WorldWideScience

Sample records for ground-based radio astronomy

  1. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  2. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  3. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  4. Division x: Radio Astronomy

    Science.gov (United States)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    2012-04-01

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North America, and the development of new facilities such as LOFAR, ALMA, FAST, and Square Kilometre Array precursor telescopes in Australia and South Africa. These developments are driven by advances in radio-frequency, digital and information technologies that tremendously enhance the capabilities in radio astronomy. These new developments foreshadow major scientific advances driven by radio observations in the next triennium. We highlight these facility developments in section 3 of this report. A selection of science highlight from this triennium are summarized in section 2.

  5. Division x: Radio Astronomy

    NARCIS (Netherlands)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North

  6. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  7. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  8. Radio astronomy from space

    Science.gov (United States)

    Woan, G.

    2011-04-01

    At frequencies below about 30 MHz, radio astronomy becomes increasingly difficult from the Earth's surface, mainly due to a combination of poor ionospheric seeing and strong terrestrial interference. The obvious move is to space, either as free-flying spacecraft or with a telescope located somewhere on the Moon. All the major space agencies have a renewed interest in the Moon as a site for exploration and science, and low-frequency radio astronomy is probably the strongest of the astronomical objectives put forward in these programmes. Although the Sun is a strong source of interference in extra-solar system work, it is also a prime target for study in itself. A constellation of satellites (as proposed for the SIRA mission) would be able to image both the Sun and the inner heliosphere over the entire low-frequency band. Here we investigate some of the advantages and limitations of astronomy at these very low frequencies, using space- and lunar-based antennas.

  9. Monitoring System for Atmospheric Water Vapor with a Ground-Based Multi-Band Radiometer: Meteorological Application of Radio Astronomy Technologies

    Science.gov (United States)

    Nagasaki, T.; Araki, K.; Ishimoto, H.; Kominami, K.; Tajima, O.

    2016-08-01

    High-resolution estimation of thermodynamic properties in the atmosphere can help to predict and mitigate meteorological disasters, such as local heavy rainfall and tornadic storms. For the purposes of short-term forecasting and nowcasting of severe storms, we propose a novel ground-based measurement system, which observes the intensity of atmospheric radiation in the microwave range. Our multi-band receiver system is designed to identify a rapid increase in water vapor before clouds are generated. At frequencies between 20 and 30 GHz, our system simultaneously measures water vapor as a broad absorption peak at 22 GHz as well as cloud liquid water. Another band at 50-60 GHz provides supplementary information from oxygen radiation to give vertical profiles of physical temperature. For the construction of this cold receiver system, novel technologies originally developed for observations of cosmic microwave background radiation were applied. The input atmospheric signal is amplified by a cold low-noise amplifier maintained below 10 K, while the spectrum of this amplified signal is measured using a signal analyzer under ambient conditions. The cryostat also contains a cold black body at 40 K to act as a calibration signal. This calibration signal is transported to each of the receivers via a wire grid. We can select either the atmospheric signal or the calibration signal by changing the orientation of this wire. Each receiver can be calibrated using this setup. Our system is designed to be compact (<1 m3), with low power consumption (˜ 1.5 kW). Therefore, it is easy to deploy on top of high buildings, mountains, and ship decks.

  10. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  11. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  12. Utrecht and Galactic Radio Astronomy

    NARCIS (Netherlands)

    van Woerden, H.

    Important roles in early Dutch Galactic radio astronomy were played by several Utrecht astronomers: Van de Hulst, Minnaert and Houtgast. The poster announcing the conference contained a number of pictures referring to scientific achievements of the Astronomical Institute Utrecht. One of these

  13. Shoestring Budget Radio Astronomy

    Science.gov (United States)

    Hoot, John E.

    2017-06-01

    The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  14. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  15. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  16. Extragalactic radio continuum surveys and the transformation of radio astronomy

    Science.gov (United States)

    Norris, Ray P.

    2017-10-01

    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide fresh insights for understanding the evolution of galaxies, measuring the evolution of the cosmic star-formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected phenomena. This Review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.

  17. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    Science.gov (United States)

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far.

  18. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  19. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Engelen, Steven; Bentum, Mark; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  20. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  1. 47 CFR 2.107 - Radio astronomy station notification.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy stations...

  2. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    Science.gov (United States)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  3. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    Science.gov (United States)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  4. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, M.J.; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  5. Optical turbulence forecast: toward a new era of ground-based astronomy

    CERN Document Server

    Masciadri, E

    2009-01-01

    The simulation of the optical turbulence (OT) for astronomical applications obtained with non-hydrostatic atmospherical models at meso-scale presents, with respect to measurements, some advantages. The future of the ground-based astronomy relies upon the potentialities and feasibility of the ELTs. Our ability in knowing, controlling and 'managing' the effects of the turbulence on such a new generation telescopes and facilities are determinant to assure their competitiveness with respect to the space astronomy. In the past several studies have been carried out proving the feasibility of the simulation of realistic Cn2 profiles above astronomical sites. The European Community (FP6 Program) decided recently to fund a Project aiming, from one side, to prove the feasibility of the OT forecasts and the ability of meso-scale models in discriminating astronomical sites from optical turbulence point of view and, from the other side, to boost the development of this discipline at the borderline between the astrophysics...

  6. Division X, XII / Commission 40, 41 / Working Group Radio Astronomy

    NARCIS (Netherlands)

    Kellermann, Kenneth; Orchiston, Wayne; Davies, Rod; Gurvits, Leonid; Ishiguro, Masato; Lequeux, James; Swarup, Govind; Wall, Jasper; Wielebinski, Richard; van Woerden, Hugo

    2012-01-01

    The IAU Working Group on Historical Radio Astronomy (WGHRA) was formed at the 2003 General Assembly of the IAU as a Joint Working Group of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically-significant radio telescopes and

  7. Division X, XII / Commission 40, 41 / Working Group Radio Astronomy

    NARCIS (Netherlands)

    Kellermann, Kenneth; Orchiston, Wayne; Davies, Rod; Gurvits, Leonid; Ishiguro, Masato; Lequeux, James; Swarup, Govind; Wall, Jasper; Wielebinski, Richard; van Woerden, Hugo

    The IAU Working Group on Historical Radio Astronomy (WGHRA) was formed at the 2003 General Assembly of the IAU as a Joint Working Group of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically-significant radio telescopes and

  8. Internet Resources for Radio Astronomy

    Science.gov (United States)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  9. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  10. De-mystifying earned value management for ground based astronomy projects, large and small

    Science.gov (United States)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  11. The faint radio sky: radio astronomy becomes mainstream

    Science.gov (United States)

    Padovani, Paolo

    2016-09-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.

  12. The faint radio sky: radio astronomy becomes mainstream

    CERN Document Server

    Padovani, Paolo

    2016-01-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalac...

  13. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  14. Large Radio Astronomy: next 70 Years Step

    CERN Document Server

    Parijskij, Y N

    2003-01-01

    Some attempts to predict the very distant future of Radio Astronomy are given. It is not easy to predict a list of the first priority problems which may appear, but the facilities potential is more predictable. It is suggested, that in addition to the "dedicated for Radio Astronomy", facilities may be extended greatly by integration with the next generation living standards facilities, connected with People-to-People communications through the global networks and by incorporating of the "Natural facilities", such as grav. lensing, maser amplification in the ISM etc. As an examples of the extreme cases of the $10^9 m^2$ class of the new generation Radio Telescopes, utilization of the personal dipole size communication facilities by SKA type instrument, and array from the asteroids first "Frehnel zones" will be mentioned. Radio Astronomy from the secondary to optical facilities tool will be the only tool in the exploration of the $z>10$ Universe. The reality of all predictions depend mostly on the way, the Civi...

  15. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  16. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  17. Reaching for the stars - New developments in ground-based astronomy

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will briefly review the state-of-the-art in ground-based astronomy - both on the telescope side and the instrument side. Interesting parallels can be drawn in cost, construction and operations with the particle physics facilities. I will then present some recent results in the two hottest topics in astronomy, driving the requests for more advanced facilities: exoplanets and the hunt for life beyond the solar system (calling for Extremely Large Telescope); and cosmology and the understanding of dark energy (calling for large survey telescopes). This will lead to a description of the latest telescope project developments on the ground: the on-going construction of the Large Synoptic Telescope on a quest to better understand dark energy, and the start of the construction of three Extremely Large Telescopes by European and US-led international consortia, hoping to find life on planets around nearby stars.   ATS Seminars Organisers: H. Burkhardt (BE), M. Modena (TE), T. Stora (EN) Coffee / tea will ...

  18. Multichannel interference mitigation methods in radio astronomy

    CERN Document Server

    Leshem, A; Boonstra, A J; Leshem, Amir; Veen, Alle-Jan van der; Boonstra, Albert-Jan

    2000-01-01

    Radio-astronomical observations are increasingly corrupted by RF interference, and online detection and filtering algorithms are becoming essential. To facilitate the introduction of such techniques into radio astronomy, we formulate the astronomical problem in an array signal processing language, and give an introduction to some elementary algorithms from that field. We consider two topics in detail: interference detection by rank estimation of short-term covariance matrices, and spatial filtering by subspace estimation and projection. We discuss experimental data collected at the Westerbork radio telescope, and illustrate the effectiveness of the space-time detection and blanking process on the recovery of a 3C48 absorption line in the presence of GSM mobile telephony interference.

  19. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  20. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  1. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  2. Design concepts for the Cherenkov Telescope Array CTA : An advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis et al., M.; Cazaux, Stéphanie

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  3. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W

    2017-01-01

    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  4. The Importance of Site Selection for Radio Astronomy

    Science.gov (United States)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  5. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  6. Next Generation Radio Astronomy Receiver Systems

    CERN Document Server

    Morgan, Matthew A

    2009-01-01

    Radio astronomy observations in the coming decade will require new levels of sensitivity while mapping large regions of space with much greater efficiency than is achieved with current telescopes. This requires new instrumentation with the greatest achievable sensitivity, dynamic range, and field of view. Receiver noise is quickly approaching fundamental limits at most radio wavelengths, so significant gains in sensitivity can only be made by increasing collecting area. Jointly, these requirements suggest using large arrays of smaller antennas, or many moderate-size antennas equipped with multi-beam arrays. The challenge is to develop receivers and wide bandwidth data transport systems which are lower cost, more compact, more reliable, lower weight, and more reproducible than the best current systems, with no compromise to performance. This can be achieved with a greater degree of component integration, extensive use of digital signal processing and transport, and replacement of functions currently performed ...

  7. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  8. JPL Big Data Technologies for Radio Astronomy

    Science.gov (United States)

    Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.

    2014-04-01

    During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously generate images or video to display those features. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  10. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  11. Large Instrument Development for Radio Astronomy

    CERN Document Server

    Fisher, J R; Brisken, W F; Cotton, W D; Emerson, D T; Kerr, A R; Lacasse, R J; Morgan, M A; Napier, P J; Norrod, R D; Payne, J M; Pospieszalski, M W; Symmes, A; Thompson, A R; Webber, J C

    2009-01-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of ...

  12. International Agreement Will Advance Radio Astronomy

    Science.gov (United States)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous

  13. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    Science.gov (United States)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  14. The beginnings of radio astronomy in the Netherlands

    NARCIS (Netherlands)

    van Woerden, Hugo; Strom, Richard G.

    2006-01-01

    The birth of Dutch radio astronomy can be rather precisely dated to 15 April 1944, when H.C. van de Hulst presented the results of his theoretical research into the origin of radio waves from space. We have investigated the events leading up to the momentous suggestion that hydrogen emission at 21 c

  15. Communicating radio astronomy with the public: Another point of view

    Science.gov (United States)

    Varano, S.

    2008-06-01

    Radio waves cannot be sensed directly, but they are used in daily life by almost everybody. Even so, the majority of the general public do not even know that celestial bodies emit radio waves. Presenting invisible radiation to a general audience with little or no background knowledge in physics is a difficult task. In addition, much important technology now commonplace in many other scientific fields was pioneered by radio observatories in their efforts to detect and process radio signals from the Universe. Radio astronomy outreach does not have such a well-established background as optical astronomy outreach. In order to make radio astronomy accessible to the public, it is necessary either to add more scientific detail or to find a different way of communicating. In this paper we present examples from our work at the Visitor Centre "Marcello Ceccarelli", which is part of the Medicina Radio Observatory, operated by the Institute of Radio Astronomy (IRA) in Bologna, which in turn is part of the National Institute for Astrophysics (INAF).

  16. MPS/CAS Partner Group on Radio Astronomy

    Institute of Scientific and Technical Information of China (English)

    Han Jinlin; Richard Wielebinski

    2004-01-01

    @@ The Partner Group does research on cosmic magnetic fields using radio astronomy methods. Magnetic fields are found in every astronomical object: the Earth, the Sun,planets, stars, pulsars, the Milky Way,nearby galaxies and in distant radio galaxies. The role of the magnetic fields in the cosmic universe has not been well investigated, mainly because of the difficulties of their observation.

  17. A Radio Astronomy Curriculum for the Middle School Classroom

    Science.gov (United States)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  18. Signal Processing Techniques Applied in RFI Mitigation of Radio Astronomy

    Directory of Open Access Journals (Sweden)

    Sixiu Wang

    2012-08-01

    Full Text Available Radio broadcast and telecommunications are present at different power levels everywhere on Earth. Radio Frequency Interference (RFI substantially limits the sensitivity of existing radio telescopes in several frequency bands and may prove to be an even greater obstacle for next generation of telescopes (or arrays to overcome. A variety of RFI detection and mitigation techniques have been developed in recent years. This study describes various signal process methods of RFI mitigation in radio astronomy, choose the method of Time-frequency domain cancellation to eliminate certain interference and effectively improve the signal to noise ratio in pulsar observations. Finally, RFI mitigation researches and implements in China radio astronomy will be also presented.

  19. The School of Galactic Radio Astronomy: An Internet Classroom

    Science.gov (United States)

    Castelaz, M. W.; Cline, J. D.; Osborne, C. S.; Moffett, D. A.; Case, J.

    2001-12-01

    The School of Galactic Radio Astronomy (SGRA) takes its name from the source SGR-A, the center of the Milky Way Galaxy. SGRA is based at the Pisgah Astronomical Research Institute (PARI) as an experience-based school room for use by middle and high school teachers and their students. Their scientific educational experience at SGRA relies on Internet access to PARI's remote-controlled 4.6-m radio telescope which is equipped with a 1420 MHz receiver. The 1420 MHz signal may either be recorded as a spectrum over a 4 MHz bandpass, or mapped over extended regions. Teachers, classes, and Independent Study students access the 4.6-m radio telescope via the SGRA webpage. The SGRA webpage has four components: Radio Astronomy Basics, Observing, Guides, and Logbook. The Radio Astronomy Basics section summarizes the concepts of electromagnetic waves, detection of electromagnetic waves, sources of astronomical radio waves, and how astronomers use radio telescopes. The Observing section is the link to controlling the radio telescope and receiver. The Observing page is designed in the same way a control room at an observatory is designed. Controls include options of source selection, coordinate entry, slew, set, and guide selection, and tracking. Also within the Observing section is the curriculum which presents eight modules based on relevant radio astronomy topics and objects. The Guides webpage contains atlases of the astronomical sky, catalogs, examples of observing sessions, and data reduction software that can be downloaded for analysis offline. The LOGBOOK page is primarily a guestbook, and evaluation form. We acknowledge support from the Space Telescope Science Institute IDEAS Program, and the South Carolina State University PAIR Program.

  20. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    OpenAIRE

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV to 10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will con...

  1. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  2. Radio Astronomy Transformed: Aperture Arrays - Past, Present & Future

    CERN Document Server

    Garrett, Michael A

    2012-01-01

    I review the early development of Aperture Arrays and their role in radio astronomy. The demise of this technology at the end of the 1960's, and the reasons for the rise of parabolic dishes is also considered. The parallels with the Antikythera mechanism (see these proceedings) as a lost technology are briefly presented. Aperture Arrays re-entered the world of radio astronomy as the idea to build a huge radio telescope with a collecting area of one square kilometre (the Square Kilometre Array, SKA) arose. Huge ICT technology advances had transformed Aperture Arrays in terms of their capability, flexibility and reliability. In the mid-1990s, ASTRON started to develop and experiment with the first high frequency aperture array tiles for radio astronomy - AAD, OSMA, THEA & EMBRACE. In the slipstream of these efforts, Phased Array Feeds (PAFs) for radio astronomy were invented and LOFAR itself emerged as a next generation telescope and a major pathfinder for the SKA. Meanwhile, the same advantages that apertu...

  3. Need a Classroom Stimulus? Introduce Radio Astronomy

    Science.gov (United States)

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what…

  4. Radio astronomy in Africa: the case of Ghana

    CERN Document Server

    Asabere, Bernard Duah; Horellou, Cathy; Winkler, Hartmut; Jarrett, Thomas

    2015-01-01

    South Africa has played a leading role in radio astronomy in Africa with the Hartebeesthoek Radio Astronomy Observatory (HartRAO). It continues to make strides with the current seven-dish MeerKAT precursor array (KAT-7), leading to the 64-dish MeerKAT and the giant Square Kilometer Array (SKA), which will be used for transformational radio astronomy research. Ghana, an African partner to the SKA, has been mentored by South Africa over the past six years and will soon emerge in the field of radio astronomy. The country will soon have a science-quality 32m dish converted from a redundant satellite communication antenna. Initially, it will be fitted with 5 GHz and 6.7 GHz receivers to be followed later by a 1.4 - 1.7 GHz receiver. The telescope is being designed for use as a single dish observatory and for participation in the developing African Very Long Baseline Interferometry (VLBI) Network (AVN) and the European VLBI Network. Ghana is earmarked to host a remote station during a possible SKA Phase 2. The loca...

  5. Solar tower atmospheric Cherenkov effect experiment (STACEE) for ground based gamma ray astronomy

    Science.gov (United States)

    Bhattacharya, D.; Chantell, M. C.; Coppi, P.; Covault, C. E.; Dragovan, M.; Gregorich, D. T.; Hanna, D. S.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Tümer, O. T.; Williams, D. A.

    1997-05-01

    The STACEE experiment is being developed to study very high energy astrophysical gamma rays between 50 and 500 GeV. During the last few years this previously unexplored region has received much attention due to the detection of sources up to about 10 GeV by the EGRET instrument on board the CGRO. However, the paucity of detected sources at ~1 TeV indicates that fundamental processes working within these sources and/or in the intergalactic space are responsible for the cutoff in the photon spectra of the EGRET sources. The cutoff or the spectral change of these sources can be observed with ground-based Cherenkov detectors with a very low threshold. The use of large arrays of mirrors at solar power facilities is a promising way of lowering the threshold. Using this concept a series of tests were conducted at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (Albuquerque, NM) with a full size prototype of the STACEE telescope system. The tests show that STACEE will be capable of meaningful exploration of the gamma-ray sky between 50 and 500 GeV with good sensitivity.

  6. On the atmospheric limitations of ground-based submillimetre astronomy using array receivers

    CERN Document Server

    Archibald, E N; Holland, W S; Coulson, I M; Jessop, N E; Stevens, J A; Robson, E I; Tilanus, R P J; Duncan, W D; Lightfoot, J F

    2002-01-01

    The calibration of ground-based submillimetre observations has always been a difficult process. We discuss how to overcome the limitations imposed by the submillimetre atmosphere. Novel ways to improve line-of-sight opacity estimates are presented, resulting in tight relations between opacities at different wavelengths. The submillimetre camera SCUBA, mounted on the JCMT, is the first large-scale submillimetre array, and as such is ideal for combatting the effects of the atmosphere. For example, we find that the off-source pixels are crucial for removing sky-noise. Benefitting from several years of SCUBA operation, a database of deep SCUBA observations has been constructed to better understand the nature of sky-noise and the effects of the atmosphere on instrument sensitivity. This has revealed several results. Firstly, there is evidence for positive correlations between sky-noise and seeing and sky-noise and sky opacity. Furthermore, 850-micron and 450-micron sky-noise are clearly correlated, suggesting that...

  7. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  8. PARTNeR for Teaching and Learning Radio Astronomy Basics

    Science.gov (United States)

    Vaquerizo, Juan Ángel

    2010-10-01

    NASA has three satellite tracking stations around the world: CDSCC (Canberra, Australia), GDSCC (Goldstone, USA) and MDSCC (Madrid, Spain). One of the antennas located at MDSCC, DSS-61, is not used for satellite tracking any more and thanks to an agreement between INTA (Instituto Nacional de TA~l'cnica Aeroespacial) and NASA, it has been turned into an educational radio telescope. PARTNeR (Proyecto Académico con el RadioTelescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is a High School and University radio astronomy educational program that allows teachers and students to control this 34-meter radio telescope and conduct radio astronomical observations via the Internet. As radio astronomy is not a popular subject and astronomy has little presence in the High School Curriculum, teachers need specific training in those subjects to implement PARTNeR. Thus, High School teachers joining the project take a course to learn about the science of radio astronomy and how to use the antenna in their classrooms. Also, teachers are provided with some learning activities they can do with their students. These lesson plans are focused on the implementation of the project within an interdisciplinary framework. All educational resources are available on PARTNeR website. PARTNeR is an inquiry based approach to science education. Nowadays, students can join in three different observational programmes: variability studies in quasars, studies of radio-bursts in X-ray binaries (microquasars), and mapping of radio sources in the galactic plane. Nevertheless, any other project can be held after an evaluation by the scientific committee. The operational phase of the project started in the academic year 2003-04. Since then, 85 High Schools, seven Universities and six societies of amateur astronomers have been involved in the project. During the 2004-09 period, 103 High School teachers from Spain and Portugal have attended the training courses, and 105

  9. A Virtual Tour of the Radio Astronomy Process

    Science.gov (United States)

    Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  10. Space Radio Astronomy in the next 1000001 (binary) years

    CERN Document Server

    Gurvits, L I

    2012-01-01

    Radio astronomy and active exploration of space are peers: both began by efforts of enthusiasts in the 1930s and got a major technological boost in the 1940s-50s. Thus, for the sake of a brief review at this very special conference, it is fair to estimate the present age of these human endeavours as 1000001 (binary) years. These years saw a lot of challenging and fruitful concerted efforts by radio astronomers and space explorers. Among the high points one can mention several highly successful space-borne CMB observatories, three orbital VLBI missions, the first examples of radio observations at spectral windows hitherto closed for Earth-based observers and many yet to be implemented initiatives which are at various stages of their paths toward launch-pads of all major world space agencies. In this review I will give a bird-eye picture of the past achievements of space-oriented radio astronomy and zoom into several projects and ideas that will further push the presence of radio astronomy into the space agenda...

  11. Gravitational wave astronomy with radio galaxy surveys

    OpenAIRE

    Raccanelli, Alvise

    2016-01-01

    In the next decade, new astrophysical instruments will deliver the first large-scale maps of gravitational waves and radio sources. Therefore, it is timely to investigate the possibility to combine them to provide new and complementary ways to study the Universe. Using simulated catalogues appropriate to the planned surveys, it is possible to predict measurements of the cross-correlation between radio sources and GW maps and the effects of a stochastic gravitational wave background on galaxy ...

  12. The coexistence of cognitive radio and radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2009-01-01

    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio

  13. The coexistence of cognitive radio and radio astronomy

    NARCIS (Netherlands)

    Bentum, M.J.; Boonstra, A.J.; Baan, W.A.

    2009-01-01

    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio

  14. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    Science.gov (United States)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  15. Astronomy: Radio burst caught red-handed

    Science.gov (United States)

    Falcke, Heino

    2017-01-01

    For almost a decade, astronomers have observed intense bursts of radio waves from the distant cosmos whose origins were unknown. The source of one such burst has now been identified, but this has only deepened the mystery. See Letter p.58

  16. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  17. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  18. Gravitational wave astronomy with radio galaxy surveys

    CERN Document Server

    Raccanelli, Alvise

    2016-01-01

    In the next decade, new astrophysical instruments will deliver the first large-scale maps of gravitational waves and radio sources. Therefore, it is timely to investigate the possibility to combine them to provide new and complementary ways to study the Universe. Using simulated catalogues appropriate to the planned surveys, it is possible to predict measurements of the cross-correlation between radio sources and GW maps and the effects of a stochastic gravitational wave background on galaxy maps. Effects of GWs on the large scale structure of the Universe can be used to investigate the nature of the progenitors of merging BHs, the validity of Einstein's General Relativity, models for dark energy, and detect a stochastic background of GW. The results obtained show that the galaxy-GW cross-correlation can provide useful information in the near future, while the detection of tensor perturbation effects on the LSS will require instruments with capabilities beyond the currently planned next generation of radio ar...

  19. Getting started in radio astronomy beginner projects for the amateur

    CERN Document Server

    Arnold, Steven

    2013-01-01

    Radio astronomy is a mystery to the majority of amateur astronomers, yet it is the best subject to turn to when desirous of an expanded knowledge of the sky. This guide intends to instruct complete newcomers to radio astronomy, and provides help for the first steps on the road towards the study of this fascinating subject. In addition to a history of the science behind the pursuit, directions are included for four easy-to-build projects, based around long-term NASA and Stanford Solar Center projects. The first three projects constitute self-contained units available as kits, so there is no nee

  20. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  1. On the Development of Radio Astronomy and Protected Astronomy Reserves in South Africa

    Science.gov (United States)

    Tiplady, Adrian John

    2015-08-01

    Recent initiatives to take advantage of various geographic locations in South Africa that exhibit excellent conditions for astronomical observations (optical and radio) has resulted in the establishment of a number of world class astronomical facilities. This includes the 10m class Southern African Large Telescope, the 64 dish MeerKAT radio telescope (under construction), and future Square Kilometre Array.To preserve these areas that exhibit natural astronomical advantage, unique legislation was promulgated to establish 'astronomy reserves'. These reserves are protected through a unique set of regulations that enable protection of astronomical facilities located in declared areas from any current, and future, sources of potential interference. This paper will look at the development and implementation of a protection regime, and review some of practical implications of the construction and operation of a radio telescope in what has become to be known as a 'radio quiet zone'.

  2. Accurate Weather Forecasting for Radio Astronomy

    Science.gov (United States)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  3. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, Marinus Jan; van 't Klooster, K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The a

  4. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Science.gov (United States)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  5. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  6. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    Science.gov (United States)

    Chakravarty, Subhas

    sferics at least in some seasons providing a noise free environment for observing rare and new phenomena requiring better SNR to detect such changes, The VLF signals from the active seismic zones or other electro-geological sources would require high sensitivities of the system and suitable network of transmitting and receiv-ing stations designed for targeted data and applications. Some new results over Indian and other regions show evidences of earthquake related seismo-geological VLF emissions with the potential of being used as a prognostic tool, change in ozone and ion production in the night time middle atmosphere due to transit of stellar x-ray/γ ray sources. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 N will be mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of atomic oxygen O (3 P) and ionisation in the mesosphere due to solar/stellar UV/X/γrays. Use of future VLF techniques in terms of improving ground based observations, critical analysis of available satellite data in the context and real time moni-toring/modelling of earth's geosphere and space weather conditions will be considered for a possible programme of a developing country.

  7. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  8. The invisible universe the story of radio astronomy

    CERN Document Server

    Verschuur, Gerrit

    2015-01-01

    Hidden from human view, accessible only to sensitive receivers attached to huge radio telescopes, the invisible universe beyond our senses continues to fascinate and intrigue our imaginations. Closer to home, in the Milky Way galaxy, radio astronomers listen patiently to the ticking of pulsars that tell of star death and states of matter of awesome densities. All of this happens out there in the universe hidden from our eyes, even when aided by the Hubble Space Telescope. This is the story of radio astronomy, of how radio waves are generated by stars, supernova, quasars, colliding galaxies and by the very beginnings of the universe itself. The author discusses what radio astronomers are doing in the New Mexico desert, in a remote valley in Puerto Rico, and in the green Pocahontas Valley in West Virginia, as well as dozens of other remote sites around the world. With each of these observatories, the scientists collect and analyze their data, "listening" to the radio signals from space in order to learn what, ...

  9. Optical, infrared and radio astronomy from techniques to observation

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters summarize the state of the art of instrumentation and techniques.

  10. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    CERN Document Server

    Mena, Juan; Cliche, Jean-Francois; Dobbs, Matt; Gilbert, Adam; Tang, Qing Yang

    2013-01-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications

  11. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  12. Automating Radio Astronomy in the NASA Deep Space Network

    Science.gov (United States)

    Kuiper, T. B. H.; Leflang, J. G.; Trinh, T.

    1996-12-01

    Radio astronomy observations with the DSN are being automated to simplify operations for DSN personnel, enable remote directing and monitoring by investigators, allow the use of short blocks of antenna time, and use of unanticipated antenna availability on very short notice. The key elements of the system are the Equipment Activity Controller (EAC), which performs the same functions as a DSN operator's console but with additional capabilities, the Radio Astronomy Controller (RAC), which controls radio astronomy and other R&D equipment, and the PC Field System (PCFS), which controls the VLBI recorders. Normally, the EAC is client to both the RAC and the PCFS. The EAC graphical user interface (GUI) normally runs on the EAC, but need not, allowing for remote operation. Messages between the client and servers are Extended Tcl (TclX) commands and are passed using a simple TCP/IP protocol called Net Services. The Tcl command set has been augmented with Net Services commands. The EAC will accept commands from both the PCFS and RAC, enabling either of those to be the focus of the experiment, with the EAC acting effectively as a client providing access to DSN antennas and receivers. The design also allows a user developed program (e.g. a Tk script) on a remote computer (e.g. at JPL) to be the focus of the experiment. All communications and the DSN's operational network are secured through the use of hardware encryption units. This poster describes primarily the RAC and the design of its server software. Each connection to the server is assigned its own Tcl interpreter. All have access to specific commonly shared data. While only certain tasks can control resources, a large number of monitoring connections can be accepted. In addition, the server executes specific Tcl scripts at predefined intervals. These timed scripts can be edited in real-time for greater experiment flexibility.

  13. Large-N correlator systems for low frequency radio astronomy

    Science.gov (United States)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the

  14. Multi-band gravitational-wave astronomy: parameter estimation and tests of general relativity with space and ground-based detectors

    CERN Document Server

    Vitale, Salvatore

    2016-01-01

    With the discovery of the black hole binary (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the eLISA band a few years before they finally merge in the band of ground-based detectors. This would allow for pre-merger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBH are indeed luminous in the electromagnetic band. In this paper we explore a quite different aspect of multi-band GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBH and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA ...

  15. Radio Astronomy transformed: Aperture Arrays - Past, Present and Future

    CERN Document Server

    Garrett, M A

    2013-01-01

    Aperture Arrays have played a major role in radio astronomy since the field emerged from the results of long-distance communication tests performed by Karl Jansky in the early 1930's. The roots of this technology extend back beyond Marconi, although the first electronically scanned instrument only appeared in the run-up to World War II. After the war, phased arrays had a major impact in many walks of life, including astronomy and astrophysics. Major progress was made in understanding the nature of the radio sky, including the discovery of Pulsars. Despite these early successes, parabolic dishes largely replaced aperture arrays through the 1960's, and right up until the end of the 20th century. Technological advances in areas such as signal processing, digital electronics, low-power/high performance super-computing and large capacity data storage systems have recently led to a substantial revival in the use of aperture arrays - especially at frequencies below 300 MHz. Composed of simple antennas with commercia...

  16. Inter-Division IV-V-IX / Working Group Historic Radio Astronomy

    NARCIS (Netherlands)

    Orchiston, Wayne; Kellermann, Kenneth I.; Davies, Rodney D.; Débarbat, Suzanne V.; Morimoto, Masaki; Slysh, Slava; Swarup, Govind; van Woerden, Hugo; Wall, Jasper V.; Wielebinski, Richard

    2009-01-01

    The Working Group was formed at the IAU XXV General Assembly in Sydney, 2003, as a joint initiative of Commissions 40 Radio Astronomy and Commission 41 History of Astronomy, in order to assemble a master list of surviving historically-significant radio telescopes and associated instrumentation found

  17. Inter-Division IV-V-IX / Working Group Historic Radio Astronomy

    NARCIS (Netherlands)

    Orchiston, Wayne; Kellermann, Kenneth I.; Davies, Rodney D.; Débarbat, Suzanne V.; Morimoto, Masaki; Slysh, Slava; Swarup, Govind; van Woerden, Hugo; Wall, Jasper V.; Wielebinski, Richard

    2009-01-01

    The Working Group was formed at the IAU XXV General Assembly in Sydney, 2003, as a joint initiative of Commissions 40 Radio Astronomy and Commission 41 History of Astronomy, in order to assemble a master list of surviving historically-significant radio telescopes and associated instrumentation found

  18. The statistics of low frequency radio interference at the Murchison Radio-astronomy Observatory

    CERN Document Server

    Sokolowski, Marcin; Lewis, Morgan

    2016-01-01

    We characterize the low frequency radio-frequency interference (RFI) environment at the Murchison Radio-astronomy Observatory (MRO), the location selected for the low-frequency component of the Square Kilometre Array. Data were collected from the BIGHORNS instrument, located at the MRO, which records a contiguous bandwidth between 70 and 300 MHz, between November 2014 to March 2015 inclusive. The data were processed to identify RFI, and we describe a series of statistics in both the time and frequency domain, including modeling of the RFI occupancy and signal power as a series of distribution functions, with the goal of aiding future scientists and operation staff in observation planning.

  19. Section on Supernova remnants and cosmic rays of the White Paper on the Status and Future of Ground-based Gamma-ray Astronomy

    OpenAIRE

    Pohl, M.; Abdo, A.; Atoyan, A.; Baring, M.; Beacom, J; Blandford, R.; Butt, Y.; Bykov, A.; Ellison, D.; Funk, S.; Halzen, F; Hays, E; Humensky, B.; Jones, T; Kaaret, P.

    2008-01-01

    This is a report on the findings of the SNR/cosmic-ray working group for the white paper on the status and future of ground-based gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe shell-type supernova remnants and diffuse emission from cosmic rays at GeV-TeV energies. We concentrate on the potenti...

  20. DSP-Enabled Radio Astronomy: Towards IIIZW35 Reconquest

    Directory of Open Access Journals (Sweden)

    Alain Lecacheux

    2005-09-01

    Full Text Available In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio frequency interferences (RFI. The impact of these RFIs on power spectral measurement ranges from total saturation to subtle distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875 kHz to 14 MHz, high spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency blanking with a robust threshold detector. This receiver has been used to reobserve the IIIWZ35 astronomical source which has been scrambled by a strong satellite RFI for several years.

  1. RadioNet3 Study Group White Paper on: The Future Organisation and Coordination of Radio Astronomy in Europe

    CERN Document Server

    Garrett, M A; Garrington, S T; Klöckner, H-R; van Langevelde, H; Mantovani, F; Russel, A; Schuster, K; Vermeulen, R C; Zensus, A

    2016-01-01

    The QueSERA Study Group (QSG) have been tasked by the RadioNet Board to produce a White Paper on the future organisation and coordination of radio astronomy in Europe. This White Paper describes the options discussed by the QSG, and our conclusions on how to move forward. We propose, that as a first step, RadioNet-work, be established as an entity that persists between EC contracts, and that takes responsibility for preparing or coordinating responses to EC opportunities specific to the field of radio astronomy research infrastructures. RadioNet-work should provide a safety net that ensures that cooperation and collaboration between the various radio astronomy partners in Europe is maintained with or without EC funding.

  2. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  3. Alternative Adaptive Filter Structures for Improved Radio Frequency Interference Cancellation in Radio Astronomy

    CERN Document Server

    Mitchell, D A; Sault, R J

    2010-01-01

    In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal paths. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise,...

  4. Genetic programming applied to RFI mitigation in radio astronomy

    Science.gov (United States)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  5. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  6. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Jaegyu Jang

    2015-11-01

    Full Text Available The Ground-based Radio Navigation System (GRNS is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo. In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services SC (special committee-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP or fluctuations in the received signal quality.

  7. Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos

    CERN Document Server

    Avva, J; Chesebro, T; Cremonisi, L; Deaconu, C; Gupta, A; Ludwig, A; Messino, W; Miki, C; Nichol, R; Oberla, E; Romero-Wolf, A; Saltzberg, D; Schlupf, C; Shipp, N; Varner, G; Vieregg, A G; Wissel, S A

    2016-01-01

    A promising method for further measurements of high energy neutrinos at the PeV scale and above is through an in-ice radio interferometric phased array, designed to look for Askaryan emission from neutrinos interacting in large volumes of glacial ice. Such a detector would be sensitive to two populations of neutrinos: the PeV-scale astrophysical neutrino flux recently detected by IceCube, and the predicted cosmogenic ultra-high energy (UHE) flux ($E>10^{17}$ eV). Characterizing these high energy neutrino populations is an important step toward understanding the most energetic cosmic accelerators, and the discovery of UHE neutrinos would allow us to probe fundamental physics at energy scales that are not achievable on Earth. We report here on studies validating the phased array technique, including measurements and a simulation of thermal noise correlations between nearby antennas, beamforming for impulsive signals, and a measurement of the expected improvement in trigger efficiency through the phased array te...

  8. Remote Sensing of the Heliospheric Solar Wind using Radio Astronomy Methods and Numerical Simulations

    Indian Academy of Sciences (India)

    S. Ananthakrishnan

    2000-09-01

    The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, recurring high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME's). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.

  9. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    Science.gov (United States)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  10. Section on Supernova remnants and cosmic rays of the White Paper on the Status and Future of Ground-based Gamma-ray Astronomy

    CERN Document Server

    Pohl, M; Atoyan, A; Baring, M; Beacom, J; Blandford, R; Butt, Y; Bykov, A; Ellison, D; Funk, S; Halzen, F; Hays, E; Humensky, B; Jones, T; Kaaret, Philip; Kieda, D; Le Bohec, S; Mészáros, P; Moskalenko, I; Slane, P; Strong, A; Wakely, S

    2008-01-01

    This is a report on the findings of the SNR/cosmic-ray working group for the white paper on the status and future of ground-based gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe shell-type supernova remnants and diffuse emission from cosmic rays at GeV-TeV energies. We concentrate on the potential of future ground-based gamma-ray experiments to study the acceleration of relativistic charged particles which is one of the main unsolved, yet fundamental, problems in modern astrophysics. The acceleration of particles relies on interactions between energetic particles and magnetic turbulence. In the case of SNRs we can perform spatially resolved studies in systems with known geometry, and the plasma physics deduced from these observations will help us to understand other systems where rapid particle acceleration is b...

  11. H.E.S.S. and CTA, present and perspectives in ground-based gamma-ray astronomy

    Science.gov (United States)

    Sol, H.

    2016-12-01

    Very high energy (VHE) gamma-ray astronomy emerged as a new branch of astronomy about ten years ago with the major discoveries achieved by the High Energy Stereocopic System (H.E.S.S.) operating in Namibia, quickly followed by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands and the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in the USA. These experiments succeeded to start exploring the cosmos at TeV energies, with the present detection of 178 sources in this range, mostly pulsar wind nebulae, supernova remnants, binary systems, blazars, and a variety of other types of sources. Based on these promizing results, the scientific community soon defined a next generation global project with significantly improved performance, the Cherenkov Telescope Array (CTA), in order to implement an open observatory at extreme energies, allowing a deep analysis of the sky in the highest part of the electromagnetic spectrum, from 20 GeV to 300 TeV. The CTA preparation phase is now completed. Production of the first telescopes should start in 2017 for deployment in 2018, in the perspective of an array fully operational at the horizon 2022.

  12. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    Science.gov (United States)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These recent accomplishments represent new enabling technologies to meet the needs of numerous astronomical instrument concepts. COI will

  13. The structure of an Imaging Atmospheric Cherenkov Telescope with novel photon detectors for ground-based gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Koehne, Jan-Hendrik [TU, Dortmund (Germany); Collaboration: FACT-Collaboration

    2011-07-01

    Very high energy gamma-ray astronomy is a rapidly expanding field of research. Observations are nearly all carried out with so-called Imaging Atmospheric Cherenkov Telescopes all using Photomultipliers as light sensors up to now. A test telescope using Geiger-mode avalanche photodiodes (G-APD) for the first time is under construction. The former HEGRA CT3 telescope mount on the Canary island La Palma is being refurbished for the First G-APD Cherenkov Telescope (FACT). Here, we describe the mirror system, its detailed construction, focal length distribution, spectral reflectivity and point spread function for all hexagonal aluminum facets. In October 2010, the mirrors were pre-aligned on site using a laser alignment setup, and first tracking tests of the new drive system were conducted.

  14. Solar Radio Astronomy and Plasma Non-thermal Proccsscs in Solar Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YAN Yihua; TAN Baolin

    2011-01-01

    1. Introduction Solar radio astronomy is an important branch of solar physics, which deals with the radio emission from the solar atmosphere. In solar physics, one of the greatest challenges is to understand the energy storing in the hot atmospheric plasma above sunspots and its sudden releasing in eruptive processes, such as solar flares, eruptive filaments, and coronal mass ejections (CME). Intrinsically,

  15. Astrochemistry in The Age of Broadband Radio Astronomy

    Science.gov (United States)

    Corby, Joanna

    2016-05-01

    This dissertation explores the challenges and advancements introduced by the arrival of new-generation radio telescopes for understanding the physical and chemical structure of the Interstellar Medium (ISM). New-generation broadband radio instruments, and particularly broadband interferometers, provide the opportunity to obtain a comprehensive view of the coupled physical and chemical structure of the interstellar medium (ISM). This is required in order to transform the field of astrochemistry into a predictive science with diagnostic power for astronomy. However, significant challenges are posed by the new wealth of data, and in order to extract even a reasonable fraction of the capacity of these data sets, automated data handling is necessary. This work addresses the challenge with scripts written to perform automated spectral line fitting and semi-automated line identification in order to fully characterize broadband data sets. Besides providing scientific results from the spectral analysis, the spectral characterization is a required first step needed in order to interpret spatial distribution information. We test the performance of the scripts on spectral line data from 4 to 6 GHz and 30 to 50 GHz towards the most complex spectral line source in the Galaxy, namely the high mass star forming region Sagittarius B2 (Sgr B2).Additionally, the results of the automated line fitter are coupled with image data to constrain the physical and chemical conditions in gas located in Sgr B2(N). This material contains multiple exotic molecules of prebiotic relevance, and the gas conditions include moderate densities, warm temperatures, and a complex mechanical and radiative environment with shocks and turbulence as well as strong UV, X-ray, and cosmic ray irradiation. Finally, we utilize broadband single dish and interferometric data to explore the coupled physical and chemical structure of material in diffuse and translucent clouds located in the Galactic Center and disk

  16. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    Science.gov (United States)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  17. Multi-band gravitational wave astronomy: science with joint space- and ground-based observations of black hole binaries

    Science.gov (United States)

    Sesana, Alberto

    2017-05-01

    Soon after the observation of the first black hole binary (BHB) by advanced LIGO (aLIGO), GW150914, it was realised that such a massive system would have been observable in the milli-Hz (mHz) band few years prior to coalescence. Operating in the frequency range 0.1-100 mHz, the Laser Interferometer Space Antenna (LISA) can potentially detect up to thousands inspiralling BHBs, based on the coalescence rates inferred from the aLIGO first observing run (O1). The vast majority of them (those emitting at f 10 mHz however, several of them will sweep through the LISA band, eventually producing loud coalescences in the audio-band probed by aLIGO. This contribution reviews the scientific potential of these new class of LISA sources which, in the past few months, has been investigated in several contexts, including multi-messenger and multi-band gravitational wave astronomy, BHB astrophysics, tests of alternative theories of gravity and cosmography.

  18. The paraboloidal reflector antenna in radio astronomy and communication theory and practice

    CERN Document Server

    Baars, Jacob W M

    2007-01-01

    Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. The Paraboloidal Reflector Antenna in Radio Astronomy and Communication: Theory and Practice takes a practical approach to the characterization of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his/her own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers, and finally, graduate students in radio astronomy and communication technology.

  19. Early Dutch radio astronomy (1940-1970) : the people and the politics

    Science.gov (United States)

    Elbers, Astrid

    2015-12-01

    Radio astronomy was born during the Second World War. The early post-war radio astronomy group in the Netherlands was one of the most important radio astronomy groups in the world. There are several reasons for this. Firstly: Dutch radio astronomers were trained as (optical) astronomers, while in most countries engineers and physicists with a background in wartime radar research were the first radio 'astronomers'. This was because radio telescopes shared the technology of wartime radar installations. Because Dutch astronomers were not familiar with the new kind of instrumentation, they had to conclude strategic alliances with industrial partners such as Philips, the PTT and the KNMI. These alliances would offer much more than merely technical know-how, which means that the disadvantage would prove to be an advantage in the end. Secondly: astronomy was still a very small-scale undertaking in the early post-war period. Even so, ZWO was still a very small organisation. The fact that so few people were involved meant that the impact of a personal network could be enormous. Thirdly: the Dutch post-war context was remarkably favourable to science: it was considered to be a key factor in the rebuilding of the country.

  20. Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    CERN Document Server

    Rajan, Raj Thilak; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-01-01

    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and dis...

  1. A Sustainable approach to large ICT Science based infrastructures; the case for Radio Astronomy

    CERN Document Server

    Barbosa, Domingos; Boonstra, Albert-Jan; Aguiar, Rui; van Ardenne, Arnold; de Santander-Vela, Juande; Verdes-Montenegro, Lourdes

    2014-01-01

    Large sensor-based infrastructures for radio astronomy will be among the most intensive data-driven projects in the world, facing very high power demands. The geographically wide distribution of these infrastructures and their associated processing High Performance Computing (HPC) facilities require Green Information and Communications Technologies (ICT). A combination is needed of low power computing, efficient data storage, local data services, Smart Grid power management, and inclusion of Renewable Energies. Here we outline the major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science.

  2. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Science.gov (United States)

    2010-10-01

    ... radio astronomy, research and receiving installations. An applicant for digital operation of an existing Class A TV station or to change the facilities of an existing Class A TV or digital Class A TV station... interference to radio astronomy, research and receiving installations. 73.6027 Section...

  3. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    CERN Document Server

    Haverkorn, Marijke

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the ...

  4. Low frequency solar radio astronomy at the Indian Institute of Astrophysics (IIA)

    Science.gov (United States)

    Ramesh, R.

    IIA is presently involved in the expansion of its existing radioheliograph operating in the frequency 120-40 MHz at the Gauribidanur radio observatory located about 80 km north of Bangalore. Once completed, the expanded array will have an angular resolution of ≈ 1' at a typical frequency of 100 MHz. This paper describes the development of solar radio astronomy activities at IIA since 1952 when the first observations were carried out.

  5. Millimeter wavelength spectroscopy of trace atmospheric constituents from the Five College Radio Astronomy Observatory

    Science.gov (United States)

    Huguenin, G. R.; Irvine, W. M.

    1978-01-01

    The Five College Radio Astronomy Observatory system, located in western Massachusetts, is described. It is suggested that high sensitivity in the three-millimeter wavelength band facilitates detection and monitoring of a number of trace molecules in the earth's atmosphere as well as astonomical observation at radio wavelengths. Line formation and radiative transfer in the earth's atmosphere are discussed, and the receiver sensitivity is considered.

  6. DARIS : a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, M.J.; Rajan, R.T.; Wijnholds, M.; Arts, M.; Klooster, van 't K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  7. A low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, M.J.; Rajan, R.T.; Wijnholds, S.J.; Arts, M.; Klooster, van 't K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  8. The TF1 Radio Astronomy Working Group in the Andean ROAD: goals and challenges for 2025

    Science.gov (United States)

    Chaparro Molano, G.

    2017-07-01

    Since the creation of the Andean Regional Office of Astronomy for Development (OAD) of the International Astronomical Union, one of the main goals has been to foster a scientific culture of radio astronomy in countries of the central and northern Andes (Bolivia, Colombia, Ecuador, Perú, and Venezuela). For this reason, Andean ROAD Task Force 1 (Research and Education in Universities) created the Radio Astronomy Working Group to set a path along which collaborative endeavors can grow and yield scientific results. The first official meeting of the Working Group took place in Bogotá, Colombia during the 2nd Astronomá en los Andes Workshop (2015) where scientists actively developing projects in radio astronomy set goals for the near future, such as improving mobility for researchers and students, developing collaborations in related areas such as engineering and data science, and building transnational collaborations aiming at developing VLBI across the countries of the Andean ROAD and beyond. In this poster, I present current projects and associated research groups (ROAS - Perú, SiAMo - Colombia, Alfa-Orion UTP - Colombia, RAIG - Chile) and discuss goalposts and current challenges in the development of transnational radioastronomical projects. As a case study, I present the development and early astronomical results of the privately funded UECCI 4m Radio Telescope for 21 cm line observations in Bogotá, Colombia.

  9. Communicating astronomy in a small island state: The unique role of the Mauritius Radio Telescope

    Science.gov (United States)

    Saddul-Hauzaree, S.

    2008-06-01

    The Mauritius Radio Telescope (MRT) is a 2 km x 1 km T-shaped aperture synthesis array that can generate radio images of the southern sky at 151.6 MHz. The sky surveyed can be in the declination range of -70o to -10o. It is located at Bras d'Eau, northeast of Mauritius at latitude 20oS and longitude 60oE. The MRT is a joint project of the University of Mauritius, the Indian Institute of Astrophysics and the Raman Research Institute. One of the main objectives of the MRT is to generate public interest in astronomy. Thus, it is involved in a wide range of onsite outreach activities for young school children. More mature students visiting the telescope learn about sky observation with a radio telescope, get to explore some sets of data, interact with the scientific personnel, get the opportunity to have hands-on experience with image manipulation and can ask a lot of questions on astronomy. This poster gives an overview of the Mauritius Radio Telescope and the attempts of MRT ito communicate astronomy to students as a process and not just as a vast expanse of knowledge. The challenges and dilemmas faced by MRT in conveying astronomy to the general public in a small island state are investigated and presented.

  10. DARIS : a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, Marinus Jan; Rajan, R.T.; Rajan, Raj; Wijnholds, M.; Arts, M.; van 't Klooster, K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  11. A low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Bentum, Marinus Jan; Rajan, R.T.; Rajan, Raj; Wijnholds, S.J.; Arts, M.; van 't Klooster, K.; Beliën, F.

    2010-01-01

    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, sp

  12. Radio Astronomy Data Transfer and eVLBI using KAREN

    CERN Document Server

    Weston, Stuart; Gulyaev, Sergei

    2011-01-01

    Kiwi Advanced Research and Education Network (KAREN) has been used to transfer large volumes of radio astronomical data between the Radio Astronomical Observatory at Warkworth, New Zealand and various international organizations involved in joint projects and VLBI observations. Here we report on the current status of connectivity and on the results of testing different data transfer protocols. We investigate new UDP protocols such as 'tsunami' and UDT and demonstrate that the UDT protocol is more efficient than 'tsunami' and 'ftp'. We also report on the tests on direct data streaming from the radio telescope receiving system to the correlation centre without intermediate buffering or recording (real-time eVLBI).

  13. Multiphase turbulent interstellar medium: some recent results from radio astronomy

    CERN Document Server

    Roy, Nirupam

    2015-01-01

    The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at d...

  14. Radio Astronomy and eVLBI using KAREN

    CERN Document Server

    Weston, Stuart; Gulyaev, Sergei

    2010-01-01

    Kiwi Advanced Research and Education Network (KAREN) has been used to transfer large volumes of radio astronomical data between the AUT Radio Astronomical Observatory at Warkworth, New Zealand and the international organisations with which we are collaborating and conducting observations. Here we report on the current status of connectivity and on the results of testing different data transfer protocols. We investigate new UDP protocols such as "tsunami" and UDT and demonstrate that the UDT protocol is more efficient than "tsunami" and ftp. We report on our initial steps towards real-time eVLBI and the attempt to directly stream data from the radio telescope receiving system to the correlation centre without intermediate buffering/recording.

  15. A Decade of Developing Radio-Astronomy Instrumentation using CASPER Open-Source Technology

    CERN Document Server

    Hickish, Jack; Ali, Zaki; Buch, Kaushal D; Chaudhari, Sandeep C; Chen, Hong; Dexter, Matthew; Domagalski, Rachel Simone; Ford, John; Foster, Griffin; George, David; Greenberg, Joe; Greenhill, Lincoln; Isaacson, Adam; Jiang, Homin; Jones, Glenn; Kapp, Francois; Kriel, Henno; Lacasse, Rich; Lutomirski, Andrew; MacMahon, David; Manley, Jason; Martens, Andrew; McCullough, Randy; Muley, Mekhala V; New, Wesley; Parsons, Aaron; Price, Daniel C; Primiani, Rurik A; Ray, Jason; Siemion, Andrew; Van Tonder, Verees'e; Vertatschitsch, Laura; Wagner, Mark; Weintroub, Jonathan; Werthimer, Dan

    2016-01-01

    The Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) has been working for a decade to reduce the time and cost of designing, building and deploying new digital radio-astronomy instruments. Today, CASPER open-source technology powers over 45 scientific instruments worldwide, and is used by scientists and engineers at dozens of academic institutions. In this paper we catalog the current offerings of the CASPER collaboration, and instruments past and present built by CASPER users and developers. We describe the ongoing state of software development, as CASPER looks to support a broader range of programming environments and hardware and ensure compatibility with the latest vendor tools.

  16. The renaissance of radio astronomy: towards the Square Kilometre Array

    Science.gov (United States)

    Ferrari, C.

    2016-09-01

    In this paper, I will give a brief overview of the largest radio telescope in the world, the Square Kilometre Array (SKA). The history of this instrument, its development as a huge international project, as well as its main scientific goals, will be summarised. I will then focus on a particular science case by presenting how the first phase of the SKA (SKA1), whose observations are expected to start in the early 2020's, will change our radio view of the largest gravitationally bound structures of the Universe: galaxy clusters.

  17. Division X Working Group on Historic Radio Astronomy

    NARCIS (Netherlands)

    Orchiston, Wayne; Kellermann, Kenneth I.; Davies, Rodney D.; Débarbat, Suzanne V.; Morimoto, Masaki; Slysh, Slava; Swarup, Govind; van Woerden, Hugo; Wall, Jasper V.; Wielebinski, Richard

    During the Rio General Assembly we held the following meetings of the Working Group: a Business Meeting, a Science Meeting on “The Development of Aperture Synthesis Imaging in Radio Astronomy”, and a Science Meeting on “Recent Research”.

  18. Low Frequency Radio Astronomy Summary: A Festschrift For Bill Erickson

    Science.gov (United States)

    Clark, B. G.; Kassim, N. E.; Perez, M. R.

    2005-12-01

    The science and technological issues presented at this workshop in honor of Bill Erickson's 74th birthday, are certainly opening up a new window of astronomical observations at the low end of the radio frequency spectrum. We briefly review some of the contributions concentrating our comments on the topics of science, technology, and history.

  19. International Colloquium on Scattering and Scintillation in Radio Astronomy

    CERN Document Server

    Coles, W A; Rickett, B J; Bird, M K; Efimov, A I; Samoznaev, L N; Rudash, V K; Chashei, I V; Plettemeier, D; Spangler, S R; Tokarev, Y; Belov, Y; Boiko, G; Komrakov, G; Chau, J; Harmon, J; Sulzer, M; Kojima, M; Tokumaru, M; Fujiki, K; Janardhan, P; Jackson, B V; Hick, P P; Buffington, A; Olyak, M R; Fallows, R A; Nechaeva, M B; Gavrilenko, V G; Gorshenkov, Yu N; Alimov, V A; Molotov, I E; Pushkarev, A B; Shanks, R; Tuccari, G; Lotova, N A; Vladimirski, K V; Obridko, V N; Gubenko, V N; Andreev, V E; Stinebring, D R; Gwinn, C; Lovell, J E J; Jauncey, D L; Senkbeil, C; Shabala, S; Bignall, H E; MacQuart, J P; Kedziora-Chudczer, L; Smirnova, T V; Malofeev, V M; Malov, O I; Tyulbashev, S A; Jessner, A; Sieber, W; Wielebinski, R; Scattering and Scintillation in Radio Astronomy

    2006-01-01

    Topics of the Colloquium: a) Interplanetary scintillation b) Interstellar scintillation c) Modeling and physical origin of the interplanetary and the interstellar plasma turbulence d) Scintillation as a tool for investigation of radio sources e) Seeing through interplanetary and interstellar turbulent media Ppt-presentations are available on the Web-site: http://www.prao.ru/conf/Colloquium/main.html

  20. Bayesian estimation for ionospheric calibration in radio astronomy

    NARCIS (Netherlands)

    Van der Tol, S.

    2009-01-01

    Radio astronomical observations at low frequencies (< 250 MHz), can be severely distorted by fluctuations in electron density in the ionosphere. The free electrons cause a phase change of electromagnetic waves traveling through the ionosphere. This effect increases for lower frequencies. For this re

  1. Development of the radio astronomical method of cosmic particle detection for extremely high-energy cosmic ray physics and neutrino astronomy

    Directory of Open Access Journals (Sweden)

    Zheleznykh Igor

    2017-01-01

    Full Text Available The proposal to use ground based radio telescopes for detection of Askaryan radio pulses from particle cascades arising when extremely high-energy (EHE > 1020 eV cosmic rays (including neutrinos interact with the lunar regolith of multi gigaton mass was made at the end of 1980s in the framework of the Russian (Soviet DUMAND Program. During more than a quarter of century a number of lunar experiments were carried out mainly in the 1–3 GHz frequency range using the large radio telescopes of Australia, USA, Russia and other countries but these experiments only put upper limits to the EHE cosmic rays fluxes. For this reason, it would be of great interest to search for nanosecond radio pulses from the Moon in a wider interval of frequencies (including lower ones of 100–350 MHz with larger radio detectors – for example the giant radio telescope SKA (Square Kilometer Array which is constructed in Australia, New Zealand and South Africa. In this paper possibilities are discussed to use one of the most sensitive meter-wavelength (∼ 110 MHz Large Phased Array (LPA of 187 × 384 m2 and the wide field of view meter-wavelength array of the Pushchino Radio Astronomy Observatory as prototypes of low frequency radio detectors for lunar experiments. The new scheme for fast simulation of ultrahigh and extremely high-energy cascades in dense media is also suggested. This scheme will be used later for calculations of radio emission of cascades in the lunar regolith with energies up to 1020 eV and higher in the wide frequency band of 0.1− a few GHz.

  2. Development of the radio astronomical method of cosmic particle detection for extremely high-energy cosmic ray physics and neutrino astronomy

    Science.gov (United States)

    Zheleznykh, Igor; Dagkesamanskii, Rustam; Dedenko, Leonid; Dedenko, Grigorii

    2017-06-01

    The proposal to use ground based radio telescopes for detection of Askaryan radio pulses from particle cascades arising when extremely high-energy (EHE > 1020 eV) cosmic rays (including neutrinos) interact with the lunar regolith of multi gigaton mass was made at the end of 1980s in the framework of the Russian (Soviet) DUMAND Program. During more than a quarter of century a number of lunar experiments were carried out mainly in the 1-3 GHz frequency range using the large radio telescopes of Australia, USA, Russia and other countries but these experiments only put upper limits to the EHE cosmic rays fluxes. For this reason, it would be of great interest to search for nanosecond radio pulses from the Moon in a wider interval of frequencies (including lower ones of 100-350 MHz) with larger radio detectors - for example the giant radio telescope SKA (Square Kilometer Array) which is constructed in Australia, New Zealand and South Africa. In this paper possibilities are discussed to use one of the most sensitive meter-wavelength (˜ 110 MHz) Large Phased Array (LPA) of 187 × 384 m2 and the wide field of view meter-wavelength array of the Pushchino Radio Astronomy Observatory as prototypes of low frequency radio detectors for lunar experiments. The new scheme for fast simulation of ultrahigh and extremely high-energy cascades in dense media is also suggested. This scheme will be used later for calculations of radio emission of cascades in the lunar regolith with energies up to 1020 eV and higher in the wide frequency band of 0.1- a few GHz.

  3. Space-based aperture array for ultra-long wavelength radio astronomy

    Science.gov (United States)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the

  4. Radio-Occultation and Heavy Precipitation aboard the PAZ orbiter (ROHP-PAZ) and its Ground-Based campaign

    Science.gov (United States)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.

    2014-12-01

    For the first time ever, GNSS Radio Occultastion measurements will be taken at two polarizations, to exploit the potential capabilities of polarimetric radio occultation for detecting and quantifying heavy precipitation events and other de-polarizing atmospheric effects (e.g. cloud ice). We report the results on discriminating rain from a mountain top experiment set up to identify and understand the factors that affect the polarimetric RO signal by collecting heavy rain together with free-rain data.

  5. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  6. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    Science.gov (United States)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  7. The history of early low frequency radio astronomy in Australia. 2: Tasmania

    Science.gov (United States)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    Significant contributions to low frequency radio astronomy were made in the Australian state of Tasmania after the arrival of Grote Reber in 1954. Initially, Reber teamed with Graeme Ellis, who was then working with the Ionospheric Prediction Service, and they carried out observations as low as 0.52 MHz during the 1955 period of exceptionally low sunspot activity. In the early 1960s, Reber established a 2.085 MHz array in the southern central region of the State and used this to make the first map of the southern sky at this frequency. In addition, in the 1960s the University of Tasmania constructed several low frequency arrays near Hobart, including a 609m × 609m array designed for operation between about 2 MHz and 20 MHz. In this paper we present an overview of the history of low frequency radio astronomy in Tasmania.

  8. Application of Lossless Data Compression Techniques to Radio Astronomy Data flows

    CERN Document Server

    Natusch, Tim

    2014-01-01

    The modern practice of Radio Astronomy is characterized by extremes of data volume and rates, principally because of the direct relationship between the signal to noise ratio that can be achieved and the need to Nyquist sample the RF bandwidth necessary by way of support. The transport of these data flows is costly. By examining the statistical nature of typical data flows and applying well known techniques from the field of Information Theory the following work shows that lossless compression of typical radio astronomy data flows is in theory possible. The key parameter in determining the degree of compression possible is the standard deviation of the data. The practical application of compression could prove beneficial in reducing the costs of data transport and (arguably) storage for new generation instruments such as the Square Kilometer Array.

  9. Explosive and radio-selected Transients: Transient Astronomy with SKA and its Precursors

    CERN Document Server

    Chandra, Poonam; Arun, K G; Iyyani, Shabnam; Misra, Kuntal; Narasimha, D; Ray, Alak; Roy, Subhashis; Sutaria, Firoza

    2016-01-01

    With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of gamma ray bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity limited population versus intrinsically dim GRBs, they will also unravel the enigmatic po...

  10. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, G.M.; Ekstrom, P.A. (eds.)

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  11. First Radio Astronomy Examination of the Low-Frequency Broadband Active Antenna Subarray

    Directory of Open Access Journals (Sweden)

    A. A. Stanislavsky

    2014-01-01

    Full Text Available We present the 25-element active antenna array and its remote control in the framework of the GURT project, the Ukrainian Radio Telescope of a new age. To implement beamforming, the array is phased with the help of discrete cable delay lines in analog manner. The remote control of the array is carried out through the paired encoder and decoder that can transmit parallel data about antenna codes serially. The microcontroller provides the online interaction between personal computer and beamformers with the help of the encoder-decoder system through wires or wireless. The antenna pattern has been measured by radio astronomy methods.

  12. Scalable desktop visualisation of very large radio astronomy data cubes

    Science.gov (United States)

    Perkins, Simon; Questiaux, Jacques; Finniss, Stephen; Tyler, Robin; Blyth, Sarah; Kuttel, Michelle M.

    2014-07-01

    Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes - several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data. We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.

  13. Low-Power Architectures for Large Radio Astronomy Correlators

    Science.gov (United States)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  14. Distributed image reconstruction for very large arrays in radio astronomy

    CERN Document Server

    Ferrari, André; Flamary, Rémi; Richard, Cédric

    2015-01-01

    Current and future radio interferometric arrays such as LOFAR and SKA are characterized by a paradox. Their large number of receptors (up to millions) allow theoretically unprecedented high imaging resolution. In the same time, the ultra massive amounts of samples makes the data transfer and computational loads (correlation and calibration) order of magnitudes too high to allow any currently existing image reconstruction algorithm to achieve, or even approach, the theoretical resolution. We investigate here decentralized and distributed image reconstruction strategies which select, transfer and process only a fraction of the total data. The loss in MSE incurred by the proposed approach is evaluated theoretically and numerically on simple test cases.

  15. Low-Power Architectures for Large Radio Astronomy Correlators

    Science.gov (United States)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  16. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    Science.gov (United States)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  17. Accelerating Radio Astronomy Cross-Correlation with Graphics Processing Units

    CERN Document Server

    Clark, M A; Greenhill, L J

    2011-01-01

    We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from "Large-N" arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implementated efficiently on Nvidia's Fermi architecture, sustaining up to 79% of the peak single precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared to ASIC and FPGA implementations have the potential to greatly shorten the cycle of correlator development and deployment, for case...

  18. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    Science.gov (United States)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  19. Surface Accuracy and Pointing Error Prediction of a 32 m Diameter Class Radio Astronomy Telescope

    Science.gov (United States)

    Azankpo, Severin

    2017-03-01

    The African Very-long-baseline interferometry Network (AVN) is a joint project between South Africa and eight partner African countries aimed at establishing a VLBI (Very-Long-Baseline Interferometry) capable network of radio telescopes across the African continent. An existing structure that is earmarked for this project, is a 32 m diameter antenna located in Ghana that has become obsolete due to advances in telecommunication. The first phase of the conversion of this Ghana antenna into a radio astronomy telescope is to upgrade the antenna to observe at 5 GHz to 6.7 GHz frequency and then later to 18 GHz within a required performing tolerance. The surface and pointing accuracies for a radio telescope are much more stringent than that of a telecommunication antenna. The mechanical pointing accuracy of such telescopes is influenced by factors such as mechanical alignment, structural deformation, and servo drive train errors. The current research investigates the numerical simulation of the surface and pointing accuracies of the Ghana 32 m diameter radio astronomy telescope due to its structural deformation mainly influenced by gravity, wind and thermal loads.

  20. The road to OLFAR - a roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

    NARCIS (Netherlands)

    Engelen, Steven; Quillien, Kevin A.; Verhoeven, Chris; Noroozi, Arash; Sundaramoorthy, Prem; Veen, van der Alle-Jan; Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Meijerink, Arjan; Budianu, Alex

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope, compos

  1. The road to OLFAR - a roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

    NARCIS (Netherlands)

    Engelen, Steven; Quillien, Kevin A.; Verhoeven, Chris; Noroozi, Arash; Sundaramoorthy, Prem; van der Veen, Alle-Jan; Rajan, Raj; Rajan, Raj Thilak; Boonstra, Albert Jan; Bentum, Marinus Jan; Meijerink, Arjan; Budianu, A.

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope,

  2. The volatile composition of comets C 2009/P1 (Garradd) and C 2012/F6 (Lemmon) from ground-based radio observations

    Science.gov (United States)

    Gicquel, A.; Milam, S.; Cordiner, M.; Villanueva, G.; Charnley, S.; Coulson, I.; Remijan, A.; DiSanti, M. A.; Bonev, B. P.; Kuan, Y.-J.; Chuang, Y.-L.

    2013-09-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [1]. Comparing abundances and cosmogonic values (isotope and ortho:para (o/p) ratios) of cometary parent volatiles to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [2]. A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either the interstellar or nebular reservoirs. We report an analysis of ground-based radio observations towards comets C/2009 P1 (Garradd) and C/2012 F6 (Lemmon) to constrain the chemical history of these bodies.

  3. Tether enabled spacecraft systems for ultra long wavelength radio astronomy

    Science.gov (United States)

    Gemmer, Thomas; Yoder, Christopher D.; Reedy, Jacob; Mazzoleni, Andre P.

    2017-09-01

    This paper describes a proposed CubeSat mission to perform unique experiments involving interferometry and tether dynamics. A 3U CubeSat is to be placed in orbit where it will separate into three 1U CubeSats connected by a total of 100 m of tether. The separation between the three units will allow for the demonstration of high resolution radio interferometry. The increased resolution will provide access to the Ultra-Long Wavelength (ULW) scale of the electromagnetic spectrum, which is largely unexplored. During and after completion of the primary experiment, the CubeSat will be able to gather data on tethered dynamics of a space vehicle. Maneuvers to be performed and studied include direct testing of tether deployment and tethered formation flying. Tether deployment is a vital area where more data is needed as this is the phase where many tethered missions have experienced complications and failures. There are a large number of complex dynamical responses predicted by the theory associated with the deployment of an orbiting tethered system. Therefore, it is imperative to conduct an experiment that provides data on what dynamic responses actually occur.

  4. The Contribution of an Experimental WWII Radar Antenna to Australian Radio Astronomy

    Science.gov (United States)

    Orchiston, Wayne; Wendt, H.

    2011-01-01

    During the late 1940s and throughout the1950s Australia was one of the world's foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation's Division of Radiophysics. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division's short-lived Georges Heights field station but in 1948 was relocated to the new Potts Hill field station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, Galactic and extragalactic research programs that it was used for.

  5. High-Sensitivity Phased Arrays for Radio Astronomy and Satellite Communications

    Science.gov (United States)

    Diao, Junming

    Radio astronomy is used to study stars, galaxies, black holes and gas clouds radiation at radio frequencies. Detecting extremely weak signals from deep space radio sources requires high sensitive feed system associated with large dish antennas. The key figure of merit is survey speed, or the time required to map a region of the sky to a given source flux density. Survey speed is proportional to the frequency bandwidth, the field of view or observable region of the sky, and the squared sensitivity, where sensitivity is related to reflector aperture efficiency and system noise temperature. Compared to the traditional single feed, phased array feeds with significantly expanded field of view are considered as the next generation feed for radio telescope. This dissertation outlines the design, analysis and measurement of high sensitivity L-band and mm-wave phased array feeds for the 100-meter Green Bank Telescope. Theoretical works for radio astronomy includes design guideline for high sensitivity phased array feed, fundamental frequency bandwidth limit, array antenna loss influenced by mutual coupling and beamformer coefficients and possibility of superdirectivity for radio telescopes and other antennas. These study are helpful to understand and guide the design of a phased array feed system. In the absence of dish antennas, sparse phased arrays with aperiodic structure have been developed for satellite communications. A compromise between the peak side lobe level, array element density, directivity and design complexity is studied. We have found that the array peak side lobe level can be reduced by enhancing the array element direction at the main lobe direction, increasing the array element density and enlarging the array size. A Poynting streamline approach develops to understand the properties of a receiving antenna and the mutual coupling effects between array elements. This method has been successfully used to generate effective area shape for many types of

  6. Prototyping scalable digital signal processing systems for radio astronomy using dataflow models

    CERN Document Server

    Sane, Nimish; Harris, Andrew I; Bhattacharyya, Shuvra S

    2012-01-01

    There is a growing trend toward using high-level tools for design and implementation of radio astronomy digital signal processing (DSP) systems. Such tools, for example, those from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER), are usually platform-specific, and lack high-level, platform-independent, portable, scalable application specifications. This limits the designer's ability to experiment with designs at a high-level of abstraction and early in the development cycle. We address some of these issues using a model-based design approach employing dataflow models. We demonstrate this approach by applying it to the design of a tunable digital downconverter (TDD) used for narrow-bandwidth spectroscopy. Our design is targeted toward an FPGA platform, called the Interconnect Break-out Board (IBOB), that is available from the CASPER. We use the term TDD to refer to a digital downconverter for which the decmation factor and center frequency can be reconfigured without the nee...

  7. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    Science.gov (United States)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  8. DSN radio science system description and requirements. [for satellite radio astronomy experiments

    Science.gov (United States)

    Mulhall, B. D. L.

    1977-01-01

    The data system created to collect the functions performed by the Deep Space Network in support of spacecraft radio science experiments is described. Some of the major functional requirements presently being considered for the system are delineated.

  9. DSN radio science system description and requirements. [for satellite radio astronomy experiments

    Science.gov (United States)

    Mulhall, B. D. L.

    1977-01-01

    The data system created to collect the functions performed by the Deep Space Network in support of spacecraft radio science experiments is described. Some of the major functional requirements presently being considered for the system are delineated.

  10. Educational Programs for Graduate Level Learners and Professionals - National Radio Astronomy Observatory National and International Non-Traditional Exchange Program

    Science.gov (United States)

    Wingate, Lory Mitchell

    2017-01-01

    The National Radio Astronomy Observatory’s (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering to chosen participants within a nine-week program held at NRAO in New Mexico. Participants are typically graduate level students or professionals. Participation in the NINE Program is through a competitive process. The program includes a hands-on service project designed to increase the participants knowledge of radio astronomy. The approach demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal science results.The NINE teaches participants important sustainable skills associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners are expected to return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  11. Population density effect on radio frequencies interference (RFI) in radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  12. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT

    Science.gov (United States)

    Konovalenko, A.; Sodin, L.; Zakharenko, V.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Tokarsky, P.; Melnik, V.; Kalinichenko, N.; Stanislavsky, A.; Koliadin, V.; Shepelev, V.; Dorovskyy, V.; Ryabov, V.; Koval, A.; Bubnov, I.; Yerin, S.; Gridin, A.; Kulishenko, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Reznik, A.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Khristenko, A.; Shevchenko, V. V.; Shevchenko, V. A.; Belov, A.; Rudavin, E.; Vasylieva, I.; Miroshnichenko, A.; Vasilenko, N.; Olyak, M.; Mylostna, K.; Skoryk, A.; Shevtsova, A.; Plakhov, M.; Kravtsov, I.; Volvach, Y.; Lytvinenko, O.; Shevchuk, N.; Zhouk, I.; Bovkun, V.; Antonov, A.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshin, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.; Tagger, M.; Girard, J.; Charrier, D.; Briand, C.; Mann, G.

    2016-08-01

    The current status of the large decameter radio telescope UTR-2 (Ukrainian T-shaped Radio telescope) together with its VLBI system called URAN is described in detail. By modernization of these instruments through implementation of novel versatile analog and digital devices as well as new observation techniques, the observational capabilities of UTR-2 have been substantially enhanced. The total effective area of UTR-2 and URAN arrays reaches 200 000 m2, with 24 MHz observational bandwidth (within the 8-32 MHz frequency range), spectral and temporal resolutions down to 4 kHz and 0.5 msec in dynamic spectrum mode or virtually unlimited in waveform mode. Depending on the spectral and temporal resolutions and confusion effects, the sensitivity of UTR-2 varies from a few Jy to a few mJy, and the angular resolution ranges from ~ 30 arcminutes (with a single antenna array) to a few arcseconds (in VLBI mode). In the framework of national and international research projects conducted in recent years, many new results on Solar system objects, the Galaxy and Metagalaxy have been obtained. In order to extend the observation frequency range to 8-80 MHz and enlarge the dimensions of the UTR-2 array, a new instrument - GURT (Giant Ukrainian Radio Telescope) - is now under construction. The radio telescope systems described herein can be used in synergy with other existing low-frequency arrays such as LOFAR, LWA, NenuFAR, as well as provide ground-based support for space-based instruments.

  13. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Dagkesamanskii, Rustam D [Pushchino Radio Astronomy Observatory, Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2009-11-30

    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  14. The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI

    CERN Document Server

    Welch, Jack; Blitz, Leo; Bock, Douglas; Bower, Geoffrey C; Cheng, Calvin; Croft, Steve; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James; Gutierrez-Kraybill, Colby; Heiles, Carl; Helfer, Tamara; Jorgensen, Susanne; Keating, Garrett; Lugten, John; MacMahon, Dave; Milgrome, Oren; Thornton, Douglas; Urry, Lynn; van Leeuwen, Joeri; Werthimer, Dan; Williams, Peter H; Tarter, Melvin Wright Jill; Ackermann, Robert; Atkinson, Shannon; Backus, Peter; Barott, William; Bradford, Tucker; Davis, Michael; DeBoer, Dave; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Fleming, Seth Shostak Matt; Cork, Chris; Wadefalk, Artyom Vitouchkine Niklas; Weinreb, Sander

    2009-01-01

    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.

  15. Recollections of Tucson Operations The Millimeter-Wave Observatory of the National Radio Astronomy Observatory

    CERN Document Server

    Gordon, M A

    2005-01-01

    This book is a personal account of the evolution of millimeter-wave astronomy at the National Radio Astronomy Observatory. It begins with the construction of the hugely successful, but flawed, 36 ft radio telescope on Kitt Peak, Arizona, and continues through the funding of its ultimate successor, the Atacama Large Millimeter-wave Array (ALMA), being constructed on a 5.000 m (16.500 ft) site in northern Chile. The book describes the behind-the-scene activities of the NRAO Tucson staff. These include the identification and solution of technical problems, the scheduling and support of visiting astronomers, and the preparations and the politics of the proposal to replace the 36 ft telescope with a 25 m telescope on Mauna Kea, Hawaii. The book also describes the installation of a new 12 m surface and the involvement of the Tucson staff in the ALMA project. Finally, it describes events leading to the closing of the 36 ft telescope and, eventually, of the NRAO offices in Tucson.

  16. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    Science.gov (United States)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  17. Radio astronomy with the Lunar Lander: opening up the last unexplored frequency regime

    CERN Document Server

    Wolt, Marc Klein; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino

    2012-01-01

    The active broadband (1 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the moon, that are essential for future lunar human and science exploration. In addition, the lunar South pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the south (or north) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the big bang and into the period where the first stars formed. A detection of the 21 cm line from the moon at these frequencies would allow for the first time a clue ...

  18. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors

    Indian Academy of Sciences (India)

    Poonam Chandra; G. C. Anupama; K. G. Arun; Shabnam Iyyani; Kuntal Misra; D. Narasimha; Alak Ray; L. Resmi; Subhashis Roy; Firoza Sutaria

    2016-12-01

    With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well-suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity-limited population versus intrinsically dim GRBs, they will also unravel the enigmatic population of orphan afterglows. The supernova rate problem caused by dust extinction in optical bands is expected to be lifted in the SKA era. In addition, the debate of single degenerate scenario versus double degenerate scenario will be put to rest for the progenitors of thermonuclear supernovae, since highly sensitive measurements will lead to very accurate mass loss estimation in these supernovae. One also expects to detect gravitationally lensed supernovae in far away Universe in the SKA bands. Radio counterparts of the gravitational waves are likely to become a reality once SKA comes online. In addition, SKA is likely to discover various new kinds of transients.

  19. Unformatted Digital Fiber-Optic Data Transmission for Radio Astronomy Front-Ends

    CERN Document Server

    Morgan, Matthew A; Castro, Jason J

    2013-01-01

    We report on the development of a prototype integrated receiver front-end that combines all conversions from RF to baseband, from analog to digital, and from copper to fiber into one compact assembly, with the necessary gain and stability suitable for radio astronomy applications. The emphasis in this article is on a novel digital data link over optical fiber which requires no formatting in the front-end, greatly reducing the complexity, bulk, and power consumption of digital electronics inside the antenna, facilitating its integration with the analog components, and minimizing the self-generated radio-frequency interference (RFI) which could leak into the signal path. Management of the serial data link is performed entirely in the back-end based on the statistical properties of signals with a strong random noise component. In this way, the full benefits of precision and stability afforded by conventional digital data transmission are realized with far less overhead at the focal plane of a radio telescope.

  20. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia

    CERN Document Server

    Sutinjo, A T; Wayth, R B; Hall, P J; Acedo, E de Lera; Booler, T; Faulkner, A J; Feng, L; Hurley-Walker, N; Juswardy, B; Padhi, S K; Razavi-Ghods, N; Sokolowski, M; Tingay, S J; de Vaate, J G Bij

    2015-01-01

    We report characterization results for an engineering prototype of a next-generation low-frequency radio astronomy array. This prototype, which we refer to as the Aperture Array Verification System 0.5 (AAVS0.5), is a sparse pseudo-random array of 16 log-periodic antennas designed for 70-450 MHz. It is co-located with the Murchison Widefield Array (MWA) at the Murchison Radioastronomy Observatory (MRO) near the Australian Square Kilometre Array (SKA) core site. We characterize the AAVS0.5 using two methods: in-situ radio interferometry with astronomical sources and an engineering approach based on detailed full-wave simulation. In-situ measurement of the small prototype array is challenging due to the dominance of the Galactic noise and the relatively weaker calibration sources easily accessible in the southern sky. The MWA, with its 128 "tiles" and up to 3 km baselines, enabled in-situ measurement via radio interferometry. We present array sensitivity and beam pattern characterization results and compare to ...

  1. Astronomy

    CERN Document Server

    Seymour, Percy

    2014-01-01

    With a blend of exciting discoveries and important scientific theory,this innovative and readable introduction to astronomy is ideal for anyone who wants to understand what we know about the universe,and how we know it. Each chapter starts with details of a method of jow astronomers over time have observed the world,and then uses this as a springboard to discuss what they discovered,and why this was important for understanding the cosmos. The last chapter,on dark matter,also focuses on the many things we don''t yet know - reminding us that astronomy,like this book,is a fast-paced and fascinati

  2. Supermassive black hole binaries and transient radio events: studies in pulsar astronomy

    Science.gov (United States)

    Burke-Spolaor, S.

    2011-06-01

    The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state

  3. Ground-Based Gamma-Ray Astronomy at Energies Above 10 TeV: Searching for Galactic PeV Cosmic-Ray Accelerators

    CERN Document Server

    Rowell, G; Plyasheshnikov, A

    2005-01-01

    The origin of Galactic CRs up the knee energy remains unanswered and provides strong motivation for the study of gamma-ray sources at energies above 10 TeV. We discuss recent results from ground-based gamma-ray Cherenkov imaging systems at these energies as well as future observational efforts in this direction. The exciting results of H.E.S.S. give clues as to the nature of Galactic CR accelerators, and suggest that there is a population of Galactic gamma-ray sources with emission extending beyond 10 TeV. A dedicated system of Cherenkov imaging telescopes optimised for higher energies appears to be a promising way to study the multi-TeV gamma-ray sky.

  4. A 23 GHz high-temperature superconducting microstrip filter for radio astronomy

    Institute of Scientific and Technical Information of China (English)

    GAO Lu; GUO Jin; WANG YueHui; YU Tao; ZHANG Qiang; LI ChunGuang; ZHANG XueQiang; LI Hong; LI JunJie; LI WuXia; GU ChangZhi; MENG JiBao; FENG Ji; HE YuSheng

    2009-01-01

    This paper reports a 6-pole high-temperature superconducting (HTS) microstrip bandpass filter for radio astronomy applications. The filter has a center frequency of 23 GHz and a bandwidth the 2 GHz. We have made many efforts, such as adopting 0.25-mm-thick substrate, carefully designing the housing box and filter layout, to solve the problems in realizing a K-band planar filter. A special straight-line half-wavelength resonator (center-widen resonator) was also designed to reduce the insertion loss of the filter. The measured results showed a midband insertion loss of 0.11 dB with a ripple of 0.4 dB, and a return loss better than 11.5 dB. Good agreement was obtained between simulated and measured re-suits.

  5. Section on prospects for dark matter detection of the white paper on the status and future of ground-based TeV gamma-ray astronomy.

    Energy Technology Data Exchange (ETDEWEB)

    Byrum, K.; Horan, D.; Tait, T.; Wanger, R.; Zaharijas, G.; Buckley , J.; Baltz, E. A.; Bertone, G.; Dingus, B.; Fegan, S.; Ferrer, F.; Gondolo, P.; Hall, J.; Hooper, D.; Horan, D.; Koushiappas, S.; Krawczynksi, H.; LeBohec, S.; Pohl, M.; Profumo, S.; Silk , J; Vassilev, V.; Wood , M.; Wakely, S.; High Energy Physics; FNAL; Univ. of St. Louis; Stanford Univ.; Insti. d' Astrophysique; LANL; Univ. of California; Washington Univ.; Univ. of Utah; Brown Univ.; Oxford Univ.; Iowa State Univ.; Univ. of Chicago

    2009-05-13

    This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the characteristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.

  6. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    Science.gov (United States)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  7. Improvements to Host Country Radio Astronomy at Robledo: Another antenna, a new receiver, a new backend

    Science.gov (United States)

    Rizzo, J. R.; García-Miró, G.

    2013-05-01

    NASA hosts three complexes worldwide built for spacecraft tracking, whose sensitive antennas are suitable for radio astronomy. Since more than a decade, INTA has managed guaranteed Spanish time at the complex located in Robledo de Chavela, in the frame of the Host Country Radio Astronomy (HCRA) program. Until now, the vast majority of the scientific results were achieved using a K-band (18 to 26 GHz) receiver, attached to the 70m antenna, and a narrow-band autocorrelator. In the recent years, we have undertaken two large instrumental projects: (1) the incorporation of a second antenna (34m in diameter), working in Q-band (38 to 50 GHz); and (2) the design and construction of a wideband backend, which may operate with both the Q- and K-band receivers, providing instantaneous bandwidths from 100 MHz to 6 GHz, and resolutions from 6 to 200 kHz. The new wideband backend is expanding the HCRA possibilities due its bandwidth, versatility, spectral resolution and stability of the baselines. Its IF processor splits each of the two circular-polarization signals, and downconverts them to four base-band channels, 1.5 GHz width. Two different frequencies may be tuned independently. Digitalisation is done through FPGA-based FFT spectrometers, which may be independently configured. Once end-to-end assembled, the commissioning of the new backend was done using the 34m antenna in Q-band. We report the main characteristics of both the antenna recently incorporated to HCRA, and the wideband backend.

  8. Origins of Radio Astronomy at the Tata Institute of Fundamental Research and the role of J. L. Pawsey

    Science.gov (United States)

    Goss, W. M.

    I will discuss the interactions of a number of individuals that played major roles in the formation of radio astronomy in India in the period 1952-1962, particularly Dr. Joseph L. Pawsey. The story began in 1953-1954: Pawsey brought Govind Swarup to Australia as a Colombo Fellow in 1953, where he worked with Christiansen, Mills, Wild and Bolton. Later, Swarup went to Stanford where he completed a PhD with Ron Bracewell working on the new Solar Microwave Spectroheliograph. In the era 1960-1963, with the encouragement of Pawsey, several colleagues in Australia and Bracewell, discussions began among a number of Indian colleagues to form a radio astronomy group in India. The main players were G. Swarup, T.K. Menon, M.R. Kundu and T. Krishnan. Homi J. Bhabha, the Director of TIFR, made the decisive offer to this group to start a radio astronomy project in early 1962. Swarup joined TIFR in early April 1963. Many factors contributed to the successful formation of the new group: international networking among scientists of several generations, rapid decisions by Bhabha and the readiness to take chances in choosing promising, young, energetic scientists. In December 2013, we have celebrated 50 years of ground breaking research by the TIFR radio astronomers as well as the outstanding decade of research with the GMRT- the Giant Metrewave Radio Telescope. Govind Swarup has provided the inspiration and leadership for this remarkable achievement.

  9. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    Science.gov (United States)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned

  10. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    Science.gov (United States)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive

  11. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    Science.gov (United States)

    2007-07-01

    A new book published by the National Radio Astronomy Observatory (NRAO) tells the story of the founding and early years of the Observatory at Green Bank, West Virginia. But it was Fun: the first forty years of radio astronomy at Green Bank, is not a formal history, but rather a scrapbook of early memos, recollections, anecdotes and reports. But it was Fun... is liberally illustrated with archival photographs. It includes historical and scientific papers from symposia held in 1987 and 1995 to celebrate the birthdays of two of the radio telescopes at the Observatory. Book cover The National Radio Astronomy Observatory was formed in 1956 after the National Science Foundation decided to establish an observatory in the eastern United States for the study of faint radio signals from distant objects in the Universe. But it was Fun... reprints early memos from the group of scientists who searched the mountains for a suitable site -- an area free from radio transmitters and other sources of radio interference -- "in a valley surrounded by as many ranges of high mountains in as many directions as possible," which was "at least 50 miles distant from any city or other concentration of people." The committee settled on Green Bank, a small village in West Virginia, and the book documents the struggles that followed to create a world-class scientific facility in an isolated area more accustomed to cows than computers. Groundbreaking at the Observatory, then a patchwork of farms and fields, took place in October 1957, only a few days after the launch of Sputnik by the Soviet Union. A year later, Green Bank's first telescope was dedicated, and the book contains a transcription of speeches given at that ceremony, when the Cold War, the space race and America's scientific stature were issues of the hour. The centerpiece of the new Observatory was to be a highly-precise radio telescope 140 feet in diameter, but it was expected that it would soon be surpassed by dishes of much greater

  12. Origins of Radio Astronomy at the Tata Institute of Fundamental Research and the Role of J.L. Pawsey

    CERN Document Server

    Goss, W M

    2014-01-01

    I will discuss the interactions of a number of individuals that played major roles in the formation of radio astronomy in India in the period 1952-1962, particularly Dr. Joseph L. Pawsey. The story began in 1953-1954: Pawsey brought Govind Swarup to Australia as a Colombo Fellow in 1953, where he worked with Christiansen, Mills, Wild and Bolton. Later, Swarup went to Stanford where he completed a PhD with Ron Bracewell working on the new Solar Microwave Spectroheliograph. In the era 1960-1963, with the encouragement of Pawsey, several colleagues in Australia and Bracewell, discussions began among a number of Indian colleagues to form a radio astronomy group in India. The main players were G. Swarup, T.K. Menon, M.R. Kundu and T. Krishnan. Homi J. Bhabha, the Director of TIFR, made the decisive offer to this group to start a radio astronomy project in early 1962. Swarup joined TIFR in early April 1963. Many factors contributed to the successful formation of the new group: international networking among scienti...

  13. Encyclopedia of the History of Astronomy and Astrophysics

    Science.gov (United States)

    Leverington, David

    2013-06-01

    Preface; Part I. General Astronomy: 1. Ancient (pre-telescopy) astronomy; 2. Period overviews; 3. International Astronomical Union; Part II. The Solar System: 4. Overview - the Solar System; 5. Sun, Earth, and Moon; 6. Inner Solar System; 7. Giant planets; 8. Smaller objects; 9. Exoplanets; Part III. Stars: 10. Stars considered individually; 11. Stars considered as a group; 12. Types of stars; Part IV. Galaxies and Cosmology: 13. Milky Way; 14. Other galaxies and cosmology; Part V. General Astronomical Tools and Techniques (After 1600); Part VI. Optical Telescopes and Observatories: 15. Overview - optical telescopes and observatories; 16. Optical observatories; Part VII. Radio Telescopes, Observatories and Radar: 17. Overview - radio telescopes and observatories; 18. Early radio astronomy and observatories; 19. Later radio observatories; Part VIII. Other Ground-Based Observatories; Part IX. Solar System Exploration Spacecraft: 20. Overview - Solar System exploration spacecraft; 21. Individual Solar System spacecraft; Part X. Selected Observatory Spacecraft: 22. Overview - spacecraft observatories; 23. Individual spacecraft observatories; Name index; Subject index.

  14. Low input reflection cryogenic low noise amplifier for Radio Astronomy multipixel receivers

    Science.gov (United States)

    Amils, R. I.; Gallego, J. D.; Diez, C.; López Fernández, I.; Barcia, A.; Muñoz, S.; Sebastián, J. L.; Malo, I.

    2016-10-01

    The advancement of Radio Astronomy instruments pushes innovation in several fronts. Sensitivity aside, one way in which cryogenic receivers can be upgraded is by increasing the number of beams in single dish antennas, building what is commonly known as a Focal Plane Array (FPA). In this paper we present a novel reduced input reflection 4-12 GHz cryogenic Low Noise Amplifier (LNA) for the Intermediate Frequency (IF) of millimeter wave superheterodyne multipixel receivers with Superconductor-Insulator-Superconductor (SIS) mixers. The aim of this development is to reduce the input reflection of the amplifier to a level at which the bulky cryogenic isolators traditionally used in this type of receivers are no longer necessary and can be avoided. Ultimately this simplification would allow complying with the tight mass and volume restrictions imposed over FPAs. However, the improvement of the input reflection has a cost in terms of noise and gain performance. This effect is critically evaluated by comparing it with other alternative options built with devices of the same technology. The results show that this approach may have advantages in terms of sensitivity of the complete receiver.

  15. MULTI-MESSENGER ASTRONOMY OF GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA RADIO TRANSIENT SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Yancey, Cregg C.; Shawhan, Peter [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Bear, Brandon E.; Akukwe, Bernadine; Simonetti, John H.; Tsai, Jr-Wei [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Chen, Kevin [Department of Physics, The College of New Jersey, Ewing, NJ 08628 (United States); Dowell, Jayce; Obenberger, Kenneth; Taylor, Gregory B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, 87131 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, Bronx, NY 10468 (United States); Kanner, Jonah [LIGO-California Institute of Technology, Pasadena, California CA 91125 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2015-10-20

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.

  16. Design, Environmental and Sustainability Constraints of new African Observatories: The example of the Mozambique Radio Astronomy Observatory

    CERN Document Server

    Barbosa, Domingos; Ribeiro, Valerio A R M; Loots, Anita; Thondikulam, Venkatasubramani L; Gaylard, Michael; van Ardenne, Arnold; Colafrancesco, Sergio; Bergano, Miguel; Amador, Jose Carlos; Maia, Rodrigo; Melo, Rui

    2013-01-01

    The Mozambique Radio Astronomy Observatory (MRAO) will be a first milestone towards development of radioastronomy in Mozambique. Development of MRAO will constitute a preparation step towards participation in the upcoming Africa VLBI Network and the Square Kilometer Array project. The MRAO first antenna is planned to serve as a capacitation and training facility and will be installed after the conversion of a 7-meter telecom dish in South Africa. Therefore, this first radiotelescope design has to comply with local spectral and environmental constraints. Furthermore, power availability and long term sustainability with potential inclusion of solar power and control of Radio Frequency Interference are analyzed. Here we outline some of the design, environmental and power sustainability constraints.

  17. Dynamics of large-scale ionospheric inhomogeneities caused by a powerful radio emission of the Sura facility from the data collected onto ground-based GNSS network

    Science.gov (United States)

    Kogogin, D. A.; Nasyrov, I. A.; Grach, S. M.; Shindin, A. V.; Zagretdinov, R. V.

    2017-01-01

    The measurements of variations in the total electron content of the Earth's ionosphere along the GPS satellite signal propagation path are described. The signal parameters were measured at a network of receivers at three distant sites: Sura (Vasilsursk), Zelenodolsk, and Kazan. They are arranged along the geomagnetic latitude of the Sura Facility under short-wave radio irradiation of the ionosphere. One feature of the experiment is the crossing of a disturbed region by the radio path between a GPS satellite and Vasilsursk. This resulted from the angular sizes of the Sura array pattern; the radio paths between a GPS satellite and Zelenodolsk and a GPS satellite and Kazan did not cross. Variations in the total electron content of up to 0.15-0.3 TECU were revealed at all three sites during four experimental campaigns (March 2010, March 2013, May 2013, and November 2013). The lateral scale of an ionospheric disturbance stimulated by a high-power radio wave and the velocity of its west-to-east propagation along the geomagnetic latitude were 30-60 km and 270-350 m/s, respectively. A decrease in the total electron content (down to 0.55 TECU) was recorded along the Kazan-Zelenodolsk-Vasilsurks line, which is connected with the solar terminator transit; the lateral scale of the related ionospheric inhomogeneities was 65-80 km.

  18. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    Science.gov (United States)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  19. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    Science.gov (United States)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  20. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  1. Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

    Directory of Open Access Journals (Sweden)

    Radial Anwar

    2014-01-01

    Full Text Available Antenna is one of the important subsystem components in a radio telescope system. In this paper, analysis on the effect of parasitic element on 408 MHz antenna in a radio telescope system is presented. Higher gain up to 10.24 dBi with reduction on beamwidth size has been achieved by optimizing the position of parasitic element relative to the driven element. The proposed antenna is suitable to be utilized in a transient radio telescope array.

  2. Ammonia and other parent molecules in comet 10P/Tempel 2 from Herschel/HIFI and ground-based radio observations

    CERN Document Server

    Biver, N; Bockelée-Morvan, D; Szutowicz, S; Lis, D C; Hartogh, P; de Val-Borro, M; Moreno, R; Boissier, J; Kidger, M; Küppers, M; Paubert, G; Russo, N Dello; Vervack, R; Weaver, H

    2012-01-01

    The Jupiter-family comet 10P/Tempel 2 was observed during its 2010 return with the Herschel Space Observatory. We present here the observation of the (J, K) = (1, 0)-(0, 0) transition of ammonia at 572 GHz in this comet with the Heterodyne Instrument for the Far Infrared (HIFI) of Herschel. We also report on radio observations of other molecules (HCN, CH3OH, H2S and CS) obtained during the 1999 return of the comet with the CSO telescope and the JCMT, and during its 2010 return with the IRAM 30-m telescope. Molecular abundances relative to water are 0.09%, 1.8%, 0.4%, and 0.08% for HCN, CH3OH, H2S, and CS, respectively. An abundance of 0.5% for NH3 is obtained, which is similar to the values measured in other comets. The hyperfine structure of the ammonia line is resolved for the first time in an astronomical source. Strong anisotropy in the outgassing is present in all observations from 1999 to 2010 and is modelled to derive the production rates.

  3. The wideband backend at the MDSCC in Robledo. A new facility for radio astronomy at Q- and K- bands

    CERN Document Server

    Rizzo, J R; Gutiérrez, M; Sotuela, I; Larrañaga, J R; Ojalvo, L; Franco, M; Cernicharo, J; Miró, C García; Cerón, J M Castro; Kuiper, T B H; Vázquez, M; Calvo, J; Baquero, A

    2012-01-01

    The antennas of NASA's Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela are available as single-dish radio astronomical facilities during a significant percentage of their operational time. Current instrumentation includes two antennas of 70 and 34 m in diameter, equipped with dual-polarization receivers in K (18 - 26 GHz) and Q (38 - 50 GHz) bands, respectively. We have developed and built a new wideband backend for the Robledo antennas, with the objectives (1) to optimize the available time and enhance the efficiency of radio astronomy in MDSCC; and (2) to tackle new scientific cases impossible to that were investigated with the old, narrow-band autocorrelator. The backend consists of an IF processor, a FFT spectrometer (FFTS), and the software that interfaces and manages the events among the observing program, antenna control, the IF processor, the FFTS operation, and data recording. The whole system was end-to-end assembled in August 2011, at the start of commissioning activities, an...

  4. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  5. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    Science.gov (United States)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  6. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    Science.gov (United States)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  7. The application of compressive sampling to radio astronomy II: Faraday rotation measure synthesis

    CERN Document Server

    Li, Feng; Cornwell, Tim J; de Hoog, Frank

    2011-01-01

    Faraday rotation measure (RM) synthesis is an important tool to study and analyze galactic and extra-galactic magnetic fields. Since there is a Fourier relation between the Faraday dispersion function and the polarized radio emission, full reconstruction of the dispersion function requires knowledge of the polarized radio emission at both positive and negative square wavelengths $\\lambda^2$. However, one can only make observations for $\\lambda^2 > 0$. Furthermore observations are possible only for a limited range of wavelengths. Thus reconstructing the Faraday dispersion function from these limited measurements is ill-conditioned. In this paper, we propose three new reconstruction algorithms for RM synthesis based upon compressive sensing/sampling (CS). These algorithms are designed to be appropriate for Faraday thin sources only, thick sources only, and mixed sources respectively. Both visual and numerical results show that the new RM synthesis methods provide superior reconstructions of both magnitude and p...

  8. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    Science.gov (United States)

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  9. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    CERN Document Server

    Junklewitz, H; Selig, M; Enßlin, T A

    2013-01-01

    We present RESOLVE, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. RESOLVE not only estimates the measured sky brightness in total intensity, but also its spatial correlation structure, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. For a radio interferometer, it succeeds in deconvolving the effects of the instrumental point spread function during this process. Additionally, RESOLVE provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with RESOLVE we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Mu...

  10. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    Science.gov (United States)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  11. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy

    Science.gov (United States)

    Gawande, R.; Bradley, R.; Langston, G.

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  12. Radio Astronomy Demonstrator: Assessment of the Appropriate Sites through a GIS Open Source Application

    Directory of Open Access Journals (Sweden)

    Lia Duarte

    2016-11-01

    Full Text Available In the framework of Portuguese radio astronomical capacitation towards participation in the Square Kilometer Array (SKA project, a site was selected for radio astronomical testing purposes and the development of a radio astronomical infrastructure. The site is within Herdade da Contenda (HC, a large national forest perimeter, located in Alentejo (Portugal. In order to minimize the impacts in the ecosystem and landscape, an application based on the Geographic Information System (GIS open source environment was created, the HC Environmental Integrated Management System. This application combines several functionalities and menus with different characterization methods allowing the creation of multiple maps regarding the HC characteristics, such as Digital Elevation Model (DEM, Land Use Land Cover (LULC, Normalized Difference Vegetation Index (NDVI, groundwater vulnerability, erosion risk, flood risk and forest fire risk. Other geographical information can be added if necessary (human heritage visualization and fauna and flora. A decision making support tool was also developed. It incorporates an algorithm running through a series of assigned weights and eliminatory factors to find the locations best suited for the infrastructure with minimal impact to the local ecosystem. In order to test the application and the decision making tool, several maps were used as input in order to decide which sites are more adequate. The application developed can be adopted for other protected or natural areas.

  13. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground-based

  14. Application of Field System-FS9 and a PC to Antenna Control Unit interface in Radio Astronomy in Peru

    Science.gov (United States)

    Vidal, E. V. S.; Ishitsuka, J. I. I.; Koyama, K. Y.

    2006-08-01

    We are in the process to transform a 32m antenna in Peru, used for telecommunications, into a Radio Telescope to perform Radio Astronomy in Peru. The 32m antenna of Peru constructed by NEC was used for telecommunications with communications satellites at 6 GHz for transmission, and 4 GHz for reception. In collaboration of National Institute of Information and Communications Technology (NICT) Japan, and National Observatory of Japan we developed an Antenna Control System for the 32m antenna in Peru. It is based on the Field System FS9, software released by NASA for VLBI station, and an interface to link PC within FS9 software (PC-FS9) and Antenna Control Unit (ACU) of the 32 meters antenna. The PC-FS9 controls the antenna, commands are translated by interface into control signals compatibles with the ACU using: an I/O digital card with two 20bits ports to read azimuth and elevation angles, one 16bits port for reading status of ACU, one 24bits port to send pulses to start or stop operations of antenna, two channels are analogic outputs to drive the azimuth and elevation motors of the antenna, a LCD display to show the status of interface and error messages, and one serial port for communications with PC-FS9,. The first experiment of the control system was made with 11m parabolic antenna of Kashima Space Research Center (NICT), where we tested the right working of the routines implemented for de FS9 software, and simulations was made with looped data between output and input of the interface, both test were done successfully. With this scientific instrument we will be able to contribute with researching of astrophysics. We expect to into a near future to work at 6.7GHz to study Methanol masers, and higher frequencies with some improvements of the surface of the dish.

  15. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  16. Controller-area-network bus control and monitor system for a radio astronomy interferometer.

    Science.gov (United States)

    Woody, David P; Wiitala, Bradley; Scott, Stephen L; Lamb, James W; Lawrence, Ronald P; Giovanine, Curt; Fredsti, Sancar J; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H; Cartwright, John K; Gutierrez-Kraybill, Colby; Bolatto, Alberto D; Muchovej, Stephen J C

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data.

  17. Optimization of Positioning of Interferometric Array Antennas Using Division Algorithm for Radio Astronomy Applications

    Science.gov (United States)

    Kiehbadroudinezhad, Shahideh; Valente, Daniela; Cada, Michael; Kamariah Noordin, Nor; Shahabi, Adib

    2017-10-01

    The Square Kilometre Array (SKA) ushers in the new generation of large radio telescopes that will work at wavelengths between meters and centimeters. In order to competitively design interferometric antenna arrays such as SKA, it is crucial to focus on the optimization of system performance. In this paper, we contribute to the solution by introducing a new optimization algorithm called Division Algorithm (DA). This algorithm finds the optimal positions of antennas to simultaneously maximize u–v coverage and decrease sidelobe level (SLL). The DA is able to optimize the configuration of the interferometric array in both snapshot and Earth rotation synthesis observations. To demonstrate its efficiency, the DA is applied to configure an optimum 30-element array for the Giant Metrewave Radio Telescope. The proposed algorithm is able to improve the overlapped samples parameter by about 4% and the unsampled cells parameter by about 12%, at snapshot observation, compared to the Genetic Algorithm (GA). DA is able to improve these two parameters for a 6-hr tracking observation as well. Finally, the proposed algorithm is compared with the GA for different source declination. Results show that the DA is able to decrease the SLL better than the GA.

  18. ICE-based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    CERN Document Server

    Bandura, Kevin; Dobbs, Matt; Gilbert, Adam; Ittah, David; Parra, Juan Mena; Smecher, Graeme

    2016-01-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2048 digitizer inputs across 400~MHz of bandwidth. Measured in $N^2~\\times $ bandwidth, it is the largest radio correlator that has been built. Its digital back-end must exchange and reorganize the 6.6~terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256-node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. `corner-turn'). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct,...

  19. Future of Space Astronomy: A Global Road Map for the Next Decades

    Science.gov (United States)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  20. Highlighting the history of Japanese radio astronomy. 4: early solar research in Osaka

    Science.gov (United States)

    Orchiston, Wayne; Nakamura, Tsuko; Ishiguro, Masato

    2016-12-01

    For about two years, from late 1949, Minoru Oda and Tatsuo Takakura carried out solar observations from Osaka, initially with a hand-made horn and later with a small parabolic antenna connected to a 3.3 GHz receiver, but they only published one short paper on this work. At about the same time, Ojio and others at Osaka City University presented the concept of a solar grating array at a meeting of the Japan Physical Society, but this was never built. In this paper, we provide brief biographical accounts of Oda and Takakura before examining their radio telescopes and the observations that they made. We also briefly discuss the proposed Japanese solar grating array.

  1. Interactive Lab to Learn Radio Astronomy, Microwave & Antenna Engineering at the Technical University of Cartagena (Spain

    Directory of Open Access Journals (Sweden)

    Fernando Daniel Quesada-Pereira

    2011-02-01

    Full Text Available An initiative carried out at the Technical University of Cartagena (UPCT, Spain to encourage students and promote the interest for Scientific and Engineering Culture between society is presented in this contribution. For this purpose, a long-term project based on the set-up of an interactive laboratory surrounding a small Radio Telescope (SRT system has been carried out. The main novelty is that this project is entirely being developed by students of last courses of our Telecommunication Engineering Faculty, under the supervision of four lecturers. This lab offers the possibility to remotely control the SRT, and it provides a set of multimedia web-based applications to produce a novel, practical, multidisciplinary virtual laboratory to improve the learning and teaching processes in related sciences and technologies.

  2. fastRESOLVE: fast Bayesian imaging for aperture synthesis in radio astronomy

    CERN Document Server

    Greiner, Maksim; Junklewitz, Henrik; Enßlin, Torsten A

    2016-01-01

    The standard imaging algorithm for interferometric radio data, CLEAN, is optimal for point source observations, but suboptimal for diffuse emission. Recently, RESOLVE, a new Bayesian algorithm has been developed, which is ideal for extended source imaging. Unfortunately, RESOLVE is computationally very expensive. In this paper we present fastRESOLVE, a modification of RESOLVE based on an approximation of the interferometric likelihood that allows us to avoid expensive gridding routines and consequently gain a factor of roughly 100 in computation time. Furthermore, we include a Bayesian estimation of the measurement uncertainty of the visibilities into the imaging, a procedure not applied in aperture synthesis before. The algorithm requires little to no user input compared to the standard method CLEAN while being superior for extended and faint emission. We apply the algorithm to VLA data of Abell 2199 and show that it resolves more detailed structures.

  3. Radio Astronomy Data Model for Single-Dish Multiple-Feed Telescopes, and Robledo Archive Architecture

    CERN Document Server

    Santander-Vela, J D; Gómez, J F; Verdes-Montenegro, L; Leon, S; Gutíerrez, R; Rodrigo, C; Morata, O; Solano, E; Suárez, O

    2008-01-01

    All the effort that the astrophysical community has put into the development of the Virtual Observatory (VO) has surpassed the non-return point: the VO is a reality today, and an initiative that will self-sustain, and to which all archival projects must adhere. We have started the design of the scientific archive for the DSS-63 70-m antenna at NASA's DSN station in Robledo de Chavela (Madrid). Here we show how we can use all VO proposed data models to build a VO-compliant single-dish, multiple-feed, radio astronomical archive data model (RADAMS) suitable for the archival needs of the antenna. We also propose an exhaustive list of Universal Content Descriptors (UCDs) and FITS keywords for all relevant metadata. We will further refine this data model with the experience that we will gain from that implementation.

  4. Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications

    CERN Document Server

    Salvini, Stefano

    2014-01-01

    Context. Modern radio astronomical arrays have (or will have) more than one order of magnitude more receivers than classical synthesis arrays, such as the VLA and the WSRT. This makes gain calibration a computationally demanding task. Several alternating direction implicit (ADI) approaches have therefore been proposed that reduce numerical complexity for this task from $\\mathcal{O}(P^3)$ to $\\mathcal{O}(P^2)$, where $P$ is the number of receive paths to be calibrated. Aims. We present an ADI method, show that it converges to the optimal solution, and assess its numerical, computational and statistical performance. We also discuss its suitability for application in self-calibration and report on its successful application in LOFAR standard pipelines. Methods. Convergence is proved by rigorous mathematical analysis using a contraction mapping. Its numerical, algorithmic, and statistical performance, as well as its suitability for application in self-calibration, are assessed using simulations. Results. Our simu...

  5. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  6. Solution uniquity of an inverse VLF problem: A case-study of the polar, ground-based, VLF radio signal disturbances caused by the ultra-energetic relativistic electron precipitations and of their southern boundaries

    Science.gov (United States)

    Remenets, G. F.; Astafiev, A. M.

    2016-09-01

    Here we present the results of a case study of the rare, abnormal, qualitatively specific behavior of Aldra (northern Norway) and GBR (UK) VLF transmitter signals (10-16 kHz) received at Kola Peninsula. The abnormal amplitude and the phase disturbances of signals were used as a proxy for ultra-energetic relativistic (solar?) electron precipitation (URE, ∼100 MeV) into the middle polar atmosphere. The disturbances have been observed under quiet or moderately disturbed geomagnetic activity. Based on bearing results, it was established that the abnormal variations of the electric conductivity of ionized middle atmosphere (of a sporadic Ds layer under the regular ionosphere D layer) were characterized by the following: (i) the time function of height h(t) of an effective spherical waveguide between the Earth surface and the sporadic Ds layer shows a minimum value equal to ∼30 km and (ii) the reflection coefficient R(t) of radio wave with a grazing angle of incidence from a virtual boundary with height h(t) has a minimum value equal to ∼0.4. The southern boundaries of the ultra-energetic relativistic electron precipitations have been found as well. They turned out to be not southerly than 61 degree of magnetic latitude and similar to the ones obtained in our previous study of the events for other dates under the similar geophysical conditions although we do not know anything definite about the rigidity and density of the electron fluxes. A used calculation method of analysis is based on a necessary condition that a number n of input data should be greater than a number m of output parameter-functions. We have stated by numerical testing that a decrease of n from 6 to 4 generates a lack of uniqueness of an inverse VLF problem solution for m = 2. It is important for future VLF ground-based monitoring of the URE precipitation events.

  7. Digital Signal Processing using Stream High Performance Computing: A 512-input Broadband Correlator for Radio Astronomy

    CERN Document Server

    Kocz, J; Barsdell, B R; Price, D; Bernardi, G; Bourke, S; Clark, M A; Craig, J; Dexter, M; Dowell, J; Eftekhari, T; Ellingson, S; Hallinan, G; Hartman, J; Jameson, A; MacMahon, D; Taylor, G; Schinzel, F; Werthimer, D

    2014-01-01

    A "large-N" correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a ~100MHz baseband and processes signals from 512 antennas (256 dual polarization) over a ~58MHz instantaneous sub-band, achieving 16.8Tops/s and 0.236 Tbit/s throughput in a 9kW envelope and single rack footprint. The output data rate is 260MB/s for 9 second time averaging of cross-power and 1 second averaging of total-power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlator's comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneo...

  8. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    CERN Document Server

    D'Addario, Larry R

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. For $N$ antennas, the cost and power consumption of cross-correlation are proportional to $N^2$ and dominate at sufficiently large $N$. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals ($N$=32 antennas with 2 opposite-polarization signals per antenna). When $N$ is larger, the input data are buffered in an on-chip memory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulat...

  9. WSClean: an implementation of a fast, generic wide-field imager for radio astronomy

    CERN Document Server

    Offringa, A R; Hurley-Walker, N; Briggs, F H; Wayth, R B; Kaplan, D L; Bell, M E; Feng, L; Neben, A R; Hughes, J D; Rhee, J; Murphy, T; Bhat, N D R; Bernardi, G; Bowman, J D; Cappallo, R J; Corey, B E; Deshpande, A A; Emrich, D; Ewall-Wice, A; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hindson, L; Johnston-Hollitt, M; Jacobs, D C; Kasper, J C; Kratzenberg, E; Lenc, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Kudryavtseva, N; Oberoi, D; Ord, S M; Pindor, B; Procopio, P; Prabu, T; Riding, J; Roshi, D A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2014-01-01

    Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that...

  10. Peta-Flop Real Time Radio Astronomy Signal Processing Instrumentation and the CASPER Collaboration

    Science.gov (United States)

    Werthimer, Dan

    2014-04-01

    I will briefly describe next generation radio telescopes, such as HERA and the Square Kilometer Array (SKA), which will require 1E15 to 1E17 operations per second of real time processing. I'll present some of the new architectures we've used to develop a variety of heterogeneous FPGA-GPU-CPU based signal processing systems for such telescopes, including spectrometers, correlators, and beam formers. I will also describe the CASPER collaboration, which has developed architectures, open source programming tools, libraries and reference designs that make it relatively easy to develop a variety of scalable, upgradeable, fault tolerant, low power, real time digital signal processing instrumentation. CASPER utilizes commercial 10Gbit and 40 Gbit ethernet switches to interconnect open source general purpose field programmable gate array (FPGA) boards with GPUs and software modules. CASPER collaborators at hundreds of universities, government labs and observatories have used these techniques to rapidly develop and deploy a variety of correlators, beamformers, spectrometers, pulsar/transient machines, and VLBI instrumentation. CASPER instrumentation is also utilized in physics, medicine, genomics and engineering. Open source source hardware, software, libraries, tools, tutorials, reference designs, information about workshops, and how to join the collaboration are available at http://casper.berkeley.edu

  11. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    Science.gov (United States)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  12. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    Science.gov (United States)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it

  13. Society News: Monica Grady awarded CBE; Grubb Parsons Lecture 2012; Join the RAS; Astronomy on radio for kids; New Fellows; Peter D Hingley

    Science.gov (United States)

    2012-08-01

    RAS Fellow Prof. Monica Grady has been made a Commander of the Most Excellent Order of the British Empire (CBE), in recognition of her services to space science. The RAS sponsors the annual Grubb Parsons Lecture, which this year took place on 6 June at the University of Durham. If you are a professional astronomer, geophysicist, or similar, a student studying these disciplines, or simply someone with a serious interest in them, we urge you to apply for membership of the RAS. Outreach is an important activity for the RAS. We recently supported an astronomy series called Deep Space High on the digital radio channel Fun Kids.

  14. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  15. OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM.

    Science.gov (United States)

    EXTRATERRESTRIAL RADIO WAVES), (* PLANETS , STARS, VENUS( PLANET ), MARS( PLANET ), MERCURY ( PLANET ), PLANETARY ATMOSPHERES, GALAXIES, ASTROPHYSICS, TEMPERATURE, MEASUREMENT, MICROWAVE FREQUENCY, ASTRONOMY, RADIO ASTRONOMY.

  16. Deconvolution of images in centimeter-band radio astronomy for the exploitation of new radio interferometers: characterization of non thermal components in galaxy clusters

    Science.gov (United States)

    Dabbech, A.

    2015-04-01

    Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.

  17. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  18. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  19. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    Science.gov (United States)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-02-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  20. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    Science.gov (United States)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  1. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy

    Science.gov (United States)

    Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; Morsiani, M.; Natale, V.; Nesti, R.; Panella, D.; Poloni, M.; Roda, J.; Scalambra, A.; Tofani, G.

    2010-08-01

    A large-bandwidth, state-of-the-art multi-feed receiver has been constructed to be used on the new 64 m Sardinia Radio Telescope (SRT) (http://www.srt.inaf.itl), an antenna aiming to work from 300 MHz to 100 GHz with an almost continuous frequency coverage. The goal of this new receiver is to speed up the survey of the sky with high sensitivity in a frequency band that is very interesting to radio astronomers. In the meantime, the antenna erection has been finalized, and the receiver has been mounted on the Medicina 32 m antenna to be tested (http://www.med.ira.inaf.itl). We present a complete description of the system, including a dedicated backend, and the results of the tests.

  2. Elementary astronomy

    Science.gov (United States)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  3. Comparison of Site Velocities Derived from Collocated GPS, VLBI and SLR Techniques at The Hartebeesthoek Radio Astronomy Observatory (Comparison of Site Velocities

    Directory of Open Access Journals (Sweden)

    Munghemezulu C.

    2014-04-01

    Full Text Available Space geodetic techniques provide highly accurate methods for estimating bedrock stability at subcentimetre level. We utilize data derived from Satellite Laser Ranging (SLR, Very Long Baseline Interferometry (VLBI and Global Positioning Systems (GPS techniques, collocated at the Hartebeesthoek Radio Astronomy Observatory, to characterise local plate motion and compare the solutions from the three techniques. Data from the GNSS station were processed using the GAMIT/GLOBK (version 10.4 software, data from the SLR station (MOBLAS-6were processed using the Satellite Laser Ranging Data Analysis Software (SDAS and the VLBI data sets were processed using the Vienna VLBI Software (VieVS software. Results show that there is a good agreement between horizontal and vertical velocity components with a maximum deviation of 1.7 mm/yr, 0.7 mm/yr and 1.3 mm/yr between the North, East and Up velocity components respectively for the different techniques. At HartRAO there is no significant trend in the vertical component and all the techniques used are consistent with the a-priori velocities when compared with each other. This information is crucial in monitoring the local motion variations since geodetic instruments require a very stable base to minimise measurement errors. These findings demonstrate that station coordinate time-series derived with different techniques and analysis strategies provide comparable results.

  4. The impact of the ionosphere on ground-based detection of the global Epoch of Reionisation signal

    CERN Document Server

    Sokolowski, Marcin; Tremblay, Steven E; Tingay, Steven J; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu

    2015-01-01

    The redshifted 21cm line of neutral hydrogen (Hi), potentially observable at low radio frequencies (~50-200 MHz), is a promising probe of the physical conditions of the inter-galactic medium during Cosmic Dawn and the Epoch of Reionisation (EoR). The sky-averaged Hi signal is expected to be extremely weak (~100 mK) in comparison to the Galactic foreground emission (~$10^4$ K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (of the order of tens of Kelvins) originating in the ionosphere. We analyze data collected with the upgraded BIGHORNS system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects (absorption, emission and refraction) on the detection of the global EoR signal. We measure some properties of the ionosphere, such as the electron temperature ($T_e \\approx$470 K at nighttime), magnitude, and variability of optical depth ($\\tau_{100 MHz} \\approx$0.01 and $\\delta \\tau \\approx$0.0...

  5. Astronomy in India a historical perspective

    CERN Document Server

    2014-01-01

    India has a strong and ancient tradition of astronomy, which seamlessly merges with the current activities in Astronomy and Astrophysics in the country. While the younger generation of astronomers and students are reasonably familiar with the current facilities and the astronomical research, they might not have an equally good knowledge of the rich history of Indian astronomy. This particular volume, brought out as a part of the Platinum Jubilee Celebrations of Indian National Science Academy, concentrates on selected aspects of historical development of Indian astronomy in the form of six invited chapters. Two of the chapters – by Balachandra Rao and M.S. Sriram – cover ancient astronomy and the development of calculus in the ancient Kerela text Yuktibhasa. The other four chapters by B.V. Sreekantan, Siraj Hasan, Govind Swarup and Jayant Narlikar deal with the contemporary history of Indian astronomy covering space astronomy, optical astronomy, radio astronomy and developments in relativistic astrophysic...

  6. Report Of The Cospar WG On "Future Of Space Astronomy"

    Science.gov (United States)

    Ubertini, Pietro; Space Astronomy*, Cospar WG on Future of

    2011-09-01

    The COSPAR President on April 20, 2010 appointed the "Future of Space Astronomy” Working Group under the aegis of Commission E, with the aim to analyze the difficult situation of space astronomy over the next two decades and recommend ways to improve the prospects. Having assessed the scientific needs and the current plans of the main space agencies worldwide, the WG has identified some major concerns about the lack of a secured future for Space Astronomy. In fact, astronomers today have access to an impressive set of space missions and ground-based observatories that gives them nearly continuous coverage of the electromagnetic spectrum from the gamma-ray to the radio regions. But the picture becomes concerning and critical in the next 10 - 15 years, when current space astronomy missions will have ended and new missions will be much less numerous. Astronomy is a difficult observational science requiring continuous and simultaneous access to the full electromagnetic spectrum to explore our complex Universe and to pursue answers to fundamental scientific questions. The history of space astronomy, especially the past three decades, has demonstrated clearly the importance and benefits of access to the gamma-ray, X-ray, UV-optical, near IR and far-IR spectrum from space. So far the only planned observatory class missions, proposed to NASA-ESA-JAXA are JWST (2018), WFIRST/EUCLID (2018-2020), Athena (ex IXO, 2022) and LISA. The latter two under re-scope in an ESA alone scenario with a cost Matt Griffin, UK, Michael Hauser, USA, Ravinder K. Manchanda, India, Nobuyuki Kawai, Japan, Shuang-Nan Zhang, China, Mikhail Pavlinsky, Russia

  7. FPGA-based digital signal processing for the next generation radio astronomy instruments: ultra-pure sideband separation and polarization detection

    Science.gov (United States)

    Alvear, Andrés.; Finger, Ricardo; Fuentes, Roberto; Sapunar, Raúl; Geelen, Tom; Curotto, Franco; Rodríguez, Rafael; Monasterio, David; Reyes, Nicolás.; Mena, Patricio; Bronfman, Leonardo

    2016-07-01

    Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.

  8. FURTHER OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM.

    Science.gov (United States)

    EXTRATERRESTRIAL RADIO WAVES), (* MERCURY ( PLANET ), (*RADIO ASTRONOMY, EXTRATERRESTRIAL RADIO WAVES), PLANETARY ATMOSPHERES, SKY BRIGHTNESS, ANTENNAS...EPHEMERIDES, ASTROPHYSICS, JUPITER( PLANET ), VENUS( PLANET ), BRIGHTNESS, ATMOSPHERIC TEMPERATURE, INTENSITY, MEASUREMENT.

  9. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  10. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  11. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy

    National Research Council Canada - National Science Library

    Colin Cunningham; Adrian Russell

    2012-01-01

    .... As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements...

  12. Strategic Plan for Astronomy in the Netherlands 2011-2020

    OpenAIRE

    Groot, P. J. (Paul J.); Kuijken, K.; Stark, R.

    2012-01-01

    Strategic Plan for Astronomy in the Netherlands 2011 - 2020, written by the Netherlands Committee for Astronomy (NCA), on behalf of the excellence research school in astronomy NOVA, (combining the university astronomy institutes of the universities of Amsterdam, Groningen, Leiden and Nijmegen), the NWO division of Physical Sciences, the Netherlands Institute for Radio Astronomy ASTRON and the Netherlands Institute for Space Research SRON. The Strategic plan outlines the scientific priorities ...

  13. Early Astronomy

    Science.gov (United States)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  14. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  15. 射电天文终端电子设备辐射特性测试%Measurements of Radiation Characteristics of a Set of Electronic Backend Devices for Radio Astronomy

    Institute of Scientific and Technical Information of China (English)

    刘奇; 王凯; 王洋; 刘烽

    2014-01-01

    In the developing radio astronomy increasingly more high-speed digital backend systems and control systems are being used , worsening electromagnetic environments for observation .Measurement of radiation characteristics of such electronic devices can help mitigate Radio Frequency Interferences ( RFI) with the shielding technology .To meet the requirements of electromagnetic compatibility of the system improvement for the XJAO ( Xinjiang Astronomical Observatory ) Nanshan 25m telescope and the design of the planned XJAO 110m telescope , we have developed a system to measure radiation characteristics of electronic devices in radio astronomy .We have calibrated the system using a noise source Agilent 346C and the Y-factor method .Using the system we can obtain the radiation spectra of each electronic device in its on and off statuses with other devices turned off .We present some processed spectra of the backend systems of the Nanshan 25m telescope so measured by this system .The presentation includes their calibration and plots .The spectra show the radiation characteristics .Overall our system can provide RFI data for effective analyses , and thus it can appreciably help improving and designing systems in radio astronomy .It should have significant engineering applications .%针对新疆乌鲁木齐市南山25 m射电望远镜终端电磁屏蔽改造,以及新疆拟建的110 m射电望远镜电磁兼容性设计等需求,开发了电子设备辐射特性测试系统,基于标准噪声源Agilent346C,运用Y因子法对系统进行校准。通过关闭其它电子设备,分别打开和关闭测试设备获得环境电平频谱和设备辐射频谱;对测试数据进行了数据处理、成图与分析;给出了25 m射电望远镜典型终端电子设备的辐射频谱。针对终端电子设备辐射特性测试与分析,对系统电磁屏蔽改造提供重要依据。

  16. The future of astronomy in Australia

    Science.gov (United States)

    Sadler, Elaine M.

    2017-09-01

    Australian astronomy has a bright future, thanks largely to recent government investments in major new telescopes, instruments and research centres. There are some short-term challenges as Australia's focus continues to shift from the current (mainly) national facilities for radio and optical astronomy to new multinational and global facilities.

  17. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    Science.gov (United States)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  18. Unseen cosmos the universe in radio

    CERN Document Server

    Graham-Smith, Francis

    2013-01-01

    Radio telescopes have transformed our understanding of the Universe. Pulsars, quasars, Big Bang cosmology: all are discoveries of the new science of radio astronomy. Here, Francis Graham-Smith describes the birth, development, and maturity of radio astronomy, from the first discovery of cosmic radio waves to its present role as a major part of modern astronomy. Radio is part of the electromagnetic spectrum, covering infra-red, visible light, ultraviolet, X-rays, and gamma-rays, and Graham-Smith explains why it is that radio waves give us a unique view of the Universe. Tracing the development o

  19. High sensitive observations of the planetary radio emission in decameter wavelength

    Science.gov (United States)

    Litvinenko, Galina; Zakharenko, Vyacheslav; Rucker, Helmut; Konovalenko, Alexander; Shaposhnikov, Vladimir; Zarka, Philippe; Griessmeier, Jean-M.; Fisher, Georg; Vinogradov, Vladimir; Mylostna, Krystyna

    2013-04-01

    The progress of the ground-based low frequency radio astronomy has opened a new approach to the study of planetary radio emission in the solar system and beyond. This is manifested in the study of the Jupiter (detection of various types of the sporadic emission), of the Saturn (investigation of the electrostatic discharges emission, SED), as well as other planets and exoplanets. High efficiency decameter wavelength radio telescope UTR-2 and modern registration systems (effective area is more than 100 000 sq.m., instant frequency band is 8-33 MHz, dynamic range is about 90 dB, the frequency resolution is about 1 kHz, the temporal resolution is about 1 microsecond) allow for a new observation and detect many interesting phenomena. This includes the detection of superfine time-frequency structures and new types of the modulations effects in the Jovian radio emission, the detection of microsecond scales in the SED emission of the Saturn, and dispersion delay of the SED signals in the interplanetary medium. In addition, the described above method of observation of the planetary signals allowed for the first time to start ground-based searching radio emission from Uranus, Venus, Mars and exoplanets.

  20. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  1. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  2. Greek astronomy

    CERN Document Server

    Heath, Sir Thomas L

    2011-01-01

    Astronomy as a science began with the Ionian philosophers, with whom Greek philosophy and mathematics also began. While the Egyptians and Babylonians had accomplished much of astronomical worth, it remained for the unrivalled speculative genius of the Greeks, in particular, their mathematical genius, to lay the foundations of the true science of astronomy. In this classic study, a noted scholar discusses in lucid detail the specific advances made by the Greeks, many of whose ideas anticipated the discoveries of modern astronomy.Pythagoras, born at Samos about 572 B.C., was probably the first

  3. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  4. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  5. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  6. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  7. Fundamental Astronomy

    CERN Document Server

    Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan

    2007-01-01

    Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.

  8. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  9. Astronomy Communication

    Science.gov (United States)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  10. Radio Telescopes "Save the Day," Produce Data on Titan's Winds

    Science.gov (United States)

    2005-02-01

    In what some scientists termed "a surprising, almost miraculous turnabout," radio telescopes, including major facilities of the National Science Foundation's National Radio Astronomy Observatory (NRAO), have provided data needed to measure the winds encountered by the Huygens spacecraft as it descended through the atmosphere of Saturn's moon Titan last month -- measurements feared lost because of a communication error between Huygens and its "mother ship" Cassini. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) A global network of radio telescopes, including the NRAO's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten antennas of the Very Long Baseline Array (VLBA), recorded the radio signal from Huygens during its descent on January 14. Measurements of the frequency shift caused by the craft's motion, called Doppler shift, are giving planetary scientists their first direct information about Titan's winds. "When we began working with our international partners on this project, we thought our telescopes would be adding to the wind data produced by the two spacecraft themselves. Now, with the ground-based telescopes providing the only information about Titan's winds, we are extremely proud that our facilities are making such a key contribution to our understanding of this fascinating planetary body," said Dr. Fred K.Y. Lo, Director of the National Radio Astronomy Observatory (NRAO). Early analysis of the radio-telescope data shows that Titan's wind flows from west to east, in the direction of the moon's rotation, at all altitudes. The highest wind speed, nearly 270 mph, was measured at an altitude of about 75 miles. Winds are weak near Titan's surface and increase in speed slowly up to an altitude of about 37 miles, where the spacecraft encountered highly-variable winds that scientists think indicate a region of vertical wind shear. The ground-based Doppler

  11. ADDITIONAL OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM,

    Science.gov (United States)

    MERCURY ( PLANET ), VENUS( PLANET ), PERIODIC VARIATIONS, RADIO ASTRONOMY, SPECTRUM SIGNATURES...EXTRATERRESTRIAL RADIO WAVES, SOURCES), GALAXIES, BLACKBODY RADIATION, BRIGHTNESS, TEMPERATURE, MARS( PLANET ), JUPITER( PLANET ), SATURN( PLANET

  12. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  13. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  14. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  15. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  16. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  17. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  18. MAD-4-MITO, a Multi Array of Detectors for ground-based mm/submm SZ observations

    CERN Document Server

    Lamagna, L; Melchiorri, F; Battistelli, E S; De Grazia, M; Luzzi, G; Orlando, A E; Savini, G

    2002-01-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi--pixel imaging systems has greatly improved the performance of microwave observations, even from ground--based stations, especially combining the power of multi--band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi--pixel solution devoted to Sunyaev--Zel'dovich observations from ground--based telescopes, that is going to be operated from the Millimetre and Infrared Testagrigia Observatory.

  19. Minoan Astronomy

    Science.gov (United States)

    Blomberg, Mary; Henriksson, Göran

    Of the three great cultures of the ancient eastern Mediterranean — the Babylonian, Egyptian, and Minoan — we have considerable knowledge of the astronomy of the first two through their documents (see relevant sections of this Handbook). Very little written material, however, has survived from Minoan Crete, but the evidence of other impressive archaeological discoveries implies that the inhabitants were on a par with their neighbors and had made similar advances in astronomy. In lieu of written sources, we have used the methods of archaeoastronomy to recover as much as possible about Minoan astronomy. In short, these are measuring the orientations of walls and their opposite horizons at a representative selection of monuments, analyzing the measurements statistically, and comparing the results with digital reconstruction of the positions of significant celestial bodies for the time when the walls were built.

  20. Astronomy Allies

    Science.gov (United States)

    Flewelling, Heather; Alatalo, Katherine A.

    2017-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  1. Highlighting the History of Astronomy in the Asia-Pacific Region

    CERN Document Server

    Nakamura, Tsuko; Strom, Richard G; ICOA-6 Conference

    2011-01-01

    This book provides readers with the results of recent research from some of the world's leading historians of astronomy on aspects of Arabic, Australian, Chinese, Japanese, and North and South American astronomy and astrophysics. It contains peer-reviewed papers gathered from the International Conferences on Oriental Astronomy 6 (ICO-6) with the chosen theme of "Highlighting the History of Astronomy in the Asia-Pacific Region." Of particular note are the sections on Arabic astronomy, Asian applied astronomy and the history of Australian radio astronomy, and the chapter on Peruvian astronomy. This title is a valuable complement for those with research interests in applied historical astronomy; archaeoastronomy; calendars, manuscripts, and star charts; historical instruments and observatories, and the history of radio astronomy.

  2. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  3. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  4. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute

  5. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  6. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  7. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  8. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  9. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  10. The history of early low frequency radio astronomy in Australia. 8: Grote Reber and the 'Square Kilometre Array' near Bothwell, Tasmania, in the 1960s and 1970s

    Science.gov (United States)

    George, Martin; Orchiston, Wayne; Wielebinski, Richard

    2017-08-01

    In the 1960s, Grote Reber (1911‒2002) established and used an antenna array near Bothwell in Tasmania. Working independently, he produced a radio map of the southern sky at a frequency of 2.085 MHz (a wavelength of 144 metres). Encouraged by this success, he modified the array in the 1970s to work at 1.155 MHz, but this second endeavour failed to produce any usable results.

  11. Chaco astronomies

    Science.gov (United States)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  12. Fundamental astronomy

    CERN Document Server

    Kröger, Pekka; Oja, Heikki; Poutanen, Markku; Donner, Karl

    2017-01-01

    Now in its sixth edition this successful undergraduate textbook gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The chapters on galactic and extragalactic astronomy as well as cosmology were extensively modernized in the previous edition. In this new edition they have been further revised to include more recent results. The long chapter on the solar system has been split into two parts: the first one deals with the general properties, and the other one describes individual objects. A new chapter on exoplanets has been added to the end of the book next to the chapter on astrobiology. In response to the fact that astronomy has evolved enormously over the last few years, only a few chapters of this book have been left unmodified. Long considered a standard text for physical science maj...

  13. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  14. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  15. Innovative Technologies for Optical and Infrared Astronomy

    CERN Document Server

    Cunningham, C R; Molster, F; Kendrew, S; Kenworthy, M A; Snik, F

    2012-01-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  16. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  17. Solar and Planetary Observations with a Lunar Radio Telescope

    Science.gov (United States)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  18. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  19. Strategic Plan for Astronomy in the Netherlands 2011-2020

    CERN Document Server

    Groot, P J; Stark, R

    2012-01-01

    Strategic Plan for Astronomy in the Netherlands 2011 - 2020, written by the Netherlands Committee for Astronomy (NCA), on behalf of the excellence research school in astronomy NOVA, (combining the university astronomy institutes of the universities of Amsterdam, Groningen, Leiden and Nijmegen), the NWO division of Physical Sciences, the Netherlands Institute for Radio Astronomy ASTRON and the Netherlands Institute for Space Research SRON. The Strategic plan outlines the scientific priorities for Dutch astronomy in the next decade; the instrumentation effort required to address these priorities, and the connection between astronomical instrumentation and technology development and fundamental technological R&D; the financial contours needed to realise the priorities; and the role of Dutch astronomy in education and outreach. The Strategic Plan also includes a retrospective on the achievements since the last Strategic Plan (2000) and a forward look beyond 2020.

  20. Astronomy research in China

    Science.gov (United States)

    Wang, Jingxiu

    Decades of efforts made by Chinese astronomers have established some basic facilities for astronomy observations, such as the 2.16-m optical telescope, the solar magnetic-field telescope, the 13.7-m millimeter-wave radio telescope etc. One mega-science project, the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), intended for astronomical and astrophysical studies requiring wide fields and large samples, has been initiated and funded. To concentrate the efforts on mega-science projects, to operate and open the national astronomical facilities in a more effective way, and to foster the best astronomers and research groups, the National Astronomical Observatories (NAOs) has been coordinated and organizated. Four research centers, jointly sponsored by observatories of the Chinese Academy of Sciences and universities, have been established. Nine principal research fields have received enhanced support at NAOs. They are: large-scale structure of universe, formation and evolution of galaxies, high-energy and cataclysmic processes in astrophysics, star formation and evolution, solar magnetic activity and heliogeospace environment, astrogeodynamics, dynamics of celestial bodies in the solar system and artificial bodies, space-astronomy technology, and new astronomical techniques and methods.

  1. Antarctic Cosmic Ray Astronomy

    Science.gov (United States)

    Duldig, Marc

    Cosmic ray observations related to Antarctica commenced in the austral summer of 1947-48 from sub-Antarctic Heard and Macquarie Islands and from the HMAS Wyatt Earp. Muon telescope observations from Mawson station Antarctica commenced in 1955. The International Geophysical Year was the impetus for the installation of a number of neutron monitors around Antarctica observing the lowest energy cosmic rays accessible by ground based instruments. In 1971 a new observatory was built at Mawson including the only underground muon telescope system at polar latitudes in either hemisphere. In the 1980s the South Pole Air Shower Experiment (SPASE) opened the highest energy cosmic ray window over Antarctica and this was followed by the in-ice neutrino experiment AMANDA. Over more than half a century cosmic ray astronomy has been undertaken from Antarctica and its surrounding regions and these observations have been critical to our growing understanding of nearby astrophysical structures. For example the Parker spiral magnetic field of the sun was confirmed through Mawson observations of a Solar flare induced Ground Level Enahncement in 1960 long before spacecraft were able to directly observe the interplanetary magnetic field. A summary of the Antarctic instrumental developments and the scientific advances that resulted will be presented.

  2. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    Science.gov (United States)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  3. Fast radio flashes observed with LOFAR prototypes

    NARCIS (Netherlands)

    Nigl, A.

    2008-01-01

    This thesis consists of a detailed analysis of several observations with prototype stations of the Low Frequency Array (LOFAR). Chapter 1 introduces the field of radio astronomy, briefly describes the radio telescopes which were used and discusses radio frequency interference (RFI) and important too

  4. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  5. Astronomy Education Challenges in Egypt

    Science.gov (United States)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  6. TeachAstronomy.com - Digitizing Astronomy Resources

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  7. Multiwavelength astronomy and big data

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  8. Gravitational waves and multimessenger astronomy

    Directory of Open Access Journals (Sweden)

    Ricci Fulvio

    2016-01-01

    Full Text Available It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  9. Gravitational waves and multimessenger astronomy

    Science.gov (United States)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  10. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  11. Worldwide site comparison for submillimetre astronomy

    CERN Document Server

    Tremblin, P; Minier, V; Durand, G Al; Urban, J

    2012-01-01

    The most important limitation for ground-based submillimetre (submm) astronomy is the broad-band absorption of the total water vapour in the atmosphere above an observation site, often expressed as the Precipitable Water Vapour (PWV). A long-term statistic on the PWV is thus mandatory to characterize the quality of an existing or potential site for observational submm-astronomy. In this study we present a three-year statistic (2008-2010) of the PWV for ground-based telescope sites all around the world and for stratospheric altitudes relevant for SOFIA (Stratospheric Observatory for Far-infrared astronomy). The submm-transmission is calculated for typical PWVs using an atmospheric model. We present the absolute PWV values for each site sorted by year and time percentage. The PWV corresponding to the first decile (10%) and the quartiles (25%, 50%, 75%) are calculated and transmission curves between 150 {\\mu}m and 3 mm for these values are shown. The Antarctic and South-American sites present very good condition...

  12. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  13. Education in astronomy and solar-terrestrial relations in science research environment

    Science.gov (United States)

    Stoeva, Penka; Stoev, Alexey

    2009 -more than 5000 people were happy to observe the Sun, Moon, Venus and other celestial objects; "The Galileoscope"; "Galilean Nights" -encourages everybody to go out to the streets and observe the cosmos; "Dark Skies Awareness" -Measuring of the light pollution level above the region of Stara Zagora; "Astronomy and World Heritage" -archaeoastronomical research of megalithic mon-uments and sanctuaries -examples of ancient observatories for observations of solar extreme rises, sets and meridional culminations; history of the first modern astronomical observatory in Bulgaria; "Galileo Teacher Training Program" -Teaching the teachers. At the beginning of every school year teacher-training course is conducted on astronomy and astrophysics. This year they will actively use telescopes to observe the sky with students; "Universe Awareness" -a lot of games and observations, modeling, exhibitions and parties are organized. "From Earth to the Universe" Exhibitions of astronomical photographs from space and ground based telescopes. Astronomy Olympiads -scientific teaching is improved when the students engaged in doing real science on real data. Fifteen years we participate in the International Astronomy Olympiad and our students win medals. Observarion of solar eclipses is an example of educa-tion in science research environment. We were happy to observe the longest for the last 2000 years total solar eclipse on July 22, 2009, in TianHuangPing, China, at 900m above the sea level. Immediately after the end of this unique phenomenon, images of the eclipsed Sun were sent in Bulgaria. Cooperations -we have good international and national cooperations with a lot of Institutes, Universities, organizations and mass media -radio, TV, magazines, news-papers Information and press conferences about the events have been regularly made available for journalists. With the experience we gained from the IHY and IYA initiatives, being a host of a SID Monitor, we focus on the new International

  14. SKA antenna systems; outlook for non-astronomy applications

    NARCIS (Netherlands)

    Ardenne, van A.; Bentum, M.J.; Boonstra, A.J.

    2011-01-01

    The globally endorsed Square Kilometre Array project primarily aims to advance high sensitivity radio astronomy using a distributed collection of radio telescope stations spiraling outward from the core along three to five arms out to 3000km. This planned highly sensitive instrument covering a frequ

  15. SKA antenna systems; Outlook for non-astronomy applications

    NARCIS (Netherlands)

    Ardenne, van A.; Bentum, M.J.; Boonstra, A.J.

    2012-01-01

    The globally endorsed Square Kilometre Array project primarily aims to advance high sensitivity radio astronomy using a distributed collection of radio telescope stations spiraling outward from the core along three to five arms out to 3000km. This planned highly sensitive instrument covering a frequ

  16. SKA antenna systems; Outlook for non-astronomy applications

    NARCIS (Netherlands)

    van Ardenne, A.; Bentum, Marinus Jan; Boonstra, A.J.

    2012-01-01

    The globally endorsed Square Kilometre Array project primarily aims to advance high sensitivity radio astronomy using a distributed collection of radio telescope stations spiraling outward from the core along three to five arms out to 3000km. This planned highly sensitive instrument covering a

  17. SKA antenna systems; outlook for non-astronomy applications

    NARCIS (Netherlands)

    van Ardenne, A.; Bentum, Marinus Jan; Boonstra, A.J.

    2011-01-01

    The globally endorsed Square Kilometre Array project primarily aims to advance high sensitivity radio astronomy using a distributed collection of radio telescope stations spiraling outward from the core along three to five arms out to 3000km. This planned highly sensitive instrument covering a

  18. Highlights of Astronomy, Vol. 16

    Science.gov (United States)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  19. Goldstone Apple Valley Radio Telescope Project.

    Science.gov (United States)

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  20. Teaching and Learning Astronomy

    Science.gov (United States)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  1. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  2. Binocular astronomy

    CERN Document Server

    Tonkin, Stephen

    2014-01-01

    Binoculars have, for many, long been regarded as an “entry level” observational tool, and relatively few have used them as a serious observing instrument. This is changing! Many people appreciate the relative comfort of two-eyed observing, but those who use binoculars come to realize that they offer more than comfort. The view of the stars is more aesthetically pleasing and therefore binocular observers tend to observe more frequently and for longer periods. Binocular Astronomy, 2nd Edition, extends its coverage of small and medium binoculars to large and giant (i.e., up to 300mm aperture) binoculars and also binoviewers, which brings the work into the realm of serious observing instruments. Additionally, it goes far deeper into the varying optical characteristics of binoculars, giving newcomers and advanced astronomers the information needed to make informed choices on purchasing a pair. It also covers relevant aspects of the physiology of binocular (as in “both eyes”) observation. The first edition ...

  3. Astronomy for teachers: A South African Perspective

    Science.gov (United States)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  4. Astronomy in the City for Astronomy Education

    Science.gov (United States)

    Ros, Rosa M.; Garc, Beatriz

    2016-10-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. ``Astronomy in the city'' is an important part of NASE (Network for Astronomy School Education) (Ros & Hemenway 2012). In each NASE course we introduce a ``working group session'' chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair. After more than 5 years using this method we visited and discovered several examples of astronomy in the city: •Astronomy in ancient typical clothes. •Archaeological temples oriented according to the sunrise or set. •Petroglyphs with astronomical meaning. •Astronomy in monuments. •Sundials. •Oriented Colonial churches. •Astronomy in Souvenirs. In any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus ``what is the best part in order to be seat in the shadow during the journey?'' The result is motivation to go with ``open eyes'' when they are in the street and they try to get more and more information about their surroundings. In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.

  5. SIDECAR ASIC firmware for astronomy applications

    Science.gov (United States)

    Chen, Jing; Loose, Markus; Ricardo, Raphael; Beletic, James; Farris, Mark; Xu, Min; Wong, Andre; Cabelli, Craig

    2014-07-01

    The SIDECAR ASIC is a fully integrated system-on-a-chip focal plane array controller that offers low power and low noise, small size and low weight. It has been widely used to operate different image sensors for ground-based and flightbased astronomy applications. A key mechanism to operating analog detectors is the SIDECAR ASIC's high level of programmability. This paper gives an overview of the SIDECAR ASIC architecture, including its optimized microcontroller featuring a customized instruction set. It describes the firmware components, including timing generation, biasing, commanding, housekeeping and synchronization of multiple detectors. The firmware development tools including compiler and supporting development environment and hardware setup are presented. The firmware capability for ground-based HxRG applications and for flight-based applications like the James Webb Space Telescope (JWST), the repair of the Advanced Camera for Surveys (ACS), and others are also discussed.

  6. The next detectors for gravitational wave astronomy

    CERN Document Server

    Blair, David; Zhao, Chunnong; Wen, Linqing; Miao, Haixing; Cai, Ronggen; Gao, Jiangrui; Lin, Xuechun; Liu, Dong; Wu, Ling-An; Zhu, Zonghong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Ma, Yiqiu; Qin, Jiayi; Page, Michael

    2016-01-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which ari...

  7. Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment

    Institute of Scientific and Technical Information of China (English)

    CUI Xing-Zhu; GAO Min; YANG Jia-Wei; WANG Huan-Yu; ZHANG Cheng-Mo; CHEN Yong; ZHANG Jia-Yu; PENG Wen-Xi; CAO Xue-Lei; LIANG Xiao-Hua; WANG Jin-Zhou

    2008-01-01

    As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of th equasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented.

  8. Innovation in Astronomy Education

    Science.gov (United States)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  9. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  10. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  11. Planetary astronomy in the 1990's

    Science.gov (United States)

    Morrison, David

    1992-01-01

    An overview is presented of current achievements and future possibilities that exist in planetary astronomy. Planetary astronomers employ a wide range of techniques, from straightforward telescopic observation to laboratory analysis of meteorites and cosmic dust. Much of this work focuses on three fundamental questions: how abundant are planets throughout the universe, how did the solar system form, and what can other planets tell us about earth? Several examples show that many recent discoveries reveal the continuing value of earth-orbit and ground-based methods for planetary studies.

  12. Astronomy: On the Bleeding Edge of Scholarly Infrastructure

    Science.gov (United States)

    Borgman, Christine; Sands, A.; Wynholds, L. A.

    2013-01-01

    The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have

  13. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  14. TeV Gamma Ray Astronomy

    CERN Document Server

    Cui, Wei

    2009-01-01

    The field of ground-based gamma ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play to advance this young but exciting field.

  15. TeV gamma-ray astronomy

    Institute of Scientific and Technical Information of China (English)

    Wei Cui

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re-view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.

  16. Tools of Radio Astronomy, 5th edition

    Science.gov (United States)

    Wilson, Thomas L.; Rohlfs, Kristian; Huttemeister, Susanne

    2012-12-01

    New 5th corrected edition of the book http://adsabs.harvard.edu/abs/2009tra..book.....W in Russian, translated by O. Verkhodanov and S. Trushkin, editing S.A. Trushkin from Special astrophysical observatory RAS. This edition contains the translation of the 5th Springer edition of 2009 and new additional chapter (wrote by authors) of Solutions of the problems.

  17. Acousto-optic spectrometer for radio astronomy

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  18. Radio Astronomy Antennas by the Thousands

    Science.gov (United States)

    Schultz, Roger

    2004-06-01

    Large number of microwave antennas of size and surface accuracy appropriate for the Square Kilometre Array (SKA) have not been manufactured previously. To minimize total cost, the design needs to be much more carefully considered and optimized than would be affordable for a small number of antennas. The required surface area requires new methods of manufacture and production-line type assembly to be considered. A blend of past antenna construction technology, creativity, and new technology is needed to provide the best possible telescope for the proposed SKA science goals. The following key concepts will be discussed with respect to reflector antennas and many supporting photographs, figures and drawings will be included. Surface and supporting structure comparison of panels with a one-piece shell as produced by hydroforming.

  19. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    antenna as shown in Figure 4. Dual mode loop-dipole elements are described in [25,29,30]. The 10 MHz radiation patterns of the six modes are shown in... telemetry , GPS, and vector antenna modules. Robey 14 30th Annual AIAA/USU Conference on Small Satellites Alexander Morris. Thanks to Sara Klein for

  20. Astronomy in the City for Astronomy Education

    Science.gov (United States)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. “Astronomy in the city” is an important part of NASE (Network for Astronomy School Education). In each NASE course we introduce a “working group session” chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair.After more than 5 years using this method we visited and discovered several examples of astronomy in the city:• Astronomy in ancient typical cloths• Archeological temples oriented according the Sun rise or set.• Petroglyphs with astronomical meaning.• Astronomy in monuments.• Sundials.• Oriented Colonial churches• Astronomy in SouvenirsIn any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus "what is the best part in order to be seat in the shadow during the journey?" The result is motivation to go with “open eyes” when they are in the street and they try to get more and more information about their surroundings.The most significant characteristic of NASE is that the ”Local NASE Working Group” (LWG) in each country continues with astronomy activities using our materials and new materials created by them. These LWG are integrated by 6 to 8 teachers and professors that participated actively in NASE courses. They maintains alive the program and increases the number of students which can learn through our didactical proposal. There are more than 25 LWG that teach and organize activities on astronomy (education and/or communication) in about 20 countries.In summary, one of the main activities is to introduce local

  1. Statistical methods in astronomy

    OpenAIRE

    Long, James P.; de Souza, Rafael S.

    2017-01-01

    We present a review of data types and statistical methods often encountered in astronomy. The aim is to provide an introduction to statistical applications in astronomy for statisticians and computer scientists. We highlight the complex, often hierarchical, nature of many astronomy inference problems and advocate for cross-disciplinary collaborations to address these challenges.

  2. The jet-cloud interacting radio galaxy PKS B2152-699-I. Structures revealed in new deep radio and X-ray observations

    NARCIS (Netherlands)

    Worrall, D. M.; Birkinshaw, M.; Young, A. J.; Momtahan, K.; Fosbury, R. A. E.; Morganti, R.; Tadhunter, C. N.; Kleijn, G. Verdoes

    PKS B2152-699, which has radio power characteristic of sources that dominate radio feedback, is exceptional in showing a wide range of features associated with radio-galaxy/gas interactions. We present new deep radio (Australia Telescope Compact Array), X-ray (Chandra) and ground-based optical

  3. Efficient computer algorithms for infrared astronomy data processing

    Science.gov (United States)

    Pelzmann, R. F., Jr.

    1976-01-01

    Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.

  4. Astronomy and Politics

    Science.gov (United States)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  5. African Cultural Astronomy

    CERN Document Server

    Holbrook, Jarita C; Medupe, R. Thebe; Current Archaeoastronomy and Ethnoastronomy research in Africa

    2008-01-01

    Astronomy is the science of studying the sky using telescopes and light collectors such as photographic plates or CCD detectors. However, people have always studied the sky and continue to study the sky without the aid of instruments this is the realm of cultural astronomy. This is the first scholarly collection of articles focused on the cultural astronomy of Africans. It weaves together astronomy, anthropology, and Africa. The volume includes African myths and legends about the sky, alignments to celestial bodies found at archaeological sites and at places of worship, rock art with celestial imagery, and scientific thinking revealed in local astronomy traditions including ethnomathematics and the creation of calendars. Authors include astronomers Kim Malville, Johnson Urama, and Thebe Medupe; archaeologist Felix Chami, and geographer Michael Bonine, and many new authors. As an emerging subfield of cultural astronomy, African cultural astronomy researchers are focused on training students specifically for do...

  6. African Astronomy and the Square Kilometre Array

    Science.gov (United States)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  7. Interannaul variations of the vertical and their possible influence on the star catalogs derived from ground-based astrometric observations

    Science.gov (United States)

    Li, Z. X.

    The efforts at Shanghai Observatory since 1991, in response to the Resolution of IAU Comm.19: "Applications of optical astrometry time and latitude programs", is described in the paper, especially the studies concerned with the interannual variations of the vertical and their influence on the astronomical studies. It is clear now that there is a component of the order 0.01 - 0.02" on an interannual time scale in latitude residuals which is correlated with geophysical phenomena on the Earth. A recent study has confirmed that the component discovered is actually the variation of the vertical, related to ground-based observation in astronomy. So, it should be emphasized now that the variation of the vertical is significant enough to be considered in astronomy from now on. Its influence on the past studies, including the star catalogs already published and the ERP before 1980 when optical astrometry observations were still used, should be studied in the future. In comparing the HIPPARCOS catalog with those derived by the past observations, we should keep in mind the existence of this error in an astrometric observation and its influence on the star catalogs and other results derived from ground-based astrometric observations.

  8. Forthcoming mutual events of planets and astrometric radio sources

    CERN Document Server

    Malkin, Z; Tsekmejster, S

    2013-01-01

    Radio astronomy observations of close approaches of the Solar system planets to compact radio sources as well as radio source occultations by planets may be of large interest for planetary sciences, dynamical astronomy, and testing gravity theories. In this paper, we present extended lists of occultations of astrometric radio sources observed in the framework of various astrometric and geodetic VLBI programs by planets, and close approaches of planets to radio sources expected in the nearest years. Computations are made making use of the EPOS software package.

  9. Armenian Cultural Astronomy

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  10. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  11. Astronomy in Argentina

    CERN Document Server

    Muriel, Hernán

    2013-01-01

    This article analyses the current state of Astronomy in Argentina and describes its origins. We briefly describe the institutions where astronomical research takes place, the observational facilities available, the training of staff and professionals, and the role of the institutions in scientific promotion. We also discuss the outreach of Astronomy towards the general public, as well as amateur activities. The article ends with an analysis of the future prospects of astronomy in Argentina.

  12. Why is Astronomy Important?

    OpenAIRE

    Rosenberg, Marissa; Russo, Pedro; Bladon, Georgia; Christensen, Lars Lindberg

    2013-01-01

    Astronomy and related fields are at the forefront of science and technology; answering fundamental questions and driving innovation. Although blue-skies research like astronomy rarely contributes directly with tangible outcomes on a short time scale, the pursuit of this research requires cutting-edge technology and methods that can on a longer time scale, through their broader application make a difference. A wealth of examples show how the study of astronomy contributes to technology, econom...

  13. Full-Wave Radio Characterization of Ionospheric Modification at HAARP

    Science.gov (United States)

    2015-07-26

    Full-Wave Radio Characterization of Ionospheric Modification at HAARP We have studied electrostatic and electromagnetic turbulence stimulated by...radio receivers at HAARP in Alaska, and ground-based radio receivers, incoherent scatter radars, and in-situ measurements from Canadian, ESA, and Polish...363255 San Juan, PR 00936 -3255 31-May-2015 ABSTRACT Final Report: Full-Wave Radio Characterization of Ionospheric Modification at HAARP Report Title We

  14. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  15. Some innovative programmes in Astronomy education

    Science.gov (United States)

    Babu, G. S. D.; Sujatha, S.

    In order to inculcate a systematic scientific awareness of the subject of Astronomy among the students and to motivate them to pursue careers in Astronomy and Astrophysics, various innovative educational programmes have been designed at MPBIFR. Among them, the main programme is termed as the ``100-hour Certificate Course in Astronomy and Astrophysics'' which has been designed basically for the students of the undergraduate level of B.Sc. and B.E. streams. The time duration of the 100 hours in this course is partitioned as 36 hours of classroom lectures, 34 hours of practicals and field trips and the remaining 30 hours being dedicated to dissertation writing and seminar presentations by the students. In addition, after the 100-hour course, the students have the option to take up specialized advance courses in the topics of Astrobiology, Astrochemistry, Radio Astronomy, Solar Astronomy and Cosmology as week-end classes. These courses are at the post graduate level and are covered in a span of 18 to 20 hours spread over a period of 9 to 10 weeks. As a preparatory programme, short-term introductory courses in the same subject are conducted for the high school students during the summer vacation period. Along with this, a three-week programme in basic Astronomy is also designed as an educational package for the general public. The students of these courses have the opportunity of being taken on field trips to various astronomical centers as well as the Radio, Solar and the Optical Observatories as part of their curriculum. The guided trips to the ISRO’s Satellite Centre at Bangalore and the Satellite Launching Station at SHAR provide high degree of motivation apart from giving thrilling experiences to the students. Further, the motivated students are encouraged to involve themselves in regular research programmes in Astronomy at MPBIFR for publishing research papers in national and international journals. The teaching and mentoring faculty for all these programmes

  16. Radio Frequency Interference Mitigation at the WSRT

    CERN Document Server

    Fridman, P A; Millenaar, R P

    2010-01-01

    The sensitivity of radio astronomical stations is often limited by man-made radio frequency interference (RFI) due to a variety of terrestrial activities. An RFI mitigation subsystem (RFIMS) based on real-time digital signalprocessing is proposed here for the Westerbork Synthesis Radio Telescope based on a powerful field programmable gate array processor. In this system the radio astronomy signals polluted by RFI are "cleaned" with the RFIMS before routine back-end correlation processing takes place. The high temporal and frequency resolution of RFIMS allows the detection and excision of RFI better than do standard radio telescope back-end configurations.

  17. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    Science.gov (United States)

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  18. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  19. "Conference on communicating astronomy with the public":taking action

    Science.gov (United States)

    Billings, L.

    In October 2003, The National Radio Astronomy Observatories (NRAO) and the National Research Council (NRC) held a three-day conference in Washington, D.C., on communicating with the public about astronomy. The goals of this conference, intended to be a working meeting, were 'to develop a program to share outreach and education resources among the astronomical community [and] to find ways of communicating with underdeveloped constituencies.' Scientists, communication specialists and others active in public outreach and education about astronomy and space science deliberated on the current state of astronomy communications, the needs of the mass media and the entertainment media, the conduct of public outreach and education as an element of research astronomy, and best practices in astronomy outreach and education. Two important products of the meeting were: 1) A 'Washington charter for communicating astronomy with the public,' a position paper articulating principles of action for funding agencies, professional astronomical societies, individual researchers and universities, laboratories, research organizations and other institutions interested in communicating with the public about astronomy; 2) The appointment of a task force to to organize an electronic archive of informational resources about astronomy. Two options under consideration by the task force are creation of a Web site providing links, categorized and searchable, to astronomy public outreach and education resources; and creation of a Web site that would be a searchable database of astronomy information and imagery (either representative or comprehensive). This paper will highlight the proceedings of the conference, report outcomes, and provide a status report on post-conference actions.

  20. Seismo-traveling ionospheric disturbances of earthquake and tsunami waves observed by space- and ground-based GPS receivers

    Science.gov (United States)

    Liu, J. Y. G.; Chen, C. Y.; Lin, C. H.

    2015-12-01

    FORMOSAT-3/COSMIC (F3/C) is a constellation of six microsatellites launched on April 15, 2006 and has been orbiting with 72° inclination at 700 to 800 km above the earth since December 2007. The main payload of the F3/C is the GPS Occultation eXperiment (GOX) which carries out probing the radio occultation (RO) total electron content between GPS satellite and F3/C. Therefore, F3/C provides us an excellent opportunity to vertically scan ionospheric electron density from 100 up to 800 km altitude. On the other hand, worldwide ground-based GPS receivers can be employed to observe traveling ionospheric disturbances of the TEC. Here, we present the ionosphere response to seismic and tsunami waves by means of F3/C RO TEC and worldwide ground-based GPS TEC as well as existing data of infrasondes, magnetometers, and Doppler sounding systems during the 11 March 2011 M9.0 Tohoku earthquake.

  1. Random time series in Astronomy

    CERN Document Server

    Vaughan, Simon

    2013-01-01

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle, and over time (usually called light curves by astronomers). In the time domain we see transient events such as supernovae, gamma-ray bursts, and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars, and pulsations of stars in nearby galaxies; and persistent aperiodic variations (`noise') from powerful systems like accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of Time Domain Astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher-order properties of accreting black holes, and time delays and correlations in multivariate time series.

  2. Random time series in astronomy.

    Science.gov (United States)

    Vaughan, Simon

    2013-02-13

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars and pulsations of stars in nearby galaxies; and we see persistent aperiodic variations ('noise') from powerful systems such as accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of time domain astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher order properties of accreting black holes, and time delays and correlations in multi-variate time series.

  3. Multiversos: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.; Arias, A.; García, N.

    2011-11-01

    Imagine that you can use your fingers only for typing target coordinates at thetelescope, reduce images and spectra with IRAF, or write papers for Astronomy &Astrophysics, but you would never be able to play an electric guitar.Imagine that you love music, work in front of the computer always withheadphones, and dream of playing with your favourite rock band in a tumultuousconcert.Imagine that you are an astronomer who, after a "cosmic fluke", share stagewith the band which themes you have always hummed since you were a teenager.Imagine that you were born for rock, played a main role in the best Spanishalbum of the 90s (Omega, with Enrique Morente), and your songs arerutinary played by Radio 3, but you would never be able to detect an exoplanetor a galaxy at a high redshift.Imagine that you love Astronomy, try to see the Moon craters and Andromeda withyour small telescope through the light pollution of your city, and explain yourdaughter that Pluto is not a planet any longer. Imagine that you are a musician who, after a "cosmic fluke", give a talk justafter a Nobel laureate that discovered the cosmic microwave backgroundradiation.Such "cosmic flukes" sometimes happen. If you were not at the dinner of the SEA meeting and do not believe us, visithttp://www.myspace.com/antonioariasmultiverso or open the proceedings DVD andlisten "El ordenador simula el nacimiento de las estrella...".

  4. Astronomy in School

    Science.gov (United States)

    Beet, E. A.

    1973-01-01

    Summarizes practical projects, science activities, and teaching aids usable in teaching of the astronomy section of physics courses at the pre-O, O and A-level stages. Indicates that the teacher interest is the decisive factor influencing introduction of astronomy into schools. (CC)

  5. Astronomy and Culture

    Science.gov (United States)

    Stavinschi, M.

    2006-08-01

    Astronomy is, by definition, the sum of the material and spiritual values created by mankind and of the institutions necessary to communicate these values. Consequently, astronomy belongs to the culture of each society and its scientific progress does nothing but underline its role in culture. It is interesting that there is even a European society which bears this name "Astronomy for Culture" (SEAC). Its main goal is "the study of calendric and astronomical aspects of culture". Owning ancient evidence of astronomical knowledge, dating from the dawn of the first millennium, Romania is interested in this topic. But Astronomy has a much deeper role in culture and civilization. There are many aspects that deserve to be discussed. Examples? The progress of astronomy in a certain society, in connection with its evolution; the place held by the astronomy in literature and, generally, in art; the role of the SF in the epoch of super-mediatization; astronomy and belief; astronomy and astrology in the modern society, and so forth. These are problems that can be of interest for IAU, but the most important one could be her educational role, in the formation of the culture of the new generation, in the education of the population for the protection of our planet, in the ensuring of a high level of spiritual development of the society in the present epoch.

  6. Towards ``Astronomy for Development''

    Science.gov (United States)

    Govender, Kevin

    2016-10-01

    The ambition of the IAU's decadal strategic plan is to use astronomy to stimulate development globally. The Office of Astronomy for Development was established in 2011 to implement this visionary plan. This talk will reflect on the past, present and future activities of the office, and describe the status of implementation of the plan at this halfway point in the 2010- decade.

  7. Compendium of Practical Astronomy

    Science.gov (United States)

    Roth, Günter D.; Augensen, H. J.; Heintz, W. D.

    The Compendium of Practical Astronomy is a revised and enlarged English version of the fourth edition of G. Roth's famous handbook for stargazers. In three volumes 28 carefully edited articles aimed especially at amateur astronomers and students and teachers of astronomy in high schools and colleges cover the length and breadth of practical astronomy. Volume 1 contains information on modern instrumentation and reduction techniques, including spherical astronomy, error estimations, telescope mountings, astrophotography, and more. Volume 2 covers the planetary system, with contributions on artificial satellites, comets, the polar aurorae, and the effects of the atmophere on observational data. Volume 3 is devoted to stellar objects, variable stars and binary stars in particular, the Milky Way and Galaxies. An introduction to the astronomical literature and a comprehensive chapter on astronomy education and instructional aids make the Compendium a useful complement to any college library.

  8. Handbook of Practical Astronomy

    CERN Document Server

    Roth, Günter D

    2009-01-01

    With amateurs, students, and teachers of astronomy in high schools and colleges particularly in mind, the Handbook of Practical Astronomy is an essential source to demonstrate trends and variety of astronomical observations. The book presents the substance of celestial bodies for the amateur observer: the planets, the stars, and the galaxies. The sun is the local link to the other stars, the nexus of cosmic evolution. The solar system is made up by the sun and all the celestial bodies orbit it. This system is of special interest for the observing amateur. The Handbook of Practial Astronomy spans astronomy, education and computing. Like many other fields of science, astronomy has become digitized and data rich in recent years. Besides the references at the end of each chapter, there are the notes in the margins with astronomical news and observing highlights on the web.

  9. Joseph Henry and Astronomy

    Science.gov (United States)

    Rothenberg, Marc

    2016-01-01

    Joseph Henry (1797-1878) is best known for his work in electromagnetism and as the first secretary of the Smithsonian Institution. But he was also a pioneer solar physicist, an early advocate of US participation in astrophysics, and a facilitator of international cooperation in astronomy. This paper will briefly trace his role in the development of the US astronomical community from the time he taught astronomy at Princeton in the 1830s through his death, focusing on failed efforts to persuade US astronomers and patrons of astronomy that the best path for US astronomy should be astrophysics. He thought that the US could make a more significant contribution to astronomy science by striking out on a less travelled path rather than competing with the established European observatories.

  10. Ground-based follow-up in relation to Kepler asteroseismic investigation

    Science.gov (United States)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also

  11. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  12. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  13. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  14. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  15. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Science.gov (United States)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  16. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  17. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  18. Naming asteroids for the popularisation of astronomy

    Science.gov (United States)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  19. On-Board and Ground-Based Complexes for Operating the Science Payload of the CORONAS-F Space Mission

    Science.gov (United States)

    Stepanov, A. I.; Lisin, D. V.; Kuznetsov, V. D.; Afanas'ev, A. N.; Osin, A. I.; Schwarz, J.

    To ensure reliable operation of the science payload of the CORONAS-F satellite and to exercise its flexible control in the course of realization of the research program, an on-board and a specialized ground-based control complexes (GCCs) were designed and manufactured at the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN). A demand for such systems arose because the service facilities of the satellite basic platform were unable to satisfy the requirements of the unique scientific experiments, i.e., an efficient on-line control of the variety of scientific instruments, managing large amounts of scientific information, etc.

  20. The Effects of the Ionosphere on Ground-based Detection of the Global 21 cm Signal from the Cosmic Dawn and the Dark Ages

    Science.gov (United States)

    Datta, Abhirup; Bradley, Richard; Burns, Jack O.; Harker, Geraint; Komjathy, Attila; Lazio, T. Joseph W.

    2016-11-01

    Detection of the global H i 21 cm signal from the Cosmic Dawn and the Epoch of Reionization is the key science driver for several ongoing ground-based and future ground-/space-based experiments. The crucial spectral features in the global 21 cm signal (turning points) occur at low radio frequencies ≲ 100 {{MHz}}. In addition to the human-generated radio frequency interference, Earth’s ionosphere drastically corrupts low-frequency radio observations from the ground. In this paper, we examine the effects of time-varying ionospheric refraction, absorption, and thermal emission at these low radio frequencies and their combined effect on any ground-based global 21 cm experiment. It should be noted that this is the first study of the effect of a dynamic ionosphere on global 21 cm experiments. The fluctuations in the ionosphere are influenced by solar activity with flicker noise characteristics. The same characteristics are reflected in the ionospheric corruption to any radio signal passing through the ionosphere. As a result, any ground-based observations of the faint global 21 cm signal are corrupted by flicker noise (or 1/f noise, where f is the dynamical frequency) which scales as {ν }-2 (where ν is the frequency of radio observation) in the presence of a bright galactic foreground (\\propto {ν }-s, where s is the radio spectral index). Hence, the calibration of the ionosphere for any such experiment is critical. Any attempt to calibrate the ionospheric effects will be subject to the inaccuracies in the current ionospheric measurements using Global Positioning System (GPS) ionospheric measurements, riometer measurements, ionospheric soundings, etc. Even considering an optimistic improvement in the accuracy of GPS-total electron content measurements, we conclude that Earth’s ionosphere poses a significant challenge in the absolute detection of the global 21 cm signal below 100 MHz.

  1. The Network for Astronomy in Education in Southwest New Mexico

    Science.gov (United States)

    Neely, B.

    1998-12-01

    The Network for Astronomy in Education was organized to use astronomy as a motivational tool to teach science methods and principles in the public schools. NFO is a small private research observatory, associated with the local University, Western New Mexico. We started our program in 1996 with an IDEA grant by introducing local teachers to the Internet, funding a portable planetarium (Starlab) for the students, and upgrading our local radio linked computer network. Grant County is a rural mining and ranching county in Southwest New Mexico. It is ethnically diverse and has a large portion of the population below the poverty line. It's dryness and 6000' foot elevation, along with dark skies, suite it to the appreciation of astronomy. We now have 8 local schools involved in astronomy at some level. Our main programs are the Starlab and Project Astro, and we will soon install a Sidewalk Solar System in the center of Silver City.

  2. Resolving the Shocks in Radio Galaxy Nebulae: Hubble Space Telescope and Radio Imaging of 3C 171, 3C 277.3, and PKS 2250-41

    Science.gov (United States)

    Tilak, Avanti; O'Dea, Christopher P.; Tadhunter, Clive; Wills, Karen; Morganti, Raffaella; Baum, Stefi A.; Koekemoer, Anton M.; Dallacasa, Daniele

    2005-12-01

    We present the results of Hubble Space Telescope (HST) WFPC2 medium-band and narrowband imaging and Very Large Array and MERLIN2 radio imaging of three powerful radio galaxies: 3C 171, 3C 277.3, and PKS 2250-41. We obtained images of the rest frame [O III] λ5007 and [O II] λ3727 line emission using the linear ramp filters on WFPC2. The correlations of the emission-line morphology and the [O III]/[O II] line ratios with the radio emission seen in ground-based observations are clarified by the HST imaging. We confirm that the radio lobes and hot spots are preferentially associated with lower ionization gas. The galaxy 3C 171 exhibits high surface brightness emission-line gas mainly along the radio source axis. The lowest ionization gas is seen at the eastern hot spot. In 3C 277.3 there is bright high-ionization gas (and continuum) offset just to the east of the radio knot K1. Our observations are consistent with previous work suggesting that this emission is produced by precursor gas ionized by the shock being driven into the cloud by the deflected radio jet. In PKS 2250-41 we resolve the emission-line arc that wraps around the outer rim of the western lobe. The lower ionization [O II] emission is nested just interior to the higher ionization [O III] emission, suggesting that we have resolved the cooling region behind the bow shock. We also detect possible continuum emission from the secondary hot spot. Thus, our observations support the hypothesis that in these sources the interaction between the expanding radio source and the ambient gas strongly influences the morphology, kinematics, and ionization of the gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 6657 (principal investigator C. Tadhunter).

  3. Teaching Astronomy with Technology

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  4. Planck early results. XIV. ERCSC validation and extreme radio sources

    DEFF Research Database (Denmark)

    Lavonen, N.; León-Tavares, J.; Savolainen, P.;

    2011-01-01

    by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions of a sample of "extreme" radio sources, to illustrate the richness of the ERCSC for the study of extragalactic radio sources...

  5. Experimental radio frequency link for Ka-band communications applications

    Science.gov (United States)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  6. Astronomy and culture

    CERN Document Server

    Hetherington, Edith

    2009-01-01

    While astronomy is a burgeoning science, with tremendous increases in knowledge every year, it also has a tremendous past, one that has altered humanity's understanding of our place in the universe. The impact of astronomy on culture - whether through myths and stories, or through challenges to the intellectual status quo - is incalculable. This volume in the Greenwood Guides to the Universe series examines how human cultures, in all regions and time periods, have tried to make sense of the wonders of the universe. Astronomy and Culture shows students how people throughout time have struggled

  7. Astronomy in Ukraine

    CERN Document Server

    Pavlenko, Ya V; Vavilova, I B; Pavlenko, Ya.V.

    2005-01-01

    The current and prospective status of astronomical research in Ukraine is discussed. A brief history of astronomical research in Ukraine is presented and the system organizing scientific activity is described, including astronomy education, institutions and staff, awarding higher degrees/titles, government involvement, budgetary investments and international cooperation. Individuals contributing significantly to the field of astronomy and their accomplishments are mentioned. Major astronomical facilities, their capabilities, and their instrumentation are described. In terms of the number of institutions and personnel engaged in astronomy, and of past accomplishments, Ukraine ranks among major nations of Europe. Current difficulties associated with political, economic and technological changes are addressed and goals for future research activities presented.

  8. Discovering Astronomy Through Poetry

    Science.gov (United States)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  9. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    Science.gov (United States)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  10. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  11. Islands of Astronomy

    Directory of Open Access Journals (Sweden)

    Godfrey Baldacchino

    2009-05-01

    Full Text Available A global review of islands and their connections with astronomy throughout history up to the contemporary times suggests eight compelling, distinct yet interlocking reasons why islands have been and remain so important to astronomy and astronomers. Islands constitute favourable locations for various types of astronomy-related activities: from tracking satellites and monitoring significant celestial events, to providing exceptional locations to jurisdictions with mandated dark and unpolluted skies. They appeal for their favourable longitude and (especially southern latitude, as well as for their disposition towards the conditions that the scientific community may expect in an ideal world: relatively clear viewing conditions from a secure, self-contained platform that is, however, endowed with connectivity. This article is written as a contribution to the International Year of Astronomy (2009.

  12. Astronomy, Astrology, and Medicine

    Science.gov (United States)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  13. Cultural Astronomy in Japan

    Science.gov (United States)

    Renshaw, Steven L.

    While Japan is known more for its contributions to modern astronomy than its archaeoastronomical sites, there is still much about the culture's heritage that is of interest in the study of cultural astronomy. This case study provides an overview of historical considerations necessary to understand the place of astronomy in Japanese society as well as methodological considerations that highlight traditional approaches that have at times been a barrier to interdisciplinary research. Some specific areas of study in the cultural astronomy of Japan are discussed including examples of contemporary research based on interdisciplinary approaches. Japan provides a fascinating background for scholars who are willing to go beyond their curiosity for sites of alignment and approach the culture with a desire to place astronomical iconography in social context.

  14. Astronomy @ Hale School

    Science.gov (United States)

    Cooper, William

    Earth in space is one of the teaching strands of the Western Australia science curriculum. I was able to beg some money from my school to set up an astronomy club and address some of the outcomes of the teaching statement. As a Pom, I thought teaching Astronomy here was going to be great. As a baby boomer mesmerized by the moon landings it came as a disappointment to find that my MTV students found Astronomy passé. Why aren?t students fascinated? Astronomy asks the fundamental life questions: * Where did everything come from? * How did it all get here? * Where is it all going to? * Why are all the science labs I've ever worked in hiding a dusty Tasco refractor or a half working Meade * How was I going to survive?

  15. Stamping through astronomy

    CERN Document Server

    Dicati, Renato

    2013-01-01

    Stamps and other postal documents are an attractive vehicle for presenting astronomy and its development. Written with expertise and great enthusiasm, this unique book offers a historical and philatelic survey of astronomy and some related topics on space exploration. It contains more than 1300 color reproductions of stamps relating to the history of astronomy, ranging from the earliest observations of the sky to modern research conducted with satellites and space probes. Featured are the astronomers and astrophysicists who contributed to this marvelous story – not only Ptolemy, Copernicus, Kepler, Newton, Herschel, and Einstein but also hundreds of other minor protagonists who played an important role in the development of this, the most ancient yet the most modern of all the sciences. The book also examines in depth the diverse areas which have contributed to the history of astronomy, including the instrumentation, the theories, and the observations. Many stamps illustrate the beauty and the mystery of ce...

  16. Development of a Low Cost Telescope System for VHE Astronomy

    Science.gov (United States)

    Querrard, Rodney; Perkins, Jeremy S.

    2017-01-01

    Ground based gamma-ray astronomy has progressed dramatically over the past 40 years. Currently there are 176 confirmed sources detected above 100 GeV ranging from Supernova Remnants (SNR) to Active Galaxies and other objects The next generation of Imaging Air Cherenkov Telescopes (IACT) is currently being developed. The CTA, or Cherenkov Telescope Array, will be a ground-breaking facility made up of a few dozen telescopes of multiple sizes with a sensitivity an order of magnitude greater than the current generation. Nevertheless, an opportunity will remain for smaller, less-expensive instruments to make important contributions to the field of Cherenkov Imaging astronomy.We are investigating an approach that will use an inexpensive array of ground based telescopes built from commercial-off-the-shelf (COTS) products. This array will be capable of studying supernova remnants, gamma-ray-burst afterglows, and active galactic nuclei as well as other sources above 2 TeV at a cost which is much lower than larger facilities like the CTA. We are developing a single prototype telescope that will be installed at the Goddard Geophysical and Astronomical Observatory in Greenbelt, MD. We discuss issues arising from and technical solutions to challenges of using COTS components whose primary purpose is not astronomy for this application. We detail progress in the telescope development and outline future work to complete the prototype and to duplicate it for creation of a low-cost Cherenkov array.

  17. Big Computing in Astronomy: Perspectives and Challenges

    Science.gov (United States)

    Pankratius, Victor

    2014-06-01

    Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds

  18. NASA thesaurus: Astronomy vocabulary

    Science.gov (United States)

    1988-01-01

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  19. Radio sky and the right to observe it

    CERN Document Server

    Gulyaev, Sergei

    2012-01-01

    It was decided in May 2012 that the Square Kilometre Array (SKA) will be built in Africa and Australia, two Southern Hemisphere continents. Here we discuss the plan for SKA design and construction, and how New Zealand radio astronomers can participate in this project and contribute to astronomy and astrophysics research. Geodesy and the study of tectonic plate motion is another important area of research for New Zealand radio astronomy to contribute to. As New Zealand is located at the boundary between two colliding tectonic plates (Australian and Pacific) and most of geological activity in New Zealand originates from their motion, it is important to monitor the relative plate motion with high precision using both GPS and radio astronomical techniques. We discuss radio frequency interference (RFI) as a limiting factor for radio astronomy, and provide results of RFI measurements in different locations in New Zealand.

  20. Cosmological measurements with forthcoming radio continuum surveys

    CSIR Research Space (South Africa)

    Raccanelli

    2012-08-01

    Full Text Available –819 (2012) doi:10.1111/j.1365-2966.2012.20634.x Cosmological measurements with forthcoming radio continuum surveys Alvise Raccanelli,1� Gong-Bo Zhao,1 David J. Bacon,1 Matt J. Jarvis,2,3 Will J. Percival,1 Ray P. Norris,4 Huub Ro¨ttgering,5 Filipe B. Abdalla... of Universe – radio continuum: galaxies. 1 IN T RO D U C T I O N Radio surveys for cosmology are entering a new phase with the construction of the Low Frequency Array (LOFAR) for radio �E-mail: alvise.raccanelli@port.ac.uk astronomy (Ro¨ttgering 2003...

  1. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  2. Conceptual frameworks in astronomy

    Science.gov (United States)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  3. Bad Astronomy Goes Hollywood

    Science.gov (United States)

    Plait, P.

    2003-05-01

    It can be argued that astronomy is the oldest of all the sciences, so you'd think that after all this time people would have a pretty good understanding of it. In reality, however, misconceptions about astronomy abound, and even basic concepts are misunderstood. There are many sources of these cosmic misconceptions, including incorrect textbooks, parents and/or teachers who don't understand astronomy and therefore spread misinformation, urban legends, and so on. Perhaps the most pervasive source of bad astronomy is Hollywood. Science fiction movies are enormously popular, but are commonly written and directed by people who don't have even a passing familiarity with astronomy. The smash hit "Armageddon" (the number one box office movie of 1998), for example, used vast quantities of incorrect astronomy in the plot. It reinforced such popular misconceptions as huge asteroids impacting the Earth with little warning, small meteorites being hot when they impact, air existing in space, and that a simple bomb can blow up an asteroid the size of a small moon (even when the bomb is buried only 800 feet deep!). However, movie scenes can be used as a hook that engages the student, helping them learn and remember the correct science. In this talk, I will light-heartedly discuss specific examples of common misinformation, using movie clips, diagrams, and a splash of common sense to show just where Hollywood gets it wrong, and what you can do to help students and the public get it right.

  4. Astronomy and Mathematics Education

    Science.gov (United States)

    Ros, Rosa M.

    There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.

  5. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  6. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  7. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  8. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  9. Earliest recorded ground-based decameter wavelength observations of Saturn's lightning during the giant E-storm detected by Cassini spacecraft in early 2006

    Science.gov (United States)

    Konovalenko, A. A.; Kalinichenko, N. N.; Rucker, H. O.; Lecacheux, A.; Fischer, G.; Zarka, P.; Zakharenko, V. V.; Mylostna, K. Y.; Grießmeier, J.-M.; Abranin, E. P.; Falkovich, I. S.; Sidorchuk, K. M.; Kurth, W. S.; Kaiser, M. L.; Gurnett, D. A.

    2013-05-01

    We report the history of the first recorded ground-based radio detection of Saturn's lightning using the Ukrainian UTR-2 radiotelescope at frequencies from 20 to 25 MHz. The observations were performed between 29 January and 3 February 2006, during which lighting activity (E-storm) on Saturn was detected by the radio experiment onboard Cassini spacecraft. The minimum detectable flux density (1σ-level) at UTR-2 reached 40 Jy (1Jy=10-26WmHz) for narrowband observations (Δf=10kHz) and 4 Jy for broadband observations (Δf=1MHz), for an effective telescope area of ≈100,000m and integration time of 20 ms. Selection criteria including comparison of simultaneous ON/OFF-source observations were applied to distinguish detection of lightning-associated radio pulses from interference. This allowed us to identify about 70 events with signal-to-noise ratio more than 5. Measured flux densities (between 50 and 700 Jy) and burst durations (between 60 and 220 ms) are in good agreement with extrapolation of previous Cassini measurements to a ground-based observer. This first detection demonstrates the possibility of Solar System planetary lightning studies using large, present and future ground-based radio instruments. The developed methods of observations and identification criteria are also implemented on the UTR-2 radio telescope for the investigation of the next Saturn's storms. Together with recently published UTR-2 measurements of activity measured after the 2006 storm reported here, the results have significant implications for detectable planetary radio emission in our Solar System and beyond.

  10. New-Measurement Techniques to Diagnose Charged Dust and Plasma Layers in the Near-Earth Space Environment Using Ground-Based Ionospheric Heating Facilities

    OpenAIRE

    Mahmoudian, Alireza

    2013-01-01

    Recently, experimental observations have shown that radar echoes from the irregularitysource region associated with mesospheric dusty space plasmas may be modulated by radio wave heating with ground-based ionospheric heating facilities. These experiments show great promise as a diagnostic for the associated dusty plasma in the Near-Earth Space Environment which is believed to have links to global change. This provides an alternative to more complicated and costly space-based observational app...

  11. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  12. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  13. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  14. Searches for radio transients

    CERN Document Server

    Bhat, N D R

    2011-01-01

    Exploration of the transient Universe is an exciting and fast-emerging area within radio astronomy. Known transient phenomena range in time scales from sub-nanoseconds to years or longer, thus spanning a huge range in time domain and hinting a rich diversity in their underlying physical processes. Transient phenomena are likely locations of explosive or dynamic events and they offer tremendous potential to uncover new physics and astrophysics. A number of upcoming next-generation radio facilities and recent advances in computing and instrumentation have provided a much needed impetus for this field which has remained a relatively uncharted territory for the past several decades. In this paper we focus mainly on the class of phenomena that occur on very short time scales (i.e. from $\\sim$ milliseconds to $\\sim$ nanoseconds), known as {\\it fast transients}, the detections of which involve considerable signal processing and data management challenges, given the high time and frequency resolutions required in the...

  15. Radio Astronomical Polarimetry and the Lorentz Group

    CERN Document Server

    Britton, M C

    1999-01-01

    In radio astronomy the polarimetric properties of radiation are often modified during propagation and reception. Effects such as Faraday rotation, receiver cross-talk, and differential amplification act to change the state of polarized radiation. A general description of such transformations is useful for the investigation of these effects and for the interpretation and calibration of polarimetric observations. Such a description is provided by the Lorentz group, which is intimately related to the transformation properties of polarized radiation. In this paper the transformations that commonly arise in radio astronomy are analyzed in the context of this group. This analysis is then used to construct a model for the propagation and reception of radio waves. The implications of this model for radio astronomical polarimetry are discussed.

  16. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  17. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    Science.gov (United States)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  18. Radio Journalism.

    Science.gov (United States)

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  19. Big Data Challenges for Large Radio Arrays

    Science.gov (United States)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  20. First Colombian Solar Radio Interferometer: current stage

    Science.gov (United States)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  1. Big Data Challenges for Large Radio Arrays

    Science.gov (United States)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  2. Status of Radio Ice Cherenkov Experiment (RICE)

    CERN Document Server

    Allen, C; Besson, D; Frichter, G; Kotov, S A; Kravchenko, I V; McKay, D; Miller, T; Piccirillo, L; Ralston, J P; Seckel, D; Seunarine, S; Spiczak, G M

    1997-01-01

    RICE is designed to detect ultrahigh energy (>100 TeV) neutrinos from astrophysical sources. It will consist of an array of compact radio (100 to 1000 MHz) receivers buried in ice at the South Pole. During the 1995-96 and 1996-97 austral summers, several receivers transmitters were deployed in bore holes drilled for the AMANDA project, at depths of 141 to 260 m. This was the first in situ test of radio receivers in deep ice for neutrino astronomy.

  3. Astronomy satellites in the U.S. program

    Science.gov (United States)

    Aucremanne, M. J.

    1974-01-01

    The Orbiting Astronomical Observatory (OAO) series demonstrated that necessary thermal control systems and high pointing stability are feasible on astronomical satellites. A geosynchronous International Ultraviolet Explorer (IUE) is being planned by the US, UK, and ESRO for stellar spectroscopy. High Energy Astronomy Observatories, HEAO-A B, and C, will concentrate on stellar X-ray objects, cosmic ray physics, and gamma ray astronomy. A Shuttle-compatible Solar Maximum Mission (SMM) is planned for studying solar flares and flare related phenomena during the next solar maximum. Now in the instrumentation definition stage is the Large Space Telescope (LST), to provide higher resolution and sensitivity, larger wavelength range (from ultraviolet to far infrared), and higher time resolution than ground-based telescopes.

  4. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    Science.gov (United States)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably

  5. Visualising Astronomy: "Other Worlds"

    Science.gov (United States)

    Wyatt, R.

    2009-02-01

    The infrastructures that are built and used for astronomical research are financed by - and therefore must be justified to - our society. Astronomy has an innate appeal for people of all ages, partly because it concerns the fascinating, great questions "of life, the Universe and everything" and partly because much of the data obtained with telescopes can be presented as objects of stunning beauty. These are key facts when considering communicating astronomy with the public. This native advantage that astronomy has over many other sciences does not, however, relieve us of the obligation to explain what we are doing to the public at large. There are many reasons for doing this. They range from attracting bright young people into the subject to fuel future research endeavours to convincing decision-takers to allocate large sums of money to finance increasingly expensive and ambitious projects.

  6. Python in Astronomy 2016

    Science.gov (United States)

    Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle

    2016-04-01

    The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.

  7. Astronomy education in Thailand

    Science.gov (United States)

    Hutawarakorn, Busaba; Soonthornthum, B.; Kirdkao, T.

    Thailand is one of the developing countries which pursues the goal to advance economy, technology as well as science. Education in Astronomy is considered as a supporting factor, since it is one of the basic sciences which can teach the young generation to understand and conserve their mother nature and at the same time helps to develop analytical thinking. The poster reports the present developments in astronomical education in Thailand which includes (1) current astronomy education in school and university; (2) educational activities outside school; (3) development of programs for teaching astronomy in school (including teacher training); (4) the access of educational resources via internet. Proposals for future development and collaborations will be presented and discussed.

  8. Astronomy Librarian - Quo Vadis?

    Science.gov (United States)

    Lagerstrom, Jill; Grothkopf, Uta

    "You don't look like a librarian" is a phrase we often hear in the astronomy department or observatory library. Astronomy librarians are a breed apart, and are taking on new and non-traditional roles as information technology evolves. This talk will explore the future of librarians and librarianship through the lens of some of the recent talks given at the sixth "Libraries and Information Services in Astronomy" conference held in Pune, India in February 2010. We will explore the librarian's universe, illustrating how librarians use new technologies to perform such tasks as bibliometrics, how we are re-fashioning our library spaces in an increasingly digital world and how we are confronting the brave new world of Open Access, to name but a few topics.

  9. Astronomy Librarians - Quo Vadis?

    CERN Document Server

    Lagerstrom, Jill

    2011-01-01

    "You don't look like a librarian" is a phrase we often hear in the astronomy department or observatory library. Astronomy librarians are a breed apart, and are taking on new and non-traditional roles as information technology evolves. This talk will explore the future of librarians and librarianship through the lens of the recent talks given at the sixth "Libraries and Information Services in Astronomy" conference held in Pune, India in February 2010. We will explore the librarian's universe, illustrating how librarians use new technologies to perform such tasks as bibliometrics, how we are re-fashioning our library spaces in an increasingly digital world and how we are confronting the brave new world of open access, to name but a few topics.

  10. Statistics in astronomy

    CERN Document Server

    Feigelson, Eric D

    2009-01-01

    Perhaps more than other physical sciences, astronomy is frequently statistical in nature. The objects under study are inaccessible to direct manipulation in the laboratory, so the astronomer is restricted to observing a few external characteristics and inferring underlying properties and physics. Astronomy played a profound role in the historical development of statistics from the ancient Greeks through the 19th century. But the fields drifted apart in the 20th century as astronomy turned towards astrophysics and statistics towards human affairs. Today we see a resurgence in astrostatistical activity with the proliferation of survey mega-datasets and the need to link complicated data to nonlinear astrophysical models. Several contemporary astrostatistical challenges are outlined: heteroscedastic measurement errors, censoring and truncation in multivariate databases; time series analysis of variable objects including dynamical models of extrasolar planetary systems; treatments of faint sources and other Poisso...

  11. The LOFAR radio environment

    CERN Document Server

    Offringa, A R; Zaroubi, S; van Diepen, G; Martinez-Ruby, O; Labropoulos, P; Brentjens, M A; Ciardi, B; Daiboo, S; Harker, G; Jelic, V; Kazemi, S; Koopmans, L V E; Mellema, G; Pandey, V N; Pizzo, R F; Schaye, J; Vedantham, H; Veligatla, V; Wijnholds, S J; Yatawatta, S; Zarka, P; Alexov, A; Anderson, J; Asgekar, A; Avruch, M; Beck, R; Bell, M; Bell, M R; Bentum, M; Bernardi, G; Best, P; Birzan, L; Bonafede, A; Breitling, F; Broderick, J W; Bruggen, M; Butcher, H; Conway, J; de Vos, M; Dettmar, R J; Eisloeffel, J; Falcke, H; Fender, R; Frieswijk, W; Gerbers, M; Griessmeier, J M; Gunst, A W; Hassall, T E; Heald, G; Hessels, J; Hoeft, M; Horneffer, A; Karastergiou, A; Kondratiev, V; Koopman, Y; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; McKean, J; Meulman, H; Mevius, M; Mol, J D; Nijboer, R; Noordam, J; Norden, M; Paas, H; Pandey, M; Pizzo, R; Polatidis, A; Rafferty, D; Rawlings, S; Reich, W; Rottgering, H J A; Schoenmakers, A P; Sluman, J; Smirnov, O; Sobey, C; Stappers, B; Steinmetz, M; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; van Ardenne, A; van Cappellen, W; van Duin, A P; van Haarlem, M; van Leeuwen, J; van Weeren, R J; Vermeulen, R; Vocks, C; Wijers, R A M J; Wise, M; Wucknitz, O

    2012-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linear...

  12. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  13. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  14. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  15. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  16. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  17. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  18. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  19. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  20. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  1. Exploring Systems Engineering (and the Universe) Through the RadioJOVE telescope

    Science.gov (United States)

    Aditi Raj, Anya

    2017-01-01

    Amateur projects in radio astronomy are popular methods to engage in what often seems to be an inaccessible field, and pre-made kits are becoming increasingly available to hobbyists and educators. One such kit is the RadioJOVE, which is attractive due to its simplicity, accessibility and its extensive support network and community of users. When coupled with an education in project management, building the RadioJOVE provides a perfect framework to learn about best practices in completing a project. We will primarily discuss the use of the RadioJOVE project to enhance study in project management and systems engineering. We also intend to discuss the importance of amateur projects such as the RadioJOVE in gaining a holistic understanding of radio astronomy and the project’s potential to spark interest in radio astronomy in students of various disciplines.

  2. Lessons from Mayan Astronomy

    CERN Document Server

    Loeb, Abraham

    2016-01-01

    The Mayan culture collected exquisite astronomical data for over a millennium. However, it failed to come up with the breakthrough ideas of modern astronomy because the data was analyzed within a mythological culture of astrology that rested upon false but mathematically sophisticated theories about the Universe. Have we learned the necessary lessons to prevent our current scientific culture from resembling Mayan Astronomy? Clearly, data collection by itself is not a guarantee for good science as commonly assumed by funding agencies. A vibrant scientific culture should cultivate multiple approaches to analyzing existing data and to collecting new data.

  3. Astronomy and Poetry (overview)

    Science.gov (United States)

    Samvelyan, David

    2016-12-01

    Through this work we have tried to show how astronomy penetrates into the poetry of different periods in time and in various poets' works all over the world. The following work has significant cognitive value, demonstrates and reveals the general nature of certain poets' astronomical ideas and provides a brief analysis in some cases. As a result, we have come to the conclusion that astronomy with all its components such as the sky, our solar system and phenomena such as these have always been a source of inspiration for those who create works of art, moreover some of them have even gained actual astronomical knowledge.

  4. Forthcoming Occultations of Astrometric Radio Sources by Planets

    Science.gov (United States)

    L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana

    2010-01-01

    Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.

  5. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Science.gov (United States)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  6. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  7. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  8. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  9. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  10. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  11. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  12. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    Science.gov (United States)

    2004-12-01

    poorly understood. Predictions of where the Huygens probe will land range from nearly 250 miles east to nearly 125 miles west of the point where its parachute first deploys, depending on which wind model is used. What actually happens to the probe as it makes its parachute descent through Titan's atmosphere will give scientists their best-ever opportunity to learn about Titan's winds. During its descent, Huygens will transmit data from its onboard sensors to Cassini, the "mother ship" that brought it to Titan. Cassini will then relay the data back to Earth. However, the large radio telescopes will be able to receive the faint (10-watt) signal from Huygens directly, even at a distance of nearly 750 million miles. This will not be done to duplicate the data collection, but to generate new data about Huygens' position and motions through direct measurement. Measurements of the Doppler shift in the frequency of Huygens' radio signal made from the Cassini spacecraft, in an experiment led by Mike Bird of the University of Bonn, will largely give information about the speed of Titan's east-west winds. A team led by scientists at NASA's Jet Propulsion Laboratory in Pasadena, CA, will measure the Doppler shift in the probe's signal relative to Earth. These additional Doppler measurements from the Earth-based radio telescopes will provide important data needed to learn about the north-south winds. "Adding the ground-based telescopes to the experiment will not only help confirm the data we get from the Cassini orbiter but also will allow us to get a much more complete picture of the winds on Titan," said William Folkner, a JPL scientist. The VLBA The VLBA CREDIT: NRAO/AUI/NSF (Click on image for VLBA gallery) Another team, led by scientists from the Joint Institute for Very Long Baseline Interferometry in Europe (JIVE), in Dwingeloo, The Netherlands, will use a world-wide network of radio telescopes, including the NRAO telescopes, to track the probe's trajectory with unprecedented

  13. PERFORMANCE ANALYSIS OF CLUSTERED RADIO INTERFEROMETRIC CALIBRATION

    NARCIS (Netherlands)

    Kazemi, S.; Yatawatta, S.; Zaroubi, S.

    2012-01-01

    Subtraction of compact, bright sources is essential to produce high quality images in radio astronomy. It is recently proposed that 'clustered' calibration can perform better in subtracting fainter background sources. This is due to the fact that the effective power of a source cluster is greater th

  14. Astronomy Education and Popularization Facilities at Guanajuato University in Mexico

    Science.gov (United States)

    Bravo-Alfaro, H.; Schroeder, K.-P.; Ramirez, L.

    2006-08-01

    At the Astronomy Department of Universidad de Guanajuato, 400 km NW of Mexico City, nine professional astronomers do research and teaching at both graduate and undergraduate level. In addition, in the last few years, this group has carried out astronomy popularization activities at three different sites. First, a rudimentary observatory named "La Azotea" (the roof) on the top of the main building of the University (at Guanajuato centre), which includes a 16-cm refractor in a dome, a couple of XIXth century astronomical instruments, and a classroom with capacity for 50 people. The refractor was out of use for about twelve years but will be fully operational before summer 2006. Second, the "Observatorio de La Luz", 20 kms away from Guanajuato centre, includes a professional 0.6m Cassegrain and a 2m radio telescope, with a 21cm receiver. Finally, on the roof of the Astronomy Department headquarters, an optical 0.4m Dobsonian is available. We also dispose of internet connection everywhere and 6 portable 8-inch telescopes (two at each site), devoted to regular astronomical observations for the general public, specially for scholars. Numerous repair works are currently carried out on the building of "La Azotea", and recently a project to establish there a Centre for Popularization of Astronomy has been approved by the Regional Science Council. The main activities, some of them currently developed at these sites are: (1) A permanent program of astronomical observations for a wide audience. (2) Training in Observational Astronomy for physics undergraduate students. (3) Regular talks on astronomy and other science domains. (4) Summer schools in Astronomy for elementary and high-school teachers. (5) In the near future, the foundation of an amateur society of astronomy.

  15. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  16. Session 21.3 - Radio and Optical Site Protection

    Science.gov (United States)

    Sefako, Ramotholo

    2016-10-01

    Advancement in radio technology means that radio astronomy has to share the radio spectrum with many other non-astronomical activities, majority of which increase radio frequency interference (RFI), and therefore detrimentally affecting the radio observations at the observatory sites. Major radio facilities such as the SKA, in both South Africa and Australia, and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China will be very sensitive, and therefore require protection against RFI. In the case of optical astronomy, the growing urbanisation and industrialisation led to optical astronomy becoming impossible near major cities due to light and dust pollution. Major optical and IR observatories are forced to be far away in remote areas, where light pollution is not yet extreme. The same is true for radio observatories, which have to be sited away from highly RFI affected areas near populated regions and major cities. In this review, based on the Focus Meeting 21 (FM21) oral presentations at the IAU General Assembly on 11 August 2015, we give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, successes (e.g at 21 cm HI line), defeats and challenges at other parts of the spectrum. We discuss the available legislative initiatives to protect the radio astronomy sites for large projects like SKA (in Australia and South Africa), and FAST against the RFI. For optical protection, we look at light pollution with examples of its effect at Xinglong observing station of the National Astronomical Observatories of China (NAOC), Ali Observatory in Tibet, and Asiago Observatory in Italy, as well as the effect of conversion from low pressure sodium lighting to LEDs in the County of Hawaii.

  17. Colonial American Astronomy

    Science.gov (United States)

    Yeomans, Donald K.

    2007-12-01

    While a foundation of German scientific methods enabled the rapid growth of North American Astronomy in the nineteenth century, during the seventeenth and most of the eighteenth centuries, the colonial men of science looked only to the English mother country for scientific patronage and guidance. An essay on fundamental astronomy appeared in one of the annual colonial almanacs as early as 1656, telescopic observations were made about 1660 and the first original colonial astronomical work was published by Thomas Danforth on the comet of 1664. By 1671 the Copernican ideas were so espoused at Harvard College that a physics class refused to read a Ptolemaic textbook when it was assigned to them by a senior instructor. At least in the Cambridge-Boston area, contemporary colonialist had access to the most recent scientific publications from the mother country. Observations of the great comet of 1680 by the Almanac maker, John Foster, reached Isaac Newton and were used and gratefully acknowledged in his Principia. During the seventeenth century the colonial interest in astronomy was more intense than it was for other sciences but colonists still occupied a position in the scientific backwater when compared with contemporary European scientists. Nevertheless, the science of astronomy was successfully transplanted from England to North America in the seventeenth century.

  18. Physics and astronomy

    CSIR Research Space (South Africa)

    Moraal, H

    2009-01-01

    Full Text Available The chapter is about physics and astronomy. The chapter gives a background about the origins of physics in South Africa. After the CSIR was founded in 1945, physics emerged as a nationwide and unified discipline. The authors show how physics...

  19. Resources for Teaching Astronomy.

    Science.gov (United States)

    Grafton, Teresa; Suggett, Martin

    1991-01-01

    Resources that are available for teachers presenting astronomy in the National Curriculum are listed. Included are societies and organizations, resource centers and places to visit, planetaria, telescopes and binoculars, planispheres, star charts, night sky diaries, equipment, audiovisual materials, computer software, books, and magazines. (KR)

  20. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  1. Astronomy on the Walls

    Science.gov (United States)

    Santascoy, J.

    2016-01-01

    Many of us are interested in increasing youth and minority involvement in the sciences. Using art that integrates images of space exploration with ethnic astronomical mythology may increase participation in astronomy in general, while also forming a bridge to underrepresented communities. This paper describes a freely available presentation of Carlos Callejo's Discover the Secrets of the Universe Through the Library for outreach.

  2. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  3. Effects Of The Ionosphere On Ground-Based Detection Of The Global 21 CM Signal From The Cosmic Dawn And The Dark Ages

    CERN Document Server

    Datta, Abhirup; Burns, Jack O; Harker, Geraint; Komjathy, Attila; Lazio, T Joseph W

    2014-01-01

    Detection of global HI 21 cm signal from the Cosmic Dawn and the Epoch of Reionization is the key science driver for several ongoing ground-based and future ground/space based experiments. The crucial spectral features in the global 21cm signal (turning points) occurs at low radio frequencies < 100 MHz. In addition to the human-generated RFI (Radio Frequency Interference), Earth's ionosphere drastically corrupts low-frequency radio observations from the ground. In this paper, we examine the effects of time-varying ionospheric refraction, absorption and thermal emission at these low radio frequencies and their combined effect on any ground-based global 21cm experiment. It should be noted that this is the first study of the effect of a dynamic ionosphere on global 21cm experiments. Our results indicate that the spectral features in the global 21cm signal below 100 MHz cannot be detected from the ground under even "quiet" night-time ionospheric conditions. Any attempt to calibrate the ionospheric effect will ...

  4. Strategies for Teaching Astronomy

    Science.gov (United States)

    Bennett, J.

    2000-12-01

    No matter whether you are teaching school children, undergraduates, or colleagues, a few key strategies are always useful. I will present and give examples for the following five key strategies for teaching astronomy. 1. Provide a Contextual Framework: It is much easier to learn new facts or concepts if they can be ``binned" into some kind of pre-existing mental framework. Unless your listeners are already familiar with the basic ideas of modern astronomy (such as the hierarchy of structure in the universe, the scale of the universe, and the origin of the universe), you must provide this before going into the details of how we've developed this modern picture through history. 2. Create Conditions for Conceptual Change: Many people hold misconceptions about astronomical ideas. Therefore we cannot teach them the correct ideas unless we first help them unlearn their prior misconceptions. 3. Make the Material Relevant: It's human nature to be more interested in subjects that seem relevant to our lives. Therefore we must always show students the many connections between astronomy and their personal concerns, such as emphasizing how we are ``star stuff" (in the words of Carl Sagan), how studying other planets helps us understand our own, and so on. 4. Limit Use of Jargon: The number of new terms in many introductory astronomy books is larger than the number of words taught in many first courses in foreign language. This means the books are essentially teaching astronomy in a foreign language, which is a clear recipe for failure. We must find ways to replace jargon with plain language. 5. Challenge Your Students: Don't dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

  5. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  6. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  7. PARTNeR: A Tool for Outreach and Teaching Astronomy

    Science.gov (United States)

    Gallego, Juan Ángel Vaquerizo; Fuertes, Carmen Blasco

    PARTNeR is an acronym for Proyecto Académico con el Radio Telescopio de NASA en Robledo (Academic Project with the NASA Radio Telescope at Robledo). It is intended for general Astronomy outreach and, in particular, radioastronomy, throughout Spanish educational centres. To satisfy this target, a new educational material has been developed in 2007 to help not only teachers but also students. This material supports cross curricular programs and provides with the possibility of including Astronomy in related subjects like Physics, Chemistry, Technology, Mathematics or even English language. In this paper, the material that has been developed will be shown in detail and how it can be adapted to the disciplines from 4th year ESO (Enseñanza Secundaria Obligatoria-Compulsory Secondary Education) to High School. The pedagogic results obtained for the first year it has been implemented with students in classrooms will also be presented.

  8. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Aller, H. D.

    2016-01-01

    ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.......5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations...

  9. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  10. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  11. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  12. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  13. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  14. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  15. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  16. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  17. Feedback and Brightest Cluster Galaxy Formation: ACS Observations of the Radio Galaxy TN J1338-1942 at z = 4.1

    Science.gov (United States)

    Zirm, Andrew W.; Overzier, R. A.; Miley, G. K.; Blakeslee, J. P.; Clampin, M.; De Breuck, C.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Homeier, N.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Benítez, N.; Bouwens, R. J.; Bradley, L. D.; Broadhurst, T. J.; Brown, R. A.; Burrows, C. J.; Cheng, E. S.; Cross, N. J. G.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Infante, L.; Kimble, R. A.; Krist, J. E.; Lesser, M. P.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2005-09-01

    We present deep optical imaging of the z=4.1 radio galaxy TN J1338-1942, obtained using the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope, as well as ground-based near-infrared imaging data from the European Southern Observatory (ESO) Very Large Telescope (VLT). The radio galaxy is known to reside within a large galaxy overdensity (both in physical extent and density contrast). There is good evidence that this ``protocluster'' region is the progenitor of a present-day rich galaxy cluster. TN J1338 is the dominant galaxy in the protocluster in terms of size and luminosity (in both the optical and near-infrared) and therefore seems destined to evolve into the brightest cluster galaxy. The high spatial resolution ACS images reveal several kiloparsec-scale features within and around the radio galaxy. The continuum light is aligned with the radio axis and is resolved into two clumps in the i775 and z850 bands. These components have luminosities ~109 Lsolar and sizes of a few kpc. The estimated nebular continuum, scattered light, synchrotron- and inverse Compton-scattering contributions to the aligned continuum light are only a few percent of the observed total, indicating that the observed flux is likely dominated by forming stars. The estimated star formation rate for the whole radio galaxy is ~200 Msolar yr-1. A simple model in which the jet has triggered star formation in these continuum knots is consistent with the available data. A striking, but small, linear feature is evident in the z850 aligned light and may be indicative of a large-scale shock associated with the advance of the radio jet. The rest of the aligned light also seems morphologically consistent with star formation induced by shocks associated with the radio source, as seen in other high-z radio galaxies (e.g., 4C 41.17). An unusual feature is seen in Lyα emission. A wedge-shaped extension emanates from the radio galaxy perpendicularly to the radio axis. This ``wedge

  18. Estimation of Potential Interference Immunity of Radio Reception with Spatial Signal Processing in Mutipath Radio-Communication Channels. Part II. Meter and Decimeter Ranges

    Science.gov (United States)

    Lvov, A. V.; Metelev, S. L.

    2016-11-01

    We propose simulation models for estimating the interference immunity of radio reception using the spatial processing of signals in the airborne and ground-based communication channels of the meter and decimeter wavelength ranges. The ultimate achievable interference immunity under various radio-wave propagation conditions is studied.

  19. Successes and challenges in Space Science/Astronomy Development in West Africa

    Science.gov (United States)

    EKEOMA Opara, Fidelis

    2015-08-01

    The increasing number of Astronomers in Nigeria has challenged Space Scientists and Engineers on the popularization of Space Science and Astronomy.The aothor presents in this work many successes recorded at the Centre for Basic Space Science and Astronomy (CBSS), National Space Research and Development Agency, Nigeria in terms of local fabrications of instruments in both radio and optical frequencies with its attendant challenges.Professor F.E. Opara is the Director/ CEO NASRDA Centre for Basic Space Science and Astronomy (CBSS), Nsukka, Nigeria.

  20. Astronomy Olympiad: An Initiative To Promote Astronomy Education In Nepal

    Science.gov (United States)

    Bhattarai, Suresh

    2015-08-01

    This paper presents National Astronomy Olympiad Program as a new initiative towards the development of astronomy education in Nepal by Nepal Astronomical Society (NASO).Innovoative components of the olympiad programs designed by NASO to engage both scince and non-science backgound people will be discussed in detail. It will discuss the first National Astronomy Olympiad 2014 and Second National Astronomy Olympiad 2015 in details. It will also present crowd funding, its effectiveness to outreach as well as collecting funds from around the world will be presented in brief. Proposed module of astronomy olympiad to promote astronnomy in the countries without formal astronomy education in high school like Nepal,will be presented in dedail. Possible strategry to strengthen such programs in developing nations and role of IAU to promote such educational program will be explored in detail.

  1. Astronomy and astrology

    Science.gov (United States)

    Zarka, Philippe

    2011-06-01

    Astrology meets a large success in our societies, from the private to the political sphere as well as in the media, in spite of the demonstrated inaccuracy of its psychological as well as operational predictions. We analyse here the relations between astrology and astronomy, as well as the criticisms opposed by the latter to the former. We show that most of these criticisms are weak. Much stronger ones emerge from the analysis of the astrological practice compared to the scientific method, leading us to conclude to the non-scientificity of astrology. Then we return to the success of astrology, and from its analysis we propose a renewed (and prophylactic) rôle for astronomy in society.

  2. Bringing Students To Astronomy

    Science.gov (United States)

    Clark, Gilbert

    2013-05-01

    The Telescopes In Education (TIE) Program was the pioneer in robotic astronomy. The first users came online in the spring of 1993. The TIE program was dedicated to K-14 students with the hope of inspiring them to develop a greater appreciation for math, science, and engineering through their participation in astronomy. The program was very successful through 2005 when NASA felt there were enough robotic telescopes in the community to support the students into the future. During the 12 years of supported operations, TIE had over one hundred thousand student operations. TIE then started working with Universities in Australia to help move their students towards careers in the sciences and engineering. We discovered that students in the middle schools were the ones that should be focused on, to successfully bring them into the sciences and engineering. We have crafted a system that should be very successful in this endeavor.

  3. Thread Safe Astronomy

    CERN Document Server

    Seaman, Robert

    2008-01-01

    Observational astronomy is the beneficiary of an ancient chain of apprenticeship. Kepler's laws required Tycho's data. As the pace of discoveries has increased over the centuries, so has the cadence of tutelage (literally, "watching over"). Naked eye astronomy is thousands of years old, the telescope hundreds, digital imaging a few decades, but today's undergraduates will use instrumentation yet unbuilt - and thus, unfamiliar to their professors - to complete their doctoral dissertations. Not only has the quickening cadence of astronomical data-taking overrun the apprehension of the science within, but the contingent pace of experimental design threatens our capacity to learn new techniques and apply them productively. Virtual technologies are necessary to accelerate our human processes of perception and comprehension to keep up with astronomical instrumentation and pipelined dataflows. Necessary, but not sufficient. Computers can confuse us as efficiently as they illuminate. Rather, as with neural pathways e...

  4. The next detectors for gravitational wave astronomy

    Science.gov (United States)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  5. Software systems for astronomy

    CERN Document Server

    Conrad, Albert R

    2014-01-01

    This book covers the use and development of software for astronomy. It describes the control systems used to point the telescope and operate its cameras and spectrographs, as well as the web-based tools used to plan those observations. In addition, the book also covers the analysis and archiving of astronomical data once it has been acquired. Readers will learn about existing software tools and packages, develop their own software tools, and analyze real data sets.

  6. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  7. TEAM Experience in Astronomy

    Science.gov (United States)

    McGruder, C. H., III; Tyson, N.; Williams, B.; Hackney, K.; Hackney, R.; Rudloff, M.; Scott, R.; Tyler, R.

    1996-05-01

    The purpose of the project was to increase minority interest and appreciation of science using astronomy as a tool. This goal was achieved by inviting high school minority students and their teachers to the campus of Western Kentucky University to participate along with minority role models in team based learning experiences. All participants worked together in many hands-on activities and events centered around the exploration of space.

  8. Infrared spectroscopy in astronomy

    Science.gov (United States)

    Houck, J. R.

    1981-01-01

    The use of infrared spectroscopy in astronomy has increased dramatically in the past ten years. The broad design considerations are discussed in terms of wavelength coverage and resolution. Three rough resolution ranges, lambda/Delta lambda of approximately 100, 1000 and 10,000, are identified in which various types of astronomical problems can be studied. Numerous existing systems are briefly discussed and references are given to more complete descriptions.

  9. First Ground-Based Observation of Sprites Over Southern Africa and Estimation of Their Physical and Optical Characteristics

    Science.gov (United States)

    Nnadih, O.; Martinez, P.; Kosch, M.; Lotz, S.; Fullekrug, M.

    2016-12-01

    We present the first ground-based observations of sprites over convective thunderstorms in southern Africa. The observations, acquired during the austral summer of 2015/16. show sprites with dendritic, carrot, angel and jellyfish-like shapes. The sprite locations are compared with lightning locations and peak amplitudes determined from the lightning detection network operated by the South African Weather Service, and also with the lightning locations reported by the World Wide Lightning Location Network (WLLN) and Low Frequency radio waveforms of the electric field strength recorded in the conjugate hemisphere in South-West England. The charge moment of the lightning discharges causing sprites is inferred from Extremely Low Frequency magnetic field measurements recorded at remote distances. These measurements reveal that a number of the sprites that we observed were triggered below and above the charge moment threshold for sprite production.

  10. Astronomy in the streets

    Science.gov (United States)

    Kebe, Fatoumata

    2015-08-01

    The Ephemerides Association was founded last year by a PhD student in Astronomy. The association is devoted to the promotion and advancement of knowledge of the universe through research and education.The main activities of the association are scientific meetings, the planning and realization of scientific projects, the support of the scientific activities of its members, and the dissemination of related information among members and other interested persons.The association targets the disadvantaged zones of the Paris suburbs.The main issue was how to bring astronomy in those places. In the suburbs, since most of the youth are poor, most leisure activities like cinema are out of your reach. Thus, mostly of them will play football or basketball outside.We decided to go to meet young people who find themselves together in the evening. We prepare the telescope as well as the fasicules to start the observation of the planets. The discussion finally lead to their career plans and aspirations. Astronomy has become a tool to address societal issues. We present our results after one year of activity.

  11. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  12. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  13. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  14. Highlights of Astronomy

    Science.gov (United States)

    van der Hucht, Karel

    2008-02-01

    Preface Karel A. van der Hucht; Part I. Invited Discourses: Part II. Joint Discussions: 1. Particle acceleration - from Solar System to AGN Marian Karlicky and John C. Brown; 2. Pulsar emission and related phenomena Werner Becker, Janusz A. Gil and Bronislaw Rudak; 3. Solar activity regions and magnetic structure Debi Prasad Choudhary and Michal Sobotka; 4. The ultraviolet universe: Stars from birth to death Ana I. Gomez de Castro and Martin A. Barstow; 5. Calibrating the top of the stellar M-L relationship Claus Leitherer, Anthony F. J. Moat and Joachim Puls; 6. Neutron stars and black holes in star clusters Frederic A. Rasio; 7. The Universe at z > 6 Daniel Schaerer and Andrea Ferrara; 8. Solar and stellar activity cycles Klaus G. Strassmeier and Alexander Kosovichev; 9. Supernovae: One millennium after SN 1006 P. Frank Winkler, Wolfgang Hillebrandt and Brian P. Schmidt; 10. Progress in planetary exploration missions Guy J. Consolmagno; 11. Pre-solar grains as astrophysical tools Anja C. Andersen and John C. Lattanzio; 12. Long wavelength astrophysics T. Joseph W. Lazio and Namir E. Kassim; 13. Exploiting large surveys for galactic astronomy Christopher J. Corbally, Coryn A. L. Bailer-Jones, Sunetra Giridhar and Thomas H. Lloyd Evans; 14. Modeling dense stellar systems Alison I. Sills, Ladislav Subr and Simon F. Portegies Zwart; 15. New cosmology results from the Spitzer Space Telescope George Helou and David T. Frayer; 16. Nomenclature, precession and new models in fundamental astronomy Nicole Capitaine, Jan Vondrak & James L. Hilton; 17. Highlights of recent progress in seismology of the Sun and Sun-like stars John W. Leibacher and Michael J. Thompson; Part III. Special Sessions: SpS 1. Large astronomical facilities of the next decade Gerard F. Gilmore and Richard T. Schilizzi; SpS 2. Innovation in teaching and learning astronomy methods Rosa M. Ros and Jay M. Pasachoff; SpS 3. The Virtual Observatory in action: New science, new technology and next

  15. Indigenous Astronomies and Progress in Modern Astronomy

    CERN Document Server

    Ruggles, Clive

    2010-01-01

    From an anthropological point of view, the whole concept of a "path of progress" in astronomical discovery is anathema, since it implicitly downgrades other cultural perspectives, such as the many "indigenous cosmologies" that still exist in the modern world. By doing so, one risks provoking those who hold them and-as is most obvious in places such as Hawaii where the two "world-views" come into direct contact-reating avoidable resistance to that very progress. The problem is complicated by the existence of "fringe" and "new-age" views that are increasingly confused with, and even passed off as, indigenous perceptions. In a modern world where widespread public perceptions include many that are unscientific in the broadest sense of the term, I shall argue that there are actually a range of positive benefits for progress in scientific astronomy to be derived from the mutual awareness and comprehension of "genuine" cultural world-views whose goals-in common with those of modern science-are to make sense of the c...

  16. Astronomy Education for Physics Students

    Indian Academy of Sciences (India)

    J. H. Fan; J. S. Zhang; J. Y. Zhang; Y. Liu; H. G. Wang

    2011-03-01

    Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing since 1994, when the center for astrophysics was founded. Now, astrophysics has become a key subject in Guangdong Province, and the Astronomy Science and Technology Research Laboratory one of the key laboratories of the Department of Education of the Guangdong Province. Many undergraduate students, working under the tutorship of faculty members completed their thesis at the Center for Astrophysics in Guangzhou.

  17. Sensitive Ground-based Search for Sulfuretted Species on Mars

    Science.gov (United States)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2012-10-01

    We searched for active release of gases on Mars during mid Northern Spring and early Northern Summer seasons, between Ls= 34° and Ls= 110°. The targeted volcanic areas, Tharsis and Syrtis Major, were observed during the interval 23 Nov. 2011 to 13 May 2012, using the high resolution infrared spectrometer (CSHELL) on NASA's Infrared Telescope Facility (NASA/IRTF) and the ultra-high resolution heterodyne receiver (Barney) at the Caltech Submillimeter Observatory (CSO). The two main reservoirs of atmospheric sulfur on Mars are expected to be SO2 and H2S. Because these two species have relatively short photochemical lifetimes, 160 and 9 days respectively (Wong et al. 2004), they stand as powerful indicators of recent activity. Carbonyl sulfide (OCS) is the expected end-product of the reactions between sulfuretted species and other molecules in the Martian atmosphere. Our multi-band survey targeted SO2, SO and H2S at their rotational transitions at 346.523 GHz, 304.078 GHz and 300.505 GHz respectively, and OCS in its combination band (ν1+ν3) at 3.42 µm and its fundamental band (ν3) centered at 4.85 µm. The radiative transfer model used to derive abundance ratios for these species was validated by performing line-inversion retrievals on the carbon monoxide (CO) strong rotational (3-2) line at sub-mm wavelengths (rest frequency 345.796 GHz). Preliminary results and abundance ratios for SO2, H2S, SO, OCS and CO will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program (AK, ATT, MJM), NASA Astrobiology Institute (MJM), NASA Planetary Atmospheres Program (GLV), and NSF grant number AST-0838261 to support graduate students at the CSO (AK). References: Wong, A.S., Atreya, S. K., Formisano, V., Encrenaz, T., Ignatiev, N.I., "Atmospheric photochemistry above possible martian hot spots", Advances in Space Research, 33 (2004) 2236-2239.

  18. Transmission of Babylonian Astronomy to Other Cultures

    Science.gov (United States)

    Jones, Alexander

    Babylonian astronomy and astrology were extensively transmitted to other civilizations in the second and first millennia BC. Greek astronomy in particular was largely shaped by knowledge of Babylonian observations and mathematical astronomy.

  19. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  20. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to