution of large-scale transport of HCHO precursors from Madagascar. The latter hypothesis is comforted by the large observed day-to-day variability of HCHO columns, and by the observation that the peak values of FTIR columns can often be associated with free tropospheric transport patterns from source regions over Madagascar to Réunion Island, according to simulations performed with the Lagrangian particle dispersion model FLEXPART.

  17. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  18. First retrievals of methane isotopologues from FTIR ground-based observations

    Science.gov (United States)

    Bader, Whitney; Strong, Kimberly; Walker, Kaley; Buzan, Eric

    2017-04-01

    Atmospheric methane concentrations have reached a new high at 1845 ± 2 ppb, accounting for an increase of 256 % since pre-industrial times (WMO, 2016). In the last ten years, methane has been on the rise again at rates of ˜0.3%/year (e.g., Bader et al., 2016), after a period of stabilization of about 5 years. This recent increase is not fully understood due to remaining uncertainties in the methane budget, influenced by numerous anthropogenic and natural emission sources. In order to examine the cause(s) of this increase, we focus on the two main methane isotopologues, i.e. CH3D and 13CH4. Both CH3D and 13CH4 are emitted in the atmosphere with different ratio depending on the emission processes involved. As heavier isotopologues will react more slowly than 12CH4, each isotopologue will be depleted from the atmosphere at a specific rate depending on the removal process. Methane isotopologues are therefore good tracers of the methane budget. In this contribution, the first development and optimization of the retrieval strategy of CH3D as well as the preliminary tests for 13CH4 will be presented and discussed , using FTIR (Fourier Transform infrared) solar spectra collected at the Eureka (80.05 ˚ N, -86.42 ˚ E, 610 m a.s.l.) and Toronto (43.66˚ N, -79.4˚ E, 174 m a.s.l.) ground-based sites. Mixing ratio vertical profiles from a Whole Atmosphere Community Climate Model (WACCM v.4, Marsh et al., 2013) simulation developed by Buzan et al. (2016) are used as a priori inputs. A discussion on the type of regularization constraints used for the retrievals will be presented as well as an evaluation of available spectroscopy (primarily the different editions of the HITRAN database, see Rothman et al., 2013 and references therein). The uncertainties affecting the retrieved columns as well as information content evaluation will be discussed in order to assess the best strategy to be employed based on its altitude sensitivity range and complete error budget. Acknowledgments

  19. Simulation study of plane motion of air cushion vehicle

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-qin; SHI Xiao-cheng; SHI Yi-long; BIAN Xin-qian

    2003-01-01

    This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV's movement characteristic basically.

  20. Simulation study of plane motion of air cushion vehicle

    Science.gov (United States)

    Zhao, Shu-Qin; Shi, Xiao-Cheng; Shi, Yi-Long; Bian, Xin-Qian

    2003-12-01

    This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV’s voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV’s movement characteristic basically.

  1. GESDB: a platform of simulation resources for genetic epidemiology studies.

    Science.gov (United States)

    Yao, Po-Ju; Chung, Ren-Hua

    2016-01-01

    Computer simulations are routinely conducted to evaluate new statistical methods, to compare the properties among different methods, and to mimic the observed data in genetic epidemiology studies. Conducting simulation studies can become a complicated task as several challenges can occur, such as the selection of an appropriate simulation tool and the specification of parameters in the simulation model. Although abundant simulated data have been generated for human genetic research, currently there is no public database designed specifically as a repository for these simulated data. With the lack of such a database, for similar studies, similar simulations may have been repeated, which resulted in redundant work. Thus, we created an online platform, the Genetic Epidemiology Simulation Database (GESDB), for simulation data sharing and discussion of simulation techniques for genetic epidemiology studies. GESDB consists of a database for storing simulation scripts, simulated data and documentation from published articles as well as a discussion forum, which provides a platform for discussion of the simulated data and exchanging simulation ideas. Moreover, summary statistics such as the simulation tools that are most commonly used and datasets that are most frequently downloaded are provided. The statistics will be informative for researchers to choose an appropriate simulation tool or select a common dataset for method comparisons. GESDB can be accessed at http://gesdb.nhri.org.twDatabase URL: http://gesdb.nhri.org.tw.

  2. Osmosis : a molecular dynamics computer simulation study

    Science.gov (United States)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  3. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  4. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  5. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  6. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  7. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  8. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  9. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  10. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  11. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  12. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  13. The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005

    Science.gov (United States)

    Bader, Whitney; Bovy, Benoît; Conway, Stephanie; Strong, Kimberly; Smale, Dan; Turner, Alexander J.; Blumenstock, Thomas; Boone, Chris; Collaud Coen, Martine; Coulon, Ancelin; Garcia, Omaira; Griffith, David W. T.; Hase, Frank; Hausmann, Petra; Jones, Nicholas; Krummel, Paul; Murata, Isao; Morino, Isamu; Nakajima, Hideaki; O'Doherty, Simon; Paton-Walsh, Clare; Robinson, John; Sandrin, Rodrigue; Schneider, Matthias; Servais, Christian; Sussmann, Ralf; Mahieu, Emmanuel

    2017-02-01

    Changes of atmospheric methane total columns (CH4) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns of 0.31 ± 0.03 % year-1 (2σ level of uncertainty) for the 2005-2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sink in the total methane, simulated over 2005-2012. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane total columns of 0.35 ± 0.03 % year-1 between 2005 and 2012, which is in agreement with NDACC measurements over the same time period (0.30 ± 0.04 % year-1, averaged over 10 stations). Analysis of the GEOS-Chem-tagged simulation allows us to quantify the contribution of each tracer to the global methane change since 2005. We find that natural sources such as wetlands and biomass burning contribute to the interannual variability of methane. However, anthropogenic emissions, such as coal mining, and gas and oil transport and exploration, which are mainly emitted in the Northern Hemisphere and act as secondary contributors to the global budget of methane, have played a major role in the increase of atmospheric methane observed since 2005. Based on the GEOS-Chem-tagged simulation, we discuss possible cause(s) for the increase of methane since 2005, which is still unexplained.

  14. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  15. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  16. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  17. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  18. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  19. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  20. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  1. Co-located ground-based remote sensing and in situ measurements at the tropical atmospheric observatory in Suriname

    Science.gov (United States)

    Warneke, T.; Petersen, K.; Gerbig, C.; Macatangay, R.; Koerner, S.; Jordan, A.; Rothe, M.; Notholt, J.; Schrems, O.

    2009-04-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO2 (XCO2) for the inner tropics have been obtained at Paramaribo, Suriname (5.8°N, 55.2°W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The XCO2 shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d13C from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface as well as the XCO2 qualitatively agree with model simulations.

  2. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  3. Nonlinear Simulation Studies of Tokamaks and STs

    Energy Technology Data Exchange (ETDEWEB)

    W. Park; J. Breslau; J. Chen; G.Y. Fu; S.C. Jardin; S. Klasky; J. Menard; A. Pletzer; B.C. Stratton; D. Stutman; H.R. Strauss; L.E. Sugiyama

    2003-07-07

    The multilevel physics, massively parallel plasma simulation code, M3D, has been used to study spherical tori (STs) and tokamaks. The magnitude of outboard shift of density profiles relative to electron temperature profiles seen in NSTX [National Spherical Torus Experiment] under strong toroidal flow is explained. Internal reconnection events in ST discharges can be classified depending on the crash mechanism, just as in tokamak discharges; a sawtooth crash, disruption due to stochasticity, or high-beta disruption. Toroidal shear flow can reduce linear growth of internal kink. It has a strong stabilizing effect nonlinearly and causes mode saturation if its profile is maintained, e.g., through a fast momentum source. Normally, however, the flow profile itself flattens during the reconnection process, allowing a complete reconnection to occur. In some cases, the maximum density and pressure spontaneously occur inside the island and cause mode saturation. Gyrokinetic hot particle/MHD hybrid studies of NSTX show the effects of fluid compression on a fast-ion-driven n = 1 mode. MHD studies of recent tokamak experiments with a central current hole indicate that the current clamping is due to sawtooth-like crashes, but with n = 0.

  4. Sentinel-1 and ground-based sensors for a continuous monitoring of the Corvara landslide kinematic (South Tirol, Italy)

    Science.gov (United States)

    Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio

    2017-04-01

    Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded

  5. Ground-based phase wind-up and its application in yaw angle determination

    Science.gov (United States)

    Cai, M.; Chen, W.; Dong, D.; Yu, C.; Zheng, Z.; Zhou, F.; Wang, M.; Yue, W.

    2016-08-01

    Ground-based phase wind-up effect (GPWU) is caused by the rotation of receiving antenna. It had been studied and applied in rapidly rotation platforms, such as sounding rocket, guided missile and deep space exploration. In Global Navigation Satellite System high accuracy positioning applications, however, most studies treated it as an error source and focused on eliminating this effect in Precision Point Positioning and Real Time Kinematic (RTK) positioning. The GPWU effect is also sensitive to the rotational status of the antenna, in particular the yaw angle variations. In this paper we explore the feasibility of yaw angle determination of relatively slow rotation platforms based on the GPWU effect. We use the geometry-free carrier phase observations from a RTK base and a moving station receivers to estimate the cumulative yaw angle of the moving platform. Several experiments, including rotating platform tests, vehicle and shipborne tests were carried out. The cumulative errors of rotating platform tests are under 0.38°, indicating good long-term accuracy of the GPWU determined yaw angle. But the RMS are in a range of 11.98° and 17.39°, indicating the errors, such as multipath effect, are not negligible and should be further investigated. The RMS of vehicle and shipborne tests using a base station of 9-11 km are 24.77° and 23.66°. In order to evaluate the influence of the differential ionospheric delay, another vehicle test was carried out using a base station located less than 1 km to the vehicle. The RMS reduces to 15.11°, which gains 39.00 % improvement than before, and demonstrates that the differential ionospheric delay even from a few kilometers long baseline still cannot be neglected. These tests validate the feasibility of GPWU for real-time yaw angle determination. Since this method is able to determine the yaw angle with a minimum one satellite, such a unique feature provides potential applications for attitude determination in the environment with

  6. Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations. Chapter 8

    Science.gov (United States)

    Martin, Rodney Alexander

    2010-01-01

    This chapter will provide a thorough end-to-end description of the process for evaluation of three different data-driven algorithms for anomaly detection to select the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle Health Management) technologies. These algorithms were deemed to be sufficiently mature enough to be considered viable candidates for deployment in support of the maiden launch of Ares I-X, the successor to the Space Shuttle for NASA's Constellation program. Data-driven algorithms are just one of three different types being deployed. The other two types of algorithms being deployed include a "nile-based" expert system, and a "model-based" system. Within these two categories, the deployable candidates have already been selected based upon qualitative factors such as flight heritage. For the rule-based system, SHINE (Spacecraft High-speed Inference Engine) has been selected for deployment, which is a component of BEAM (Beacon-based Exception Analysis for Multimissions), a patented technology developed at NASA's JPL (Jet Propulsion Laboratory) and serves to aid in the management and identification of operational modes. For the "model-based" system, a commercially available package developed by QSI (Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) has been selected for deployment to aid in diagnosis. In the context of this particular deployment, distinctions among the use of the terms "data-driven," "rule-based," and "model-based," can be found in. Although there are three different categories of algorithms that have been selected for deployment, our main focus in this chapter will be on the evaluation of three candidates for data-driven anomaly detection. These algorithms will be evaluated upon their capability for robustly detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle operations, rather than based oil heritage as performed in previous studies. Robust

  7. Cloud and precipitation properties from ground-based remote sensing instruments in East Antarctica

    Directory of Open Access Journals (Sweden)

    I. V. Gorodetskaya

    2014-07-01

    Full Text Available A new comprehensive cloud-precipitation-meteorological observatory has been established at Princess Elisabeth base, located in the escarpment zone of Dronning Maud Land, East Antarctica. The observatory consists of a set of ground-based remote sensing instruments (ceilometer, infrared pyrometer and vertically profiling precipitation radar combined with automatic weather station measurements of near-surface meteorology, radiative fluxes, and snow accumulation. In this paper, the observatory is presented and the potential for studying the evolution of clouds and precipitating systems is illustrated by case studies. It is shown that the synergetic use of the set of instruments allows for distinguishing ice, mixed-phase and precipitating clouds, including some information on their vertical extent. In addition, wind-driven blowing snow events can be distinguished from deeper precipitating systems. Cloud properties largely affect the surface radiative fluxes, with liquid-containing clouds dominating the radiative impact. A statistical analysis of all measurements (in total 14 months mainly occurring in summer/autumn indicates that these liquid-containing clouds occur during as much as 20% of the cloudy periods. The cloud occurrence shows a strong bimodal distribution with clear sky conditions 51% of the time and complete overcast conditions 35% of the time. Snowfall occurred 17% of the cloudy periods with a predominance of light precipitation and only rare events with snowfall > 1 mm h−1 water equivalent (w.e.. Three of such intensive snowfall events occurred during 2011 contributing to anomalously large annual snow accumulation. This is the first deployment of a precipitation radar in Antarctica allowing to assess the contribution of the snowfall to the local surface mass balance. It is shown that on the one hand large accumulation events (>10 mm w.e. day−1 during the measurement period of 26 months were always associated with snowfall, but that

  8. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  9. Operational optical turbulence forecast for the service mode of top-class ground based telescopes

    Science.gov (United States)

    Masciadri, Elena; Lascaux, Franck; Turchi, Alessio; Fini, Luca

    2016-07-01

    In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of an atmospherical non-hydrostatical mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT and the E-ELT. At the end of 2016 a new project for the implementation of a demonstrator of an operational system to be run on the two ESO's sites will start. The fact that the system can be run simultaneously on the two sites is an ancillary appealing feature of the system. Our team is also responsible for the implementation of a similar automatic system at Mt.Graham, site of the LBT (ALTA Project). Our system/method will permit therefore to make a step ahead in the framework of the Service Mode for new generation telescopes. Among the most exciting achieved results we cite the fact that we proved to be able to forecast CN2 profiles with a vertical resolution as high as 150 m. Such a feature is particularly crucial for all WFAO systems that require such detailed information on the OT vertical stratification on the whole 20 km above the ground. This important achievement tells us that all the WFAO systems can rely on automatic

  10. Land cover for Ukraine: the harmonization of remote sensing and ground-based data

    Science.gov (United States)

    Lesiv, M.; Shchepashchenko, D.; Shvidenko, A.; See, L. M.; Bun, R.

    2012-12-01

    This study focuses on the development of a land cover map of the Ukraine through harmonization of remote sensing and ground-based data. At present there is no land cover map of the Ukraine available that is of sufficient accuracy for use in environmental modeling. The existing remote sensing data are not enough accurate. In this study we compare the territory of the Ukraine from three global remote sensing products (GlobCover 2009, MODIS Land Cover and GLC-2000) using a fuzzy logic methodology in order to capture the uncertainty in the classification of land cover. The results for the Ukraine show that GlobCover 2009, MODIS Land Cover and GLC-2000 have a fuzzy agreement of 65%. We developed a weighted algorithm for the creation of a land cover map based on an integration of a number of global land cover and remote sensing products including the GLC-2000, GlobCover 2009, MODIS Land Cover, the Vegetation Continuous Fields product, digital map of administrative units and forest account data at the local level. This weighted algorithm is based on the results of comparing these products and an analysis of a dataset of validation points for different land cover types in the Ukraine. We applied this algorithm to generate a forest land cover type map. This raster map contains a forest expectation index that was calculated for each pixel. Forest land was then allocated based on forest statistics at the local level. Areas with a higher forest expectation index were allocated with forest first until the results matched the forest statistics. The result is the first digital map of forest (with a spatial resolution of 300m) for the Ukraine, which consistent with forest and land accounts, remote sensing datasets and GIS products. The forest land was well defined in forest rich areas (i.e. in the northern part of the Ukraine, the Carpathians and the Crimea); well less accurate areas were identified in the steppe due to heterogeneous land cover. Acknowledgements. This research was

  11. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    Science.gov (United States)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    stresses on the specificity of the satellite and ground-based observations and the importance of the right choice of appropriate scenario for correlative studies.

  12. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  13. Simulation Higher Order Language Requirements Study.

    Science.gov (United States)

    Goodenough, John B.; Braun, Christine L.

    The definitions provided for high order language (HOL) requirements for programming flight training simulators are based on the analysis of programs written for a variety of simulators. Examples drawn from these programs are used to justify the need for certain HOL capabilities. A description of the general structure and organization of the…

  14. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  15. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  16. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  17. Magnetic Nozzle Simulation Studies for Electric Propulsion

    Science.gov (United States)

    Tarditi, Alfonso

    2010-11-01

    Electric Propulsion has recently re-gained interest as one of the key technologies to enable NASA's long-range space missions. Options are being considered also in the field of aneutronic fusion propulsion for high-power electric thrusters. To support these goals the study of the exhaust jet in a plasma thruster acquires a critical importance because the need of high-efficiency generation of thrust. A model of the plasma exhaust has been developed with the 3D magneto-fluid NIMROD code [1] to study the physics of the plasma detachment in correlation with experimentally relevant configurations. The simulations show the role of the plasma diamagnetism and of the magnetic reconnection process in the formation of a detached plasma. Furthermore, in direct fusion-propulsion concepts high-energy (MeV range) fusion products have to be efficiently converted into a slower and denser plasma jet (with specific impulse down to few 1000's seconds, for realistic missions in the Solar System). For this purpose, a two-stage conversion process is being modeled where high-energy ions are non-adiabatically injected and confined into a magnetic duct leading to the magnetic nozzle, transferring most of their energy into their gyro-motion and drifting at slower speed along with the plasma propellant. The propellant acquires then thermal energy that gets converted into the direction of thrust by the magnetic nozzle. [1] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).

  18. Double Star, Cluster, and ground-based observations of magnetic reconnection during an interval of duskward oriented IMF: preliminary results

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2005-11-01

    Full Text Available We present a space- and ground-based study exploiting data from the coordinated Cluster and Double Star missions in order to investigate dayside magnetic reconnection under BY+ dominated IMF conditions. In-situ observations of magnetosheath flux transfer events combined with measurements of pulsed poleward and dawnward directed flows in the pre-noon sector high-latitude northern hemisphere ionosphere are interpreted as indications of pulsed magnetic reconnection during an interval in which the IMF remained relatively steady. Observations of newly-reconnected magnetic flux tubes anchored in the northern hemisphere both at mid-latitudes and in the vicinity of the subsolar point suggests that during BY+ dominated IMF, reconnection is not, as proposed previously, limited to the high-latitude magnetopause.

  19. Ergonomic problems regarding the interactive touch input via screens in onboard and ground-based flight control

    Science.gov (United States)

    Holzhausen, K. P.; Gaertner, K. P.

    1985-01-01

    A significant problem concerning the integration of display and switching functions is related to the fact that numerous informative data which have to be processed by man must be read from only a few display devices. A satisfactory ergonomic design of integrated display devices and keyboards is in many cases difficult, because not all functions which can be displayed and selected are simultaneously available. A technical solution which provides an integration of display and functional elements on the basis of the highest flexibility is obtained by using a cathode ray tube with a touch-sensitive screen. The employment of an integrated data input/output system is demonstrated for the cases of onboard and ground-based flight control. Ergonomic studies conducted to investigate the suitability of an employment of touch-sensitive screens are also discussed.

  20. Ground-based observations of Saturn's H3+ aurora and ring rain from Keck in 2013

    Science.gov (United States)

    O'Donoghue, J.; Melin, H.; Stallard, T.; Provan, G.; Moore, L.; Badman, S. V.; Baines, K. H.; Miller, S.; Cowley, S. W. H.

    2014-12-01

    The ground-based 10-metre Keck telescope was used to probe Saturn's H3+ ionosphere in 2013. The slit on the high resolution near infrared spectrometer (NIRSPEC; (R~25,000) was aligned pole-to-pole along Saturn's rotational axis at local noon. This is also aligned (within uncertainties) to the effectively dipolar magnetic field. Four polar/auroral regions of Saturn's ionosphere were measured simultaneously as the planet rotated: 1) the northern noon main auroral oval; 2) the northern midnight main oval; 3) the northern polar cap and 4) the southern main oval at noon. The results here contain twenty-three H3+ temperatures, column densities and total emissions located at the above regions spread over timescales of both hours and days. The main findings of this study are that ionospheric temperatures in the northern main oval are cooler than their southern counterparts by tens of K; supportive of the hypothesis that the total thermospheric heating rate (Joule heating and ion drag) is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than at noon, and this is in agreement with an electron influx peaking at 08:00 Saturn local time and having a minimum at midnight. When ordering the northern main oval parameters of H3+ as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ˜110° phase, with a full-width at half-maximum (FWHM) of ˜40°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. In addition to the auroral/polar data we also present the latest results from observations of Saturn's mid-to-low latitude H3+ emission. This emission is thought to be modulated by charged water product influx which flows into the planet along magnetic field lines from Saturn's rings, i.e. ring

  1. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-11-01

    Full Text Available This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010 obtained from ground-based FTIR (Fourier Transform InfraRed spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6% in the troposphere and of better than 3% in the lower, middle and upper stratosphere. This total error includes the smoothing error, which dominates the random error budget. Furthermore, we estimate that the measurement noise as well as uncertainties in the applied atmospheric temperature profiles and instrumental line shape are leading error sources. We show that a simultaneous temperature retrieval can significantly reduce the total random errors and that a regular determination of the instrumental line shape is important for producing a consistent long-term dataset. These theoretical precision estimates are empirically confirmed by daily intercomparisons with Electro Chemical Cell (ECC sonde profiles. In order to empirically document the long-term stability of the FTIR ozone profile data we compare the linear trends and seasonal cycles as obtained from the FTIR and ECC time series. Concerning seasonality, in winter both techniques observe stratospheric ozone profiles that are typical middle latitude profiles (low tropopause, low ozone maximum concentrations and in summer/autumn profiles that are typical tropical profiles (high tropopause, high maximum concentrations. The linear trends estimated from the FTIR and the ECC datasets agree within their error bars. For the FTIR time series, we observe a significant negative trend in the upper troposphere/lower stratosphere of about −0.2% yr−1 and a significant positive trend in the middle and

  2. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    Science.gov (United States)

    García, O. E.; Schneider, M.; Redondas, A.; González, Y.; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-11-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999-2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6% in the troposphere and of better than 3% in the lower, middle and upper stratosphere. This total error includes the smoothing error, which dominates the random error budget. Furthermore, we estimate that the measurement noise as well as uncertainties in the applied atmospheric temperature profiles and instrumental line shape are leading error sources. We show that a simultaneous temperature retrieval can significantly reduce the total random errors and that a regular determination of the instrumental line shape is important for producing a consistent long-term dataset. These theoretical precision estimates are empirically confirmed by daily intercomparisons with Electro Chemical Cell (ECC) sonde profiles. In order to empirically document the long-term stability of the FTIR ozone profile data we compare the linear trends and seasonal cycles as obtained from the FTIR and ECC time series. Concerning seasonality, in winter both techniques observe stratospheric ozone profiles that are typical middle latitude profiles (low tropopause, low ozone maximum concentrations) and in summer/autumn profiles that are typical tropical profiles (high tropopause, high maximum concentrations). The linear trends estimated from the FTIR and the ECC datasets agree within their error bars. For the FTIR time series, we observe a significant negative trend in the upper troposphere/lower stratosphere of about -0.2% yr-1 and a significant positive trend in the middle and upper stratosphere of about +0

  3. Comparing distinct ground-based lightning location networks covering the Netherlands

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter

    2015-04-01

    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  4. Historical Trends in Ground-Based Optical Space Surveillance System Design

    Science.gov (United States)

    Shoemaker, M.; Shroyer, L.

    In the spirit of the 50th anniversary of the launch of the first man-made satellite, an historical overview of ground-based optical space surveillance systems is provided. Specific emphasis is given on gathering metrics to analyze design trends. The subject of space surveillance spans the history of spaceflight: from the early tracking cameras at missile ranges, the first observations of Sputnik, to the evolution towards highly capable commercial off-the-shelf (COTS) systems, and much in between. Whereas previous reviews in the literature have been limited in scope to specific time periods, operational programs, countries, etc., a broad overview of a wide range of sources is presented. This review is focused on systems whose primary design purpose can be classified as Space Object Identification (SOI) or Orbit Determination (OD). SOI systems are those that capture images or data to determine information about the satellite itself, such as attitude, features, and material composition. OD systems are those that produce estimates of the satellite position, usually in the form of orbital elements or a time history of tracking angles. Systems are also categorized based on the orbital regime in which their targets reside, which has been simplified in this study to either Low Earth Orbit (LEO) or Geosynchronous Earth Orbit (GEO). The systems are further classified depending on the industry segment (government/commercial or academic), and whether the program is foreign or domestic. In addition to gathering metrics on systems designed solely for man-made satellite observations, it is interesting to find examples of other systems being similarly used. Examples include large astronomical telescopes being used for GEO debris surveys and anomaly resolution for deep-space probes. Another interesting development is the increase in number and capability of COTS systems, some of which are specifically marketed to consumers as satellite trackers. After describing the results of the

  5. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia

    Directory of Open Access Journals (Sweden)

    Mou Leong Tan

    2015-01-01

    Full Text Available Satellite precipitation products (SPPs potentially constitute an alternative to sparse rain gauge networks for assessing the spatial distribution of precipitation. However, applications of these products are still limited due to the lack of robust quality assessment. This study compares daily, monthly, seasonal, and annual rainfall amount at 342 rain gauges over Malaysia to estimations using five SPPs (3B42RT, 3B42V7, GPCP-1DD, PERSIANN-CDR, and CMORPH and a ground-based precipitation product (APHRODITE. The performance of the precipitation products was evaluated from 2003 to 2007 using continuous (RMSE, R2, ME, MAE, and RB and categorical (ACC, POD, FAR, CSI, and HSS statistical approaches. Overall, 3B42V7 and APHRODITE performed the best, while the worst performance was shown by GPCP-1DD. 3B42RT, 3B42V7, and PERSIANN-CDR slightly overestimated observed precipitation by 2%, 4.7%, and 2.1%, respectively. By contrast, APHRODITE and CMORPH significantly underestimated precipitations by 19.7% and 13.2%, respectively, whereas GPCP-1DD only slightly underestimated by 2.8%. All six precipitation products performed better in the northeast monsoon than in the southwest monsoon. The better performances occurred in eastern and southern Peninsular Malaysia and in the north of East Malaysia, which receives higher rainfall during the northeast monsoon, whereas poor performances occurred in the western and dryer Peninsular Malaysia. All precipitation products underestimated the no/tiny (<1 mm/day and extreme (≥20 mm/day rainfall events, while they overestimated low (1–20 mm/day rainfall events. 3B42RT and 3B42V7 showed the best ability to detect precipitation amounts with the highest HSS value (0.36. Precipitations during flood events such as those which occurred in late 2006 and early 2007 were estimated the best by 3B42RT and 3B42V7, as shown by an R2 value ranging from 0.49 to 0.88 and 0.52 to 0.86, respectively. These results on SPPs’ uncertainties

  6. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    The aim of the present work is the development of ground-based hyperspectral systems capable of collecting continuous and long-term hyperspectral measurements of the Earth-surface. The development of such instruments includes the optical design, the development of the data acquisition (Auto3S) and processing software as well as the definition of the calibration procedures. In particular an in-field calibration methodologie based on the comparison between field spectra and data modeled using Radiative Transfer (RT) approach has been proposed to regularly upgrade instrument calibration coefficients. Two different automatic spectrometric systems have been developed: the HyperSpectral Irradiometer (HSI) [Meroni et al., 2011] and the Multiplexer Radiometer Irradiometer (MRI) [Cogliati, 2011]. Both instruments are able to continuously measure: sun incoming irradiance (ETOT) and irradiance (ES, HSI)/radiance (LS, MRI) upwelling from the investigated surface. Both instruments employ two Ocean Optics HR4000 spectrometers sharing the same optical signal that allow to simultaneously collect "fine" (1 nm Full Width at Half Maximum, FWHM) spectra in the 400-1000 nm rangeand "ultra-fine" (0.1 nm FWHM) spectra within the 700-800 nm. The collected optical data allow to estimate biochemical/structural properties of vegetation (e.g. NDVI) as well as its photosynthetic efficiency through the Photochemical Reflectance Index (PRI) and the analysis of sun-induced chlorophyll Fluorescence in the O2-A Fraunhofer line (F@760). The automatic instruments were operated in coordination with eddy covariance flux tower measurements of carbon exchange in the framework of several field campaigns: HSI was employed in a subalpine pasture (2009-ongoing) (www.phenoalp.eu) while MRI was employed in 2009 in the Sen3Exp field survey promoted by the European Space Agency as consolidation study to the future mission Sentinel-3. Results show that the proposed instruments succeeded in collecting continuous

  7. Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes

    Science.gov (United States)

    Piermattei, Livia; Carturan, Luca; de Blasi, Fabrizio; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio; Pfeifer, Norbert

    2016-05-01

    Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1 km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was -0.42 ± 1.72 and 0.03 ± 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between -5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 ± 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively

  8. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  9. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data

    Science.gov (United States)

    Convertino, V. A.

    1998-01-01

    Since the beginning of human spaceflight, the value of understanding mechanisms of physiological adaptation to microgravity became apparent to life scientists who were interested in maintining crew health and developing countermeasures agains adverse effects of the mission. However, several characteristics associated the the logistics of spaceflight presented significant limitations to the scientific study of human adaptation to microgravity. Because space missions are so infrequent and involve minimal numbers of crewmembers, meaninful statistical analysis of data are limited. Reproducibility of results from spaceflight experiments is difficult to assess since there are few repeated space missions involving the same crewmembers. Since the emphasis of space missions is placed on operations, experiments are compromised without adequate control over various factors (e.g., time, diet, physical activities, etc.) that can impact measured responses. With the mimimal opportunity to collect spaceflight data, there is a high risk of experiments that simultaneously interfere with other experiments by the increasing demand on the crewmembers to participate in mumerous experiments proposed by multiple investigators. The technology and ability to measure physiological functions necessary to test specific hypotheses can be severely limited by physical space and power constraints of the space enviroment. Finally, technical and logistical aspects of space missions such as launch delays, extended missions, and inflight operational emergencies can significantly compromise the timing and control of experiments. These limitations have stimulated scientists to develop ground-based analogs of microgravity in an effort to investigate the effects of spaceflight on physiological function in a controlled experimental setting. The purpose of this paper is to provide a selected comparison of data collected from ground-based experiments with those obtained from spaceflight in an effort to

  10. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    Science.gov (United States)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  11. Practical studies on rockfall simulation by DDA

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,simulations of real rockfall by discontinuous deformation analysis (DDA) are conducted.In the simulations,the energy losses of rockfall are categorized into three types,i.e.the loss by friction,the loss by collision,and the loss by vegetation.Modeling of the energy loss using absolute parameters is conducted by the DDA method.Moreover,in order to verify the applicability and validity of the proposed DDA,field tests on rockfall and corresponding simulations of rockfall tests by DDA are performe...

  12. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  13. A Simulation Study of Paced TCP

    Science.gov (United States)

    Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig

    2000-01-01

    In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP op